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Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on 
contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised 
contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters 
that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility 
of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and 
combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions 
in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing 
of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated 
expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal 
more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, 
producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free 
Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggest-
ing a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and 
prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the 
advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered 
contractile properties of aged muscle.

Keywords  Ageing · Twitch · Force-frequency relationship · Calcium sensitivity · Specific force · Calcium uptake and 
release

1  Introduction

Evidence has mounted in favour of the view that the intrin-
sic contractile properties of skeletal muscle are altered in 
advanced age. Age-related deficits in single fibre specific 
tension and maximum velocity of shortening have been 

found for type I and type II fibres from aged muscles of 
both rodents (Degens et al. 1998; Thompson et al. 1998; 
González et al. 2000, 2003; Zhong et al. 2006; Kim and 
Thompson 2013) and humans (Larsson et al. 1997; Frontera 
et al. 2000; Krivickas et al. 2001; D’Antona et al. 2003; Och-
ala et al. 2007; Yu et al. 2007; Lamboley et al. 2015; Power 
et al. 2016; Brocca et al. 2017) and can manifest despite 
long-term training (Korhonen et al. 2006; Power et al. 2016). 
Such findings imply that the broad decline in contractile 
performance with ageing isn’t the sole product of reductions 
in muscle fibre number and size. Reinforcing this notion are 
a more limited number of studies demonstrating that funda-
mental processes involved in activation and contraction are 
prone to impairment in old muscle, including the kinetics 
of cross-bridge cycling (Höök et al. 2001; D’Antona et al. 
2003; Miller et al. 2013), mechanics of myosin (Lowe et al. 
2001) and Ca2+ sensitivity of force (Brooks and Faulkner 
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1994; Lowe et al. 2002; Lamboley et al. 2015; Straight et al. 
2018; Mazara et al. 2021), and handling of Ca2+ by the sar-
coplasmic reticulum [SR (Larsson and Salviati 1989; Del-
bono et al. 1995; Narayanan et al. 1996; Wang et al. 2000; 
Jiménez-Moreno et al. 2008; Andersson et al. 2011; Uman-
skaya et al. 2014)].

Impaired intrinsic contractile performance, however, is 
not universally observed for old muscle (Trappe et al. 2003; 
Hvid et al. 2011; Sundberg et al. 2018; Teigen et al. 2020; 
Mazara et al. 2021). The same is true of disturbances to 
cellular level contractile processes, such as Ca2+ sensitiv-
ity of force (Eddinger et al. 1986; Plant and Lynch 2001; 
Lamboley et al. 2015; Teigen et al. 2020) and SR Ca2+ 
uptake (Fitts et al. 1984; Narayanan et al. 1996; Thomas 
et al. 2010). When human single fibre data published within 
the last decade are considered (Claflin et al. 2011; Hvid et al. 
2011, 2017; Miller et al. 2013; Sundberg et al. 2018; Straight 
et al. 2018; Gries et al. 2019; Teigen et al. 2020; Grosicki 
et al. 2021; Mazara et al. 2021), a compelling argument 
could be made that neither type I nor type II fibres show an 
appreciable decline in specific force or shortening speed. 
Yet, age-related deficits in joint-level contraction speed 
and mass-specific mechanical power arise in the absence of 
impaired single fibre function (Reid et al. 2012; Sundberg 
et al. 2018). Prolonged or slowed force rise and decay and 
elevated force generation at submaximal stimulation fre-
quencies (i.e. leftward-shifted force-frequency relationship) 
are also among the most commonly observed features of 
whole muscle in advanced age (Fitts et al. 1984; Davies et al. 
1986; Larsson and Edström 1986; Vandervoort and McCo-
mas 1986; Brooks and Faulkner 1988; Alway 1995; Roos 
et al. 1999; Dow et al. 2005; McNeil et al. 2007; Tevald et al. 
2009). A plausible explanation may be that an age-related 
elevation of the fractional area occupied by type I fibres or 
of the myosin heavy chain (MHC) I fibre content (Larsson 
et al. 1978; Coggan et al. 1992; Hunter et al. 1999; Short 
et al. 2005; Cui et al. 2008; Nilwik et al. 2013; Sonjak et al. 
2019) is sufficient to produce a slower contractile phenotype 
(Ranatunga and Thomas 1990; Harridge et al. 1996).

Predicting altered mechanical output and identifying the 
underlying determinants remains challenging because con-
tractile properties present inconsistently in advanced age, 
which may be reconciled with the myriad alterations that 
aged muscle can exhibit. Reports of the effect of age on 
single fibre or whole muscle contractile performance can 
be conflicting or show variation across taxa (Ballak et al. 
2014), rodent strains (Rice et al. 2005), muscles (Brooks and 
Faulkner 1988; Brown and Hasser 1996; Narayanan et al. 
1996; Hill et al. 2020), and as a function of activity level 
or training status (Fitts et al. 1984; Klitgaard et al. 1989; 
D’Antona et al. 2007), sex (Degens et al. 1998; Krivickas 
et al. 2001; Hill et al. 2020) and fibre type (Yu et al. 2007; 
Kim and Thompson 2013; Lamboley et al. 2015). Even for 

a given muscle of a model organism, the effect of ageing on 
contractile behaviour can vary (Brooks and Faulkner 1988; 
Moran et al. 2005). In addition to the aforementioned adap-
tations of cellular level function (e.g. slower cross-bridge 
kinetics), and a relative increase in type I fibre content, aged 
muscle may exhibit structural adaptations, such as altered 
intramuscular and extramuscular connective tissue proper-
ties (Gao et al. 2008; Wood et al. 2011; Stenroth et al. 2012; 
Danos et al. 2016; Holt et al. 2016). Compared to a loss of 
muscle mass, it is less clear how these adaptations (and oth-
ers) impact contractile performance, especially when acting 
in concert, and to what extent these adaptations must present 
to be meaningful.

Determining the impact of age-related changes in muscle 
structure and function on mechanical output isn’t always fea-
sible. For example, experimental approaches to quantifying 
excitation-SR Ca2+ release coupling and SR Ca2+ uptake 
dynamics may preclude myosin-actin interaction or be 
performed without simultaneous measurement of contrac-
tile force (Larsson and Salviati 1989; Delbono et al. 1995; 
Narayanan et al. 1996; Wang et al. 2000). In this context, 
it is also worth noting that crude homogenates of muscle 
frequently used to study Ca2+ release and Ca2+ uptake in 
advanced age (Fitts et al. 1984; Hunter et al. 1999; Thomas 
et al. 2010; Russ et al. 2011) may also be sensitive to an age-
related increase in type I fibre content. The multifaceted and 
diverse nature of muscle deterioration and remodelling in 
response to ageing places importance on the interaction of 
adaptations. Interaction effects may be nonintuitive and may 
not always result in obvious impairment. Whereas an age-
related reduction in the Ca2+ sensitivity of force may com-
pound a reduction in SR Ca2+ release, an age-related slowing 
of SR Ca2+ uptake may offer a buffering effect. Linking any 
single adaptation to impaired contractile performance may 
be difficult when the scope of the study from an explanatory 
point of view is narrow and the broader extent of senescence 
is uncertain.

Establishing the likelihood that an altered property 
would appreciably impair contractile performance, in iso-
lation and when acting in concert, might aid our under-
standing of altered contractile performance in advanced 
age from mechanistic and predictive perspectives. Muscle 
models are useful tools for exploring the effects of muscle 
design and adaptation on contractile performance (Wis-
dom et al. 2015). Several common traits of aged muscle 
contractile performance have been accurately simulated 
by adjusting model parameters to reflect known changes 
in activation and contraction dynamics and muscle–tendon 
morphology (Thelen 2003; Hasson and Caldwell 2012). 
Hill-type models simulate contractile behaviour according 
to well-established intrinsic mechanical phenomena (Cur-
tin et al. 1998; Williams et al. 1998; Wakeling and John-
ston 1999) and can be integrated with relatively simple, yet 
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physiologically-grounded activation dynamics (Lichtwark 
and Wilson 2005a). Because many of the parameters used 
in Hill-type models can be related to muscle–tendon struc-
ture and intrinsic muscle properties, such models have 
the potential to elucidate the predominant mechanisms of 
altered force output and help explain unexpected observa-
tions and variance reported in the literature.

In this study, we implement a three-element Hill-type 
muscle model to examine how known changes in muscle 
function and structure in advanced age affect the contrac-
tile properties of muscle during fixed-end contractions. 
Drawing upon published literature, we simulate the indi-
vidual and combined effects of impaired Ca2+ release, 
slower Ca2+ uptake, lower Ca2+ sensitivity of force, slowed 
intrinsic shortening speed, altered series elastic compli-
ance, and a greater fractional content of type I fibres. 
Specifically, we evaluate the effects of these adaptations 
on isometric force during a twitch, brief tetanic contrac-
tion, and sustained contractions at submaximal and maxi-
mal stimulation frequencies. We then discuss the use of 
the model to explain how these known adaptations might 
affect muscle force, consider the adaptations most consist-
ent with the contractile properties of aged muscle observed 
experimentally and reported by others in the literature, and 
identify certain conditions that may result in non-intuitive 
outcomes.

2 � Methods

2.1 � Experimental twitch data

Plantar flexion twitch torque was measured in 10 young 
(mean ± SD; age: 28 ± 3  years; body mass: 78 ± 11  kg; 
height: 179 ± 6 cm) and 18 older (age: 72 ± 5 years; body 
mass: 76 ± 10 kg; height: 174 ± 5 cm) healthy human adult 
males. An analysis of the experimental data obtained from 
young adults and a detailed description of the experimental 
protocol used for both young and older adults have been 
published previously (Mayfield et al. 2015). In brief, par-
ticipants sat with their knee extended and right foot securely 
fixed to a non-compliant rotational footplate. The ankle was 
set to a neutral position (foot 90° relative to tibia). Two 
custom-built strain gauges positioned directly under the 
footplate measured isometric plantar flexion force evoked 
by percutaneous electrical stimulation of the tibial nerve. 
Single supramaximal square-wave pulses were delivered to 
elicit unpotentiated twitches, which were evaluated for peak 
torque, contraction time and half-relaxation time. Unpaired 
Student’s t-tests or Welch’s t-tests (unequal variance) were 
performed to test the effect of age. Statistical significance 

was set at P < 0.05 and effect sizes were calculated as eta 
squared (η2).

2.2 � Hill‑type muscle model

We implemented an adapted Hill-type muscle model previ-
ously shown to successfully predict the time course of mus-
cle force during contractions involving either ramp short-
ening or lengthening, or sinusoidal length changes (Curtin 
et al. 1998; Lichtwark and Wilson 2005a). The model (May-
field and Lichtwark 2022), developed in Simulink (Math-
Works, Natick, MA), consists of a contractile element (CE) 
and parallel elastic element (PEE) arranged in-series with 
an elastic element (SEE). The active force output of the CE 
depends on the interaction of CE activation, length, and 
velocity dynamics.

2.2.1 � Activation

Activation of the CE is regulated by the concentration of 
an activator, which we consider to be calcium, in a single 
compartment. Calcium ions (Ca2+) are released transiently 
at a constant rate in response to each stimulus and subse-
quently removed at a rate dependent on the Ca2+ concentra-
tion (Fig. 1a). Ca2+ release occurs over a defined pulse width 
according to the following equation:

Otherwise, Ca2+ is removed according to the following 
equation:

where a is the concentration of activator (Ca2+) and τ1 
and τ2 are the time constants for the rise and fall of Ca2+, 
respectively (Lichtwark and Wilson 2005a). Ca2+ release 
for a second stimulus is attenuated relative to the first for 
brief interstimulus intervals (Caputo et al. 2004; Barclay 
2012). Inactivation of Ca2+ release was incorporated into 
the model by reducing pulse width according to a single 
exponential equation describing the recovery of Ca2+ release 
with respect to interstimulus interval:

where A is the minimum relative Ca2+ release (i.e. maximum 
inactivation), isi is the interstimulus interval and r is the time 
constant for the recovery of relative Ca2+ release (Barclay 
2012). A and r were set at 20% and 350 ms, respectively, 
such that the force-frequency relationship was comparable to 
empirical observations for predominantly slow muscle [e.g. 

da

dt
=

(1 − a)

�1

=
−a

�2

1 − Ae−isi∕r
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rat soleus (Ranatunga 1982; Larsson and Edström 1986)] or 
several muscles with varying fibre type compositions cross-
ing the same joint (Marsh et al. 1981; Sale et al. 1982).

The relationship between Ca2+ and activation (Fig. 1b) is 
given by a sigmoidal function of the form:

where Act is thin filament activation and represents the frac-
tion of cross-bridge binding sites available for cycling, nH 
is the Hill coefficient, and a50 is the activator concentration 
required for half-maximal cross-bridge activation (Curtin 
et al. 1998). nH and a50 (i.e. pCa50) are indices of coopera-
tive activation and the Ca2+ sensitivity of force, respectively 
(Walker et al. 2010).

To relate the activation-activator relationship in the 
model to the force-pCa relationship of permeabilised sin-
gle fibres (Hellam and Podolsky 1969; Stephenson and 
Williams 1982), we assumed that the activator concen-
tration achieving saturation was equivalent to a calcium 
concentration of 10 μM or pCa 5 (Fig. 1c); pCa is the 
negative log of the theoretical calcium concentration. A 
form of the Hill equation was then used to describe the 
relationship between calcium concentration and force:

Act =
anH

(anH + a50
nH )

P

P0

=
1

1 + 10
nH

⋅ (pCa − pCa50)

where pCa is the negative log of the activator concentration, 
and pCa50 is the negative log equivalent of a50 (Martyn and 
Gordon 2001).

2.2.2 � CE force–length & force–velocity relationships

Active force generated by the CE was modelled according to 
classic force–length (Gordon et al. 1966) and force–velocity 
(Hill 1938) relationships (Fig. 1d, e). The speed at which the 
CE shortens with respect to force, which is scaled by CE acti-
vation and length, was modelled according to a normalised 
form of the Hill equation:

where P is force, P0 is the maximum isometric force, K 
represents a/P0 and indicates the curvature of the rectan-
gular hyperbola describing the concentric force–velocity 
relationship, V is the velocity of CE shortening and Vmax is 
the maximum velocity of CE shortening (Seow 2013). The 
speed at which the CE lengthens with respect to an exter-
nally applied force (Fig. 1e) was modelled according to the 
following equation:

P

P0

=
K
(

1 − V∕Vmax

)

K + V∕Vmax

P

P0

= c −
k
(

1 + V∕Vmax

)

1 − q(V∕Vmax)
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Fig. 1   Muscle model properties. a Activator concentration  (lower 
trace) and activation level during a twitch (dashed) and 1 s stimula-
tion train at 10 Hz. b Activation-activator relationship. c Activation-

pCa relationship. d CE and PEE force–length relationships. Shaded 
region represents range of optimal CE lengths. e CE force–velocity 
relationship. f SEE force-strain relationship
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where c is a constant indicating the maximum eccentric 
force expressed relative to P0, k is a constant relating to 
the y-intercept, whereby c − k = 1 to meet the condition of 
P∕P0 = 1 for a lengthening velocity of 0, and q is a constant 
describing the curvature of the eccentric force–velocity rela-
tionship (Otten 1987; Azizi and Roberts 2014). c, k, and q 
were assigned values of 1.8, 0.8 and 7, respectively.

2.2.3 � PEE force–length relationship

The PEE was assigned an exponential passive force–length 
relationship (Fig. 1d) according to the following exponential 
equation:

where kPEE is an exponential shape factor, LCE is the relative 
CE length, Lslack is the slack length of the PEE, and εPEE is 
the passive strain of the CE when an external load equal 
to P0 is applied (Thelen 2003). When Lslack is not equal to 
1.0, the CE length at εPEE is equal to Lslack plus εPEE. kPEE, 
Lslack and εPEE were assigned values of 4, 0.98 and 0.57, 
respectively. These values are similar to those used previ-
ously for human plantar flexors (Thelen 2003) and gener-
ate a passive-force length relationship generally consistent 
with experimental data (Winters et al. 2011; Rubenson et al. 
2012; Moo et al. 2020).

2.2.4 � SEE force–length relationship

The SEE was assigned a non-linear load-deformation rela-
tionship consistent with experimental data for tendon and 
aponeurosis (Lieber et al. 1991; Trestik and Lieber 1993; 
Zuurbier et al. 1994; Loren and Lieber 1995; Cui et al. 
2009). The general relationship was derived from a non-
linear least squares fit of force and deformation data reported 
for mammalian tendon (Bennett et al. 1986) using the fol-
lowing equation:

where a and b are regression constants and x is tendon 
deformation. SEE strain at P0 (εSEE, Fig. 1f) was set to 0.05 
(Muramatsu et al. 2001; Arampatzis et al. 2005; Karaman-
idis and Arampatzis 2006). SEE stiffness was defined as the 
maximum deformation of the SEE normalised to P0 and the 
optimum length of the CE (L0), giving a normalised stiffness 
[kSEE (Lichtwark and Wilson 2005b)]. SEE length (LSEE) and 
L0 were set at 300 (Arampatzis et al. 2005; Karamanidis and 
Arampatzis 2005) and 50 mm (see Hessel et al. 2021 main 
text and supplementary data), respectively, giving a kSEE of 
3.33 P0·L0

−1. The inverse of normalised SEE stiffness—nor-
malised SEE compliance (i.e. 30%)—relates closely to the 

P

P0

=
ekPEE(LCE−Lslack )∕�PEE − 1

ekPEE − 1

P = axb

fixed-end compliance, which represents CE strain against 
the stretch of the SEE during a maximum tetanic contraction 
(Roberts 2002). We have instead defined fixed-end compli-
ance as CE shortening expressed relative to L0, as to allow 
normalised SEE compliance and fixed-end compliance to be 
equal. Because there is considerable passive tension at the 
optimal MTU length in the model (initial CE length of ~ 1.23 
L0), consistent with experimental observations for the human 
plantar flexors (see Hessel et al. 2021 supplementary data), 
SEE deformation and CE shortening during maximum force 
development are ~ 23%, rather than 30% of L0. This value 
generally agrees with experimental data for the human plan-
tar flexors (see Hessel et al. 2021 supplementary data) after 
considering the overestimation of fascicle shortening against 
the stretch of tendon and aponeurosis owing to inevitable 
ankle rotation (Karamanidis et al. 2005).

2.3 � Model optimisation to simulate plantar flexion 
twitch of young men

Model parameters for the initial state or control condition were 
optimised to minimise the combined error in contraction time 
and half-relaxation time between simulated and experimen-
tal twitches. An additional requirement was that the relative 
amplitude of the simulated twitch be ~ 0.2 P0. The simulated 
twitch was for an initial CE length of 1.0 L0. The experimen-
tal twitch represented the waveform average for young men 
determined from twitches recorded with the ankle at 0° and the 
knee extended. Initially, τ1, τ2, [a]50, nH and Vmax parameters 
were included in the optimization process. Where appropriate, 
physiological upper and lower limits were imposed. Subse-
quently, nH and Vmax were constrained at values of 3 and 6, 
respectively, and the optimization process was repeated.

Although reported values of nH are wide-ranging, a value 
of 3 is generally intermediate between values reported for 
type I and II fibres or similar to values reported for the 
former (Stephenson and Williams 1981; Fink et al. 1986, 
1990; Lynch et al. 1991; Hvid et al. 2011, 2013). The Vmax 
value of 6 L0·s−1 agrees closely with the value of 6.2 FL·s−1 
(fibre lengths per second) measured for human medial gas-
trocnemius fascicles in vivo (Hauraix et al. 2015), and is 
comparable to values reported for rat soleus [6–7.3 FL·s−1 
(Ranatunga and Thomas 1990; Ranatunga 1998)] and mouse 
soleus [4.5 and 8.6 FL·s−1 (Luff 1981; Lichtwark and Bar-
clay 2010)] muscles at physiological temperatures; the type 
I fibre composition of these muscles is approximately 73 
and 67%, respectively (Asmussen and Maréchal 1989). We 
arrived at a slightly lower estimate of 60% for the MHC I 
fibre content for the triceps surae [see section ‘2.3.10 Type 
I fibre fractional area (i.e., MHC I fibre content)’].
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2.4 � Simulating ageing‑related adaptations

2.4.1 � Free Ca2+ concentration

There is evidence that both SR Ca2+ release and SR Ca2+ 
uptake are impaired in advanced age (Larsson and Salviati 
1989; Delbono et al. 1995; Narayanan et al. 1996; Hunter 
et al. 1999; Wang et al. 2000; Jiménez-Moreno et al. 2008), 
and that aged single fibres can exhibit a deficit in peak 
free Ca2+ concentration (González et al. 2003; Andersson 
et al. 2011; Umanskaya et al. 2014). To our knowledge, the 
effect of slowed SR Ca2+ uptake on steady-state free Ca2+ 
concentration and free Ca2+ decay in intact fibres has not 
been studied in advanced age. It is unclear whether both 
adaptations can coexist (Russ et al. 2011, 2014) and to what 
extent each alteration influences free Ca2+ concentration. 
Accordingly, we simulated the independent and concomitant 
effects of impaired Ca2+ release and slowed Ca2+ uptake. For 
simplicity, we assume that the reductions in peak free Ca2+ 
concentration reported in the literature reflect impaired Ca2+ 
release without a concomitant slowing of SR Ca2+ uptake. 
This simplification allows experimental values of the deficit 
in Ca2+ concentration in intact fibres to be emulated by scal-
ing down the instantaneous Ca2+ availability in the model, 
rather than increasing the time constant of Ca2+ release, τ1. 
Importantly, the fractional deficit in peak free Ca2+ concen-
tration in intact fibres associated with ageing appears to be 
similar for maximal and submaximal contractions (González 
et al. 2003; Eshima et al. 2020).

To our knowledge, there exists only one study of the 
effect of age on SR Ca2+ release in human single fibres 
(Delbono et al. 1995), whereas several studies have been 
performed on rodent single fibres. In these studies, intact 
fibres were isolated exclusively from fast-twitch muscles 
without fibre type identification (Wang et al. 2000, 2002; 
González et al. 2003; Jiménez-Moreno et al. 2008; Anders-
son et al. 2011; Umanskaya et al. 2014; Fodor et al. 2020; 
Eshima et al. 2020). Each of these studies, including the 
study on human type II fibres, demonstrated an age-related 
deficit in SR Ca2+ release rate or peak intracellular Ca2+ 
concentration. Collectively, impairment typically ranged 
from ~ 30–50%. Accordingly, we incorporated a 30 or 50% 
reduction in peak Ca2+ concentration by applying a scal-
ing factor to the instantaneous Ca2+ concentration of 0.7 or 
0.5, respectively. We described the qualitative and quantita-
tive effect (% change) of lower free Ca2+ availability on the 
time course (i.e., contraction time, half-relaxation time) and 
amplitude of the twitch, submaximal force and the force-
frequency relationship, and maximum force.

2.4.2 � SR Ca2+ uptake (τ2)

The rate of SR Ca2+ uptake may be lower in advanced age, 
but it is not a universal observation. The effect of age on 
SR Ca2+ uptake rate has been predominantly studied in 
rodent muscle and using a variety of muscle preparations. 
To our knowledge, only a single study has been performed 
on human muscle, specifically, crude homogenates form 
the vastus lateralis muscle (Hunter et al. 1999). In many 
regards, the findings are inconsistent. Slowing has been 
demonstrated for skinned type II fibres but not skinned type 
I fibres (Larsson and Salviati 1989), SR vesicles isolated 
from slow-twitch muscle but not fast-twitch muscle (Naray-
anan et al. 1996; Russ et al. 2014), and muscle homogenates 
from fast-twitch (Russ et al. 2011), slow-twitch (Narayanan 
et al. 1996), and mixed-fibre type (Hunter et al. 1999) mus-
cles but not in every instance (Fitts et al. 1984; Narayanan 
et al. 1996; Thomas et al. 2010); measurements from muscle 
homogenates may be susceptible to confoundment by a shift 
in MHC isoform composition. For those studies supporting 
an age-related reduction in Ca2+ uptake rate, the size of the 
slowing effect ranged from ~ 20–52% (Larsson and Salviati 
1989; Narayanan et al. 1996; Hunter et al. 1999; Russ et al. 
2011). Accordingly, we incorporated a 30 or 50% reduc-
tion in the rate constant for Ca2+ removal. The rate constant 
for Ca2+ removal is the reciprocal of the time constant, τ2. 
Therefore, τ2 was increased by 43 and 100%. We described 
the qualitative and quantitative effect of slower Ca2+ uptake 
on the time course and amplitude of the twitch, and sub-
maximal force and the force-frequency relationship.

2.4.3 � Ca2+ sensitivity (pCa50)

Lower Ca2+ sensitivity of force has been found in advanced 
age, but it is not a universal observation. Studies showing no 
effect of age (Plant and Lynch 2001; Hvid et al. 2011, 2013, 
2017; Lamboley et al. 2015; Teigen et al. 2020; Mazara et al. 
2021) are similar in number to those showing an age-related 
deficit. Reduced Ca2+ sensitivity in advanced age has been 
demonstrated by several studies for type II fibres from human 
(Lamboley et al. 2015; Straight et al. 2018; Mazara et al. 
2021) and rodent (Brooks and Faulkner 1994; Lowe et al. 
2002) muscles. In contrast, only a single study has shown 
Ca2+ sensitivity to be lower for type I fibres (Straight et al. 
2018). The deficit in pCa50 reported by these studies ranges 
from 0.05 to 0.15 pCa units but is typically ~ 0.10 pCa units. 
Three studies reported a similar difference between means 
(0.08–0.10 pCa units) without detecting a significant age 
effect (Hvid et al. 2011, 2013; Mazara et al. 2021). For two 
of those studies, which sampled from just 11–15 aged type 
II fibres, we could deduce that the deficit in pCa50 was of a 
moderate effect size (Cohen's d = 0.38–0.49). Accordingly, 
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we incorporated a reduction in pCa50 of 0.05 or 0.10 pCa 
units and described the qualitative and quantitative effect 
on the time course and amplitude of a twitch, submaximal 
force and the force-frequency relationship, maximum force, 
and relative force summation.

2.4.4 � Cooperativity of activation (nH)

The weight of evidence from human and rodent studies 
indicates that the slope of the force-pCa relationship (i.e. 
cooperativity)—represented by the Hill coefficient, nH—is 
unaltered in advanced age (Eddinger et al. 1986; Brooks 
and Faulkner 1994; Hvid et al. 2011, 2013; Lamboley et al. 
2015; Straight et al. 2018; Teigen et al. 2020). Challenging 
this view is one study on human muscle that found nH to be 
elevated for type II fibres in advanced age (Straight et al. 
2018) and one study on rat muscle that found nH (> 0.5 P0) 
to be lower for type II fibres (Lowe et al. 2002). Because 
there are generally pronounced differences in nH between 
fibre types (Fink et al. 1986, 1990; Gardetto et al. 1989; 
Danieli-Betto et al. 1990; Gregorevic et al. 2004; Hvid et al. 
2011, 2013), and stronger evidence that nH is affected by 
disuse (Gardetto et al. 1989; Widrick et al. 1998; Hvid et al. 
2011, 2013; Monti et al. 2021), we thought it was important 
to illustrate the effect of this parameter on force generation. 
We performed simulations in which the reference value of nH 
was increased and decreased by 1.0. We described the quali-
tative and quantitative effect on the time course and ampli-
tude of a twitch, submaximal force and the force-frequency 
relationship, and relative force summation.

2.4.5 � Lower free Ca2+ concentration & lower Ca2+ 
sensitivity (pCa50) in concert

Because the force-pCa relationship is sigmoidal in form, 
force at near-maximal Ca2+ concentrations is practically 
insensitive to shifts in Ca2+ sensitivity. A deficit in maxi-
mum force generation may only arise when Ca2+ concentra-
tion and Ca2+ sensitivity decrease concomitantly. Accord-
ingly, we reduced the instantaneous Ca2+ concentration by 
30 or 50% whilst lowering pCa50 by 0.05 or 0.10 pCa units, 
consistent with our previous manipulations of Ca2+ con-
centration and Ca2+ sensitivity. We described the qualita-
tive effect of concurrent reductions in Ca2+ concentration 
and Ca2+ sensitivity on submaximal force and the force-
frequency relationship, and quantified the effect on maximal 
force.

2.4.6 � Lower Ca2+ release & slower Ca2+ uptake (τ2) 
in concert

It is unclear from recordings of intracellular Ca2+ transients 
whether impaired Ca2+ release and slowed Ca2+ uptake 
occur in parallel and the extent to which they may offset 
one another (González et al. 2003; Andersson et al. 2011; 
Eshima et al. 2020). Accordingly, we reduced Ca2+ release 
by 30% and the rate constant of Ca2+ uptake by 40 (67% 
increase in τ2) in concert. Reductions of equal amount would 
not alter steady-state Ca2+ in the model relative to the con-
trol condition. We described the qualitative effect of lower 
Ca2+ release and slower Ca2+ uptake on submaximal force 
and the force-frequency relationship.

2.4.7 � Lower Ca2+ sensitivity (pCa50) and slower Ca2+ uptake 
(τ2) in concert

On the basis that slower Ca2+ uptake will increase free Ca2+ 
concentration, thereby increasing force, whereas lower Ca2+ 
sensitivity will act to decrease force, we examined the effect 
of these two adaptations acting concomitantly. Specifically, 
we incorporated both a 30% reduction in the rate constant for 
Ca2+ removal (43% increase in τ2) and a 0.1 pCa unit reduc-
tion in Ca2+ sensitivity (pCa50) and described the qualitative 
effect on the force-frequency relationship.

2.4.8 � Maximum velocity of shortening (Vmax)

Comparatively, the intrinsic speed of shortening has been 
extensively studied in young and old muscle fibres from 
humans and rodents. For both groups, and for both fibre 
types, the effect of age is inconsistent. Several studies have 
demonstrated slowing of either or both type I and type II 
human fibres (Krivickas et al. 2001; D’Antona et al. 2003; 
Ochala et al. 2007; Yu et al. 2007; Power et al. 2016; Brocca 
et al. 2017), but just as many studies have found no age effect 
(Trappe et al. 2003; Claflin et al. 2011; Sundberg et al. 2018; 
Teigen et al. 2020; Grosicki et al. 2021; Mazara et al. 2021). 
Similarly, a lower maximal shortening velocity has been 
demonstrated for aged type I and type II fibres from rodents 
(Degens et al. 1998; Thompson and Brown 1999; Kim and 
Thompson 2013), but not in every instance (Eddinger et al. 
1986; Brooks and Faulkner 1994; Zhong et al. 2006; Kim 
and Thompson 2013). Muscle inactivity in advanced age 
may minimize or negate the effect of age on Vmax (Thompson 
et al. 1998; D’Antona et al. 2003; Kim and Thompson 2013), 
although there is evidence to the contrary (Grosicki et al. 
2021). The deficit in maximal shortening velocity reported 
for human muscle fibres ranges from ~ 7–46% (Larsson 
et al. 1997; Krivickas et al. 2001; Claflin et al. 2011; Power 
et al. 2016) but is most often ~ 15–25% (Larsson et al. 1997; 
Krivickas et al. 2001; D’Antona et al. 2003; Ochala et al. 
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2007; Yu et al. 2007; Brocca et al. 2017). The slowing of 
intrinsic shortening speed tends to be more pronounced for 
rodent muscle fibres; three of the four identified instances of 
slowing represent a deficit of 32–50% (Degens et al. 1998; 
Thompson and Brown 1999; Kim and Thompson 2013). 
Accordingly, we incorporated reductions in intrinsic short-
ening speed of 30 or 50% and described the qualitative and 
quantitative effect on the time course and amplitude of a 
twitch and brief tetanic contraction.

The curvature of the force–velocity relationship (i.e. 
a/P0) does not appear to be altered in aged fibres that 
do not exhibit a reduction in Vmax (Brooks and Faulkner 
1994; Trappe et al. 2003). To our knowledge, a/P0 has 
not been quantified for aged fibres exhibiting a reduction 
in Vmax. However, because a/P0 differs markedly between 
fibre types—human type IIa fibres compared to type I 
fibres exhibit a two-fold greater value of a/P0—(Bottinelli 
et al. 1996; Widrick et al. 1996; Gilliver et al. 2009)—we 
deemed it important to illustrate the effect of this param-
eter on force development. We performed simulations in 
which the reference value of a/P0 was increased by 0.05 
(50%). We described the qualitative effect on the time 
course and amplitude of a twitch and brief tetanic contrac-
tion. We did not incorporate reductions in a/P0 because the 
model was unable to simulate the twitch measured experi-
mentally with a more realistic value for muscle at physi-
ological temperatures [model: 0.10; mouse soleus: 0.18 
(Luff 1981); rat soleus: 0.22–0.26 (Ranatunga and Thomas 
1990; Ranatunga 1998)].

2.4.9 � SEE stiffness

The general effect of age on tendon stiffness appears 
to be distinct for humans compared to certain animal 
models of ageing. The weight of evidence from in vivo 
human studies favours an age-associated reduction in ten-
don stiffness and elastic modulus (see McCrum et al., 
2018). Though some studies have found tendon loading 
behaviour to be unchanged (Carroll et al. 2008; Couppé 
et al. 2012), no human studies appear to have reported an 
age-related increase in tendon stiffness. A recent review 
reported median reductions in stiffness and elastic modu-
lus of 20% and 28%, respectively (McCrum et al. 2018). 
However, age-related deficits may be as high as 30–55% 
(Karamanidis and Arampatzis 2006; Onambele et  al. 
2006; Stenroth et al. 2012; Csapo et al. 2014). Moreo-
ver, relative to old adults (> 65 years), very old adults 
(> 83 years) can exhibit marked reductions (35–40%) 
in tendon stiffness and elastic modulus (Eriksen et al. 
2018).

In contrast to humans, hindlimb tendons of rodents in 
advanced age regularly exhibit higher stiffness or elastic 
modulus (Wood et al. 2011; Danos et al. 2016; Wood and 
Brooks 2016; Leahy et al. 2022). The magnitude of the 
increase is typically close to 50%. A number of studies 
have also reported no ageing effect (Nakagawa et al. 1996; 
Pardes et al. 2017); fewer have reported an age-related 
reduction (LaCroix et al. 2013). The variable nature of ten-
don mechanics in advanced age may be partially explained 
by methodological approach, age at measurement, ageing-
associated inactivity, species, and muscle function (Sven-
sson et al. 2016; McCrum et al. 2018).

We incorporated both a reduction in normalised SEE 
stiffness of 30% and an increase in normalised stiffness of 
50%. We described the qualitative and quantitative effect 
of SEE stiffness on the time course and amplitude of a 
twitch and brief tetanic contraction.

2.4.10 � Type I fibre fractional area (i.e., MHC I fibre content)

Several human and rodent studies have reported an age-
ing-related increase of 0.10–0.20, or greater (Brocca 
et al. 2017), for fractional MHC I content or fractional 
area occupied by type I fibres (Larsson et  al. 1978; 
Klitgaard et al. 1990b; Kadhiresan et al. 1996; Short 
et al. 2005; Cui et al. 2008; Nilwik et al. 2013; Sonjak 
et al. 2019; Soendenbroe et al. 2022). Smaller shifts 
have also been reported (Sullivan et al. 1995; Hunter 
et al. 1999). We approximated the effect of this adap-
tation by considering fibre type-related differences in 
Ca2+ removal rate, Ca2+ sensitivity and cooperativity, 
and Vmax, and by adjusting composite parameter values 
according to an increase in type I fibre fractional area. 
Fibre type-specific values and composite relationships 
were derived from the whole muscle control values by 
assigning weightings based on the fractional cross-sec-
tional area of type I and II fibres and assigning fibre 
type-related differences in each property (Wakeling 
et al. 2012). Fibre type-specific and composite param-
eter values were determined according to the following 
expression:

where x is the fibre type-specific parameter value, p is 
relative fibre content, xwhole is the whole muscle parameter 
value, and y is the fibre type-related difference or offset. 
Some empirical observations support this approach. Single 
fast and slow fibres arranged in parallel exhibit an inter-
mediate force-pCa relationship generally consistent with a 
theoretical composite relationship based on fractional fibre 

(xslow × pslow) + (xfast × pfast ) = xwhole,
xslow

xfast
= y
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type content (Lynch et al. 1995). In contrast to some meth-
ods (Zajac 1989; Claflin and Faulkner 1989; Ranatunga 
and Thomas 1990), our approach assumes some degree of 
attenuation of shortening speed at loads where whole muscle 
velocity exceeds the Vmax assigned to type I fibres, which is 
generally consistent with observations that inactive muscle 
depresses the speed of shortening (Hatcher and Luff 1987; 
Holt et al. 2014).

The total MHC isoform content or fractional area occu-
pied by type I fibres is approximately 50 and 65% for the 
gastrocnemius and soleus muscles, respectively (Edström 
and Nyström 1969; Green et al. 1981; Coggan et al. 1992; 
Harridge et al. 1996, 1998). Thus, given that the combined 
physiological cross-sectional area (PCSA) of the lateral 
and medial gastrocnemius muscles represents ~ 38% of 
the total PCSA of the triceps surae (Morse et al. 2005; 
Albracht et al. 2008; Crouzier et al. 2018), it is estimated 
that the total type I fibre area of the triceps surae is ~ 60% 
(i.e. 0.60). Type I fibres, compared to type II fibres, were 
assumed to exhibit the following differences: Ca2+ removal 
rate constant 50% slower (Carroll et al. 1997; Liu et al. 
1997; Baylor and Hollingworth 2003; Calderón et  al. 
2010); Ca2+ sensitivity (pCa50) 0.15 pCa units greater and 
nH 40% lower (Stephenson and Williams 1981; Fink et al. 
1986, 1990; Ruff 1989; Laszewski-Williams et al. 1989; 
Gardetto et al. 1989; Ruff and Whittlesey 1991; Plant and 
Lynch 2001; Gregorevic et al. 2004; Hvid et al. 2013; Xu 
et al. 2017; Lamboley et al. 2020); Vmax 70% slower (Lars-
son and Moss 1993; Bottinelli et al. 1996; Harridge et al. 
1996; Widrick et al. 2002; Trappe et al. 2003; Yu et al. 
2007; Luden et al. 2008; Sundberg et al. 2018; Teigen 
et al. 2020). Note that much variability exists for the force-
pCa relationships of type I and type II fibres.

After increasing the fractional area of type I fibres by 
0.10 and 0.20, from 0.60 to 0.70 and 0.80, respectively, and 
incorporating adjusted values of τ2, pCa50, nH and Vmax, we 
described the qualitative and quantitative effect on the con-
traction time and half-relaxation time of the twitch, and on 
submaximal force and the force-frequency relationship.

2.5 � Model optimisation to simulate plantar flexion 
twitch of old men

The parameters of the model were adjusted to simulate the 
plantar flexion twitch of old men. The optimisation approach 
was similar to that used initially, except parameter limits 
were imposed consistent with the directionality of impair-
ment. We also incorporated a force-generating capacity 
(FGC) parameter—analogous to muscle PCSA—to allow 
twitch force to be lower in advanced age, which we observed 
experimentally. We assumed that the deficit in twitch force is 
owing, at least in part, to muscle atrophy (Narici et al. 2003; 
Morse et al. 2005; Thom et al. 2007). The magnitude of a 

given parameter adjustment was compared to the param-
eter change incorporated to simulate age-related adaptation 
reported in the literature.

3 � Results

3.1 � Model optimisation to simulate plantar flexion 
twitch of young men

Force during simulated and experimental twitches are 
shown in Fig. 2. The time course of force rise and decay 
are matched well, with both the contraction time and half-
relaxation time of the simulated twitch being identical to 
the values measured experimentally for young men (inset 
Fig. 2). All model parameters used in simulations of young 
muscle (i.e., control condition) are reported in Table 1. 
Unless specified otherwise, all simulated fixed-end contrac-
tions were performed at an initial CE length of 1.23 L0 and 
force displayed in figures represents active CE force. This 
initial length for a maximal tetanic contraction resulted in a 
final CE length—after shortening against the stretch of the 
SEE—on the plateau of the force–length relationship.

3.2 � Ca2+ handling and thin filament activation

3.2.1 � Instantaneous Ca2+ concentration

Reducing the instantaneous free Ca2+ concentration by either 
30 or 50% dramatically lowered twitch force and abbreviated 
the rise and decay of twitch force (Fig. 3b, inset). Substantial 
force loss was also evident during sustained stimulation at 
submaximal frequencies, as shown by the marked rightward 
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Fig. 2   Hill-type muscle model optimisation. Experimental plantar 
flexion twitch torque and simulated twitch force for young (Y) adult 
humans. Inset, twitch contraction time (CT) and half-relaxation time 
(HRT) for experimental (filled) and simulated (open) data were iden-
tical following parameter optimization (CT: 125 ms; HRT: 102.5 ms). 
Agreement was achieved between twitch torque measured with the 
ankle at 0° and the knee extended and twitch force simulated at an 
initial CE length of 1.0 L0
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shift of the force-frequency relationship (Fig. 3d, e). There 
was a pronounced deficit in force for frequencies yielding 
calcium concentrations situated on the steep region of the 
force-pCa relationship (Fig. 3e, f). In contrast, maximum 
tetanic force was only modestly affected by the imposed 
reductions in free Ca2+ concentration (Fig. 3e, f). During 
200 Hz stimulation, the 50% reduction in Ca2+ availabil-
ity only lowered cross-bridge activation to 97%. Because 
submaximal force was disproportionately affected, reduced 
Ca2+ availability lowered the ratio of twitch-to-tetanic force.

3.2.2 � Ca2+ uptake

Decreasing the rate constant of Ca2+ decay by 30% to slow 
the removal of Ca2+ increased twitch force by 12% (elevat-
ing the ratio of twitch-to-tetanic force) and prolonged the 
contraction time and half-relaxation time by 25% and 38%, 
respectively (Fig. 4b, inset). Slowing Ca2+ uptake by 50% 
increased the size of these effects. Slower Ca2+ removal dur-
ing sustained stimulation resulted in greater calcium accu-
mulation (Fig. 4c), which caused force at submaximal fre-
quencies to increase dramatically (Fig. 4d), as illustrated by 
the leftward-shifted force-frequency relationships (Fig. 4e).

3.2.3 � Calcium sensitivity (pCa50)

Reducing the Ca2+ sensitivity of force by shifting the force-
pCa relationship rightward 0.05 pCa units reduced twitch 
force by 16% and abbreviated the twitch contraction time 
and half-relaxation time by 11 and 5%, respectively (Fig. 5b, 
inset). Lowering Ca2+ sensitivity by 0.10 pCa units resulted 
in additional force attenuation and an even briefer contrac-
tion. Reduced Ca2+ sensitivity also decreased force during 
stimulation at submaximal stimulation frequencies (< 50 Hz) 
such that the force-frequency relationship was shifted right-
ward (Fig. 5c). Force loss was greatest for frequencies that 
encompassed the steep region of the force-pCa relation-
ship and increased in proportion to the reduction in Ca2+ 
sensitivity. Maximum tetanic force was unaffected by the 
imposed reductions in Ca2+ sensitivity; no force loss was 
evident for 100 or 200 Hz stimulation. Relative force sum-
mation—illustrated as the force during a brief tetanic con-
traction (50 ms, 100 Hz) expressed relative to twitch force 
(Fig. 5d, inset)—was higher following the reduction in Ca2+ 
sensitivity, though there remained a deficit in tetanic force.

3.2.4 � Cooperativity of activation (nH)

Decreasing nH, or cooperativity, from 3 to 2 to reduce the 
slope of the force-pCa relationship increased twitch force 
by 11% and prolonged the twitch contraction time and half-
relaxation time by 26 and 44%, respectively (Fig. 5f, inset). 
Lowering cooperativity also reduced the slope of the force-
frequency relationship such that force was slightly greater at 
low frequencies but considerably lower at moderate and high 
frequencies of stimulation (Fig. 5g); increasing cooperativity 
had the opposite effect. Again, maximum tetanic force was 
largely unaffected by altering cooperativity. A small deficit 
(2%) in maximum cross-bridge activation level arose when 
cooperativity was lowered. As such, reducing cooperativ-
ity increased the ratio of twitch-to-tetanic force, whereas 
increasing cooperativity reduced this ratio. Similarly, low-
ering cooperativity also reduced relative force summation 
(Fig. 5h, inset). Despite twitch force being 20% (0.04 P0) 
greater for a nH of 2 compared to a nH of 4, peak force during 
the brief tetanic contraction (50 ms, 100 Hz) was 12% (0.06 
P0) lower for the former compared to the latter (Fig. 5h).

3.2.5 � Lower Ca2+ concentration & lower Ca2+ sensitivity 
in concert

Reducing Ca2+ concentration and Ca2+ sensitivity in concert 
lowered force dramatically at submaximal stimulation fre-
quencies but only slightly reduced maximum tetanic force 
(Fig. 6b, c). Reducing Ca2+ availability by 30% and lowering 
pCa50 by 0.05 pCa units merely reduced the cross-bridge 
activation level to 98% during 200 Hz stimulation (Fig. 6b). 
Even when calcium concentration and calcium sensitiv-
ity were concurrently reduced by 50% and 0.10 pCa units, 
respectively, cross-bridge activation (Act) still exceeded 92% 
during 200 Hz stimulation (Fig. 6c). For 100 Hz stimula-
tion, the steady-state Ca2+ concentration was 29% lower 
compared to 200 Hz. As such, there was a more significant 
reduction in cross-bridge activation level during 100 Hz 
stimulation when a 50% reduction in Ca2+ concentration was 
imposed and Ca2+ sensitivity was concurrently reduced by 
0.05 (Act = 87%) or 0.10 pCa (Act = 82%) units (Fig. 6c). 
Figure 6d illustrates how the sigmoidal form of the force-
pCa relationship limits the effect of an imposed reduction in 
Ca2+ concentration on maximum tetanic force, even when 
the Ca2+ sensitivity of force is reduced by 0.1 pCa units.

Table 1   Model parameters for 
plantar flexors muscles of young 
adult men

Pulse width τ1 τ2 [a]50 pCa50 nH Vmax a/P0 εSEE kSEE L0 LSEE

(s) (s) (s) (pCa) (L0·s−1) (P0·L0
−1) (mm) (mm)

0.0048 0.0422 0.256 0.1025 5.99 3 6 0.10 0.05 3.33 50 300
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3.2.6 � Slower Ca2+ uptake and lower Ca2+ release or lower 
Ca2+ sensitivity in concert

The pronounced deficit in steady-state force at low and 
moderate stimulation frequencies that resulted from a 30% 
reduction in Ca2+ release (Fig. 3e) was more than balanced 
by concurrently decreasing the rate constant for Ca2+ uptake 
by 40% (Fig. 7b, c). The reduction in Ca2+ release caused 
force to be lower at the beginning of the contraction, as is 
evident when twitch force is compared (Fig. 7b); however, 
the slower rate of Ca2+ removal allowed Ca2+ to accumulate 
to a higher steady-state concentration (Fig. 7a). A similar 
compensation effect occurred when Ca2+ uptake rate was 
reduced by 30% whilst Ca2+ sensitivity was lowered by 
0.10 pCa units. During a twitch and at very low stimulation 
frequencies, lower Ca2+ sensitivity reduced force (Fig. 7e, 
f). At faster frequencies, the increase in Ca2+ concentration 
more than compensated for the reduction in Ca2+ sensitivity, 
shifting the force-frequency relationship leftward (Fig. 7e, 
f).

3.3 � CE‑SEE interaction

3.3.1 � Maximum velocity of shortening (Vmax)

Because the CE shortens against the stretch of the SEE dur-
ing force development (see Fig. 8c inset), reducing Vmax by 
30% reduced twitch force by 12% and increased twitch con-
traction time by 13%; twitch half-relaxation time was practi-
cally unaltered (Fig. 8b, inset). A similar effect was observed 
for a brief tetanic contraction (50 ms, 100 Hz) following 
a 30% reduction in Vmax (Fig. 8c). Lowering Vmax by 50% 
increased the loss of force and further prolonged the rise of 
force. Brief tetanic contractions were performed at an initial 
CE length of 1.0 L0, illustrating that the reductions in peak 
force with decreasing Vmax arise despite more favourable 
final CE lengths—greater force arises from greater shorten-
ing against the stretch of the SEE (Fig. 8c inset). Increasing 
a/P0 produced qualitatively similar results for twitch and 
tetanic contractions as increasing Vmax (Fig. 8).
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3.3.2 � SEE stiffness (kSEE)

Reducing SEE stiffness by 30% prolonged twitch contraction 
time by 13% and attenuated twitch force by 9%. Conversely, 
increasing SEE stiffness by 50% abbreviated twitch rise time 
by 14% and increased twitch force by 9% (Fig. 8e). The 
attenuation or improvement of the rate of force development 
and peak force during a brief contraction was not the result 
of less or more favourable CE operating lengths, which 
were restricted to the descending limb of the force–length 
relationship. For brief tetanic contractions performed at an 
initial CE length of 1.23 L0, peak force was greatest for the 
stiffer SEE condition, even though the average operating 
length of the CE was less favourable (Fig. 8f, inset).

3.3.3 � Vmax & SEE stiffness interaction

Decreasing Vmax by 50%, from 6 to 3 L0·s−1, had a more 
modest effect on peak twitch force when SEE stiffness was 
adjusted to give normalised SEE deformations of less than 
8% (compare Fig. 9b and 8b). At 3.33% (i.e., 30 P0·L0

−1), 
twitch force was 13% (0.05 P0) lower (Fig. 9b). In contrast, 
reducing Vmax by 50% lowered twitch force (at a compara-
ble initial CE length) by 26% (0.06 P0) when normalised 
SEE deformation was 30% [i.e., 3.33 P0·L0

−1 (Fig. 8b). The 
greater effect of intrinsic shortening speed on force devel-
opment with decreasing SEE stiffness was independent of 
differences in force-generating potential related to CE length 
(Fig. 9c).

3.4 � Type I fibre fractional area

Adjusting the rate constant of Ca2+ decay, the force-pCa 
relationship, and Vmax to reflect a fractional increase in type 
I fibre area resulted in elevated twitch force and prolonged 
force rise and decay during a twitch (Fig. 10). Specifically, 
increasing the type I fibre area from 0.60 to 0.70 increased 
the twitch contraction time and half-relaxation time by 
17 and 15%, respectively (Fig. 10d, inset). The slowing 
effect increased to 37 and 33% when type I fibre area was 

increased to 0.80. Both adjustments of type I fibre fractional 
area increased force at submaximal stimulation frequencies 
(Fig. 10e), with the latter causing the greatest leftward shift 
of the force-frequency relationship (Fig. 10f).
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3.5 � Model optimisation to simulate plantar flexor 
twitch of old men

The plantar flexor twitch of older men was of a lower 
amplitude (18%) and exhibited a prolonged contraction 
time (25%) and prolonged half-relaxation time (29%) 
compared to young adult men (Table 2, Fig. 11a). The 
weaker, slower twitch in advanced age was well-simulated 
by the model with ageing-realistic adjustments to a few 
parameters (Fig. 11b, c). To emulate the time course and 
relative amplitude of the twitch exhibited by older men, 
which was possible with multiple parameter combinations, 
required significant slowing of Ca2+ uptake rate (~ 25%, 
Table 3). Because slowing the uptake of Ca2+ prolonged 
the duration of the Ca2+ transient, which increased twitch 
force, it was possible for the reduction in force-generating 
capacity (23%) to exceed that of the reduction in twitch 
force (18%) despite additional force loss from reductions 
in Vmax and SEE stiffness (Table 3). A smaller reduction 
in force-generating capacity (15%) was possible with the 
addition of modest reductions in Ca2+ release and Ca2+ 
sensitivity, which had to be balanced by further slowing of 
Ca2+ uptake. Incorporating slower Ca2+ uptake produced a 
leftward shift of the force-frequency relationship (Fig. 11c 
inset).   

4 � Discussion

Ca2+ transportation and calcium-activated force are per-
turbed in advanced age. Model simulations in the current 
work show that imposing literature-informed deficits in free 
Ca2+ concentration or Ca2+ sensitivity of force results in 
a substantial loss of submaximal force and a slow-to-fast 
shift in several indices of contraction speed. Their com-
bined effect is especially dramatic. Imposing slowed Ca2+ 
reuptake had the opposite effect on contractile performance, 
increasing twitch force and the ratio of twitch-to-tetanic 
force, prolonging the duration of contraction, and shifting 
the force-frequency leftward. Simulations estimating the 
effect of a fractional increase in type I fibre area produced 
the same outcomes, although to a lesser extent. It is dif-
ficult to find support from human or animal studies for a 
slow-to-fast shift in contraction speed mediated by ageing 
in either single muscle fibres or whole muscle. Rather, the 
contractile properties of muscle in advanced age are under-
stood to be defined by slowing (reviewed by Hunter et al., 
1998, 2016; Larsson et al., 2018)—twitch contraction time 
and half-relaxation time are longer (e.g. Vandervoort and 
McComas, 1986), tetanic force decay is slower (e.g. Tevald 
et al., 2009), and the force-frequency relationship is shifted 
to lower frequencies (e.g. Brooks and Faulkner, 1988). As 
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such, incorporating slower Ca2+ removal, or a combination 
of slower Ca2+ removal, greater Ca2+ sensitivity, lower coop-
erativity, and slower intrinsic shortening speed—to reflect an 
increase in type I fibre content—emulated many aspects of 
contractile performance frequently reported in advanced age.

4.1 � Ca2+ uptake

The extent to which the rise and decay of twitch force 
were prolonged by slowing Ca2+ removal was consistent 
with experimental observations of slowed twitch speed in 
advanced age (Vandervoort and McComas 1986; Brooks and 
Faulkner 1988; Larsson and Salviati 1989; Hicks et al. 1991; 
Alway 1995; Connelly et al. 1999). In fact, the predictions 
were comparable to experimental data of the association 
between slowed SR Ca2+ uptake activity and twitch speed 

(Narayanan et al. 1996). For the soleus muscle of old rats, a 
52% deficit in SR Ca2+ uptake activity was accompanied by 
a 28 and 48% increase in twitch contraction time and half-
relaxation time, respectively (Narayanan et al. 1996). When 
we imposed a 30% decrease in the rate constant for Ca2+ 
uptake, twitch contraction time and half-relaxation time 
increased by 25 and 38%. At 50%, slowing of the twitch, and 
the associated increase in submaximal force, far exceeded 
typical ageing-related slowing. To our knowledge, intracel-
lular Ca2+ transients during twitches in young and old mus-
cle have been compared in terms of amplitude but not half-
width or rate of decay (González et al. 2003; Eshima et al. 
2020). It would be advantageous for the model to incorpo-
rate the extent of slowing observed for the decay phase of the 
Ca2+ transient in a contracting fibre rather than the reduction 
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in Ca2+ uptake rate demonstrated for an isolated SR vesicle 
or muscle homogenate.

Slower Ca2+ removal increased twitch force and, there-
fore, increased the ratio of twitch-to-tetanic force. Consist-
ent with the model simulations, twitch force and twitch rise 
time are inversely related to the decay rate constant of the 
intracellular Ca2+ transient in single fibres (Sun and Edman 
1996). Maintenance of twitch force despite a consider-
able deficit in maximum force or a higher ratio of twitch-
to-tetanic force are commonly reported in advanced age 
(Carlsen and Walsh 1987; Pettigrew and Gardiner 1987; 
Hicks et al. 1991; van Schaik et al. 1994; Brown and Hasser 
1996; Connelly et al. 1999; Klass et al. 2005; Moran et al. 
2005). Slower Ca2+ removal, by prolonging the duration for 

which the contractile apparatus is exposed to Ca2+ during 
a twitch, may partially offset or completely compensate for 
intrinsic processes that facilitate force loss, such as lower 
free Ca2+ concentration and lower Ca2+ sensitivity.

For contractions at submaximal stimulation frequencies, 
slower Ca2+ removal led to greater steady-state Ca2+ avail-
ability, which resulted in higher forces and a leftward shift 
of the force-frequency relationship. An age-related shift 
of the force-frequency relationship toward lower frequen-
cies is a common observation for both human (Narici et al. 
1991; Roos et al. 1999; Allman and Rice 2004; Tevald et al. 
2009) and animal skeletal muscle (Larsson and Edström 
1986; Brooks and Faulkner 1988; Alway 1995; González 
et al. 2000; Moran et al. 2005). Generally, elevated force 
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generation at submaximal frequencies is accompanied by 
an increase in twitch contraction time, half-relaxation time, 
or both. Because altered activation dynamics causing pro-
longed force rise and decay result in a slower fusion fre-
quency, it is not surprising that aged muscles exhibiting nor-
mal twitch speed tend not to exhibit elevated relative force 
at submaximal frequencies (Walters et al. 1990; González 
et al. 2000; Dalton et al. 2010a; Elliott et al. 2016). Simula-
tions incorporating a large reduction in Ca2+ sensitivity or 
moderate impairment of Ca2+ release in concert with slower 
Ca2+ uptake indicate that an ageing-appropriate increase in 
submaximal force may still be possible if these alterations 
coexisted. It seems less likely that a leftward shift of the 

force-frequency relationship would arise if SR Ca2+ release 
was greatly impaired, especially if the impairment occurred 
in concert with lower Ca2+ sensitivity or was only balanced 
by a modest slowing of SR Ca2+ uptake.

A limited number of studies have recorded intracellular 
Ca2+ transients in contracting fibres from young and old 
muscles, fewer have examined a twitch or employed a range 
of submaximal stimulation frequencies, and none appear to 
have studied slow twitch fibres or examined the decay of the 
intracellular Ca2+ transient (González et al. 2003; Anders-
son et al. 2011; Umanskaya et al. 2014; Eshima et al. 2020). 
Nonetheless, these studies support the view that impaired 
SR Ca2+ leads to lower free Ca2+ concentrations during both 
submaximal and maximal contractions. Therefore, because 
the free Ca2+ concentration reflects the net effect of Ca2+ 
release and removal processes, these observations suggest 
that impaired SR Ca2+ uptake is not a universal outcome, 
presents at a more advanced age with respect to impaired 
SR Ca2+ release, or is only capable of minimising the deficit 
in free Ca2+ concentration caused by impaired Ca2+ release. 
According to the model predictions, for slower contraction 
speed to arise in the presence of a lower free Ca2+ concentra-
tion, there would need to be considerable involvement from 
an alternative mechanism. Future work should be directed at 
establishing whether impaired SR Ca2+ release and slower 
SR Ca2+ uptake coexist, how they interact, or why submax-
imal force in advanced age isn’t disproportionately lower 
given the large deficit in free Ca2+ concentration and pos-
sible exacerbation by lower Ca2+ sensitivity.

4.2 � Type I fibre fractional area

Simulating an elevated fractional area of type I fibres also 
produced an appropriate level of slowing. For simulations 
incorporating a fractional increase of 0.1 or 0.2, the relative 
increases in twitch contraction time and twitch half-relaxa-
tion time, and of normalised force at submaximal stimula-
tion frequencies, were similar to the age effect reported by 
some studies (Fitts et al. 1984; Davies et al. 1986; Roos et al. 
1999; Connelly et al. 1999). Greater age-related prolonging 
of the contraction time and/or half-relaxation time, a more 
pronounced shift in the force-frequency relationship, or both 
(Vandervoort and McComas 1986; Brooks and Faulkner 
1988; Alway 1995; Narayanan et al. 1996; Baudry et al. 
2005; McNeil et al. 2005; Dow et al. 2005), may indicate 
that our weighting approach was not entirely effective or 
that the imposed fibre type differences were too conserva-
tive. Alternatively, the greater magnitude of slowing dem-
onstrated by these studies may implicate an additive effect 
or the sole involvement of slower Ca2+ uptake (Narayanan 
et al. 1996); simulations of the latter produced larger effects.
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Slowed SR Ca2+ uptake rate has not been consistently 
demonstrated in advanced age, at least not for rat muscles 
(Fitts et al. 1984; Larsson and Salviati 1989; Narayanan et al. 
1996; Thomas et al. 2010; Russ et al. 2014). Comparatively, 
greater evidence can be found to support an elevated frac-
tional area of type I fibres (Coggan et al. 1992; Kadhiresan 
et al. 1996; Cui et al. 2008; Elliott et al. 2016), especially 
for the human vastus lateralis muscle (Larsson et al. 1978; 
Klitgaard et al. 1990a; Hunter et al. 1999; Short et al. 2005; 
Korhonen et al. 2006; Nilwik et al. 2013; Lamboley et al. 
2015; Brocca et al. 2017; Sonjak et al. 2019; Soendenbroe 
et al. 2022). In some instances, the fast-to-slow shift in MHC 
isoform content may manifest as a reduction in MHC IIb 
content and an increase in MHC IIa or hybrid MHC iso-
forms (Hepple et al. 2004; Cui et al. 2008). Myosin isoform 

composition correlates strongly with whole muscle perfor-
mance (Ranatunga and Thomas 1990; Harridge et al. 1996). 
Slower contractile properties in advanced age have been 
associated with a greater fractional content of MHC I (Klit-
gaard et al. 1990a; Korhonen et al. 2006), demonstrated in 
the absence of slowed SR Ca2+ uptake (Larsson and Salviati 
1989), and observed without slower Ca2+ removal being the 
rate-limiting process (Hunter et al. 1999). Our simulations 
add weight to this body of evidence—fibre-type related dif-
ferences in contraction speed appear sufficient for a mod-
erate-to-large age-related increase in type I fibre content to 
account for empirical observations of slowed whole muscle 
contraction speed.

4.3 � Ca2+ sensitivity and free Ca2+ concentration

Lower Ca2+ sensitivity of force and excitation-SR Ca2+ 
release decoupling are thought to play a role in the age-
related decline of muscle specific force (Delbono et al. 1995; 
González et al. 2003; Andersson et al. 2011; Lamboley et al. 
2015). The model predictions suggest that the deficits in 
free Ca2+ concentration and Ca2+ sensitivity reported in the 
literature, despite dramatically reducing force at submaximal 
stimulation frequencies, are insufficient to appreciably lower 
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(i.e., 60%). d Twitch force at an initial CE length of 1.23 L0. Inset, 
twitch contraction time and half-relaxation time. e Force during sus-
tained 10  Hz stimulation at 1.23 L0. f Force-frequency relationship 
at 1.23 L0. Active force expressed relative to P0 of control condition. 
Solid squares denote the force for 10 Hz stimulation

Table 2   Twitch properties of plantar flexors in young and older men

Values represent the mean ± SD

Young Older p value η2

Contraction time (ms) 123.6 ± 8.6 154.8 ± 24.7  < 0.001 0.50
Half-relaxation time (ms) 100.2 ± 17.2 129.0 ± 24.4 0.003 0.30
Torque (Nm) 29.3 ± 4.4 24.0 ± 5.2 0.011 0.22
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maximum tetanic force (< 5%). Our findings are supported 
by experimental observations from studies of dantrolene 
exposure (Krarup 1981; Macintosh et al. 2011) and low-
frequency fatigue (Westerblad et al. 1993; Chin and Allen 
1996; Glass et al. 2018; Olsson et al. 2020). For example, 

dantrolene partially inhibits SR Ca2+ release (Desmedt and 
Hainaut 1977), inducing moderate reductions in twitch force 
(27–53%) or shifting the force-frequency relationship right-
ward without appreciable, if any, tetanic force loss [0–6% 
(Krarup 1981; Macintosh et al. 2011)].

Of course, a greater deficit in maximum force would arise 
if the designation of thin filament activation (i.e., cross-
bridge activation) during maximum tetanic stimulation was 
greatly overestimated in the model. This assertion would 
imply that maximum tetanic stimulation does not induce 
saturating Ca2+. However, our designation seems appropri-
ate because tetanic force plateaus with increasing stimula-
tion frequency despite an increasing free Ca2+ concentration 
(Westerblad and Allen 1993; Glass et al. 2018, 2020). Simi-
larly, several studies demonstrate that tetanic forces with and 
without caffeine—which potentiates SR Ca2+ release—can 
be virtually identical, if not equal (Lannergren and Wester-
blad 1991; Westerblad and Allen 1991; Glass et al. 2018; 
Olsson et al. 2020).

Thin filament activation is also worth considering from 
the perspective of voluntary muscle excitation. Motor unit 
discharge rates during a maximal voluntary contraction 
are considerably lower than the stimulation rate required 
for muscle maximal tetanic force (Roos et al. 1999; Dalton 
et al. 2010a; Kirk and Rice 2016). Asynchronous stimula-
tion, by minimising the oscillation of fibre length against 
series elasticity (Sandercock 2006), can elevate force at low 
and intermediate stimulation frequencies without reducing 
the frequency required for maximal tetanic force (Rack and 
Westbury 1969). As such, the discrepancy could infer sub-
maximal thin filament activation during a volitional effort. 
Voluntary muscle activation isn’t easily quantified (Horst-
man 2009), and raising single fibre force from just 0.95 to 
1.0 P0 can require a near two-fold increase in stimulation 
frequency and free Ca2+ concentration (Glass et al. 2018). 
If voluntary activation were submaximal, even only slightly, 
maximal voluntary contraction force would be lowered dra-
matically by a reduction in free Ca2+ concentration or Ca2+ 
sensitivity.

This notion must be viewed with caution, however, 
because Lind and Petrofsky (1978) found that the entire 
force-frequency relationship could indeed be shifted to 
lower frequencies through asynchronous stimulation. Thus, 
the differences between the two modes of excitation appear 
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Fig. 11   Model optimization to simulate time course and relative 
amplitude of plantar flexion twitch of old men. a Measured plan-
tar flexion twitch torque of young (Y) and older (O) men. b Plantar 
flexion twitch torque of older men and simulated twitch force after 
parameter optimisation. Twitch contraction time and half-relaxation 
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owing to ageing was 18% for simulated and experimental conditions. 
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to the respective P0 of each muscle

Table 3   Comparison of 
optimized model parameters

FGC force-generating capacity. Multiple solutions possible for Old muscle with varying FGC

τ1 τ2 [a]50 pCa50 nH Vmax kSEE FGC
(s) (s) (pCa) (L0·s−1) (P0·L0

−1)

Young 0.0422 0.256 0.1025 5.99 3 6 3.33 1.0
Old (a) 0.0422 0.339 0.1025 5.99 3 4.8 3.13 0.77
Old (b) 0.0431 0.345 0.1060 5.97 3 5 2.94 0.85
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to be more complex than appreciated. Nonetheless, the 
force-frequency relationship of the model, where force is 
0.95 P0 at 50 Hz, is generally consistent with relationships 
established for human muscle groups in vivo (Marsh et al. 
1981; Davies et al. 1982; Roos et al. 1999; Allman and Rice 
2004) and animal studies of predominantly slow muscle at 
physiological temperatures (Ranatunga 1982; Larsson and 
Edström 1986).

A more significant deficit in maximum tetanic force (8%) 
arose when free Ca2+ concentration and Ca2+ sensitivity 
were lowered in concert by 50% and 0.10 pCa units, respec-
tively. However, these modifications represent the upper 
limit of the age effect for Ca2+ sensitivity and Ca2+ availabil-
ity reported in the literature. It’s possible that moderate age-
ing-related reductions in Ca2+ availability or Ca2+ sensitivity 
may compromise tetanic specific force when Ca2+ sensitiv-
ity is lowered further by reducing fibre length (Stephenson 
and Williams 1982; Martyn and Gordon 1988; Balnave and 
Allen 1996), decreasing muscle temperature (Maughan et al. 
1995; Debold et al. 2006; Nelson and Fitts 2014) or inducing 
fatigue, which also impairs SR Ca2+ release (Westerblad and 
Allen 1991, 1993).

Although there are concurrent measurements of free Ca2+ 
and force from intact single fibres (González et al. 2003), 
as well as combined measurements from single fibres and 
whole muscle (Andersson et al. 2011; Umanskaya et al. 
2014), respectively, that implicate impaired SR Ca2+ release 
as an important determinant of the age-related deficit in 
specific force, it is unlikely that this mechanism is wholly 
responsible. Specific force remains lower for old compared 
to young intact single fibres after caffeine administration, 
which mitigates the age-related deficit in free Ca2+ concen-
tration (González et al. 2003). Corroborating this finding 
are numerous studies using skinned fibres from young and 
old muscle (Lowe et al. 2002; D’Antona et al. 2003; Zhong 
et al. 2006; Yu et al. 2007; Kim and Thompson 2013; Hvid 
et al. 2013; Lamboley et al. 2015), some of which demon-
strated a deficit in specific force of 25% or more (Thompson 
and Brown 1999; Frontera et al. 2000; Lowe et al. 2001; 
Ochala et al. 2007; Power et al. 2016; Brocca et al. 2017). 
These bodies of work, along with our findings, suggest that 
a substantial proportion of the deficit in tetanic specific force 
exhibited by intact single fibres, as well as whole muscle, 
is independent of lower tetanic free Ca2+ concentration. 
Although, as we have illustrated, the latter may exert a more 
considerable effect when accompanied by a moderate-to-
large reduction in Ca2+ sensitivity.

4.4 � CE‑SEE interaction

In addition to activation dynamics, force development is 
regulated by the intrinsic speed of shortening and the stiff-
ness of the SEE being acted upon by the CE (Hill 1938; 

Edman and Josephson 2007). Incorporating ageing-related 
reductions in Vmax and SEE stiffness slowed and prolonged 
the rise of force. During a twitch or brief tetanic contrac-
tion, both modifications also attenuated peak force. The 
effect on force development of a given reduction in intrinsic 
shortening speed depended on SEE stiffness, being more 
modest for low normalised SEE compliances (< 8%), sug-
gesting that force rise during a twitch of a single fibre may 
not be appreciably affected by a slower Vmax. The current 
work supports the involvement of slower intrinsic shortening 
speed and higher SEE compliance as factors contributing to 
prolonged and slower force rise in advanced age, although 
consideration may need to be given to the muscle prepara-
tion. Elevated tendon stiffness, conversely, would likely act 
to offset factors causing force development to be slowed or 
twitch force to be attenuated.

The simulations with altered SEE stiffness are gener-
ally consistent with experimental work with added compli-
ance (Hill 1951; Brown and Matthews 1960; Bawa et al. 
1976; Mayfield et al.2016b) and where active shortening 
has been limited by means of a small muscle stretch (Hill 
1949; Griffiths 1991; Sawicki and Roberts 2009; Mayfield 
et al. 2016a). Our findings also appear to be quantitively 
appropriate, although there is limited information to draw 
upon. We found that 33 (5 vs. 3.33 P0·L0

−1) and 53% (5 vs. 
2.33 P0·L0

−1) reductions in normalised SEE stiffness reduced 
twitch force by 16 and 29%, respectively. Cat soleus twitch 
force was reduced by 35–40% (Bawa et al. 1976) follow-
ing the addition of a spring that we estimate reduced the 
in-series stiffness by ~ 87% [isometric twitch force: ~ 5 N; 
spring stiffness: ~ 1.52 N·mm-1; tendon stiffness from spin-
dle null method at 5 N: ~ 10 N·mm-1 (Rack and Westbury 
1984)].

We found that twitch force and contraction time were 
similarly affected by increased SEE compliance. However, 
empirical measurements show that the reduction in force 
mediated by added compliance is more pronounced com-
pared to the associated delay in peak force, and that the lat-
ter may not increase in proportion to the former (Hill 1951; 
Bawa et al. 1976; Mayfield et al. 2016b). Modest delays in 
peak force in response to a large amount of added compli-
ance may relate to the effects of length or active shorten-
ing on factors such as cross-bridge kinetics (Fenwick et al. 
2021), Ca2+ sensitivity of force (Stephenson and Williams 
1982; Martyn and Gordon 1988), and force depression (Jou-
maa et al. 2012). With this observation in mind and the fact 
that imposing lower SEE stiffness prolonged the twitch con-
traction time by just 13%, it appears that this adaptation may 
not be an important determinant of twitch rise time.

Importantly, neither adaptation produced other facets 
of slowed contractile speed, such as slower force decay 
or elevated force at submaximal stimulation frequencies. 
Whilst the effect of added compliance on force decay is 
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inconsistent and only modest (Bawa et al. 1976; Mayfield 
et al. 2016b), slower force decay should accompany a slower 
intrinsic shortening speed, especially at intermediate loads 
(Jones et al. 2006). Ignoring a dramatic change in SEE stiff-
ness, which would bring force–length effects and possibly 
length-dependent Ca2+ sensitivity into play, a shift in the 
force-frequency relationship must arise from factors affect-
ing Ca2+ concentration and calcium-activated force. Greater 
compliance and slower intrinsic shortening may minimise 
force oscillations or increase the apparent degree of fusion 
without affecting average force.

4.5 � Model simulation of age effect observed 
for experimental twitch data

The age-related prolonging of force rise and decay dur-
ing a twitch observed for the plantar flexors in this study 
was within the range of slowing reported by others for 
the same muscle group (Davies et al. 1986; Vandervoort 
and McComas 1986; Simoneau et al. 2005; Dalton et al. 
2009, 2010b). Simulating this age-related shift in twitch 
contraction speed was possible with parameter adjust-
ments that fell within the ranges of age-related adaptation 
obtained from empirical observations used to inform ear-
lier simulations. Specifically, the slower, weaker twitch 
was achieved with reductions in force-generating capac-
ity (23%), Ca2+ uptake rate (24%), Vmax (20%), and SEE 
stiffness (6%). Multiple solutions were possible, and it is 
likely that the slowing of twitch speed could have been 
emulated with parameter adjustments more consistent 
with an increase in type I fibre content. An increase in 
Ca2+ sensitivity and reduction in cooperativity would 
likely lessen the required reduction in Ca2+ uptake rate. 
We speculate because we imposed parameter limits that 
were consistent with the directionality of impairment 
reported in the literature.

5 � Summary

Age-related reductions in Ca2+ sensitivity and Ca2+ release 
abbreviated the twitch and dramatically lowered force dur-
ing submaximal contractions (e.g., twitch, unfused tetanic 
contraction) without greatly influencing maximum tetanic 
force, even when acting in concert (< 10%). These predic-
tions are at odds with experimental observations of the 
effect of age on indices of isometric contraction speed 
(i.e., twitch contraction time and half-relaxation time, 
force-frequency relationship), and suggest that reduced 
Ca2+ sensitivity and impaired SR Ca2+ release may con-
tribute only modestly to the reduction in specific force 
in advanced age (depending on Ca2+ saturation during 

tetanic stimulation). Conversely, simulations that incor-
porated slowed Ca2+ removal or a greater fractional area 
of type I fibres prolonged the rise and decay of twitch 
force and shifted the force-frequency relationship leftward. 
These predictions are consistent with the characteristic 
fast-to-slow shift in contractile performance associated 
with ageing. Slowed and prolonged force development, 
and lower twitch force, also resulted from imposing a 
slower intrinsic shortening speed and lower SEE stiffness 
but occurred without a concomitant slowing of force decay 
or elevation of submaximal force. As such, these proper-
ties alone did not produce the characteristic slowing of 
contraction speed. The effect of Vmax depended on SEE 
stiffness, and empirical observations do not always sup-
port a pronounced delay in peak force from added com-
pliance, possibly because of additional factors related to 
active shortening not captured in the model. Simulating 
the slower, weaker twitch observed experimentally for 
the plantar flexors of older men required significant slow-
ing of Ca2+ uptake (~ 25%) and could be coupled with an 
appreciable reduction in force-generating capacity (i.e., 
the reduction in force-generating capacity exceeded that 
of the deficit in twitch force). Slowed Ca2+ removal, when 
acting in concert, negated the depressive effects of moder-
ate and large reductions in Ca2+ release and Ca2+ sensitiv-
ity, respectively.

6 � Conclusion

Whole muscle contractile performance in advanced age is 
characterised by slowed isometric contraction speed. This 
work provides support for the involvement of multiple mech-
anisms, although these adaptations do not necessarily affect 
the same aspects of contraction speed. As such, identifying 
the most important adaptations should be aided by character-
ising an array of isometric contractile properties in advanced 
age. Both slower Ca2+ uptake and a greater fractional area of 
type I fibres seem to be suitable mechanisms for explaining 
the slower isometric contraction speed exhibited by aged 
muscle. Simulations incorporating these adaptations with 
a degree of impairment reported in the literature gener-
ated realistic age-related changes in contractile behaviour. 
Ageing-appropriate adjustments to these parameters also 
emulated the age-related slowing of twitch speed observed 
experimentally. In general, the model simulations were well-
supported by empirical observations. We propose that this 
model or similar models might be effective in determining a 
meaningful impairment threshold or identifying the factors 
contributing to altered contractile properties.

Adaptation of muscle function and structure in advanced 
age is inconsistent and wide-ranging, thus, careful consider-
ation should be given to the strength of evidence implicating 
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the presence of a particular adaptation (e.g., fibre type, 
species, activity level, age). With the multifaced nature of 
impairment in mind, we adjusted multiple model parameters 
concurrently and have illustrated the importance of consid-
ering interaction effects. Inconsistent reports regarding the 
effect of age on contractile performance may relate to vari-
ation in the disruption of function and structure. We believe 
this work underscores the utility of simple, yet physiologi-
cally-grounded and parameter rich Hill-type muscle models 
for studying conditions that involve a multitude of adapta-
tions (e.g. ageing, disuse, training). Such models also hold 
great value in being able to predict functional performance 
(e.g. walking, standing from a chair) when used in mus-
culoskeletal simulations (e.g. Song and Geyer 2018; Ong 
et al. 2019).
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