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Abstract

Each new generation of grassland managers could benefit from an improved

understanding of how modification of nitrogen application and harvest dates in

response to different weather and soil conditions will affect grass yields and quality.

The purpose of this study was to develop a freely available grass yield simulation

model, validated for England and Wales, and to examine its strengths and weaknesses

as a teaching tool for improving grass management. The model, called LINGRA-N-Plus,

was implemented in a Microsoft Excel spreadsheet and iteratively evaluated by stu-

dents and practitioners (farmers, consultants, and researchers) in a series of workshops

across the UK over 2 years. The iterative feedback led to the addition of new algo-

rithms, an improved user interface, and the development of a teaching guide. The stu-

dents and practitioners identified the ease of use and the capacity to understand,

visualize and evaluate how decisions, such as variation of cutting intervals, affect grass

yields as strengths of the model. We propose that an effective teaching tool must

achieve an appropriate balance between being sufficiently detailed to demonstrate the

major relationships (e.g., the effect of nitrogen on grass yields) whilst not becoming so

complex that the relationships become incomprehensible. We observed that improving

the user-interface allowed us to extend the scope of the model without reducing the

level of comprehension. The students appeared to be interested in the explanatory

nature of the model whilst the practitioners were more interested in the application of

a validated model to enhance their decision making.
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1 | INTRODUCTION

In the UK, because about 75% of ruminants' dry matter consumption

originates from either grazing pasture, grass silage or hay

(Wilkinson, 2011), successful grassland management is an important

determinant of the profitability of dairy, beef and sheep production.

Successful grassland management, in turn, hinges on a farm manager's

ability to modify fertilization, grazing and harvesting practice to opti-

mize the yield and quality of grass forage in response to the effects of

weather, soil type, and soil nutrient status. However, enabling a deep

understanding of these relationships, particularly for each new gener-

ation of farmers, is a challenge. As these multiple interactions can
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neither be completely observed nor their consequences be accurately

foreseen (Takahashi et al., 2018), computer simulation models can

provide useful tools to demonstrate how grass production responds

to different environment conditions and management (Movedi

et al., 2019; Pulina et al., 2018; Qi et al., 2018).

1.1 | Digitization and the role of computer models
in agriculture

Computer models have been widely used in research, relating crop

growth to management and the environment, developing systems-

level thinking, and exposing knowledge gaps (Boote et al., 2001;

Goudriaan, 1996; Hammer et al., 2002). Recent years have also seen

the increased use of digital technology and models to guide decision

making for grassland at field, farm, and policy levels. Projects such as

GrassCheckGB (https://grasscheckgb.co.uk/) are helping farmers to

benchmark and forecast grass resources on farm, for instance,

whether to allocate particular fields for grazing or silage production

(Barrett et al., 2005; Korhonen et al., 2018; Ruelle et al., 2018). There

is an established literature on the usefulness of Decision Support

Tools derived from models for land managers (Keating &

McCown, 2001). Models can help policy makers identify if changing

weather conditions necessitate the need for farm income support and

to determine long-term effects of climate change, which cannot be

answered through field experiments (Graux et al., 2013; Kipling

et al., 2016a; Mobbs et al., 2001). A third potential use of crop models

is as tools for teaching and prompting learning, and this has generally

received less attention.

1.2 | Use of models to support teaching and
prompt learning

As a teaching tool, it has long been recognized that computers and

crop simulation models can provide training opportunities for under-

graduates to improve their understanding of crop development and

growth processes (O'Shea & Seld 1983; van Ittersum et al., 2003), par-

ticularly where the teacher has confidence in the model (Jamieson-

Proctor et al., 2013).

As a tool to prompt learning, models can support in two ways. In

the field through decision support, they can complement practitioners'

own adaptive management process whereby they adjust their deci-

sions and actions based on experience and feedback (Norton &

Reckhow, 2006). Here, computer models can be used to support

short-term immediate choices or inform long-term strategic plans.

They can also be used in participatory settings to prompt social

exchange. For example, grass-based simulation games have been used

to stimulate discussion and reflection on how grassland management

in France may alter with climate change (Martin et al., 2011).

The success of a tool for teaching or prompting learning for

students or practitioners respectively has been related to a range of

attributes. These can be distinguished for the different user-contexts.

In an education context, tool flexibility is useful (Thomas &

Neilson, 1995) and model transparency can allow students to examine

both the structure and the processes of the model (Sinclair &

Seligman, 1996). For practitioners, important attributes again include

flexibility to fit the complexity of farm environments and decision mak-

ing, minimal data requirements, and credible and meaningful outputs

which reflect users' experiences (Hayman & Easdown, 2002; Matthews

et al., 2008; Smith et al., 1997). Although associated with decision mak-

ing, these attributes are closely interrelated to learning (Lundström &

Lindblom, 2018). The ability of tools to prompt discussions and allow

the user to ask ‘What if?’ questions is regarded as a fundamental char-

acteristic of learning in tool use (McCown et al., 2012).

The context for this study was that we observed that there was

no freely available grassland-growth model in the UK that could be

used as a tool for teaching or learning to examine the effect of grass-

land management on grass yields. Although computer-based grass

growth simulation models have been used in research (Barrett

et al., 2005; Qi et al., 2017), these had not been translated into use in

the classroom or with practitioners in demonstration and discussion

workshops. Hence the aim of this paper is to describe the process of

developing a grassland simulation model, specifically the testing, eval-

uating and refining of it in student and practitioner workshops.

2 | METHODOLOGY

The methodology comprised a process of (1) selecting a suitable model

framework, (2) translating and developing the model and then working

with potential users in a series of workshops in an iterative process to

evaluate its potential for teaching and learning and to refine it based on

feedback (Figure 1). The most recent version of the model, called

LINGRA-N-Plus, is freely available on-line (Giannitsopoulos et al., 2020),

together with a teaching guide. A full description of the technical

aspects of the model and its validation with measured data is provided

by Giannitsopoulos et al. (2021).

2.1 | Selection of model

There is a wide range of grass growth simulation models that have

been developed for research. However, for our purposes, the two

F IGURE 1 Schematic illustration of the (1) selection,
(2) development and (3) evaluation and iterative improvement of the
model. LAI, leaf area index

2 GIANNITSOPOULOS ET AL.

https://grasscheckgb.co.uk/


principal criteria for selecting a grass model as tool for teaching and

learning were (i) the availability of supporting documentation and

(ii) the capacity to translate the model into a Microsoft Excel spread-

sheet interface. Translation to a spreadsheet was considered desirable

as the software environment is widely used by students and it is rela-

tively easy for students and practitioner users to create graphs and

tables for the associated outputs (Niglas, 2007).

Based on the above criteria, we selected the LINGRA model

(LINtul GRAssland; Schapendonk et al., 1998), which has been devel-

oped in the Netherlands and subsequently used to predict growth and

development of perennial ryegrass across the European Union (Joint

Research Centre, 2018) for both potential and water-limited growing

conditions. The model was originally programmed in Fortran

(Wolf, 2006), but in 2014, Aart van der Linden re-wrote LINGRA in

the widely used ‘R’ programming language. In the UK, variants of the

LINGRA model have been used to describe the growth of other grass

species such as switchgrass (Panicum virgatum) or miscanthus (Mis-

canthus giganteus) (Ni et al., 2019; Triana et al., 2011) and used in

upscaling studies to determine the effect of different grassland types

and management intensities on UK grass production (Qi et al., 2017,

2018). LINGRA has also been modified to address grass survival dur-

ing the winter at high latitudes (Höglind et al., 2016) and the specific

characteristics of the grass species timothy (Phleum pratense L.)

(Höglind et al., 2001; van Oijen et al., 2005).

2.2 | Initial development of a tool for teaching and
learning

Because of the excellent documentation associated with the ‘R’ ver-
sion of LINGRA (Wolf, 2006), it was possible to create a spreadsheet-

version of the model in Microsoft Excel, familiar to students and some

practitioners, that allowed the easy creation of graphical outputs. The

developed LINGRA model in Excel included one ‘Control’ worksheet,

one ‘Calculations’ worksheet, and 13 worksheets displaying graphical

representations of the outputs (Figure 2). There was also a sheet that

stored a range of ‘weather’ inputs and a sheet describing carbon diox-

ide concentrations for different years. The ‘Control’ worksheet was

designed so that the user can select pre-determined default options

including specific sites in specific years (defined in terms of daily

weather data), a choice of atmospheric CO2 concentrations and air

temperatures relative to default values, and management options such

as harvest dates (Figure 2). The ‘Calculations’ sheet, which is the

engine of the model, uses a daily timestep and each day in the year

(1 January to 31 December) appears as a separate row. The same

algorithms are used for each day. The ‘Calculations’ worksheet uses

(1) the weather data and data in the ‘Control’ worksheet to calculate

(2) harvest dates, (3) rates of photosynthesis, (4) the water balance,

(5) leaf appearance and extension rates, (6) leaf death rates, (7) dry

matter production and reserves, and (8) evapotranspiration rates.

F IGURE 2 Schematic illustration of LINGRA learning tool: Key worksheets include the ‘control’ the ‘calculations’ and 13 worksheets
displaying graphical representations of the outputs
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The choice of cutting dates can be specified in the ‘Control’
worksheet either as specified dates or it can be based on a predeter-

mined crop weight (e.g., the grass is cut when it reaches a weight of,

for example, 1500 DM kg ha�1). Alternatively, the user can also opt

for cuttings at specific time intervals, e.g., every 20, 40, or 60 days

between a specified start and end date. Another variable is the level

of irrigation; the user can indicate whether the crop is irrigated

(1 = irrigated) or grown as a rainfed crop (0 = no irrigation).

2.3 | Evaluation of the LINGRA model and
incorporating feedback

Evaluation was undertaken in three phases over a period of

12–18 months. Two groups were selected to determine if they had

different experiences with and perspectives of the model: (1) students

(as learners and as potential future grassland managers) on undergrad-

uate agricultural courses and (2) practitioners- current grassland

farmers, consultants, and advisors (Table 1).

Phase 1: The initial version of the LINGRA model in Excel was

used with and evaluated by these two groups in 2019: Workshops

were held with students at the University of Nottingham, practi-

tioners (Scotland's Rural College (SRUC) dairy consultants at the SRUC

campus in Dumfries) and grassland consultants and farmers

(FarmConnect and independent) at St Asaph in North Wales.

Phase 2: Feedback was incorporated and the tool was revised by

the research team to create a new version (LINGRA-N-Plus). A work-

shop was held with a group of researchers at the SRUC campus in

Edinburgh, Scotland to validate this (Table 1).

Phase 3: The revised version of the tool (LINGRA-N-Plus) was

used with and evaluated in four workshops in February 2020. One

workshop with undergraduate students at University of Nottingham

who were completing a grassland management module, one with

researchers at Cranfield University, one with grassland consultants

and researchers at North Wyke in Devon, one with grassland advisors

and researchers convened at Nottingham University. The total num-

ber of participants was 108 (Table 1).

The 2 h workshops in Phases 1 and 3 followed the same for-

mat. The workshop started with a model introduction and

demonstration supported with a worksheet/guide. The model was

initially used to describe the effect of different harvest intervals on

the yield of the green leaves. This use highlighted that there was an

optimal harvest interval to maximize the yield of green leaf: too fre-

quent and grass growth was unable to fully recover between har-

vests; not frequent enough and the green leaves would die before

harvest (Figure 3a). Other uses explored with participants included

the effects of different weather patterns, carbon dioxide concentra-

tions, irrigation or drought stress, and different soil depths. Follow-

ing this, the participants were encouraged to use, explore, and

evaluate the model in a ‘hands-on’ way using annual weather data

from a local site and inputting their own or hypothetical manage-

ment practices (what if).

Based on relevant themes in the literature, a framework with

four key attributes (Table 2) was developed to steer the workshop

evaluation. This was used to frame questions to the participants

and steer their discussions, both following the demonstration and

at the end of the exploratory session. It was not possible to

directly evaluate learning in terms of knowledge acquired through

use of the tool, however proxies for learning were identified from

the literature, also the attributes of user experience and rele-

vance/usefulness all influence the users' potential learning and

teaching.

At the end of each workshop, the participants were given an eval-

uation sheet. These were purposely kept as open as possible and were

framed by strengths, weaknesses and opportunities comprising three

questions: (1) ‘What were the strengths of the model and the ses-

sion?’, (2) ‘What were the weaknesses of the model and the session?’
and (3) ‘What opportunities do you see for the next stage?’. All

responses were anonymous, although participant type was noted.

Overall, 70 out of a total of 108 participants provided written feed-

back (a response rate of 65%; Table 1).

Analysis of workshop outputs comprised (i) the analysis of quali-

tative data collected in the workshops: participant observation, tran-

scripts of workshop discussions and (ii) the qualitative analysis of

participant evaluation sheets. The initial LINGRA spreadsheet model

was evaluated in four workshops, by one group of students and

three groups of practitioners (total number of 28 respondents;

Table 1).

TABLE 1 Initial and second set of workshops to use and evaluate the grass model

Workshops Participants Workshop location Date Attendees Respondents

Initial model Students Nottingham, England February 2019 30 14

Practitioners Dumfries, Scotland March 2019 11 8

St. Asaph, Wales October 2019 4 4

Edinburgh, Scotland November 2019 3 2

Updated model Students Nottingham, England February 2020 30 17

Practitioners Cranfield, England February 2020 12 7

North Wyke, England February 2020 6 6

Nottingham, England February 2020 12 12

Total 108 70

4 GIANNITSOPOULOS ET AL.



3 | RESULTS

3.1 | Phase 1: Feedback on the initial LINGRA
grass tool

3.1.1 | Workshop discussion

User experience

Participants appreciated the ease of use and modification of input

parameters. They liked the tool's ability to demonstrate how

management decisions, such as cutting intervals affected yield, in par-

ticular the graphical visualization. Both students and practitioners sug-

gested including other variables especially soil factors such as

temperature, pH and organic matter. The lack of response to N was

considered by all as a limitation. It was also suggested to include crop

characteristics and management factors as well as to incorporate

weather forecasts and financial analysis. Practitioners were interested

in having a simpler version or a simplified interface of the tool com-

pared to students.

Relevance/usefulness

Participants broadly agreed that the tool had merits for students but saw

less value for farmers and consultants who already know about manage-

ment and understand the effect of management decisions. For most

farmers, according to participants, a 21-day harvest intervalwas considered

the appropriate average for the context, and those using shorter or longer

intervals generally knowwhat they are doing and do not need the tool.

Teaching and learning

Students and practitioners appear to use the tool differently. Students

interrogated causal processes by asking ‘how?’ and ‘why?’. For exam-

ple, when examining how changes in rainfall or harvest interval affect

green leaf yields in general terms, they place greater emphasis on the

interactive nature of the tool. Rather than looking at the tool from the

perspective of factors that change grass yield, the practitioners

assessed it in terms of management decisions. In this respect they

tended to seek more quantified information for specific circum-

stances, asking ‘how much?’ and ‘when?’. For example, what is the

typical yield increase when the harvest interval is increased from

14 to 21 days for specific soil and weather conditions?

3.1.2 | Feedback on the evaluation sheet

The feedback expressed in the evaluation sheet confirmed the analysis of

the workshop discussions. In terms of the model's strengths, participants

placed emphasis on its capacity to demonstrate how management deci-

sions affected yield (10 out of 28 participants in 2019; Table 3), the

capacity to immediately visualize outputs in graphical form (8), its engag-

ing and interactive nature (8), and the ease of using and changing input

parameters (7). Four users recognized the strength of the model in the

F IGURE 3 Modelled effect
of harvest intervals on (a) the
harvestable yield of green leaves
in year 1, and (b) both the
harvestable yield of green leaves
and other components (stems,
dead leaves and seeds) in year
2, using weather data from
Sutton Bonington for 1985. Note

that the x-axis is not linear

TABLE 2 Framework for analysis of workshop discussions

Main theme
Criteria used to prompt
workshops questions Literature sources

User

experience

Tool performance, ease

of use-interface/

control sheet

Hayman & Easdown

(2002); Lundström &

Lindblom (2018);

Mathews et al.

(2008); Matthews

et al. (2011); Smith

et al. (1997)

Data requirements

Robustness

Simplicity/complexity

and completeness of

relevant detail

Transparency

Relevance/

usefulness

Usefulness for different

users. Meaningful

outputs and format

Potential to support

management decisions

and planning

Teaching Improves student

understanding of

factors that affect

grass growth

van Ittersum et al.

(2003); Sinclair &

Seligman (1996)

Allows students to

examine model

structure and

processes

Stimulates discussion in

participatory tool

development.

Learning Improves understanding Martin et al. (2011);

McCown et al.

(2012); Lundström &

Lindblom (2018)

Prompts ‘what if’
questions

GIANNITSOPOULOS ET AL. 5



speed of calculations and the benefits of using a widely available spread-

sheet platform, while three participants considered it useful for teaching

or demonstration. In terms of weaknesses, 18 out of the 28 users com-

mented that it would be beneficial if the tool integrated more variables,

such as grass response to nitrogen (N) application and the effect of man-

agement on grass digestibility and crude protein. Seven participants indi-

cated that the model was too confusing or complex and three

participants wanted the session to bemore interactive. One person com-

mented on the lack of a step-by-step guide and two participants

highlighted the benefits if the model could also be more ‘predictive’. In
terms of opportunities for improvement, 14 participants highlighted that,

additional variables could be useful, whilst six indicated that a simpler

model versionwould be helpful. Four users indicated that additional input

data and an evaluation of the outputs with measured grass yields might

be needed. Finally, three participants supported the idea of using the

model with various end-user groups and one person highlighted opportu-

nities to use themodel within another grassland research project.

3.2 | Phase 2: Improving the model in response to
initial feedback

Following the initial feedback reported above, we identified five

actions to enhance the model. Two of the actions were teaching-

TABLE 3 Users' comments (receiving more than 1) of the LINGRA tool in 2019 and the LINGRA-N-Plus tool in 2020, and the cumulative total
for students and consultants

Number of returned evaluation sheets

LINGRA tool (2019) LINGRA-N-Plus tool (2020)

Students

n = 31

Practitioners

n = 39

Students

n = 14

Practitioners

n = 14

Total

n = 28

Students

n = 17

Practitioners

n = 25

Total

n = 42

Strengths

Demonstrates how inputs affect yield 4 6 10 6 7 13 10 13

Visualization (excellent graphs) 2 6 8 1 7 8 3 13

Engaging, interactive, informative

model/session

5 3 8 5 2 7 10 5

Easy to use/understand and input

data

4 3 7 8 9 17 12 12

Shows grassland complexity 5 5 1 3 4 1 8

Speed of calculations/Excel

availability

2 2 4 2 2 2 4

Excellent for teaching/demo tool 3 3 2 11 13 2 14

Input information are all available 3 3 2 2 4 2 5

Unique/enjoyable/beautiful 2 2 2 1 3 4 1

Weaknesses

Integrate more variables 6 12 18 5 8 13 11 20

Can get confusing/too complex 2 5 7 3 6 9 5 11

In practice, weather inputs are

confounded

3 3 1 1 4

More interactive 3 3 3

Locally relevant input data and

validation

2 2 2

It is not predictive 2 2 2

Intent to use with different end-users 1 1 2 2 1 2

Provide/improve step by step guide 1 1 2 1 3 3 1

Amend/simplify control worksheet 3 12 15 3 12

Opportunities

Integrate more variables 3 11 14 16 17 33 19 28

Additional input data and validations 1 3 4 1 3 4 2 6

Intent to use with different end-users 1 2 3 2 2 1 4

Simpler version 6 6 6

Integrate with other systems 1 1 4 4 5

Can be more than a teaching tool 1 6 7 1 6

Amend/simplify control worksheet 1 5 6 1 5

Develop an App/website 2 2 2

Note: The numbers in bold are simply the sum of the value for students and the value for practitioners.
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based and subsequent sessions were planned to involve greater

‘hands-on’ activity and a teaching guide was produced (Burgess

et al., 2020).

In response to suggestions from both students and practitioners,

basic processes of N dynamics were included and the third action was

to integrate a yield response to N inputs within the model. The grass

response to N was initially included using algorithms from the

LINGRA-N model (Wolf, 2012). However, an initial evaluation showed

that modifications were needed to the N uptake dynamics that are

determined by the N demand of leaves and stems, the initial soil min-

eral N status, the amount of available mineralisable soil organic

N (Addiscott & Whitmore, 1987) and the amount of N applied as fer-

tilizer. The N recovery fraction was assumed as a fixed proportion

(0.7) of applied N. Because of these changes, the updated model was

named ‘LINGRA-N-Plus’ to distinguish it from the existing LINGRA-N

model.

The original LINGRA simulated only green leaves, whereas in

practice grass yields also include stems and dead leaves (Wilman

et al., 1976). Additional algorithms were included within the

LINGRA-N-Plus model in the fourth action, so that the proportions

of dry mass allocated to green leaf, stem, and seeds varied as a

function of thermal time from the last harvest. New algorithms were

also included to determine the proportion of standing stem and

dead leaves that were removed at each harvest. It was assumed

that the proportion of standing stems harvested would be the same

as that for green leaf. Using data from Wilman et al. (1976), we also

assumed that the weight of dead leaves harvested (expressed as a

proportion of the total weight of green leaves and stems) would be

zero below a harvest interval (HI) of 21 days, be equal to

0.0035 * (HI-21) for intervals between 21 and 70 days, and then

reach a plateau value of 0.1715 for intervals above 70 days.

The fifth action was to improve the user-interface by restructur-

ing the ‘Control’ worksheet so that key inputs or outputs were clearly

categorized under the headlines of ‘Site and grass factors’, ‘Manage-

ment choices’ and ‘Outputs’ (Figure 4). ‘Site and grass factors’
included site choice, meteorological data, atmospheric carbon dioxide

concentrations and assumptions regarding the partitioning of dry mat-

ter by herbage. The ‘Management choices’ section included the

choice of different cutting intervals and cutting intensities, N and irri-

gation rates. The updated ‘Outputs’ section describes the dry matter

yields of different grass parts (leaves, stems and total) and summarizes

N use and transpiration.

3.3 | Phase 3: Evaluating the implementation of
LINGRA-N-Plus

3.3.1 | Workshop discussion

User experience

The overall experience was more positive than in Phase 1 in terms of

ease of use and the tool's ability to demonstrate the effects of man-

agement decisions. Although improved N dynamics were included in

the revised model, participants identified additional factors to be

included such as the effects of soil pH, phosphorus and potassium

levels (soil and fertilizer) and soil organic carbon dynamics. However,

while more variables were identified for inclusion, participants often

also call for more simplicity and described the tool as complicated.

The workshops again prompted detailed conversations about cutting

intervals based on the practitioners own experiences and identified

other considerations such as nutritional value and the significance of

the leaf to stem ratio. There was also interest in describing the grass

remaining after cutting in terms of a ‘residual weight’ and relating the

different leaf and stem yields to a feed value. The possibility that the

model could simulate different grass species and the effect of defolia-

tion on roots was also discussed. The consultants suggested using

F IGURE 4 LINGRA-N-Plus screenshot important inputs and important outputs section of the Control worksheet as set for Cranfield 2019
weather data.
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parameter/metrics that farmers are familiar with and can visualize

e.g., total dry matter not green leaf, arguing that farmers want to har-

vest at a certain biomass of kg dry matter and that leaf area index

(LAI), for example is not a suitable metric for them.

Relevance/usefulness

Some questioned the provenance of the model and argued that it was

not relevant to farmers if they grow native species, herbal leys or

mixed species. However, the opportunity to use it with beef and

sheep farmers who do not practice rotational grazing, to change peo-

ple's way of thinking by showing them the impact of cutting at set

intervals was recognized. The value of the tool for strategic planning

was suggested, asking long term ‘what if’ questions.

Teaching and learning

There was a positive response to the tool's ability to enhance under-

standing of grass growth processes. The value of being able to see the

‘workings’ for students was emphasized, although it was not consid-

ered as important for practitioners. However, some consultants and

advisers liked the idea of using the model with various groups of

farmers as a learning tool, arguing that the current tools are a ‘black-
box’ and they find it difficult to encourage discussion around them.

All the conversations shared in the workshops are in themselves indic-

ative of the tool's ability to prompt shared learning amongst

participants.

3.3.2 | Feedback on the evaluation sheets

The analysis of the evaluation sheets confirmed the workshop discus-

sions. From user feedback, the highest positive response (17) was that

LINGRA-N-Plus was easy to use, to understand and input data (Table 3).

As in the initial workshops, participants highlighted that the model could

be an excellent teaching or demonstration tool (13), and that it could

immediately demonstrate how inputs affect yield (13). Some partici-

pants described the tool as unique, enjoyable, or beautiful (3).

The participants highlighted that one of the weaknesses of the

model was that it still needed to integrate more variables (13), whilst

nine out of 42 respondents found the updated tool too complex or con-

fusing. A total of 15 participants highlighted that the control worksheet

could be further simplified. In terms of future opportunities, 33 partici-

pants highlighted the scope to include more variables. Seven partici-

pants indicated the potential of LINGRA-N-Plus as a learning tool.

4 | DISCUSSION

The observations we made while developing and applying the tool,

and analysing the workshop discussions and evaluation sheets, can be

grouped into the following categories of (1) its ease of use, (2) the

importance of visualization, (3) the compromises between simplicity,

transparency and complexity, (4) the different perspectives of users,

(5) the effectiveness of pedagogy, (6) how stakeholder involvement

improves model design and is a mechanism to facilitate learning, and

(7) limitations and future developments of the tool.

4.1 | Ease of use

The model was recognized as being easy to use. The three features of

the model that supported its ease of use are (i) the use of a familiar

software environment, (ii) the inclusion of a well-structured control

worksheet, and (iii) the capacity to access relevant inputs. These fea-

tures are discussed in turn.

The most appropriate platform can depend on availability, costs,

suitability for the task, knowledge of the developers, and the ability to

transfer and utilize models between users (Graves et al., 2005; Voinov

& Bousquet, 2010). In this case, Microsoft Excel was an appropriate

choice, particularly in the sessions with students where their familiar-

ity with the software allowed them to quickly navigate through the

main features of the model implementation. The model could be used

on the participants' laptops at each event, and there were no prob-

lems with processor speeds.

However, an open spreadsheet format can have disadvantages.

The open format means that it is possible for a user to enter a value

or equation in the wrong place, thereby disrupting the whole model.

However, this issue could be solved by using password protection in

certain sheets or cells containing equations. The spreadsheet environ-

ment was also not set up to limit inputs, for example negative values,

to specific cells. However, this issue could be solved by a model devel-

oper adding error checks to prevent the entry of obviously erroneous

values. Although an open format has the advantage of allowing a user

to develop new bespoke versions of the model, it is also important to

maintain a ‘master’ version. Hence a master version of the model has

been made available in an online repository (Giannitsopoulos

et al., 2020).

The use of a ‘Control’ worksheet to function as a ‘dashboard’ for
the rest of the model worked well. Such a Control worksheet allowed

the user to see the most important input and output variables on a

single screen. Jame & Cutforth (1996) also highlighted the usefulness

of a dashboard to increase the usability and utility of a model. Ease of

use was also supported by the use of pre-entered input data. In both

sets of workshops, the model included local weather data preloaded

within one of the spreadsheets. This accessibility of input variables,

including default soil and initial grass state variables, made the model

relatively easy to use.

4.2 | Importance of visualization

Accessible outputs are important for the user to understand the

model results (Hamilton et al., 2019). Responses from LINGRA-N-Plus

users highlighted the importance of visualization in learning, for exam-

ple they could instantly observe the effect of varying inputs, such as

changes in rainfall pattern or harvest frequency on yield. Such data

visualization can provide a bridge between the quantitative content of
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data and human intuition (Donalek et al., 2014) making complex data

easier to understand, both, for education and expert analysis

(Christensen et al., 2018).

The capacity to use the model interactively allowed the user to

explore, experiment, hypothesize, practice and test a range of phe-

nomena or assumptions. Although on-line electronic teaching

resources can be used individually outside of the classroom (Stanči�c

et al., 2007), integrating the teaching tool with farm visits, grass bio-

mass measurements, video recordings and discussions with farmers

could benefit the students.

4.3 | To add more variables or to simplify?

Both students and practitioners identified a number of additional vari-

ables to include as well as accounting for nutritional aspects for example.

Some of these processes could be implemented relatively simply, but

others are more complex (Kipling et al., 2016a). How does a model

developer identify the optimal number of variables within a tool intended

for learning? Whilst a substantial number of students and practitioners

requested the inclusion of more variables, others indicated that the tool

was too complex and confusing. Chwif et al. (2000) emphasized that

within the modelling community, there is often a stated preference for

simple rather than complex models. For example, Pidd's (1996) second

principle of modelling was to be parsimonious, start small and only to

add additional details if they were needed, which is in line with Passioura

(1973) and Wainwright and Mulligan (2013). Chwif et al. (2000)

highlighted that the appropriate complexity of a model should be a func-

tion of the detail required in relation to the scope of its application. A

model using a daily time-step is likely to be more complicated than one

with an annual time-step. Likewise, a model describing yield and quality

will be more complicated than one only describing yield.

We observed in the workshops that an increase in the number

of management variables tended to improve participants' perception

of the validity of the model (the red line in Figure 5). For example,

the lack of a yield response to N was seen as a limitation during the

first phase of model development. However, the capacity of an indi-

vidual user to comprehend the model processes and outputs can also

decline as more variables are added (the blue line in Figure 5). For

example, if the model is too complex the user may no longer under-

stand how the model works (Brugnach et al., 2008) and reject the

tool altogether (Kolkman et al., 2016). If we assume that the effec-

tiveness of a model as a learning tool is the product of its validity

and understanding, then there can be a number of variables at which

the model reaches a point of maximum effectiveness (Point E in

Figure 5).

Our experience in the second phase showed that by providing a

clearer introduction, improved documentation and an improved lay-

out of the ‘Control’ worksheet it was possible to both increase the

model complexity (A to B in Figure 5) and maintain user under-

standing (C to D), creating a new optimum for model effectiveness

(E to F). We observed that many participants were able to explore

the theory and assumptions underpinning the grass model, leading

to a deeper understanding (Hamilton et al., 2019). For example, in

line with the theoretical analysis described by Parsons (1992), we

used the model to establish that there is an optimal level of cutting

interval to maximize green leaf yield (Figure 3a), whilst total biomass

yield (including stem) approaches a plateau as cutting interval

increases (Figure 3b).

Participants' ability to use the model was partly determined by

existing abilities, e.g. capacity and familiarity with using spreadsheet

tools, and willingness to use such tools (Smajgl, 2015). One of the

benefits of a spreadsheet environment is that algorithms are poten-

tially more accessible to the user than in some other software envi-

ronments. Another way to improve the accessibility and transparency

of the model is to provide full documentation of the rationale for the

tool and the underlying science, the intended application domain and

its limitations (Crout et al., 2008). In the second year, we provided a

teaching guide (Burgess et al., 2020) with the LINGRA-N-Plus model,

which allowed users to explore the theory and the relation between

management decisions and the outputs from the ‘Calculations’ work-

sheet. We propose that this allowed us to shift the comprehension

curve to the right (Figure 5). A final way to improve comprehension is

to improve the user interface, as seen in the second round of work-

shops, where more users found LINGRA-N-Plus easier to use and

understand than the initial model, with some identifying it as ‘excel-
lent as a teaching or demonstration tool’ (Table 3). This objective of

including sufficient detail in responses, whilst maintaining comprehen-

sion, interpretability and explanation for the user is also the focus of a

growing area of research in the field of machine learning and artificial

intelligence (AI), called ‘explainable AI’ (Doran et al., 2018).

4.4 | Different perspectives of users

The workshops showed that students and practitioners used the tool

differently, with the former often focusing on the mechanistic

F IGURE 5 Schematic representation of the effect of the number
of variables on the perceived model validity, user comprehension, and
model effectiveness as a learning tool. In phase 2, the number of
variables increased (A to B), and user comprehension was improved
by documentation and a clearer interface (C to D), creating a new
optimum for model effectiveness (E to F)
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understanding of processes by asking ‘how?’ and ‘why?’ and the lat-

ter focusing more on the instrumental value of the tool, by asking

‘how much?’ and ‘when?’. This reflects their different perspectives

and objectives. Students, for example, want to learn the key principles

and mechanisms. Practitioners, who already have this understanding

and experiential knowledge are looking for more quantified and pre-

dictive information for specific circumstances.

These perspectives translated into preferences for tool format.

Students tended to place greater emphasis on the interactive nature

of the tool which revealed causal relationships and mechanisms, while

consultants were more interested in a simpler version or simplified

interface of the tool for quick results. They also placed a greater

emphasis on the validation of the model which for them is central to

the relevance of the outputs.

Gilbert et al. (2018) noted that the appropriate balance between

the model's complexity and transparency depends on the user's

capacity and expectations for its use. In a teaching environment, it

may be important that the model is not a black box and that users can

access and trace the logic of its inner workings (Matthews

et al., 2011; Stirling, 2010). By contrast, in a more applied situation,

the ease of inputting site specific data and retrieving solely yield and

quality outputs may be important. Hence, some users were interested

in developing the tool as a phone-based app (Table 3).

4.5 | Effectiveness of the pedagogy

In relation to the different perspectives, students and practitioners

learned in different ways. How can we use classroom teaching to

enhance students' ability to implement the theory learned about grass

growth and the role played by the LINGRA grass models? To help stu-

dents become capable and competent future practitioners/consul-

tants, they need to acquire knowledge and comprehension and

develop skills (Wrenn & Wrenn, 2009).

During our first year of workshops, the students found that

LINGRA can be used to describe the effect of different harvest inter-

vals on green leaf yield. It was shown for instance, that under optimal

N and water conditions, harvesting every 22 days would maximize

green leaf yield. By contrast, in the second year when we used the

improved model (LINGRA-N-Plus), we were able to show that the har-

vest interval that maximized green leaf yields was different from the

harvest interval to maximized total harvestable dry matter (Figure 3b).

4.6 | Benefits of stakeholder engagement
including enhanced learning

A common failure of some of the early models and tools was that they

were developed by researchers alone and did not take sufficient

account of the perspectives of users and other stakeholders

(Cox, 1996). The LINGRA-N-Plus model was tested and evaluated

with students and practitioners at an early stage, and their input

helped to optimize the tool's potential. The use of active stakeholder

engagement in model development is increasingly common and can

improve the credibility, relevance and usability of the model. It can

also enhance collective learning. Participatory development of tools

has proven to be an effective way to achieve learning with advisors

and farmers and to include their own knowledge (Jakeman

et al., 2006; McCown et al., 2012; Lundström & Lindblom, 2018). In

our study, practitioners appeared to be energized by the collective

learning from workshop discussions and appreciated the chance to

learn about outcomes from different management options and scenar-

ios, and to exchange ideas prompted by the tool. The value of simula-

tion and exploring ‘What ifs’ with farmers, and the potential of

building capacity in the advisory community through tool develop-

ment and use is well known (Eastwood et al., 2012; Martin

et al., 2011).

Stakeholders can be engaged in the form of knowledge provision,

model selection and development, data collection and integration,

scenario development, interpretation of results and development of

policy alternatives. It is generally recognized that engaging partici-

pants in as many of these phases as possible and as early as possible,

improves the value of the resulting model in terms of its usefulness to

decision makers, its educational potential for the public and its credi-

bility within the community (Beirele & Cayford, 2002;

Korfmacher, 2001; Reed, 2008). Engaging with stakeholders is likely

to increase the chances that model outputs, and their strengths and

weaknesses will be understood at a deep rather than superficial level

(Voinov & Bousquet, 2010). Through this engagement, the required

level of model complexity, accuracy and scope can emerge from delib-

erative processes (Bellocchi et al., 2015; Colvin et al., 2014). In this

respect, social scientists who are familiar with both the research and

stakeholder communities can act as ‘bridges’ between different

groups (Sterk et al., 2011). As Kipling et al. (2016b) pointed out, the

challenge for modellers is to follow the above process to create

models that are both ‘user friendly’ and robust at appropriate levels

of complexity. If non-scientists cannot parameterize, understand, or

use the model, it will not be applied by local decision makers to solve

real problems (Hamilton et al., 2019; Voinov & Bousquet, 2010).

4.7 | Limitations and future developments of
the tool

Since the above study, we have been able to demonstrate that

LINGRA-N-Plus is able to predict annual grass yields under a range of

pedo-climatic and management conditions across England and Wales

(Giannitsopoulos et al., 2021). This showed that LINGRA-N-Plus provided

improved grass yields predictions (Giannitsopoulos et al., 2021) compared

to the original LINGRA-N (Wolf 2012), and similar predictions compared

to the Rothamsted LINGRA-based grass model (Qi et al., 2017).

As with any modelling process, there are still ways to improve

the model. For instance, frameworks currently exist to interpret

model performance and uncertainties and to simulate C fluxes in
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cropping and grassland systems at a variety of distant and contrast-

ing sites (Sándor et al., 2020). Also, the model does not currently

account for N leaching (or any other N transformations or losses) and

assumes that only 70% of the applied N is available. The model has

only been validated for perennial ryegrass production and lacks esti-

mates of forage quality or predictions of multi-species response. In

fact, a recent study (van Oijen et al., 2020), highlighted the role of

plant diversity in regulating the processes underlying the ecosystems

services provided by multi-species grasslands. Hence, based on the

feedback from the participants, future developments of LINGRA-N-

Plus could include calibration for different grass species, a routine to

describe forage quality and the capacity to simulate more detailed

N and C dynamics.

Recent research has also underlined that combining unmanned

aerial systems (UAS) with multispectral cameras can allow for an opti-

mal observation system capable of deploying machine learning algo-

rithms for near real-time mapping of perennial ryegrass dry matter

(Togeirode Alckmin et al., 2022). As such technological solutions and

efforts progress, they will have the potential to provide more data in

an accurate and automated way with regards to, for instance, grass

biomass assessments. This may be important for pasture monitoring

or e.g., when grass yield data are needed to calibrate and validate dif-

ferent grass growth simulation models.

5 | CONCLUSIONS

Computer-based learning and decision-making tools can improve the

effectiveness of university teaching and consultant training by engag-

ing students and practitioners. The well-established simulation tool

LINGRA-N was implemented in a spreadsheet environment and

expanded (LINGRA-N-Plus) to account for its application to different

N levels and harvest intervals. A series of workshops showed that

such a tool was useful in stimulating discussions and improving under-

standing of the theory and practice of grassland management. The

major strengths of the resulting tool were its benefits as an effective

teaching tool that could also prompt practitioner learning, the ease of

use and understanding, the immediate visualization of results, and the

efficient access to inputs, calculations and outputs. Some tended to

find model complexity confusing, whilst others wished to increase

functionality. Some aspects can be made more accessible through the

intuitive design of a user-friendly interface. The tool and associated

workshops, both of which can be developed further, are proposed as

an innovative way to explore different grassland management inter-

ventions in higher education and professional learning.
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Stanči�c, H., Luči�ca, I., Zagreb, C., Seljan, S., Cetini�c, A. (2007, November

7–9). Simulation models in education [Conference presentation]. INFu-

ture: ‘Digital information and heritage’, Zagreb, Croatia. https://infoz.
ffzg.hr/INFuture/2007/pdf/7-02%20Stancic,%20Seljan,%20Cetinic,%

20Sankovic,%20Simulation%20Models%20in%20Information%

20Science%20Education.pdf

Sterk, B., van Ittersum, M. K., & Leeuwis, C. (2011). How, when, and for

what reasons does land use modelling contribute to societal problem

solving? Environmental Modelling & Software, 26, 310–316. https://doi.
org/10.1016/j.envsoft.2010.06.004

Stirling, A. (2010). Keep it complex. Nature 468, 1029–1031. https://doi.
org/10.1038/4681029a

Takahashi, T., Harris, P., Blackwell, M. S. A., Cardenas, L. M., Collins, A. L.,

Dungait, J. A. J., Hawkins, J. M. B., Misselbrook, T. H.,

McAuliffe, G. A., McFadzean, J. N., Murray, P. J., Orr, R. J.,

Rivero, M. J., Wu, L., & Lee, M. R. F. (2018). Roles of instrumented

farm-scale trials in trade-off assessments of pasture-based ruminant

production systems. Animal, 12, 1766–1776. https://doi.org/10.

1017/S1751731118000502

Thomas, R., & Neilson, I. (1995). Harnessing simulations in the service of

education: The interact simulation environment. Computers & Educa-

tion, 25, 21–29.
Togeirode Alckmin, G., Lucieer, A., Rawnsley, R., & Kooistra, L. (2022).

Perennial ryegrass biomass retrieval through multispectral UAV data.

Computers and Electronics in Agriculture, 193, 106574. https://doi.org/

10.1016/j.compag.2021.106574

Triana, F., Ragaglini, G., Bonari, E., Cerasuolo, M., & Richter, G. M. (2011).

Modelling the water balance of different grass species used for bioe-

nergy. Biomass and Energy Crops IV, 112, 163–170.
van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J.,

Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications

of the Wageningen crop models. European Journal of Agronomy, 18,

201–234. https://doi.org/10.1016/s1161-0301(02)00106-5
van Oijen, M., Höglind, M., Hanslin, H. M., & Caldwell, N. (2005). Process-

based modeling of timothy regrowth. Agronomy Journal, 97, 1295–
1303. https://doi.org/10.2134/agronj2004.0251

van Oijen, M., Barcza, Z., Confalonieri, R., Korhonen, P., Kröel-Dulay, G.,

Lellei-Kovács, E., Louarn, G., Louault, F., Martin, R., Moulin, T.,

Movedi, E., Picon-Cochard, C., Rolinski, S., Viovy, N., Wirth, S. B., &

Bellocchi, G. (2020). Incorporating biodiversity into biogeochemistry

models to improve prediction of ecosystem services in temperate

grasslands: Review and roadmap. Agronomy, 10(2), 259. https://doi.

org/10.3390/agronomy10020259

Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environ-

mental Modelling & Software, 25, 1268–1281. https://doi.org/10.

1016/j.envsoft.2010.03.007

Wainwright, J., & Mulligan, M. (2013). Introduction. In Environmental

modelling: Finding simplicity in complexity (2nd ed.). Wiley.

Wilkinson, J. M. (2011). Re-defining efficiency of feed use by livestock.

Animal, 5, 1014–1022.
Wilman, D., Droushiotis, D., Koocheki, A., Lwoga, A., & Shim, J. (1976). The

effect of interval between harvests and nitrogen application on the

digestibility and digestible yield and nitrogen content and yield of four

ryegrass varieties in the first harvest year. The Journal of Agricultural Sci-

ence, 86(2), 393–399. https://doi.org/10.1017/S0021859600054861

GIANNITSOPOULOS ET AL. 13

https://assets.publishing.service.gov.uk/media/57a08d55e5274a27b20017ab/R7936_HyPAR4-UserGuide.pdf
https://assets.publishing.service.gov.uk/media/57a08d55e5274a27b20017ab/R7936_HyPAR4-UserGuide.pdf
https://assets.publishing.service.gov.uk/media/57a08d55e5274a27b20017ab/R7936_HyPAR4-UserGuide.pdf
https://doi.org/10.1016/j.ecolmodel.2019.03.001
https://doi.org/10.1016/j.ecolmodel.2019.03.001
https://doi.org/10.1177/1558689807301250
https://doi.org/10.1177/1558689807301250
https://doi.org/10.1111/gfs.12310
https://doi.org/10.1111/gfs.12310
https://doi.org/10.1016/j.eja.2017.05.002
https://doi.org/10.1016/j.eja.2017.05.002
https://doi.org/10.1016/j.scitotenv.2018.03.395
https://doi.org/10.1016/j.eja.2018.06.010
https://doi.org/10.1016/j.eja.2018.06.010
https://doi.org/10.1016/j.fcr.2020.107791
https://doi.org/10.1016/j.fcr.2020.107791
https://doi.org/10.1016/s1161-0301(98)00027-6
https://doi.org/10.1016/s0016-7061(97)00087-6
https://doi.org/10.1016/s0016-7061(97)00087-6
https://infoz.ffzg.hr/INFuture/2007/pdf/7-02%20Stancic,%20Seljan,%20Cetinic,%20Sankovic,%20Simulation%20Models%20in%20Information%20Science%20Education.pdf
https://infoz.ffzg.hr/INFuture/2007/pdf/7-02%20Stancic,%20Seljan,%20Cetinic,%20Sankovic,%20Simulation%20Models%20in%20Information%20Science%20Education.pdf
https://infoz.ffzg.hr/INFuture/2007/pdf/7-02%20Stancic,%20Seljan,%20Cetinic,%20Sankovic,%20Simulation%20Models%20in%20Information%20Science%20Education.pdf
https://infoz.ffzg.hr/INFuture/2007/pdf/7-02%20Stancic,%20Seljan,%20Cetinic,%20Sankovic,%20Simulation%20Models%20in%20Information%20Science%20Education.pdf
https://doi.org/10.1016/j.envsoft.2010.06.004
https://doi.org/10.1016/j.envsoft.2010.06.004
https://doi.org/10.1038/4681029a
https://doi.org/10.1038/4681029a
https://doi.org/10.1017/S1751731118000502
https://doi.org/10.1017/S1751731118000502
https://doi.org/10.1016/j.compag.2021.106574
https://doi.org/10.1016/j.compag.2021.106574
https://doi.org/10.1016/s1161-0301(02)00106-5
https://doi.org/10.2134/agronj2004.0251
https://doi.org/10.3390/agronomy10020259
https://doi.org/10.3390/agronomy10020259
https://doi.org/10.1016/j.envsoft.2010.03.007
https://doi.org/10.1016/j.envsoft.2010.03.007
https://doi.org/10.1017/S0021859600054861


Wolf, J. (2006). Grassland data from PASK study & testing of LINGRA. Group

Plant Production Systems. https://models.pps.wur.nl/system/files/

LINGRA-PASK_report_Wolf-2006.pdf

Wolf, J., (2012) User guide for LINGRA-N: Simple generic model for

simulation of crop growth under potential, water limited and nitrogen

limited conditions. https://models.pps.wur.nl/lingra-n-grassland-

model-potential-water-limited-and-n-limited-conditions-fortran

Wrenn, J., & Wrenn, B. (2009). Enhancing learning by integrating theory

and practice. International Journal of Teaching and Learning in Higher

Education, 21, 258–265.

How to cite this article: Giannitsopoulos, M. L., Burgess, P. J.,

Bell, M. J., Richter, G. M., Topp, C. F. E., Ingram, J., &

Takahashi, T. (2022). Translating and applying a simulation

model to enhance understanding of grassland management.

Grass and Forage Science, 1–14. https://doi.org/10.1111/gfs.

12584

14 GIANNITSOPOULOS ET AL.

https://models.pps.wur.nl/system/files/LINGRA-PASK_report_Wolf-2006.pdf
https://models.pps.wur.nl/system/files/LINGRA-PASK_report_Wolf-2006.pdf
https://models.pps.wur.nl/lingra-n-grassland-model-potential-water-limited-and-n-limited-conditions-fortran
https://models.pps.wur.nl/lingra-n-grassland-model-potential-water-limited-and-n-limited-conditions-fortran
https://doi.org/10.1111/gfs.12584
https://doi.org/10.1111/gfs.12584

	Translating and applying a simulation model to enhance understanding of grassland management
	1  INTRODUCTION
	1.1  Digitization and the role of computer models in agriculture
	1.2  Use of models to support teaching and prompt learning

	2  METHODOLOGY
	2.1  Selection of model
	2.2  Initial development of a tool for teaching and learning
	2.3  Evaluation of the LINGRA model and incorporating feedback

	3  RESULTS
	3.1  Phase 1: Feedback on the initial LINGRA grass tool
	3.1.1  Workshop discussion
	User experience
	Relevance/usefulness
	Teaching and learning

	3.1.2  Feedback on the evaluation sheet

	3.2  Phase 2: Improving the model in response to initial feedback
	3.3  Phase 3: Evaluating the implementation of LINGRA-N-Plus
	3.3.1  Workshop discussion
	User experience
	Relevance/usefulness
	Teaching and learning

	3.3.2  Feedback on the evaluation sheets


	4  DISCUSSION
	4.1  Ease of use
	4.2  Importance of visualization
	4.3  To add more variables or to simplify?
	4.4  Different perspectives of users
	4.5  Effectiveness of the pedagogy
	4.6  Benefits of stakeholder engagement including enhanced learning
	4.7  Limitations and future developments of the tool

	5  CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


