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A Multi-Objective Evolutionary Optimisation Model for Heterogeneous Vehicles Routing and Relief Items 
Scheduling in Humanitarian Crises 
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isaster scenario, relief items distribution is required as early as possible for the disaster victims to reduce
ssociated risks. For the distribution tasks, an effective and efficient relief items distribution model to
ated relief items distribution schedules is essential to minimise the impact of disaster to the disaste
s. However, developing efficient distribution schedules is challenging as the relief items distribution

em has multiple objectives to look after where the objectives are mostly contradictorily creating a barrie
ultaneous optimisation of each objective. Also, the relief items distribution model has added complexity

the consideration of multiple supply points having heterogeneous and limited vehicles with varying
ity, cost and time. In this paper, multi-objective evolutionary optimisation with the greedy heuristic search
een applied for the generation of relief items distribution schedules under heterogeneous vehicle
tion at supply points. The evolutionary algorithm generates the disaster region distribution sequence by
ing a global greedy heuristic search along with a local search that finds the efficient assignment o
ogeneous vehicles for the distribution. This multi-objective evolutionary approach provides Pareto optima
ons that decision-makers can apply to generate effective distribution schedules that optimise the
ution time and vehicles’ operational cost. In addition, this optimisation also incorporated the minimisation

met relief items demand at the disaster regions. The optimised distribution schedules with the proposed
ach are compared with the single-objective optimisation, weighted single-objective optimisation and
y multi-objective optimisation approaches. The comparative results showed that the proposed multi
tive evolutionary approach is an efficient alternative for finding the distribution schedules with
isation of distribution time and operational cost for the relief items distribution with heterogeneou

les. 

ords: Multi-objective Scheduling; Disaster; in Humanitarian Crises; Evolutionary Algorithm
isation; Relief Items Distribution; Heterogeneous Vehicles 

Introduction 

 items distribution is a type of resource constraint scheduling problem which is similar to many other
rce constraints scheduling problems such as workforce scheduling and job scheduling [1]. However, in a
er scenario, relief items supply is one of the crucial decision-making problems where relief items are
ied from multiple supply points to affected disaster regions. In the relief process, the distribution schedules
imed to plan relief items supply as early as possible to minimise the disaster impact on the victims, save
and improve the victim’s lifestyle[2, 3]. At large, relief items distribution scheduling requires identifying
al distribution strategies that are mainly intended to minimise disaster victims’ suffering [4, 5]. In general

r disaster scenarios, the decision-making strategy defines the effectiveness of the relief items distribution
.  

isaster scenario with multiple supply points and disaster regions, two aspects: deciding the effective
nces of relief items distribution schedules from supply points to the disaster regions and selection o

les, are among the key challenges. The distribution schedules directly affect the distribution time and
tional cost [8, 9], however, the appropriate vehicle selection is crucial too in optimising the distribution
Considering the vehicle selection, some of the distribution approaches are designed with single-type
les for transportation [8, 10]. Though, in most disaster scenarios, there appears a heterogeneous vehicle
 Therefore, the vehicle selection strategy needs to be based on heterogeneous vehicles where the
ogeneous vehicles have their constraints regarding capacity, cost and speed, which make the vehicle
ion task complex. Taking account of these complexities, the appropriate selection of vehicle type is crucia
e optimisation of the distribution tasks [11, 12]. The vehicle selection becomes even more challenging
 the supply points have a limited number of each kind of heterogeneous fleet vehicle. Furthermore
ive path selection from supply points to the disaster regions with feasible shortest path has been anothe
nge for the distribution schedule as in a disaster scenario, more often, many connecting roads ge

ucted or permanently damaged [13, 14]. These multiple aspects bring the scope of use of multi-criteria
on making as the integrated multi-criteria increase the effectiveness for the decision making process when
 appears multi-objective scenario[15]. For the effective management, multiple objectives need to be
dered together due to the nature of uncertainty and complexity associated with multi-criteria
1 
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problems[16]. In other words, the decision-makers need to consider multiple criteria while planning effective 
distribution schedules with a heterogeneous vehicle for relief items distribution in humanitarian crisis [17, 18]. 
With  
minim
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the integrated multi-criteria, decision-makers can plan the effective relief items distribution schedule to
ise the disaster impact. 

cheduling problem that has been considered in this paper is the Relief Items Scheduling Problem (RISP) in
er scenarios. The RISP is a complex problem where the resource is constrained with the distribution o

 items from multiple supply points to multiple disaster regions satisfying the relief demands and available
rces. In general, key challenges for RISP are uncertainties on information, limited vehicle availability
nt resource utilisation and efficient distribution schedule [19, 20].  The RISP model presented in this pape
ulti-objective problem in terms of minimisation of distribution time and operational cost on generating

 items distribution schedule from multi-supply points to the multi-demand regions under the
ogeneous vehicles’ scenario. The RISP has been broken down into sub-problems in terms of distribution
nce selection, vehicle selection, transportation path selection, and minimisation of unmet relief item
nd as shown in figure 1. The distribution sequence selection sub-problem covers the selection of optimised
er regions sequence for the relief items distribution. For this, finding the right sequence is set as the main
tive for this sub-problem so that this sub-problem congregates towards minimisation in the travel distance
ence optimising the travel time and vehicles’ operational cost. The vehicle selection sub-problem set to
ise the selection of correct vehicles based on the vehicles’ capacity and relief demands. The transportation

selection sub-problem covers the selection of shortest travel path from the supply points to the disaster
ns whereas the minimisation of the unmet demand subproblem is set to cover the minimises the gap
een supplied and need of relief items at all the disaster regions. These sub-problems need to be solved
dually as each of these sub-problems has its objectives and constraints.  

s RISP distribution model, the generalised evolutionary algorithm framework is used for the generation o
ution sequences that evolved over generations. For a given distribution sequence, a greedy heuristic

h is used to find the best possible choice of selection of supply point for the selected disaster region in the
nce as the heuristic algorithms minimise the time, effort, and errors in comparison to the conventiona

hing approaches[21]. As a sub-problem, the best fit vehicle selection approach has been applied depending
 the demand request from a disaster region. The best fit selection optimises the vehicles’ constraints in
 of capacity, cost and speed. Besides, for effective transportation path selection, a competent search
gy has been applied that covers the global search domain as well as the local search domain to find the
easible shortest path. The global search explored to obtain the optimum distribution sequence among the
er of disaster regions whereas the local search domain selects the nearest supply point for relief item
ution to the particular disaster region in the sequence. All these sub-problems are optimised individually

ence, in the combination, the solution gives the optimised relief items distribution schedules.  

         

ajor contributions of the paper are summarised as (i) optimisation of multi-objective distribution in terms
tribution time and operational cost with heterogeneous vehicles (ii) A generalised evolutionary framework

re 1: Relief Items Scheduling Problem and its associated sub-problems. 

Minimisation 
of relief items 

demand 

Distribution 
sequence 
selection 

Transportation 
Path Selection 

Vehicle 
Selection 

Multi-Objective RISP 
(Minimisation of distribution time 

and vehicle operational cost) 
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with greedy search, in the combination of both global and local search domain, to obtain the distribution 
sequences and (iii) a best fit based approach for the appropriate vehicle selections that maximises the vehicle 
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ion constraints. For the evaluation of our model, single-objective distribution, weighted single-objective
ution and greedy-based evolutionary approach are compared with simulated results. The comparative

 showed that our approach has improved results in terms of distribution time and operational cost in
arison to other presented approaches.   

st of the paper is structured as follows: in section 2, literature related to our problem presented. In section
 problem model with the solution method is presented. The subsequent sections present computationa
iments and compared findings of the performance of our approach and compared it with othe
aches.  Finally, conclusions and directions are presented for future work. 

lated Work 

the years, different distribution strategies have been implemented where the objective functions play a
l part in comparing the results of distribution schedules. In doing so, some of the distribution models only

dered one objective at a time, mostly either minimisation of travel time or minimisation of cost, as can be
in the distribution model used by Safaei et al. [22]. However, optimisation of one objective does not give
ive distribution; therefore, multi-objective models are defined for the distribution task [23-26]. In the

-objective models, objective functions are often optimised by guiding the search technique in its
ration of the search space. Studies on disaster relief items distribution showed that traditional cos
isation is not the central focus in disaster scenarios. Other parameters such as response time and effective

le routes are also among the objective functions [27]. In a multi-objective problem, generally, the objective
onflicting in nature which prevents simultaneous optimisation of each objective at the same time. Ou

us study [28] shows that different methods have been used to resolve multi-objective scheduling
ems. Studies around relief items distribution have shown that multi-objective models are mostly
orised as either generalised mathematical approaches or soft computing approaches [29-34].  

 mathematical approach, one of the common approaches is to convert the multi-objective problem into a
 objective problem using weighting coefficients [35]. The weighted-sum aggregation approach has been a
sentative instance of the utility function approach that changes the multi-objective problem into a single
tive problem by assigning weight factor to the objectives [35]. Setting the numerical weights to the
tives as of their relative importance mostly relies upon the decision maker’s knowledge. The conventiona
ted aggregation-based approach has main weakness in terms of applying only one Pareto solution from
un of optimisation. Kima and Weck [36] proposed an adaptive weighted sum method to solve multi
tive optimisation problems that emphasised unvisited sections by altering the weights rather than applying
efined weight choice and also specified added inequality constraints. The adaptive weighted sum method
ced Pareto optimal solutions within non-convex regions and rejected non-Pareto optimal solutions. The
ive weighted-sum method approximated a Pareto front by regularly increasing feasible solutions on the
 Defining appropriate weight is always challenging since there is not a fixed rule for the selection of weigh

r. Evolutionary dynamic weighted aggregation used [37] to deal with the multi-objective optimisation
em with a concave Pareto front in one run. The optimizer moved from one stable optimum point to anothe
um point covering the whole Pareto front. The varying weights force the optimizer to move on the Pareto
 for the convex points 

t computing, the general strategy is to identify a complete Pareto optimal solution set or a descriptive
t [23, 38-40]. A Pareto optimal set gives a set of solutions that are non-dominated to each other. Selecting
areto solution over another Pareto solution, there is always some amount of trade-off among objectives
o optimal solution sets are often chosen over single optimised solutions because they reflect the real
rio with multi-objectives optimisation. Soft computational techniques have been used to find the direc
um solution set using a population-based problem-solving metaheuristic algorithm. Pareto approache

4] have been used for multi-objective optimisation under soft computational techniques. Also, identifying
easible Pareto frontier with the optimisation of all the objectives individually is among one of the
aches for solving the multi-objective problem by applying Pareto ranking [45, 46]. These methods are
l for complex problems, mainly those that required scheduling. Chiang and Lin [47] applied an evolutionary
thm for multi-objective flexible scheduling to get a set of Pareto optimal solutions with diverse
lations. Deliktas et al. [48] applied evolutionary algorithm along with hill climbing approach for job
uling. In their model, the objective function was guided weighted sum while searching for the optimum
3 
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solution. Abbas et al. [43] applied Pareto-frontier Differential Evolution (PDE) algorithm to solve multi-objective 
optimisation with step by step mutation. Those steps were randomly generated from Gaussian distribution. Deb 
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[49] suggested non-dominated sorting based multi-objective evolutionary algorithm called non-dominated
g genetic algorithm II (NSGA-II), with a fast non-dominated sorting approach. The algorithm used a
ion operator that produced a mating pool by combining the parent and offspring populations and selecting

est solutions based on fitness. The modified method found a Pareto-optimal solution set near a reference
oints in the neighbourhood of the corresponding Pareto-optimal solution [50]. Solutions close to the
nce point helped the decision-maker to get solution close to the preferred region of their priority.  

aster scenarios, it is often required to determine the optimal combination of vehicles that will generate
nt ways to distribute relief items. Simultaneous optimisation with the vehicle composition and routing is

red in heterogeneous vehicle routing (HVR) [51, 52]. Choi and Tcha [53] used a column generation based
ach for HVR to optimise the routing under given objectives and constraints. The model selected vehicles
different supply points by optimising the travel time and cost. Dondo and Cerda [54] applied a cluster
 optimised for HVR. The model first generated cost-effective feasible clusters and assigned vehicles fo
ution within the cluster. The distribution had been based on the “cluster first-route second” principle. The

ple applied in such a way that the demand points were clustered considering the given clustering criteria
hen vehicle routing had been applied for the distribution within the cluster of demand regions. A
ructive heuristic approach with local search [55] was applied for HVR where a demand sequence wa
ated by constructing a distribution schedule one by one such that the highest priority demand appears

A scenario-based method has been applied that look after the road condition with heterogeneous vehicle
[56]. However, this model did not address the vehicle selection criteria, which is an important aspect o
nt distribution scheduling. Zarouk et al. [57] applied heterogenous network with variable demand and

y with maximum allowed driving time to generate optimised schedules. A scenario-based results are
sed for investigating the effectiveness of the transportation network. In these all studies, heterogeneous
les are considered for the enhancement in the effectiveness in the scheduling task. However, the selection
 vehicles remain challenging in any scenarios.   

the years, the greedy heuristic search has been among the many approaches that have been used in
uling problem solving [8, 58-60]. Greedy heuristic search generates good-quality, approximate solutions
ly. It applies the heuristic search locally to obtain optimal choice at each stage with the scope of finding a
lly optimum solution. Greedy heuristic search is modified in the appropriate ways to address the problem’
tives and constraints that lead to developing a relatively simple system to develop and implement. The
also contains vehicle routing problem (VRP) with their constraints as sub-problem. The relief item
ution tasks occur in many geographically dispersed locations, and resources have to travel between supply

s and disaster regions [61]. Shadlou et al. [33] applied greedy heuristic search for integrated crew routing
rone scheduling for relief items distribution to the disaster regions. Similarly, Mehtab et al. [32] also applied
y heuristic approach for the relief items distribution with the multi-objectives. In their work, they conside
ncertainty related with demand and disaster regions’ reachability. The greedy search finds the optimum
ule for the relief items distribution under the given scenarios. 

sing different models for distribution task in the disaster scenarios reveals that most of these optimisation
aches are concentrated on minimisation of time and cost under one kind of vehicle assumptions. However

 often supply points have heterogeneous vehicles. Therefore, effective vehicle routing for the
ogeneous fleet of vehicles is crucial for relief items distribution schedule to operate with flexible demand
ransportation circumstances. Considering this, an optimum model is essential to generate the relief item

ution schedules under heterogeneous vehicle scenario to support the victims in any humanitarian crisis.

Problem Model 

ISP problem can be solved in different ways. One of the approaches can be a weighted single-objective
ach which requires some assumptions and prior information from the decision-makers. Different weigh
s are applied to generate a distribution schedule. Because of the assumptions and the priority setting
g the objectives, there is a trade-off in the solutions. One way to overcome the problem of defining weights
se multi-objective optimisation that does not rely on a single weighted sum value rather compare all the

dual objective values against those of other solutions. The multi-objective approach is capable o
4 
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generating a solution close to the best possible solution without having information on user description and 
priorities [25]. In this paper, the RISP is modelled as a multi-objective problem covering its sub-problem’s issues 
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cussed earlier.  Generation of Pareto fronts with a multi-objective evolutionary algorithm with the greedy
stic search is considered as a solution approach to find the optimised distribution schedule under the
bility of the heterogeneous vehicle at supply points. 

bjective Function 
bjective functions and subjected constraints are set for the dynamic relief item distribution (RID) model
inimisation of total distribution time and minimisation of the total vehicle’s operational cost, are the

tives defined for this model incorporating minimisation of unmet demand for relief items at all demand
ns. The delay factor (service time) is also applied in cases when any vehicle distributes relief items to more
one demand regions. In this model, a duration of 30 minutes is applied as delay time at each intermediate
nd region in the distribution schedule route. A set of variables, as listed in Tables 1, are formulated to
e the RISP problem as follows: 

able 1: Variables and description used in the model 

Variables Description 

DR Disaster Region. 

SP Supply Point. 

Dc Total demand for relief items at disaster regions. 

Vt Vehicle journey from a supply point to multiple demand regions. 

rij Assigned DRs for Vt with the jth journey of to the ith vehicle. 

fδd(rij) A function that gives the partial relief items at rij demand regions.  

fdx, dy(rij) A function that returns the location of rij demand region. 

Nv Number vehicles assigned in relief items scheduling. 

kmax Maximum number of vehicles journey planned in resource scheduling. 

jxi Executable missions of the assigned ith vehicle. 

Φi The velocity of the ith vehicle. 

Ψi Cost of the ith vehicle. 

Tij Time spent between demand regions rij-1 and rij of the ith vehicle. 

Toffset Offset time for the vehicle before starting the next journey. 

DS Distribution Schedule. 

RI Relief Items. 

 

 Minimisation of distribution time (f1) 

Min f1 (DS) = ∑ ∑ Tij
jxi
j=1

Nv
i=1  + 30 ∗ nVt + Toffset,        1 ≤  jxi ≤ kmax                        (1) 

 
Where n is the total number of vehicle tours with multiple demand regions. 
Subject to: 

f(x) = {
∑ D(fdx,dy(ri,j−1),fdx,dy(rij))

j
α=1

Φi
,

0,     Others                                                                      
if ri,j-1 and ri,j∉Φ             (2) 

 
. Minimisation of total vehicles’ operational cost (f2) 

Min f2 (DS) = ∑ 𝛹𝑖𝑁𝑣
𝑖=1         (3) 

tive 1 and objective 2 are contradictory to each other in the RISP as minimisation of distribution time
red the vehicles with higher speed leading to higher cost and vice-versa. In this model, the distribution time
ulated based on the distance travel by the vehicles from a supply point to the disaster regions with thei

sponding speed whereas operational cost is calculated based on the vehicles operational cost per hour a
 in Table 3. These two objectives are primarily focused to satisfy unmet relief items demand at each disaste
n by minimizing the demand with each distribution schedule, mathematically represented as: 

 

Min (DS) = Dc - (∑ ∑ 𝑓𝛿𝑑(𝑟𝑖𝑗)
𝑗𝑥𝑖
𝑗=1

𝑁𝑣
𝑖=1  , 1 ≤  jxi ≤ kmax                 (4) 
5 
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Defining these objectives, five main constraints have been applied: Supply point constraints: A SPi can supply 
relief items to one or more DRi only if RI and VI is available at that SPi. Also, SPi can supply RI to one or more DRi. 
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nd regions constraint:  A DRi can receive RI only if it has RI demand and can receive RI from one or more
elief items constraints: RI are supplied from SPi to DRi using assigned VI., Vehicle constraints: The vehicle
start its travel route from an SPi and ends to assigned DRi and can carry RI up to its maximum capacity
ion and transportation constraints: DRi must be connected with one or more SPi by available transportation
s directly or indirectly.  Apart from these constraints, the following five assumptions are also postulated in
odel. 
. The geographical location of supply points and disaster regions are known. 
. The total disaster victims’ population of the disaster regions are known. 
. Relief items demand at any disaster regions is proportional to the victims’ population at the

corresponding disaster regions. 
. Relief items are bounded in a single bundle and can be loaded into any vehicle. 
. Transportation routes between disaster regions and supply points along with corresponding distance

are known. 
 

Multi-objective Optimisation: Solution approaches 
is section, two approaches: Aggregated weight single objective optimisation and Multi-objective
tionary optimisation are presented.  

ggregated Weight Single Objective Optimisation 
ining different objectives into a single objective is one of the approach for the aggregate multiple
tives into a single objective [62]. Two objectives, minimisation of distribution time and minimisation o
le’s operational cost, of the RISP, are combined to form a single objective problem with weight factor.  In
ggregated weight single objective optimisation, individual objective functions are normalised in thei
ctive objective space then multi-objective optimisation is performed applying the usual weighted-sum
ach. Selection of the right weight for individual objectives is always challenging as it depends on the
on makers’ priority [63].  Finding the right weight and hence the corresponding single objective function is
nging as there has been no standard guidelines for the weight selection. To overcome this limitation
ent weights values are as used in functions w1 to w9 in the range 0.30 to 0.70. An interval of 0.05 is set to
se or decrease of the weight factor in the function w1 to w9. With these different weights, the optimised
s are used to check the response of the weight factors to the single-objective optimisation. The use o
ent weight values gives a wider sense of comparative results so that the optimum result can be chosen
e aggregation, the time and cost value are used as a normalised value since they have different unit. In

alisation, the maximum value is set to one and all other values are divided by the maximum value hence
ormalisation process set the values in the interval [0, 1].   

w1 = 0.30 * time (f1) + 0.70 * cost (f2) 
w2 = 0.35 * time (f1) + 0.65 * cost (f2) 
w3 = 0.40 * time (f1) + 0.60 * cost (f2) 
w4 = 0.45 * time (f1) + 0.55 * cost (f2) 
w5 = 0.50 * time (f1) + 0.50 * cost (f2) 
w6 = 0.55 * time (f1) + 0.45 * cost (f2) 
w7 = 0.60 * time (f1) + 0.40 * cost (f2) 
w8 = 0.65 * time (f1) + 0.35 * cost (f2) 
w9 = 0.70 * time (f1) + 0.30 * cost (f2) 
 

ulti-Objective Evolutionary Optimisation 
ulti-objective evolutionary approach has been applied as another solution strategy for RISP. A multi

tive approach can generate solutions without knowing the decision maker’s preferences. The majo
rn of the multi-objective optimisation evolutionary optimisation is to explore a set of acceptable relie
 distribution schedule as solutions that can be used by the decision makers. The decision-makers can
e the feasible distribution schedules from the population of solutions. 
6 
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s work, a disaster region-based sequence coding-decoding has been applied to represent a chromosome
e coding-decoding process, each disaster region is considered as a unique gene in the chromosome
ure. The genes of the chromosomes, as shown in Table 2, is a sample example of the disaster region
nce that needs relief item from the supply points. In this table, the symbol D1 to D10 represents demand

ns in the form of a gene of the coded chromosome. Random order of all demand regions is used fo
osome coding while generating the initial population. In the population set, each chromosome represent
tion to derive distribution schedules from the supply points using a greedy-search-based strategy. The
y search applies to find the supply points for the relief items distribution to the corresponding disaste

n, encoded as a gene. This greedy search strategy starts from the first gene of the chromosome and then
d and so on till the searching strategy finds the supply points for all the genes of the chromosome. The

h strategy considers the demand for relief items of the corresponding disaster region and finds the neares
y point for the supply relief items. When any vehicle tour is planned with extra relief items, the demand o
dividual demand region is updated accordingly in the sequence.  

 2: A sample chromosome 

 D6 D3 D8 D2 D5 D7 D4 D9 D10 

Selection Operator 
election operation chooses the individuals based on their fitness for reproduction considering both the
tives of the RISP problem. For the population diversity at each generation, mixed populations with ranking
ournament selections approach are applied. Elitism is applied to increase the performance of the
tionary algorithm. Solutions based on minimisation of distribution time and minimisations of operationa
re sorted as of their objective function individually. Best 10 % individuals of objectives: minimisation o
ution time, minimisation of operational cost and 10 % of non-domination ranks Pareto front solutions are

rved at each generation. The remaining population domain is selected based on tournament selection. Fo
urnament selection, 30 tournaments are run among randomly selected individuals from the population
inner of each tournament is selected as a representative population. Altogether, 60 individuals are chosen

pulation density at each generation.  

Crossover Operator 
over expects to carry the features of two selected parent solutions to next-generation offspring solutions
ut points are randomly selected and the swapping of genes between the cut points of the chromosomes
lied in the crossover process. After the crossover, the offspring may have contradictory genes because o
ene swapping. To avoid such cases, a repair process has been applied to avoid contradictions in the
sed algorithm. In the repairing process, any duplicated gene occurring in the gene sequence is replaced
he missing gene (disaster region). While repairing the chromosome, all the disaster regions representation
 chromosome sequence is guaranteed.  

Mutation Operators 
utation is applied to execute the swapping of genes. Two random numbers are generated to find mutation
 and hence swapping of genes is applied as mutation function. The process is continuously applied fo
 iterations. 0.05 mutation rate is fixed in in this evolutionary approach after several experimentations with
ent mutation rate ranging from 0.01-0.5 with a gap of 0.05. With each mutation rate, the corresponding
l has been evaluated. With this evaluation, the mutation rate 0.15 has found to be the best among the
 mutation rates. 

Distribution Model: Our Approach 
rocess for the evolutionary algorithm is applied as shown in Figure 2.  First of all, evaluation is applied to
olutions of the first-generation population according to the non-dominated method, and hence, Pareto
sorting is generated. At first, all the information, related to a disaster such as disaster regions, supply point
ble vehicles and their types, connecting travel routes and available relief items are gathered. Based on thi
ation, the initial population is developed with a set of randomly generated chromosomes representing
quence of demand regions being served. A greedy heuristic search is applied to find the nearest supply

 for each disaster region in the sequence. The greedy algorithm also includes a local search to assign the
7 
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vehicles from the heterogeneous vehicles fleet for the relief items distribution. The distance matrix is used for 
the nearest supply point finding. 
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 2: General flow of RISP solving using evolutionary Approach 

y heuristic search is applied to each gene of the chromosome where the demand regions search for the
st supply point first for the relief items. The greedy search finds the nearest supply point based on the
est distance between the supply point and the corresponding demand region and resource availability a
pply point. The search look to assign the nearest supply point to allocate relief item distribution with the
ion of appropriate vehicles to the corresponding demand region. If the nearest supply point does not have
quired relief items or the vehicles availability, the greedy-search looks for the next nearest supply poin
ave enough relief items and vehicles. With the greedy-search, each demand region gets its corresponding

y points based on the relief items and vehicles availability. The greedy search also implements the vehicle’
pace check to each assigned vehicle for each transportation tour. If the relief load of the assigned vehicle
re than 90% of the loading capacity, the vehicle carries relief items to the assigned demand regions only
e if the assigned vehicle has more than 10% space to carry extra relief logistic then a greedy heuristic search
lied to explore the best nearest feasible demand regions from the currently assigned demand regions to
r the extra relief items. The additional vehicle is assigned as per the demand need with the free space
 on each vehicle trip. Once the demand of the nearest demand regions is met, the algorithm generates a

portation tour for the next nearest neighbour in the chromosome gene sequence. The genetic algorithm
is applied to optimise the sequence of disaster regions being served such that it optimises relief items
ution schedule.  

istribution schedule is planned for all the disaster region of the chromosome and hence evaluated the
on strength of each solution in the set.  An evolutionary algorithm is used to find the Pareto fronts of the
on set. GA is applied to generate a new set of chromosomes with 100 iterations. 100 iterations have been
d as a limiting number to get the optimum solution as the simulation with higher number of iterations ha

hown any further convergence. Elitist non-dominated sorting GA (NSGA-II) applied where Parent and
ing populations are selected together and hence, non-dominated sorting is applied to generate the
8 
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combined population into multiple levels of non-domination. Solutions from the best non-domination levels are 
selected front-wise as a subset of solutions.  
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Computational Experiment and Result Analysis 

erformance measure is applied to analyse the effectiveness of the proposed multi-objective RISP mode
a heterogeneous vehicle fleet with the case study formulated analogously of the Chi-Chi earthquake in
n [8]. In this case study, disaster information in terms of the suffered population had been collected from

isaster regions. Relief items had been distributed to twenty-nine disaster regions from four supply points
imulation had been performed with R-programming. 

eterogeneous Vehicles Routing (HVR) 

bjective of HVR is to select the vehicle sets and routes from the supply points by optimising the selection
ia. For the HVRP in this model, vehicles are considered from four categories based on their cost, capacity
peed. A fixed synthesised value on vehicle cost, capacity and speed are considered for each vehicle type
sented in Table 3. The number of vehicles available of each type at each supply point assumed in this work
d in Table 4.  

le 3: Vehicle parameters of each type at supply points 

rameter Type-1 Type-2 Type-3 Type-4 

st/Hour (£) 1000 1500 2200 3500 

pacity (kg) 4000 3000 2500 2000 

eed (kmph) 40 50 60 80 

le 4: Vehicle count of each type at supply points (S1: S4) 

pply Point Vehicle-type 1 Vehicle-type 2 Vehicle-type 3 Vehicle-type 4 

 4 2 3 3 

 3 4 5 3 

 4 6 2 5 

 5 5 7 5 

est-fit algorithm is applied as a sub-problem domain for the selection of vehicle at any supply point for the
portation of relief items from that supply point to the assigned disaster region. In this algorithm, best fi
les in terms of vehicle capacity are compared with the relief items demand of the disaster regions. The
isation is applied based on the best-matched vehicle in term of demand and capacity. The sub-problem
ises and generate different vehicle selection which directly affects the global distribution sequence
isation and disaster region demand minimisation. 

olutionary algorithm design analysis 

timise the multi-objective using an evolutionary approach (NSGA-II), Pareto fronts are generated to find
est distribution schedule. At first, the evolutionary algorithm design is evaluated regarding selection, cross
and mutation rate responses on Pareto fronts convergence. Simulations results have been conducted to
ify the suitable operators and parameters of the evolutionary algorithm. At first, an individual chromosome
een generated by randomly assigning each disaster regions as a gene in the chromosome structure. The
lation size is set as 60 with random chromosomes generation. A combination of rank and tournamen
ion methods has been applied to form the mating pool. Elitism is used by selecting the best 30 % solution
 on ranking (minimum distribution time, minimum cost and Pareto fronts) from the current generation to

ext generation. The remaining individuals are decided based on tournament selection. Two-point crossove
the repair is applied to avoid any possible conflict in genes exchange during the crossover. This allow
ving chromosomes with the faulty gene in terms of repetition of the same gene or missing any gene in the
osome.  
9 
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 3: Generation of Pareto fronts with intermediate stages  

 3 shows the generation of the Pareto fronts with intermediate stages in an evolutionary approach. Fou
show how the evolution algorithms converge into Pareto fronts with each generation. It also shows how
olutions with the assigned selection, cross-over and mutation parameters values converged into bette
o fronts at a faster rate.  

rformance analysis  

 computation experiment, the RISP has been solved with three different approaches and results are
ared to validate the efficiency of the proposed scheduling approach for relief items distribution. In the firs
ach, the problem is evaluated independently based on individual objective functions: minimisation o
ution time and minimisation of operational cost. In the second approach, these two objectives are

ated as a single objective function by applying different weight functions (w1-w9) to the objectives. Since
utputs range of these objectives is different, so normalisation has been applied to both objective values. In
ird approach, the problem is solved using the evolutionary approach NSGA-II. The distribution time and
tional cost for each solution are compared with single-objective methods, weighted single objective

od and GSMOGA (Greedy-Search-based Multi-Objective Genetic Algorithm) to compare the effectivenes
r approach for RISP distribution schedules in a disaster scenario. 
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Figure: 4: Comparison plot of delivery time (f1) taken by the best solutions for different approaches. 
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 5: Comparison plot of delivery cost (f2) taken by the best solutions for different approaches. 

 first approach (single-objective optimisation), for the analysis, 15 simulation runs have been applied and
verage values of these best solution of the 15 runs are set for result analysis. The performance measure
ed that applying the minimisation of time can achieve lower distribution time but it also has been noticed
here has been a higher range of operational cost as minimisation of distribution time selected the vehicle
igher speed requiring higher operational cost and vice-versa for the minimisation of cost the first and the
d bar in the figures 4 and 5. This shows that individual objective optimisation is not a feasible option as i

 to giving a contradictory higher value of other objective function. In the second approach, aggregated
ted single objective has been applied. In this second approach, defining the appropriate weight is
nging to combine two objective functions into a weighted single objective. To overcome this, a differen
 of weight factors (w1-w9), as described in section 4.1, have been applied to combine two objectives. With
ormalised values distribution time and operation cost of the best solution is noted for each weigh
ination. From the plot, as shown in figure 4 and 5, it has been observed that with higher the weight facto
tribution time the better is the solution and vice-versa for the operational cost. This signifies that there is
e-off between distribution time and operational cost while applying the right weight factor. Defining the

weight factor is a challenge for the decision-makers to find an efficient distribution schedule. Analysis o
sults from these two approaches justifies that there is the need for multi-objective optimisation that can
 solution with minimisation of both distribution time and operational cost simultaneously. 

the defined set-up, the evolutionary algorithm (NSGA-II), has been applied for multi-objective optimisation
volutionary algorithm optimises both the objective simultaneously. After all these experimental results
erformance plots of the best solutions regarding the best minimum distribution time and operational cos
g the solution approach four approaches have been compared as presented in figure 4 and figure 5
aring the results, it has been observed that the evolutionary algorithm has a better result in comparison

e other three approaches as it gives a simultaneously optimised solution with two objectives. While
aring the best result from the NSGA-II, it has been noted that the NSGA-II solution takes 0.1 more hours as
ution time than the best solution when the only minimisation of time has been optimised but that has the

st operational cost among all the plotted solutions. In terms of operational cost, NSGA-II has as best as the
on found by minimisation of operational cost only. Analysing all the results, it can be observed that the
-II approach for relief items distribution schedule with the heterogeneous vehicle also shows efficien
s in terms of both distribution time and operational cost than other presented methods. 
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6. Conclusion 

An effective relief items distribution schedule is the main concern for any post-disaster relief management.  
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isation of distribution time and operational cost are the two major objectives for RISP. In this paper, RISP
eterogeneous vehicles with varied speed, cost and capacity has been considered. A greedy heuristic search
lied to find a suitable assignment of vehicles for relief items distribution from a supply point to disaste

ns. Finding the effective relief items distribution strategy is the key priority to the decision-makers afte
isaster. The effective relief items distribution helps to minimise the disaster impact and help in early
ery. Considering this, four different approaches have been applied to find a solution with a comparative
sis to generate the optimum distribution schedule using a case study of the Chi-Chi earthquake scenario
e first two approaches, minimisation of distribution time and operational cost is generated with
sponding vehicles’ cost and travel time respectively. It is found that minimising one objective gives a highe
 of another objective. In the third approach, weighted single-objective optimisation is applied to find the
le optimum solution in terms of both time and cost. Multiple weight ranges have been used to realise the
t of weight factors in the selection of the optimum solution set. Because of the different scale

alisation is required to apply weighted single-objective optimisation. Results have shown an issue o
rs that have a significant impact on the selection of the best solution. Therefore, outlier elimination i
red to have an effective solution for relief items distribution schedule. The evolution algorithm is applied
ourth approach for the multi-objective optimisation that generated Pareto fronts. These Pareto front

ed a set of feasible solution that can be used by decision-makers for efficient schedule generations. Having
of alternatives gives a wider range of operational flexibility while implementing the distribution task. Thi
tionary approach is also compared with the GSMOGA. The presented evolutionary approach has been the
r option for RISP with the multi-objective optimisation under heterogeneous vehicles to generate
ution schedules in disaster scenarios. In the presented work, in the absence of real data availability

ated data for heterogeneous vehicles are used to generate distribution schedules, which appears as the
tion of this presented work. This presented approach can be further enhanced with the use of other factors
as priority, response time, GIS mapping. Inclusion of these additional components can further enhance the
iveness of the distribution task.  

ences 

F. Li, B. Golden, and E. Wasil, "A record-to-record travel algorithm for solving the heterogeneous flee
vehicle routing problem," Computers & Operations Research, vol. 34, no. 9, pp. 2734-2742, 9// 2007
doi: http://dx.doi.org/10.1016/j.cor.2005.10.015. 
B. M. Beamon and B. Balcik, "Performance measurement in humanitarian relief chains," Internationa
Journal of Public Sector Management, 2008. 
 D. Dev and S. P. Dash, "An Investigative Study on Material and Its Performance of Intermediate Disaste
Relief Shelters," Singapore, 2022: Springer Nature Singapore, in A System Engineering Approach to
Disaster Resilience, pp. 69-86.  
M. F. N. Maghfiroh and S. Hanaoka, "Multi-modal relief distribution model for disaster response
operations," Progress in Disaster Science, vol. 6, p. 100095, 2020/04/01/ 2020, doi
https://doi.org/10.1016/j.pdisas.2020.100095. 
B. K. Mishra, K. Dahal, and Z. Pervez, "Dynamic Relief Items Distribution Model with Sliding Time
Window in the Post-Disaster Environment," Applied Sciences, vol. 12, no. 16, p. 8358, 2022. [Online]
Available: https://www.mdpi.com/2076-3417/12/16/8358. 
J. Richard Eiser et al., "Risk interpretation and action: A conceptual framework for responses to natura
hazards," International Journal of Disaster Risk Reduction, vol. 1, pp. 5-16, 2012/10/01/ 2012, doi
https://doi.org/10.1016/j.ijdrr.2012.05.002. 
J. L. Mishra, K. D. Chiwenga, N. Mishra, and S. Choudhary, "Extending dynamic capabilities towards lean
thinking in humanitarian supply chains," Production Planning & Control, vol. 33, no. 6-7, pp. 655-675
2022. 
F.-S. Chang, J.-S. Wu, C.-N. Lee, and H.-C. Shen, "Greedy-search-based multi-objective genetic algorithm
for emergency logistics scheduling," Expert Systems with Applications, vol. 41, no. 6, pp. 2947-2956, 5/
2014, doi: http://dx.doi.org/10.1016/j.eswa.2013.10.026. 
L. Alfandari, I. Ljubić, and M. D. M. da Silva, "A tailored Benders decomposition approach for last-mile
delivery with autonomous robots," European Journal of Operational Research, vol. 299, no. 2, pp. 510
525, 2022. 
12 



Journal Pre-proof

 

[10] R. B. Yen-Hung Lin, Peter A. Rogerson, Alan Blatta, Marie Flanigana, "“A logistics model for delivery of 
critical items in a disaster relief operation: heuristic approaches," [online] Available: 

[11]  
: 

[12]  
. 

[13]  
, 

[14]  
f 

[15]  
 

: 

[16]  

[17]  
f 
: 

[18]  

[19]  
: 

[20]  

[21] , 

[22]  
 

[23]  
: 

[24]  
-

[25]  
 

[26]  
, 

[27] r 
-

[28]  
 
 

. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

www.acsu.buffalo.edu/~batta/tre.pdf, 2009. 
D. Mishra, S. Kumar, and E. Hassini, "Current trends in disaster management simulation modelling
research," Annals of Operations Research, vol. 283, no. 1, pp. 1387-1411, 2019/12/01 2019, doi
10.1007/s10479-018-2985-x. 
W. K. Anuar, L. S. Lee, S. Pickl, and H.-V. Seow, "Vehicle routing optimisation in humanitarian
operations: a survey on modelling and optimisation approaches," Applied Sciences, vol. 11, no. 2, p
667, 2021. 
R. Vodák, M. Bíl, and Z. Křivánková, "A modified ant colony optimization algorithm to increase the speed
of the road network recovery process after disasters," International Journal of Disaster Risk Reduction
2018/04/05/ 2018, doi: https://doi.org/10.1016/j.ijdrr.2018.04.004. 
S. Kameshwar, H. Park, D. T. Cox, and A. R. Barbosa, "Effect of disaster debris, floodwater pooling
duration, and bridge damage on immediate post-tsunami connectivity," International journal o
disaster risk reduction, vol. 56, p. 102119, 2021. 
F. Goodarzi, V. Abdollahzadeh, and M. Zeinalnezhad, "An integrated multi-criteria decision-making and
multi-objective optimization framework for green supplier evaluation and optimal order allocation
under uncertainty," Decision Analytics Journal, vol. 4, p. 100087, 2022/09/01/ 2022, doi
https://doi.org/10.1016/j.dajour.2022.100087. 
K. Guo and L. Zhang, "Multi-objective optimization for improved project management: Current status
and future directions," Automation in Construction, vol. 139, p. 104256, 2022. 
S. C. H. Leung, Z. Zhang, D. Zhang, X. Hua, and M. K. Lim, "A meta-heuristic algorithm for heterogeneous
fleet vehicle routing problems with two-dimensional loading constraints," European Journal o
Operational Research, vol. 225, no. 2, pp. 199-210, 3/1/ 2013, doi
http://dx.doi.org/10.1016/j.ejor.2012.09.023. 
K. M. N. Jun Jiang, Kim Leng Poh, Kwong Meng Teo, "Vehicle routing problem with a heterogeneous
fleet and time windows," Expert Systems with Applications, vol. 41, no. 8, pp. 3748-3760, 2014. 
A. M. Caunhye, X. Nie, and S. Pokharel, "Optimization models in emergency logistics: A literature
review," Socio-Economic Planning Sciences, vol. 46, no. 1, pp. 4-13, 3// 2012, doi
http://dx.doi.org/10.1016/j.seps.2011.04.004. 
A. Lin et al., "A big data-driven dynamic estimation model of relief supplies demand in urban flood
disaster," International Journal of Disaster Risk Reduction, p. 101682, 2020. 
M. Elsisi, "Future search algorithm for optimization," Evolutionary Intelligence, vol. 12, no. 1, pp. 21-31
2019/03/01 2019, doi: 10.1007/s12065-018-0172-2. 
A. S. Safaei, S. Farsad, and M. M. Paydar, "Emergency logistics planning under supply risk and demand
uncertainty," Operational Research, journal article January 30 2018, doi: 10.1007/s12351-018-0376-3.
A. Konak, D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial,"
Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992-1007, 2006/09/01/ 2006, doi
https://doi.org/10.1016/j.ress.2005.11.018. 
G.-H. Tzeng, H.-J. Cheng, and T. D. Huang, "Multi-objective optimal planning for designing relief delivery
systems," Transportation Research Part E: Logistics and Transportation Review, vol. 43, no. 6, pp. 673
686, 11// 2007, doi: http://dx.doi.org/10.1016/j.tre.2006.10.012. 
M. Najafi, K. Eshghi, and W. Dullaert, "A multi-objective robust optimization model for logistics planning
in the earthquake response phase," Transportation Research Part E: Logistics and Transportation
Review, vol. 49, no. 1, pp. 217-249, 1// 2013, doi: http://dx.doi.org/10.1016/j.tre.2012.09.001. 
M. Karatas and E. Yakıcı, "A multi-objective location analytics model for temporary emergency service
center location decisions in disasters," Decision Analytics Journal, vol. 1, p. 100004, 2021/11/01/ 2021
doi: https://doi.org/10.1016/j.dajour.2021.100004. 
B. Vitoriano, M. T. Ortuño, G. Tirado, and J. Montero, "A multi-criteria optimization model fo
humanitarian aid distribution," Journal of Global Optimization, journal article vol. 51, no. 2, pp. 189
208, 2011, doi: 10.1007/s10898-010-9603-z. 
B. K. Mishra, T. Sinthamrongruk, Z. Pervez, and K. Dahal, "Survey on Models and Methodology for
Emergency Relief and Staff Scheduling," in Emerging Trends in Electrical, Electronic and
Communications Engineering: Proceedings of the First International Conference on Electrical, Electronic
and Communications Engineering (ELECOM 2016). Cham: Springer International Publishing, 2017, pp
3-24. 
13 



Journal Pre-proof

 

[29] S. Iqbal, M. Usama Sardar, F. K. Lodhi, and O. Hasan, "Statistical Model Checking of Relief Supply 
Location and Distribution in Natural Disaster Management," International Journal of Disaster Risk 

[30]  
, 

[31]  
l 

[32]  
l 

[33]  

[34]  
. 

[35]  
, 

[36] t 
, 

[37]  
 

[38]  
 

[39]  

[40]  

[41] s 
, 

[42] r 
: 

[43] r 
 

: 

[44]  
 

: 

[45]  
, 

[46]  
, 

[47]  
, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

Reduction, 2018/04/24/ 2018, doi: https://doi.org/10.1016/j.ijdrr.2018.04.010. 
M. Li, M. Hong, and R. Zhang, "Improved Bayesian Network-Based Risk Model and Its Application in
Disaster Risk Assessment," International Journal of Disaster Risk Science, vol. 9, no. 2, pp. 237-248
2018/06/01 2018, doi: 10.1007/s13753-018-0171-z. 
F. Barzinpour and V. Esmaeili, "A multi-objective relief chain location distribution model for urban
disaster management," The International Journal of Advanced Manufacturing Technology, journa
article vol. 70, no. 5, pp. 1291-1302, 2014, doi: 10.1007/s00170-013-5379-x. 
Z. Mahtab, A. Azeem, S. M. Ali, S. K. Paul, and A. M. Fathollahi-Fard, "Multi-objective robust-stochastic
optimisation of relief goods distribution under uncertainty: a real-life case study," International journa
of systems science: operations & logistics, vol. 9, no. 2, pp. 241-262, 2022. 
M. Safdari Shadlou, M. Ranjbar, and M. Salari, "Integrated Optimal Repair Crew Routing and Drone
Scheduling after a Natural Disaster," Available at SSRN 4102592. 
Z. Ding, Z. Zhao, D. Liu, and Y. Cao, "Multi-objective scheduling of relief logistics based on swarm
intelligence algorithms and spatio-temporal traffic flow," Journal of Safety Science and Resilience, vol
2, no. 4, pp. 222-229, 2021. 
R. T. Marler and J. S. Arora, "The weighted sum method for multi-objective optimization: new insights,"
Structural and Multidisciplinary Optimization, journal article vol. 41, no. 6, pp. 853-862, June 01 2010
doi: 10.1007/s00158-009-0460-7. 
I. Y. Kim and O. L. de Weck, "Adaptive weighted-sum method for bi-objective optimization: Pareto fron
generation," Structural and Multidisciplinary Optimization, journal article vol. 29, no. 2, pp. 149-158
February 01 2005, doi: 10.1007/s00158-004-0465-1. 
Y. Jin, M. Olhofer, and B. Sendhoff, "Dynamic Weighted Aggregation for evolutionary multi-objective
optimization: why does it work and how?," presented at the Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, San Francisco, California, 2001. 
K. Ransikarbum and S. J. Mason, "A bi-objective optimisation of post-disaster relief distribution and
short-term network restoration using hybrid NSGA-II algorithm," International Journal of Production
Research, pp. 1-25, 2021. 
C. Liu and Y. Qian, "Optimal allocation of material dispatch in emergency events using multi-objective
constraint for vehicular networks," Wireless Networks, pp. 1-13, 2022. 
J. He, G. Liu, T. H. T. Mai, and T. T. Li, "Research on the allocation of 3D printing emergency supplies in
public health emergencies," Frontiers in Public Health, vol. 9, p. 657276, 2021. 
 P. Ngatchou, A. Zarei, and A. El-Sharkawi, "Pareto multi objective optimization," in Intelligent system
application to power systems, 2005. Proceedings of the 13th international conference on, 2005: IEEE
pp. 84-91.  
V. Palakonda and R. Mallipeddi, "Pareto Dominance-Based Algorithms With Ranking Methods fo
Many-Objective Optimization," IEEE Access, vol. 5, pp. 11043-11053, 2017, doi
10.1109/ACCESS.2017.2716779. 
 H. A. Abbass, R. Sarker, and C. Newton, "PDE: a Pareto-frontier differential evolution approach fo
multi-objective optimization problems," in Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No.01TH8546), 2001 2001, vol. 2, pp. 971-978 vol. 2, doi
10.1109/CEC.2001.934295.  
T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, N. V. Queipo, and K. Tucker, "Response surface
approximation of Pareto optimal front in multi-objective optimization," Computer Methods in Applied
Mechanics and Engineering, vol. 196, no. 4, pp. 879-893, 2007/01/01/ 2007, doi
https://doi.org/10.1016/j.cma.2006.07.010. 
Q. Liu, C. Zhang, K. Zhu, and Y. Rao, "Novel multi-objective resource allocation and activity scheduling
for fourth party logistics," Computers & Operations Research, vol. 44, no. Supplement C, pp. 42-51
2014/04/01/ 2014, doi: https://doi.org/10.1016/j.cor.2013.10.010. 
H. K. H. Chow, K. L. Choy, and W. B. Lee, "A dynamic logistics process knowledge-based system – An
RFID multi-agent approach," Knowledge-Based Systems, vol. 20, no. 4, pp. 357-372, 2007/05/01/ 2007
doi: https://doi.org/10.1016/j.knosys.2006.08.004. 
T.-C. Chiang and H.-J. Lin, "A simple and effective evolutionary algorithm for multiobjective flexible job
shop scheduling," International Journal of Production Economics, vol. 141, no. 1, pp. 87-98
2013/01/01/ 2013, doi: https://doi.org/10.1016/j.ijpe.2012.03.034. 
14 



Journal Pre-proof

 

[48] D. Deliktaş, E. Özcan, O. Ustun, and O. Torkul, "Evolutionary algorithms for multi-objective flexible job 
shop cell scheduling," Applied Soft Computing, vol. 113, p. 107890, 2021. 

[49] -

[50]  
 

[51] t 
, 

[52]  

[53]  

[54] t 
. 

[55]  
- 

[56] f 
, 

[57]  
 

: 

[58] r 
 

[59]  
 

[60] -
, 

[61] r 
: 

[62] , 

[63]  
 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

A. P. K. Deb, S. Agarwal and T. Meyarivan, , "A fast and elitist multiobjective genetic algorithm: NSGA
II," IEEE Transactions on Evolutionary Computation, vol. 6,, no. 2, pp. 182-197, 2002. 
K. Deb and J. Sundar, "Reference point based multi-objective optimization using evolutionary
algorithms," presented at the Proceedings of the 8th annual conference on Genetic and evolutionary
computation, Seattle, Washington, USA, 2006. 
T. B. Çağrı Koç, Ola Jabali, Gilbert Laporte, "A hybrid evolutionary algorithm for heterogeneous flee
vehicle routing problems with time windows," Computers & Operations Research, vol. 64, pp. 11-27
2015. 
K. Zhang, Y. Cai, S. Fu, and H. Zhang, "Multiobjective memetic algorithm based on adaptive local search
chains for vehicle routing problem with time windows," Evolutionary Intelligence, pp. 1-12, 2019. 
D.-W. T. Eunjeong Choi, "A column generation approach to the heterogeneous fleet vehicle routing
problem," Computers & Operations Research, vol. 34, no. 7, pp. 2080-2095, 2007. 
J. C. Rodolfo Dondo, "A cluster-based optimization approach for the multi-depot heterogeneous flee
vehicle routing problem with time windows," European Journal of Operational Research, vol. 176, no
3, pp. 1478-1507, 2007. 
A. A.-N. Behrouz Afshar-Nadjafi, "A constructive heuristic for time-dependent multi-depot vehicle
routing problem with time-windows and heterogeneous fleet," Journal of King Saud University 
Engineering Sciences, vol. 29, no. 1, pp. 29-34, 2017. 
S. Hu, C. Han, Z. S. Dong, and L. Meng, "A multi-stage stochastic programming model for relie
distribution considering the state of road network," Transportation Research Part B: Methodological
vol. 123, pp. 64-87, 2019. 
Y. Zarouk, I. Mahdavi, J. Rezaeian, and F. J. Santos-Arteaga, "A novel multi-objective green vehicle
routing and scheduling model with stochastic demand, supply, and variable travel times," Computers &
Operations Research, vol. 141, p. 105698, 2022/05/01/ 2022, doi
https://doi.org/10.1016/j.cor.2022.105698. 
Y.-Z. Li, Q.-K. Pan, J.-Q. Li, L. Gao, and M. F. Tasgetiren, "An Adaptive Iterated Greedy algorithm fo
distributed mixed no-idle permutation flowshop scheduling problems," Swarm and Evolutionary
Computation, vol. 63, p. 100874, 2021. 
 Z. Li, D. Cao, and Z. Luo, "General Model Building and Heuristic Optimization Algorithm for Vehicle
Routing Problem with in Disaster∗," in International Conference on Frontiers of Electronics, Information
and Computation Technologies, 2021, pp. 1-7.  
Z. Ghelichi, M. Gentili, and P. B. Mirchandani, "Drone logistics for uncertain demand of disaster
impacted populations," Transportation research part C: emerging technologies, vol. 141, p. 103735
2022. 
S. Wohlgemuth, R. Oloruntoba, and U. Clausen, "Dynamic vehicle routing with anticipation in disaste
relief," Socio-Economic Planning Sciences, vol. 46, no. 4, pp. 261-271, 2012/12/01/ 2012, doi
https://doi.org/10.1016/j.seps.2012.06.001. 
N. J. Colledge, "Evolutionary approaches to dynamic mobile workforce scheduling," PhD Thesis
Unviersity of Bradford, , 2009. 
N. Erdogan, D. Pamucar, S. Kucuksari, and M. Deveci, "An integrated multi-objective optimization and
multi-criteria decision-making model for optimal planning of workplace charging stations," Applied
Energy, vol. 304, p. 117866, 2021. 
15 



Journal Pre-proof

Highlights of the paper 

 

 

Follo

 

(  

(  

(

(

(  

 

 

Sinc

Bhup

30/0

 

 

Auth

Bhup , 

bmis

Kesh , 

kesha

Zees , 

zeesh

Suye , 

Suye

 

Highlights (for review)
Jo
ur

na
l P

re
-p

ro
of

wings are the major highlights of the paper 

i) Optimisation relief items distribution tasks for in humanitarian aid in disaster

scenario. 

ii) Multi-objective optimisation in terms of distribution time and operational cost with

heterogeneous vehicles.  

iii) A generalised evolutionary framework with greedy search. 

iv) Search strategies that applied both global and local search domain 

v) A best fit based approach for the appropriate vehicle selections to maximise the

vehicle selection constraints. 
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