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Abstract

Millimetre wave (mmWave) communications, that is, 30 to 300 GHz, have intermittent
short-range transmissions, so the use of reconfigurable intelligent surface (RIS) seems to
be a promising solution to extend its coverage. However, optimizing phase shifts (PSs) of
both mmWave base station (BS) and RIS to maximize the received spectral efficiency at
the intended receiver seems challenging due to massive antenna elements usage. In this
paper, an online learning approach is proposed to address this problem, where it is consid-
ered a two-phase multi-armed bandit (MAB) game. In the first phase, the PS vector of the
mmWave BS is adjusted, and based on it, the PS vector of the RIS is calibrated in the sec-
ond phase and vice versa over the time horizon. The minimax optimal stochastic strategy
(MOSS) MAB algorithm is utilized to implement the proposed two-phase MAB approach
efficiently. Furthermore, to relax the problem of estimating the channel state information
(CSI) of both mmWave BS and RIS, codebook-based PSs are considered. Finally, numerical
analysis confirms the superior performance of the proposed scheme against the optimal
performance under different scenarios.

1 INTRODUCTION

Millimetre wave (mmWave) band, that is, 30 to 300 GHz, has
a large swath of available spectrum suitable for fifth generation

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided
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(5G) and beyond 5G (B5G) applications [1]. Nevertheless, it
suffers from a fragile channel due to its high operating fre-
quency, which results in intermittent short-range transmission.
Thus, antenna beamforming in the form of beamforming
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training (BT) is typically used in conjunction with mmWave
transmissions [2]. Therefore, extending the mmWave coverage
is one of its main challenges. Recently, reconfigurable intelli-
gent surface (RIS) has become a promising technology used
to extend the coverage of wireless communications by just
reflecting the incident electromagnetic waves using passive
antenna arrays [3]. This can be done by adjusting the phase
shifts (PSs) of the RIS antenna elements. Therefore, a win–win
relationship exists between mmWave and RIS. From one side,
RIS can be used to extend the mmWave coverage and route
around blockages. On the other side, the mmWave signal can
be directed towards the RIS thanks to mmWave BT.

One of the main challenges of RIS-assisted mmWave com-
munication is jointly optimizing the PS vectors of mmWave
base station (BS) and RIS to maximize the spectral efficiency
at the intended receiver. This challenge comes from the diffi-
culty of estimating mmWave channel state information (CSI) of
mmWave BS and RIS due to the use of massive antenna arrays
as well as the passivity of RIS without any channel estimation
functionality.

There are limited related research works investigating the
impact of RIS deployment in mmWave networks. In [4], the
coverage of mmWave-RIS system was studied by means of
stochastic geometry. A federated learning (FL)-based mmWave-
RIS system was proposed for the privacy-preserving design
paradigm in [5]. For CSI estimation, the authors in [6] assumed
semi-definite passive RIS, where the active antenna elements
are used for CSI estimation through compressive sensing deep
learning. In [7], the authors proposed cascaded channel estima-
tion for mmWave-RIS to reduce the highly complicated joint
channel estimation. In [8], the problem of hybrid precoding
(HP) design of the multi-user mmWave-RIS as well as designing
the PS matrix of the RIS was addressed by cascaded itera-
tive algorithms. In [9], convolutional neural network (CNN) is
utilized to estimate the cascaded mmWave-RIS channel using
two stages. Artificial intelligence (AI)-enabled mmWave-RIS
was explored in [10]. In [11], RIS is used to assist both dual
function radar and communication systems. UAV-mounted RIS
was investigated in [12] and [13]. In [12], the trajectory plan-
ning of UAV-mounted RIS was considered to maximize its
achievable data rate constraint by its limited battery capacity.
In [13], resource management, UAV trajectory planning, RIS
PS, and mmWave BS beamforming were optimized to mini-
mize the total transmit power. To the best of our knowledge,
all existing research works considering the design of PS vec-
tors of mmWave-RIS assumed perfect CSI information, which
is a strong assumption violating the RIS hypothesis of being
completely passive.

In this paper, an online learning approach is proposed to
efficiently address the problem of jointly optimizing the PS
vectors of mmWave BS and RIS. In this context, the problem
is considered a single player multi-armed bandit (MAB) game.
MAB is an efficient online learning policy, where the player
attempts to maximize its profit via playing over the available
arms of the bandit. The player tries to compromise between
consistently exploiting one arm with the highest profit so-far
or exploring new ones, called exploitation-exploration trade-off. In

FIGURE 1 RIS-assisted mmWave communication system. mmWave,
millimetre wave; RIS, reconfigurable intelligent surface.

this mmWave-RIS scenario, the player will be the mmWave BS,
the arms of the bandit will be the joint available PS vectors of
mmWave BS and RIS, and the profit will be the spectral effi-
ciency at the intended receiver. To mitigate the complexity of
the constructed MAB game, a two-phase MAB strategy is pro-
posed. In the first phase, the PS vector of the mmWave BS is
adjusted, and based on it, the PS vector of the RIS is adjusted
in the second phase, and vice versa over the time horizon.
To implement the proposed MAB strategy, a minimax opti-
mal stochastic strategy (MOSS) is leveraged, which is one of
the most efficient bandit schemes [14]. The motivation behind
selecting MOSS comes from its adaptability to both stochastic
and adversarial environments, which goes in harmony with the
mmWave-RIS setting. Moreover, antenna codebooks are con-
sidered for both mmWave BS and RIS, which facilitates the
implementation of the MAB game without the need for CSI
estimation. Numerical analysis confirms the superior perfor-
mance of the proposed MAB-based mmWave-RIS system over
benchmarks accompanied with a high convergence rate.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

In the mmWave-RIS system model shown in Figure 1, the
mmWave BS is equipped with a uniform linear array of N
antenna elements, and the RIS is equipped with uniform plan-
ner array (UPA) of M antenna elements. The mmWave BS tries
to connect with a single antenna mmWave user equipment (UE)
via the RIS by routing around the blocker. Through the RIS con-
troller, the mmWave controls the PS vector of the RIS using a
dedicated communication link. The received signal at the UE
can be expressed as

x = hH
RU𝚽iHBR f j s + 𝜖, (1)

1 ≤ i ≤ |Ω| and 1 ≤ j ≤ | |
where x and s indicate the received and transmitted symbols,

respectively, where 𝔼 [ssH ] = P , where (.)H means Hermitian
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transpose and P is the TX power. 𝜖 ∼  (0, 𝜎2) is the complex
additive white Gaussian noise (AWGN), where 𝜎2 is the noise
power. The analog precoder at the mmWave BS is represented
by f j ∈ ℂN×1, while 𝚽i represents a diagonal matrix of size
M × Mcontaining the RIS PS vector of size M × 1 in its diag-
onal. i and j represent the indices of the used 𝚽 and f , where
� and  are the finite sets of available PS matrices and vec-
tors of RIS and BS, respectively. HBR ∈ ℂM×N is the channel
matrix of size M × N between BS and RIS, while hRU ∈ ℂM×1

is the channel vector of size M × 1 between the RIS and UE.
Following the mmWave channel models with a limited number
of scatterers given in [8], HBR and hRU can be expressed as
follows:

HBR =

√
MN
LBR

LBR∑
l=1

𝜉l𝚲R

(
𝜒

(AoA)
l , 𝛿

(AoA)
l

)
𝚲B

(
𝜒

(AoD)
l

)
,

(2)

hRU =

√
M

LRU

LRU∑
l=1

𝜈l𝚲R

(
𝜃

(AoD)
l , 𝜙

(AoD)
l

)
, (3)

The number of channel paths between BS and RIS and
between RIS and UE are represented by LBR and LRU ,
with complex gains of 𝜉l ∼  (0, 𝜎2

𝜉l
), and 𝜈l ∼  (0, 𝜎2

𝜈l
),

respectively. The response vectors of the l th path between
BS and RIS are represented by 𝚲R (𝜒

(AoA)
l , 𝛿

(AoA)
l ) and

𝚲B (𝜒
(AoD)
l ), where 𝜒

(AoA)
l (𝛿

(AoA)
l ) and 𝜒

(AoD)
l are the azimuth

(elevation) angle of arrival (AoA), and angle of departure (AoD),
respectively. Likewise, the response vector of the l th path

between RIS and UE is represented by 𝚲R (𝜃
(AoD)
l , 𝜙

(AoD)
l ),

where 𝜃
(AoD)
l and 𝜙

(AoD)
l are the azimuth and elevation AoD.

Generally, 𝚲R (𝜃, 𝜙 ) is defined as

𝚲R (𝜃, 𝜙 ) =
1√
M

[
1, … , e j

2𝜋

𝜆
d (p sin(𝜃)+q cos(𝜙))

, …

]T

, (4)

where d is the antenna spacing and 𝜆 is the carrier wave-

length and 0 ≤ {p, q} ≤ (
√

M − 1). By analogy, 𝚲B (𝜒
(AoD)
l ) is

expressed as

𝚲B

(
𝜒

(AoD)
l

)
=

1√
N

[
1, … , e

j
2𝜋

𝜆
dn sin

(
𝜒

(AoD)
l

)
, …

]T

, (5)

where 0 ≤ n ≤ (N − 1).
To maximize the spectral efficiency 𝜓 in bps/Hz at the UE,

the PS vector f j ∈  and the PS diagonal matrix 𝚽i ∈ Ω
should be jointly optimized as follows:

{i∗, j∗} = max
i, j

(
𝜓𝚽i f j

)
, (6)

where

𝜓𝚽i f j
= log2

⎛⎜⎜⎜⎝1 +
P
(

hH
RU𝚽iHBR f j

)(
hH

RU𝚽iHBR f j

)H

𝜎2

⎞⎟⎟⎟⎠
𝜓𝚽i f j

is the spectral efficiency corresponding to 𝚽i and f j

combination, while {i∗, j∗} is the indices of the selected opti-
mal combination. The challenge of this optimization problem
comes from the difficulty of estimating HBR and hRU to jointly
adjust 𝚽i and f j due to the massive antenna elements used by
BS and RIS and the passivity of the RIS. Even if HBR and hRU
can be perfectly estimated, the problem presented in (6) is still
challenging to solve jointly as shown in [8]. To address this prob-
lem, the work presented in [8] assumes perfect CSI information,
and the values of𝚽i and f j are jointly adjusted using an iterative
heuristic method [8], which seems impractical in real scenarios
due to the prementioned reasons.

3 PROPOSED TWO-PHASE MAB
APPROACH

In this section, a two-phase MAB approach is proposed for
mmWave-RIS system to overcome mmWave CSI estimation
and jointly adjust the PS vectors of BS and RIS with low
complexity. Towards that antenna codebooks are assumed for
antenna arrays of both.

3.1 Antenna codebook design

In this letter, to eliminate the need to estimate CSI for adjusting
the PS vectors of mmWave BS and RIS, the antenna codebook
of WiGig standards is utilized [15]. In this codebook design, the
PS vectors for K ≤ A are given by the column vectors of the
following matrix:

V (a, k) = j
floor

{
a×mod(k+K∕2,K )

K∕4

}
, (7)

a = 0, … ,A − 1, k = 0, … ,K − 1

where A is the total number of antenna elements, and K is the
total number of PS vectors (i.e. beam directions). In the case
that K = M∕2, the PS vector at k = 0 becomes

V (a, 0) = (− j )mod(a,K )
, a = 0, … ,A − 1 (8)

Thus, the columns in V are the available space for construct-
ing f and the diagonal of 𝚽, that is,  and Ω.
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3.2 MAB hypothesis

MAB is considered stateless reinforcement learning (RL) tech-
niques that can efficiently handle self-decision-making prob-
lems better than the famous Q-leaning algorithm [16]. This is
because it is lower complicated than Q-learning as it eliminates
the need for the memory required to save the sequential states
of the Q-learning algorithm. Generally, the MAB problem is a
purely online learning, in which the player strives to gain the
maximum reward from multiple arms of slot machines [17].
Precisely, the MAB problem aims to detect and select, through
finite trials, the arm that maximizes the long-term reward. The
player has no prior knowledge about the MAB game except
its observable rewards from playing with the bandit arms. This
unique feature of the MAB game motivates us to use it as an
efficient solution for jointly adjusting the mmWave RIS PSs as
it eliminates the need for mmWave CSI estimation. During the
MAB game, the player compromises between always exploit-
ing the arm giving the highest reward so far or exploring the
less selected ones. MAB games can be categorized as stochastic
MAB when the rewards come from independent and identi-
cal distributions (i.i.d) or adversarial MAB when the rewards
come from unknown distribution. Several algorithms are used
to implement the MAB game with different regret bound such
as UCB1 [18], MOSS [14], Thompson sampling (TS) [19], and
EXP3 [20]. Due to its efficiency, MAB approach was used to
address many of wireless communication challenges as given in
[21–23].

3.3 Proposed two-phase MOSS algorithm

Based on the previous codebook design, the values of 𝚽 and
f should be jointly optimized for maximizing 𝜓 at the receiver.
However, this will consume a considerable BT overhead due
to the need to test |Ω|| | different beam pairs, which reduces
the achievable throughput. Instead, an online learning approach
is proposed in this paper, where the problem is considered a
time sequential optimization problem. In this context, the opti-
mal values of 𝚽 and f , that is, 𝚽i∗ and f j∗ will be selected
successively over time empowered by the potency of the online
learning as follows:

max
𝕀(1),…,𝕀(TH )

1
TH

∑
t

∑
i, j

𝕀it jt

(
𝜓𝚽it f jt

)
, (9)

s.t.

1. TH ∈ (0, Z+ )
2.

∑
i, j

𝕀it jt = 1,

where TH ∈ (0, Z+ ) represents the time horizon, and Z+

is the set of positive integers. 𝜓𝚽it f jt
is the spectral efficiency

results from selecting the combination 𝚽i and f j at time t ,
that is, 𝚽it and f jt

. 𝕀it jt is a selection indicator, which is equal
1 when the combination 𝚽i and f j is selected at time t , and

Algorithm 1 Two Phase MOSS Algorithm

zero otherwise. The second constraint in (9) indicates that only
one 𝚽 and f combination is allowed to be selected at time t.
To solve this problem, an MAB approach is adopted, where the
mmWave BS will be the player of the MAB game, the spaces
of 𝚽i and f j are the arms of the bandit game, and the spectral
efficiency is the profit. Additionally, to reduce the complexity
and speed up the convergence, as the spaces of 𝚽 and f are
too large, a two-phase MAB hypothesis is proposed. In the first
phase, the value of 𝚽 is adjusted based on a particular value
of f . In the second phase, the value of f is re-adjusted based
on the value of 𝚽 obtained in the first phase and vice versa
over TH .

To efficiently implement the proposed two-phase MAB strat-
egy, the highly efficient MOSS MAB algorithm is adopted,
where Algorithm 1 summarizes the proposed two-phase MOSS
algorithm. MOSS [14] is a modified variant of the upper
confidence bound (UCB) family, where it relies on the prior
knowledge of the horizon. Herein, the confidence interval
is identified according to the number of plays for each arm
as well as number of actions/arms and the time horizon.



MOHAMED ET AL. 5

It achieves the order optimal cumulative regret on the finite
instances. It divides the horizon by the number of arms to
attain minimax optimality. MOSS is adaptable to both stochas-
tic and adversarial setups with better performance than UCB1
[14, 24]. More precisely, the arm index that has been pulled
more than horizon/number of arms times is the mean of the
rewards collected from the arm. Regarding other arms, their
indices are UCB on their mean rewards, which hold with high
probability.

The inputs and outputs to the algorithm are the codebook
spaces Ω and  , and the values of 𝚽i∗ and f j∗ , respectively.
For initialization, at t = 1, the expected spectral efficiencies
𝜓̄𝚽it f jt

corresponding to all values of 𝚽i and f j are set to uni-
form random values in the range [0,1], and their corresponding
number of selections, that is, Z𝚽it f jt

are set to 1. Moreover, a
PS vector f j∗t

is picked randomly from its corresponding PS
codebook,  . For 2 ≤ t ≤ TH , a two-phase MOSS algorithm is
conducted. In the first MOSS phase, based on the value of f j∗t−1

,

i∗t is selected based on the MOSS policy as follows:

i∗t = arg max
i

⎛⎜⎜⎜⎜⎜⎜⎝
𝜓̄𝚽it−1 f j∗t−1

+

√√√√√√√√max

(
log

(
t

Z𝚽it−1 f j∗t−1

)
, 0

)
Z𝚽it−1 f j∗t−1

⎞⎟⎟⎟⎟⎟⎟⎠
,

(10)
where 𝜓̄𝚽it−1 f j∗t−1

is the average spectral efficiency correspond-

ing to the combination of 𝚽i and the selected f j∗ vector
selected at time t − 1. Also, Z𝚽it−1 f j∗t−1

is its corresponding

number of selections. After evaluating i∗t , its corresponding 𝚽i∗t
and 𝜓𝚽i∗t

f j∗t−1
are obtained and its related parameters, Z𝚽i∗t

f j∗t−1

and 𝜓̄𝚽i∗t
f j∗t−1

, are updated as follows:

Z𝚽i∗t
f j∗t−1

= Z𝚽i∗t−1
f j∗t−1

+ 1 (11)

𝜓̄𝚽i∗t
f j∗t−1

=
1

Z𝚽i∗t
f j∗t−1

z𝚽i∗t
f j∗t−1∑

r=1

𝜓𝚽i∗r
f j∗t−1

(12)

Based on the selected 𝚽i∗t , the value of f j∗t
is adjusted in a

nested manner via the second phase MOSS with the same way as
given in Algorithm 1. Then, its corresponding reward, 𝜓𝚽i∗t

f j∗t
,

is obtained and its related parameters, Z𝚽i∗t
f j∗t

and 𝜓̄𝚽i∗t
f j∗t

, are

updated as given in Algorithm1.

4 NUMERICAL ANALYSIS

In this section, Monto-Carlo numerical simulations are con-
ducted to prove the effectiveness of the proposed two-phase
MOSS algorithm compared to random selection under differ-
ent simulation scenarios. In random selection, the values of 𝚽i
and f j are randomly selected. Also, the optimal performance

TABLE 1 Simulation parameters

Parameter Value

P 10 dBm [2]

BW 2.16 GHz [2]

LBR , LRU 5,5

TH 1000

AoA, AoD Uniform random in the range [0,2𝜋]

𝜎2 (dBm) −174 + 10 log10(BW ) + 10

d 𝜆∕2

𝜎2
𝜉l

, 𝜎2
𝜈l

10 dB when l = 1, and 1 dB for 2 ≤ l ≤ 5 [25]

FIGURE 2 Spectral efficiency against the number of beams using N = M
= 16

is given, where all 𝚽i and f j combinations are tested, and the
optimal one having the maximum spectral efficiency is chosen.
As a benchmark scheme, two-phase UCB1 is employed in the
comparisons. It is exactly like Algorithm 1, except that UCB1
equations [18] given in (10) and (11) are used instead of MOSS
equations given in (9) and Algorithm 1 to evaluate i∗t and j∗t , as
follows:

i∗t = arg max
i

⎛⎜⎜⎝𝜓̄𝚽it−1 f j∗t−1
+

√√√√ 2log (t )

Z𝚽it−1 f j∗t−1

⎞⎟⎟⎠, (13)

j∗t = arg max
j

⎛⎜⎜⎝𝜓̄𝚽i∗t
f jt−1

+

√√√√ 2log (t )

Z𝚽it−1 f j∗t−1

⎞⎟⎟⎠, (14)

The used simulation parameters are summarized in Table 1

4.1 Performance comparisons

Figure 2 shows the spectral efficiency of the schemes involved
in the comparisons against the number of used PS vectors K,
using N = 16 and M = 16. Generally, the spectral efficiency
of all compared schemes is increased with increasing K due
to the increase in the beamforming gain. Also, the proposed
two-phase MOSS algorithm nearly matches the optimal per-
formance which is better than two-phase UCB1. However, the



6 MOHAMED ET AL.

FIGURE 3 Spectral efficiency against the number of beams using N = 36
and M = 64

random selection scheme shows bad performance. This comes
from the proposed online learning approach, which tries to
reach the optimal performance successively over the time hori-
zon along with the better performance of the MOSS strategy
over UCB1. As the values of 𝚽i and f j are selected randomly
in the random selection scheme, its performance is too far from
the optimal one. At K = 4 (64), the proposed two-phase MOSS,
two-phase UCB1, and random selection achieve about 96.3%
(96.15%), 93.6% (88.9%), and 87.5% (71.4%) of the optimal
performance, respectively. It is noted that the random perfor-
mance becomes far from the optimal one at higher values of
K due to the increased number of PS vectors combinations.
However, the proposed MOSS scheme is not affected by the
number of used beams and always nearly matches the optimal
performance.

Figure 3 shows the spectral efficiency of the schemes
involved in the comparisons against K while N= 36 and M= 64.
Again, the spectral efficiency of all schemes is increased when
increasing K. By comparing Figures 3 and 2, for K < 36, the
spectral efficiencies in Figure 3 are higher than those in Figure 2
due to the increased number of used antenna elements and vice
versa for K > 36. Yet, the proposed two-phase MOSS scheme
is better than UCB1 and nearly matches the optimal perfor-
mance, while the random selection is far from it. At K = 4 (64),
the proposed two-phase MOSS, two-phase UCB1, and random
selection achieve about 97% (97.4%), 94.45% (91.6%), and 83%
(76.3%) of the optimal performance, respectively.

Figure 4 shows the spectral efficiency of the schemes
involved in the comparisons against increasing the TX power,
that is, P. As P is increased, the spectral efficiency of all methods
is increased due to the increase in the received power. Yet, the
proposed two-phase MOSS scheme is better than UCB1, where
it nearly matches the optimal performance at all tested P values,
while the random selection is far from the optimal performance.
For example, at TX SNR of 10 (100) dB, the proposed two-
phase MOSS, two-phase UCB1, and random selection achieve
about 91% (95.7%), 71.2% (88.73%), and 29.8% (76%) of the
optimal performance, respectively. It is noted that deficient
performance compared to the optimal one is obtained at low
value of TX SNR for the random selection, while the proposed

FIGURE 4 Spectral efficiency against 10log10(P/σ2) using N = 36, M =

64, and K = 16

FIGURE 5 Spectral efficiency convergence using N = 36, M = 64, and K
= 16

MAB schemes have good performance even in low TX SNR
conditions.

Figure 5 gives the spectral efficiency convergence of the
proposed two-phase MOSS and two-phase UCB1 algorithms
against the time horizon using N = 36, M = 64, and K = 16.
The proposed two-phase MOSS algorithm shows faster con-
vergence than UCB1 towards the optimal performance. At t =
400, about 99% (95%) of the optimal performance is obtained
by the proposed two-phase MOSS (UCB1) scheme, respectively.

Compared to the perfect CSI-based approach presented in
[8], their suggested scheme reaches 87% to 88% of the upper
bound performance in the highest SNR scenario. This comes
while assuming perfect CSI information, which is impractical
in real situations. However, the proposed two-phase MOSS
reaches about 91% to 99% of the optimal performance in the
different simulation scenarios. Moreover, using N = 48, M =
64, and SNR=−12 dB, the spectral efficiency of their proposed
scheme reaches 2.25 of the random PS selections. However, by
simulating the same parameters, about 3.4 improvement over
the random PS selection is obtained by the proposed scheme.
This comes without the need for knowing the CSI of both
mmWave BS and RIS.
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As the proposed scheme eliminates the need for mmWave
CSI estimation, it considerably reduces the pilot overhead.
In [26] and [27], it is stated that pilot overhead required for
RIS-based CSI estimation should be ≥ MN . As an illustrative
example, suppose that M and N are equal to 64, then the
pilot overhead should ≥ 3904 symbols, which is too large com-
pared to the total frame length. This value will be incredibly
increased for massive mmWave BS and RIS containing hun-
dreds of antenna elements. Instead, in the proposed online
learning approach, mmWave BS just needs to send the index
of the used 𝚽 matrix to the RIS through the dedicated con-
trol channel between them at time t, which consumes negligible
overhead compared to that required by perfect CSI based
approach. For example, if the number of PS vectors is equal to
64, then only 6 bits need to be transmitted between BS and RIS.
Moreover, the overhead of the proposed scheme is constant
irrespective of the SNR conditions.

4.2 Complexity analysis

The time complexity of the joint mmWave BS-RIS PSs estima-
tion algorithms comes from two sources. The first source is
due to the BT process among BS, RIS, and UE, and the sec-
ond source is due to the computational complexity of the used
algorithm. The first source is considered the major source of
time complexity as one BT process between mmWave TX and
RX may consume about 50 msec as given in [28]. However,
the second source, i.e., computational complexity, is based on
instructions execution time, which is negligible by considering
the high-speed mmWave BS platforms.

For BT time complexity, the proposed two-phase MOSS
algorithm and UCB1 scheme have much lower complexity
than the optimal strategy. This is because the optimal strategy
explores all available {Ω, } pairs, which gets its BT complexity
of order (|Ω|| |). However, in the proposed MAB approach,
one 𝚽i , f j combination is tested using BT at every time t .
Therefore, the BT complexity of the proposed scheme is of
order (1). Similarly, the BT complexity of the random selec-
tion is of order (1) as only one random 𝚽i , f j combination is
tested at time using BT.

For computational complexity, the primary source of compu-
tational complexity of the proposed two-phase MOSS/UCB1
schemes come from selecting the optimal PSs at every time
t from the space of all available {Ω, } pairs and updat-
ing its corresponding parameters with complexity order of
(|Ω| + | | + 1). For the optimal solution, its computational
complexity is of order (|Ω|| |) as it full searches all avail-
able {Ω, } pairs. The computational complexity of the random
selection comes from generating a random number in the range
{1, |Ω|| |}, and based on it, a combination of𝚽i , f j is selected
with computational complexity order of (1). Table 2 sum-
marizes the time complexity comparisons among the schemes
involved in the assessments.

As a numerical example, let | | = 36 and |Ω| = 64, then
BT and computational complexities of the optimal solution are
of order (2304). However, BT and computational complexi-

TABLE 2 Complexity analysis of RIS-user association algorithms

Algorithm BT complexity

Computational

complexity

Optimal (|Ω|| |) (|Ω|| |)
Two-phase MOSS (1) (|Ω|| | + 1)

Two-phase UCB (1) (|Ω|| | + 1)

Random (1) (1)

ties of the proposed MAB schemes will be (1) and (101),
that is, about 99.96% and 96% reductions in BT and computa-
tional complexities are obtained. Thus, the proposed two-phase
MAB approach has a near-optimal performance with a much
lower BT and computational complexities.

5 CONCLUSION

In this paper, the problem of RIS-aided mmWave communica-
tion was explored. The main issue of the mmWave-RIS system is
to jointly optimize the PS vectors of both mmWave and RIS for
maximizing the spectral efficiency at the intended receiver. To
efficiently address this problem while overcoming the problem
of CSI estimation, a two-phase MAB approach was proposed.
Besides, an antenna codebook was suggested for both mmWave
BS and RIS. Numerical simulations prove that the proposed
scheme achieves almost 91% to 99% of the optimal perfor-
mance under different simulation scenarios with about 99.96%
and 96% reductions in BT and computational complexities, and
it outperforms other benchmarks.
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