
This is a peer-reviewed, final published version of the following document, This work is licensed
under a Creative Commons Attribution 4.0 International License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly and is 
licensed under Creative Commons: Attribution 4.0 license:

Anjum, Nasreen ORCID logoORCID: https://orcid.org/0000-
0002-7126-2177, Yang, Zhahoui, Imran, Khan, Kiran, Mahreen,
Wu, Falin, Rabie, Khaled and Bahaei, Shikh Muhammad (2021)
Efficient Algorithms for Cache-Throughput Analysis in Cellular-
D2D 5G Networks. Computers, Materials and Continua, 67 (2).
pp. 1759-1780. doi:10.32604/cmc.2021.014635 

Official URL: https://doi.org/10.32604/cmc.2021.014635
DOI: 10.32604/cmc.2021.014635
EPrint URI: https://eprints.glos.ac.uk/id/eprint/11467

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title in 
the material deposited and as to their right to deposit such material.  

The University of Gloucestershire makes no representation or warranties of commercial utility, 
title, or fitness for a particular purpose or any other warranty, express or implied in respect of 
any material deposited.  

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.  

The University of Gloucestershire accepts no liability for any infringement of intellectual 
property rights in any material deposited but will remove such material from public view 
pending investigation in the event of an allegation of any such infringement. 

PLEASE SCROLL DOWN FOR TEXT.



echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014635

Article

Ef�cient Algorithms for Cache-Throughput Analysis in
Cellular-D2D 5G Networks

Nasreen Anjum1,*, Zhaohui Yang1, Imran Khan2, Mahreen Kiran3, Falin Wu4,
Khaled Rabie5 and Shikh Muhammad Bahaei1

1Department of Informatics, King’s College London, London, UK
2Department of Electrical Engineering, University of Peshawar, Peshawar, Pakistan

3Department of Computer Science, Institute of Management Sciences, Peshawar, Pakistan
4School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China

5Department of Electrical and Electronic Engineering, Manchester Metropolitan University, Manchester, UK
*Corresponding Author: Nasreen Anjum. Email: nasreenanjum59@gmail.com

Received: 05 October 2020; Accepted: 10 November 2020

Abstract: In this paper, we propose a two-tiered segment-based Device-to-
Device (S-D2D) caching approach to decrease the startup and playback delay
experienced by Video-on-Demand (VoD) users in a cellular network. In the
S-D2D caching approach cache space of each mobile device is divided into
two cache-blocks. The �rst cache-block reserve for caching and delivering
the beginning portion of the most popular video �les and the second cache-
block caches the latter portion of the requested video �les ‘fully or partially’
depending on the users’ video watching behaviour and popularity of videos.
In this approach before caching, video is divided and grouped in a sequence of
�xed-sized fragments called segments. To control the admission to both cache-
blocks and improve the system throughput, we further propose and evaluate
three cache admission control algorithms. We also propose a video segment
access protocol to elaborate on how to cache and share the video segments in a
segmentation based D2D caching architecture. We formulate an optimisation
problem and �nd the optimal cache probability and beginning-segment size
that maximise the cache-throughput probability of beginning-segments. To
solve the non-convex cache-throughout maximisation problem, we derive an
iterative algorithm, where the optimal solution is derived in each step. We used
extensive simulations to evaluate the performance of our proposed S-D2D
caching system.

Keywords: Device-to-Device (D2D); startup-delay; playback-delay; caching

1 Introduction

Mobile communication has gained tremendous popularity over the last decade due to the evo-
lution toward higher generation (G) cellular networks from 1G to 5G. Speci�cally, the transition
to 3G and the successful deployment of 4G technology was a boom in mobile data consumption.
Due to the increase in mobile broadband speed, now millions of mobile users are watching videos
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on their smart mobile devices. According to the latest Ericsson mobility report, mobile video
traf�c is forecast to account for 74% of all mobile data traf�c in 2024 [1,2].

To confront growing mobile data traf�c demands, many technologies have been explored and
developed in the last decade, such as massive MIMO (deploying very dense and massive base
station (BS) antennas) [3], cognitive radio (reuse of spectrum resources) [4], femtocells (deploying
dense and small cells with caching ability) [5], and mm-wave bands (use of additional spec-
trum) [6]. However, in a real scenario, these methods sometimes can provide limited throughput
gain [7] or tend to be very expensive due to the dependency on costly backhaul networks.

Recently, D2D caching network has become the centre of attention of both academia and
industry research. D2D communication allows direct communication between proximal devices
without traversal data through the BS or core network and without requiring additional infras-
tructure and maintenance cost. The D2D caching system works on the following mechanism:
each device with storage capacity caches a subset of video �les at random according to some
popularity distribution. When a user requests video content, the individual might either �nd the
desired video �le in the local cache or will download from a proximity device through the direct
D2D link [8]. In this way, a multitude of devices with heterogeneous and limited storage resources
form a common virtual cache space that is capable of caching and sharing a dynamic and large
number of video �les [9].

1.1 Related Work
Many studies have shown that dissemination of popular video content through the D2D net-

work can improve spectrum utilisation, video throughput, energy ef�ciency, and user’s experience.
For instance, in [9], the authors proposed a novel D2D caching architecture that can achieve the
video throughput by two orders of magnitude. Similarly, a measurement study for cellular users
of BBC iPlayer [10], a popular video-on-demand service in the UK, reported that in a realistic
propagation environment D2D caching system has the potential to improve the network through-
put by two orders of magnitude. To study the impact of scaling behaviour of D2D caching
network on the throughput scale, the authors in [9] proposed a joint optimisation of caching
and delivery strategy to maximise the number of D2D active links in a cell. The simulation
results showed that the performance of D2D caching network in terms of the number of D2D
active links is strictly dependent on the value of Zipf parameter. The authors also evaluate the
optimal cache distribution and transmission distance for each user in a cell. The authors in [11]
proposed the idea of D2D communication as an underlay and proved that D2D caching network
has the potential to improve the spectral ef�ciency signi�cantly. To achieve the guaranteed quality
of experience (QoE) of video streaming applications in a cellular network, the authors in [12]
proposed a user-centric video transmission mechanism based on D2D communication. In the
proposed approach, the authors jointly considered the asynchronous content reuse feature of VoD
applications, users’ locations, willingness to share their storage and up-link resources, and QoE
requirements. The simulation results showed that the proposed mechanism can improve the users’
QoE up to 85%. The authors in [13] proposed an intelligent cache management scheme for the
D2D cache network. This scheme guarantees the optimum number of D2D devices required to
support the successful delivery of the most popular requested content.

1.2 Motivation and Contributions
Interestingly, Golrezaei et al. [9–13] have focused on caching techniques that exploit the asyn-

chronous content reuse feature of VoD streaming applications, whereby the same video content
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is requested repeatedly by a large number of users. In simple words, caching is optimised based
on �le popularity. However, the existing literature has ignored one of the most critical features of
on-demand video content; namely, user abandonment behavior; when a user abandons the video before
completion after watching a few video chunks.

The users abandoned the videos due to a variety of reasons such as lack of interest, a
multitude of choices in video content, frequent re-buffering, length of video content, and long
startup delays. For instance, authors in [14–16] reported some compelling �ndings regarding
initial viewer abandonment due to long startup delays. According to their �ndings, users start to
abandon videos after two-second startup delay, with 6% additional abandonment rate per second
after that. Similarly, the authors in [17] reported the traces of 7000 YouTube video �les that
showed the higher average completion rate for the most popular video �les. However, even for
the most popular ones, on average, only 72% of each video is watched—furthermore, the average
watch-time decreases as the duration of video increases.

Under such circumstances, due to heterogeneous and limited users’ cache resources1, all video
�les should be cached in a small and �xed-size portion called segment [19]. Second, long startup
delays can frustrate users and make them leave the website forever. Therefore, to deal with the
problem, suf�cient starting portion of videos should always be cached internally. Third, only the
most popular video �les should be cached entirely. For a least popular �le, a small portion or
none of it should be cached.

Based on the observations mentioned above and different from the existing D2D caching
algorithms [9–13], our contributions in this article are as follows:

i. We proposed a two-tiered S-D2D caching approach by taking into considerations video
popularity and users’ video abandonment behaviour. Our simulation results show that by
employing S-D2D caching approach, the VoD users in a cellular network can experience
a decrease in startup-time and playback-delay. We also propose a video segment access
protocol to elaborate on how to cache and share the video segments in a segmentation
based D2D caching architecture.

ii. To control the admission of video segments to both blocks of cache, we propose the (a)
Beginning-Segments Cache Policy (BSCP), (b) Selective Partial Cache Policy (SPCP), and
(c) Short Length Video Cache Policy (SLVCP). We propose these caching algorithms based
on the �ndings of an extensive statistical studies which had been conducted to analyse the
video viewing behaviour of millions of VoD users. To the best of our knowledge, none of
the existing work has examined the effectiveness of the segmentation-based partial caching
approach for large and small videos in a D2D communication scenario.

iii. We derive an optimisation approach in a stochastic D2D caching scenario to maximise the
cache-throughput probability of the beginning-segments. The cache-throughput probability
is the sum of successful requests served by the local caches (self-hit probability) of the
requesting device and through the D2D link (cache-hit probability). We take into con-
sideration the size of the beginning-segments and realistic network characteristics such as
interference, shadowing, and success probability. To solve the non-convex cache-throughout

1 The cache space of mobile devices in literature is handled as a rich resource. However, they possess heterogeneous and
limited storage resources [18]. Additionally, the size and the popularity of the video �les are highly dynamic. On the one
hand, it may consume a whole cache space. On the other hand, the transient nature of the wireless devices will also prevent
them from sharing the entire content.
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maximisation problem, we derive an iterative algorithm, where the optimal solution found
in each step.

iv. Finally, the admission control algorithms are evaluated and compared through numerical
simulations in a realistic channel model, based on a practical indoor-hotspot WINNER-II
propagation environment [20]. The simulation results prove that the caching algorithm for
SLVCP outperforms all caching policies. For instance, 50% to 95% users can start the video
with zero startup-time, and 47.5% users can download the remaining segments with zero
playback-delay through the local-cache, and 31% of users can download the remaining
segments of the desired short length videos from their neighbouring devices.

1.3 Paper Organization
The remainder of the article is structured as follows: Section 2 discusses the proposed two-

tiered S-D2D caching approach in detail. Sections 3–5 elaborate the BSCP, SPCP and SLVCP. The
system model is presented in Section 6. Section 7 presents the simulation results which illustrate
the performance of the proposed caching policies in terms of the average cache-hit ratio, average
self-hit ratio, and average cache-throughput ratio. Finally, Section 8 concludes the whole article.

2 S-D2D Caching System

In this section, we �rst discuss our proposed segmentation strategy for the video �le and
the user’s cache space. Then, the video segment access protocol in an S-D2D caching network
discussed in detail. Finally, we turn our discussion to the caching policies.

2.1 Segmentation Strategy
The segmentation strategy we use for the video �les in an S-D2D caching architecture is

illustrated in Fig. 1.

Figure 1: Segmentation strategy for the video �les in a S-D2D caching architecture

The video �le j is sliced into small pieces of equal size transmit units (TUs) before it
transmitted to the end-user. The TU is the basic building block of information transmission in a
communication system. Depending on the cache system requirements, multiple TUs grouped into
equal-sized segments. The number of TUs grouped in each segment i is s(i,j), for i≥ 1. In simple
words, a video content j is segmented uniformly in equal size lengths, i.e., s(i,j) = s(i,j) =, . . . , s(M,j);
where M is the total number of segments of a video content j. For the sake of tractability, we
assume that the size of the video segment i should not exceed the size of a video �le j and storage
capacity C of each D2D device.

We divide the users’ cache space into two blocks of different sizes, for example, see Figs. 2
and 3. The size of Block-1 is small and dedicated to caching only the beginning-segments of the
desired video content. The Block-2 caches the subsequent segments of the video �les ‘partially or
fully’ depending on the users’ video-watching behaviour.
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Figure 2: Segmentation strategy for a large size video �le in a S-D2D caching architecture

Figure 3: Segmentation strategy for a small size video �le in a S-D2D caching architecture

2.2 Video Segment Access Protocol
Each D2D device in the S-D2D caching system has a storage capacity that enables two

proximity devices to cache and share the video segments over a direct link. We assume that a
cellular user, willing to distribute and receive the video segments via an S-D2D caching system,
must �rst install special software—we named it “D2D service interface software (D-SIS)”. The
D-SIS implemented as a background application software that runs when the cellular user is
logged into his/her system and requests video content. The main objective of the D-SIS is to make
the cache placement, video segmentation and communication process between a pair of devices
transparent and reliable. The proposed S-D2D caching system is operator/network controlled.

When a cellular user requests a video �le, the D-SIS �rst performs a self-search process before
placing the request to the BS. We termed it as a self-hit. For a fast startup, the D-SIS searches
Block-1 of the user’s cache space reserved for caching only the beginning-segments. The video will
start with zero startup-time if the user has cached the beginning-segments of the desired content
in its local storage. In this case, if the self-search process is unsuccessful, the D-SIS contacts the
core network for the list of potential D2D (P-D2D) devices. The P-D2D device has the copy of
the desired video segments in its local storage and located nearby of the requesting device. The
core network �lters the information stored in its central database2 to �nd P-D2D devices. Once the
P-D2D device or devices have been found, BS sends the list to the requesting device. We termed

2 The central database keeps the identi�cation information of each P-D2D device such as device-ID, video-ID and its
geographic position. The device-ID is a sequence of unique bits that uniquely identify the devices. The video-ID is a string of
bits that uniquely identify the video. The geographic position of the mobile device can be discovered by the Global Positioning
System (GPS).
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it as a cache-hit. After receiving the list of the P-D2D devices, we assume that the requesting
device discovers and establishes a connection with one of the P-D2D devices using the discovery
method described in [21].

Unluckily, suppose for some reason such as bad link quality, the requesting device is unable
to download the segments from the neighbouring P-D2D, it will either start to download the
segments from one of the P-D2D devices provided in a list, or the BS must serve the request.
Similarly, in a case, the core network is unable to provide the desired list of P-D2D devices;
it will forward the beginning-segments to the requesting device through the traditional cellular
communication system. For service continuity and downloading the subsequent segments, the
D-SIS will repeat the same procedure as discussed above and will explore the Block-2 of the user’s
cache space dedicated to caching the later segments of the video �les.

3 Beginning-Segments Cache Policy (BSCP)

Beginning-segments always receive preferential treatment in the S-D2D caching approach, and
video always starts with low startup latency. Algorithm 1 illustrates the BSCP for the admission
as well as the replacement of the beginning-segments.

Algorithm 1: Caching algorithm for beginning-segment i of a video �les j from a library of size L
1: Size-of-beginning-segment= s(i,j);
2: Size-of-Block− 1=B1;
3: a cellular user requests for the beginning-segment i of a video �le j from a library L.
4: if

(
s(i,j) ≤B1

)
then,

5: cache the beginning-segment i in the Block-1 and play it.
6: B1←B1+ s(i,j); B update the cache Block-1.
7: end if
8: if

(
s(i,j) ≥B1

)
then, B cache space in the Block-1 is not suf�cient.

9: �nd a replacement for an incoming beginning-segment and replace it with a beginning-
segment that has the least access. Let beginning-segment i of a video �le k ful�ls the replacement
criteria, then replace the beginning-segment of a video �le j with the beginning-segment of a video
�le k.
10: B1←B1− s(i,j); B update the cache block-1.
11: end if
12: if (the beginning-segment i of a video �le j has been successfully cached in a block-1 of a
requesting user) then,
13: invoke the Algorithm 2 for caching the subsequent segments of a video �le ‘j’ in a block-2
of a requesting user.
14: end if

In general, cellular users request video content according to some popularity distribution.
Many studies have reported the skewed distribution of users’ interest toward a small fraction of
top-ranked content. For instance, authors in [21,22] found that the �rst top 20% of the most
popular video content accounts for up to 84% of the total video views on YouTube. Therefore,
beginning-segments belonging to the most popular video �les are permitted to cache on Block-1.
The popularity of video �les is measure by the number of viewers attracted to them. Many
studies have reported Zipf-like distribution as a popular and well-established model to measure
the popularity of video �les [9].
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We assume that a cellular user requests a segment i of a video �le j from the library of
size L. We also assume that the video and its segments share the same popularity distribution.
The popularity of the requested segment ‘i’ of the video �le ‘j’ is denoted by p(i,j) and is inversely
proportional to its rank.

p(i,j) =

1
jγr

L∑
k=1

1
kγr

, 1≤ j ≤L, (1)

where γ r is a value of the exponent characterizing the distribution, i.e., larger the value of γ r,
more popular �les are requested by the users. For the sake of admission control, we assume that
each mobile device will cache the beginning-segments of the most popular video �les according
to the cache probability q(i,j). The caching probabilities of the beginning-segments in a video �les
j is denoted as q= [q1,q2, . . . ,qr]. Because cache capacity is a limited resource. Therefore, we have∑M

i=1
∑L

j=1 q(i,j) ≤ C. To create room for the incoming new beginning-segments, traditional least

recently used (LRU) eviction policy will be used.

4 Selective Partial Cache Policy (SPCP)

One of the most straightforward approaches for caching the later segments of a large video
�le in Block-2, we keep on caching the subsequent segments immediately after the beginning-
segments until the cache is full. However, to achieve higher throughput, this approach may not
be feasible for the D2D caching system. For instance, a two-hour-long YouTube 1080p video �le
consumes 7.36 GB cache capacity. It is more likely that for a few popular video �les such as top
20 movie content users will watch the content in its entirety. For less popular content a cellular
user may abandon an ongoing video session before its completion. For instance, a comparison
between the abandon rate of mobile and �xed-line users has conducted in a study of BBC iPlayer
accesses. The results suggested that mobile users abandon sessions with a higher rate, i.e., only
around 30% of mobile sessions last for longer than a half of a content’s duration in comparison
to around 50% for the �xed-line sessions [22]. The authors in [23] show that for an hour-long
video session, only 40% of total videos completely downloaded, while 50% of videos abandoned
after downloading only 60% portion. According to [17], users watch only 10% of the least popular
video �les. In this scenario, caching a whole video �le based on only popularity may not work.

Based on the measurement studies [17,21–23] conducted to evaluate the users’ video abandon-
ment behaviour, we proposed Algorithm 2 for the Block-2. The most popular video �les (Top 20)
will always be cache entirely [21,22]. For less popular video �les (Top 21–100) 40% subsequent
portion will always be cache [17,22,23]. For the least popular video �les (Top 101-onwards), only
10% subsequent portion of the video �le will be cache [17]. Fig. 2 shows the example of the size
distribution of the users’ cache for the large size media content.

When cache space required for the incoming new video �le, the video chunk of the least
popular video �le is evicted to make room for the video chunks of the most popular video �les.

5 Short Length Video Cache Policy (SLVCP)

Many studies have reported that shorter videos have a longer viewing time and the abandon-
ment rate increases as the video length increases. For instance, the authors in [24] reported that,
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for the small size MSN videos, users generally opt to view the entire or most of the video clip,
and only 20% of users watch 60% of video content with length greater than 30 min.

A similar observation is reported in a study [25]. For a video length between 3–5 min, the
video abandonment rate was only 27.1%, while when the size of video increases by up to 10
min, the abandonment rate is raised by up to 62.5%. Interestingly, 40–50% of mobile users watch
videos shorter than 3 min of duration [26]. Based on these �ndings, for short length videos, we
consider the following admission cache rules:

• As video abandonment rate for small size videos is low in comparison to large size videos;
therefore, for small size videos (3–5 min long), we propose to cache the whole video �le.
For clarity, Fig. 3 shows the cache space distribution for a small size video �le.
• However, like the BSCP, only the subsequent segments of the most popular videos can

cache on Block-2. The Zipf distribution model will be used to measure the popularity
of short length multimedia �les. In short, we follow the same cache policy as described
in Algorithm-1 for caching and replacing the later segments of the small video �les into
the Block-2.

6 System Model and Problem Formulation

In this section, we derive optimal cache probability and optimal beginning-segment size for
the BSCP that maximises the cache-throughput probability. First, we discuss the system model.
Then, the optimisation problem is formulated, and a solution is derived.

6.1 System Model
In this section, we derive optimal cache probability and optimal beginning-segment size for

the BSCP that maximises the cache-throughput probability. First, we discuss the system model.
Then, the optimisation

Algorithm 2: Caching algorithm for the subsequent segments of a large video �le j from a library
of size L

1: Size-of-Block− 2=B2 = 0;
2: Size-of-video-�le− j= Sizej;
3: Size-of-video-�le-k= Sizek;
4: Size-of-video-library=L= 1000;
5: for each request of a video content j, do
6: while

(
B2 ≤ Sizej

)
do

7: if (j ≥ 1&j ≤ 20)then, B The video content j is the Top 20 content in a video library of size L.
8: cache the all (100%) subsequent segments of a video content j into the cache Block-2 of a

requesting device.
9: B2←B2+Sizej; B update the cache Block-2.

10: end if
11: if (j ≥ 21&j ≤ 100) then, B The video content j is the Top 20-100 popular video content in a video
library of size L.

(Continued.)
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12: cache the 40% subsequent portion of a video content j into the cache Block-2 of a requesting
device.
13: B2←B2+Sizej;
14: end if
15: if (j ≥ 101&j ≤L)then, B The video content ‘j’ is least popular content (101-1000).
16: cache the 10% subsequent portion of a video content ‘j’ into the cache Block-2 of a
requesting device.
17: B2←B2+Sizej;
18: end if
19: end while
20: while

(
Sizej ≤B2

)
do,

21: if (the cache space in a Block-2 is not suf�cient) then,
22: �nd a replacement for an incoming video content j in a cache Block-2. Replace it with a least
popular video content. Let video �le k ful�lls the replacement criteria, then evict the subsequent
segments of video content k.
23: B2←B2−Sizek;
24: end if
25: end while
26: end for

Each P-D2D has a probability ξ ∈ [0, 1] that de�nes its status as an “active” or “inactive”.
A P-D2D device is said to be in an active state when it requests a segment of a video �le,
and it said to be in an inactive state when it serves the request for a segment of the desired
video �le. Based on this probability, the distribution of P-D2D transmitters follows homogeneous
Poisson Point Process (PPP) φr

u with intensity ξλu and, the distribution of P-D2D receivers
follows homogeneous PPP φt

u with an intensity (1− ξ)λu. Each P-D2D device caches the video
segments independently with cache probability q(i,j), therefore according to the thinning prop-
erty of the PPP, the distribution of video segments follows a homogeneous PPP with intensity
q(i,j) (1− ξ)λus(i,j).

Each P-D2D device in the system model can communicate with each other over a single direct
link sing the cellular spectrum resources, as well as with the BSs through a traditional cellular
communication system. Since the distance between P-D2D devices is typically small, multiple
D2D active links can exist throughout the cellular region. Furthermore, we will also consider the
interference received at each P-D2D receiver caused by the powerful signals transmitted by the
BSs and other active D2D links within and outside the cell. For simplicity, we also assume that all
P-D2D devices and BSs use the same transmission power. The transmission power determines the
actual transmission range and can be optimised centrally. Typically, there is a trade-off between
the transmission power and the probability of availability of the P-D2D devices caching the
requested video segments. It indicates that higher transmission power leads to higher transmission
coverage area and hence, increases the probability of �nding the requested video-segments within
the vicinity of the requesting users [27,28]. However, this consumes signi�cant battery power
resources of mobile devices. We also assume that the D2D communication does not interfere with
the communication between the BS and the cellular users. We assume that P-D2D devices are
operating on the orthogonal/dedicated spread spectrum resources. For the measurement of the
D2D caching system throughput, we do not need to consider explicitly the cellular users and their
associated communications.
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Next, we derive the optimal beginning-segment size s(i,j) of the video �le j ∈ {1, . . . ,L}
requested by the user n ∈N. Each user ‘n’ requests the beginning-segment i of a video �le j from
a library of size L according to the request probability distribution p(i,j) as given in Eq. (1).

Self-Hit Probability: According to our segments access protocol; the requesting user �rst �nds
the beginning-segment s(i,j) of the desired video �le in its local storage through the self-search
process. If the requesting user �nds the beginning-segment of the desire video �le in its local
cache, then self-hit probability will occur. In this case, no D2D communication will take place.
We represent the self-hit probability by p(self−hit) for the request of s(i,j) ∈ j.

p(self−hit) =
L∑
i=1

M∑
j=1

p(i,j)q(i,j)s(i,j), (2)

Cache-Hit Probability: Now, we consider a second case, when the self-search process is unsuc-
cessful, and the user sends a request to the BS for a list of the P-D2D devices. The probability
of �nding the s(i,j) of the video �le j inside a particular area strongly depends on the popularity
order of the video �le, transmission range, the density of P-D2D devices and the size of s(i,j).
The probability that the requesting user can �nd a P-D2D device within its transmission range εd
is given by

pεd
(Cache−hit,i,j) = 1− e−π(1−ξ)q(i,j)s(i,j)ε

2
d , (3)

Averaging over all the beginning-segments of the video �les in a content library L, we have
the D2D cache-hit probability as follows

pεd
(Cache−hit,i,j) =

M∑
i=1

N∑
j=1

p(i,j)
(
1− q(i,j)

)
s(i,j)p

εd
(Cache−hit,i,j), (4)

Thus,

pεd
(Cache−hit,i,j) =

M∑
i=1

L∑
j=1

p(i,j)
(
1− q(i,j)

)
s(i,j)

(
1− e−π(1−ξ)q(i,j)s(i,j)ε

2
d

)
. (5)

Cache-Throughput Probability: We de�ne the total cache-throughput probability as the sum of
self-hit probability and the cache-hit probability (when the self-search process is unsuccessful). Math-
ematically, it is represented as pCache−throughput = pSelf−hit + pεd

(Cache−hit,i,j). After substituting the

corresponding values, we have

pCache−throughput =
M∑
i=1

L∑
j=1

p(i,j)q(i,j)s(i,j)+
M∑
i=1

L∑
j=1

p(i,j)s(i,j)
(
1− q(i,j)

)
e−π(1−ξ)q(i,j)s(i,j)ε

2
d , (6)

Here, we are mainly interested in optimising the size of the beginning-segment and the cache
probability that increase the average number of requests that can be successfully and simultane-
ously handled by the P-D2D devices per unit area. In the self-hit probability case, the request
automatically served with probability one. In the cache-hit probability case, the success probability
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of content delivery depends on the received signal-to-interference-plus-noise ratio (SINR). Thus,
we have the cache-throughput as follows:

pCache−throughput = ρλu

 M∑
i=1

N∑
j=1

p(i,jsi,j +
M∑
i=1

N∑
j=1

p(i,j(1− q(i,j)

 s(i,j)p
εd
(Cache−hit,i,j)p

εd
(succ,i,j), (7)

where ρλu is the number of requests for the beginning-segments and pεd(succ,i,j) indicates the

expected probability of success in terms of good channel quality necessary to carry out the
successful transmission between the P-D2D devices. Hence, the probability of successful reception
of the beginning-segment i of the video content j’ at a receiving node is given by

pεd(succ,i,j) =E
(
ρ
(

SINRεd
(i,j) ≥ β

))
. (8)

The Eq. (8) states the condition that, if the SINR (Signal-to-Interference-Plus-Noise-ratio) at
the receiver is greater than the predetermined SINR threshold β, then the P-D2D device caching
the segment i of a video content j will be selected as a P-D2D transmitter from the list of P-D2D
devices. The SINR denotes the ratio of the transmit power and the noise power spectral density.
The SINR can be computed as follows:

SINR=
Pt|h(t,n)|2ε

−α
(d,t,n)

W1+W2+ δ
2
n

, (9)

W1 =
∑

k 6= t
k ∈ φdnn

Pk|h(k,n)|
2ε−α
(d,t,n), (10)

W2 =
∑

m= 1
m ∈ψdn

n

Pc|g(m,n)|
2ε−α
(d,m,n), (11)

where Pt is the transmission power of the P-D2D transmitter t, |h(t,n)|2 accounts for the small
scale channel fading from the D2D transmitter t to the D2D receiver n, ε(d,t,n) is the distance

between the requesting user n and the P-D2D transmitter t, α is the path loss exponent, φdnn is
the set of all active D2D pairs that are causing interference at the receiver n, Pk is the sum of
transmission power of all the P-D2D transmitters, Pc is the sum of transmission power of all the

BSs, and ψ
dn
n represents the set of all BSs that are causing interference at the receiver n.
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As the transmission power of all P-D2D devices and the BSs �xed, therefore after simplifying
the Eq. (8) we get

pεd(succ,i,j)=E


ρ


|h(t,n)|2>

β(t,n)ε
+α
(d,t,n)

Pt


δ2
n+

∑
k 6= t

k∈φdnn

Pk|h(k,n)|
2ε−α
(d,k,n)+

∑
m=1

m∈ψdn
n

Pc|g(m,n)|
2ε−α
(d,m,n)






(12)

According to [29], the interference component of the success probability can be calculated by
determining the Laplace transform of all interference powers received at node ‘n’, so the Laplace
transform of the interference evaluated at ‘n’ is given as

pεd(succ,i,j)=LIcd
(
β(t,n)ε

+α
(d,t,n)

Pc
Pt

)
LIdd

(
β(t,n)ε

+α
(d,t,n)

)
exp

(
−β(t,n)ε

+α
(d,t,n)

Pj
δ2
n

)
, (13)

≈exp

−πε
2
(d,t,n)β

2
α

sin
(

2
α

)
(Pc

Pt

)2
∂
(λn+λd)


, (14)

Considering the noise is negligible when comparing with LIcd and LIdd , we get the interfer-
ence from the BSs with normalised power as follows:

Icd=
∑

m∈ψdn
n

|g(m,n)|
2ε−α
(d,m,n), (15)

the interference from the P-D2D devices with normalised power is obtained as follows

Icd=
∑
k∈φdnn

|h(k,n)|
2ε−α
(d,k,n) (16)

6.2 Cache-Throughput Optimization Problem
One of the key objectives of this article is to maximise the cache-throughput probability of

the beginning-segments. Based on our analysis the problem can be formulated as

maximize
s(i,j)q(i,j)

M∑
i=1

L∑
j=1

p(i,j)q(i,j)s(i,j)+
M∑
i=1

L∑
j=1

(
p(i,j)s(i,j)

(
1−q(i,j)

)(
1−e−π(1−ξ)q(i,j)s(i,j)ε

2
d

)
pεd(succ,i,j)

)
, (17)

Subject to
M∑
i=1

L∑
j=1

s(i,j)≤ fj,∀(i,j), (18)
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M∑
i=1

L∑
j=1

s(i,j)≤C,∀(i,j), (19)

0≤q(i,j)≤1,∀(i,j), (20)

0≤s(i,j)≤ fi,∀(i,j). (21)

where, fi is the size of the video �le j. By employing the variable transformation: T(i,j)=q(i,j)s(i,j) ,
our non-convex optimisation problem (17) is equivalent to

maximize
s(i,j)T(i,j)

M∑
i=1

L∑
j=1

p(i,j)T(i,j)+
M∑
i=1

L∑
j=1

(
p(i,j)

(
s(i,j)−T(i,j)

)(
1−e−π(1−ξ)T(i,j)ε

2
d

)
pεd(succ,i,j)

)
, (22)

Subject to
M∑
i=1

L∑
j=1

s(i,j)≤ fj,∀(i,j), (23)

M∑
i=1

L∑
j=1

s(i,j)≤C,∀(i,j), (24)

0≤T(i,j)≤s(i,j),∀(i,j), (25)

0≤s(i,j)≤ fi,∀(i,j). (26)

To solve the non-convex optimisation problem (22), an iterative algorithm is proposed. With
�xed, problem (22) is a linear problem, which can be effectively solved. With �xed, problem (22)
can be shown to be convex. To show this, we de�ne g(x) such that,

g(x)=
(
s(i,j)−x

)(
1−e−π(1−ξ)ε

2
dx
)

, (27)

by partial derivative Eq. (27) with respect to ‘x’, we get

g′(x)=−1+e−π(1−ξ)ε
2
dx+π (1−ξ)ε2

d

(
s(i,j)−x

)
e−π(1−ξ)ε

2
dx, (28)

by partial derivative Eq. (28) with respect to ‘x’, we get

g′′(x)=−π(1−ξ)ε2
de
−π(1−ξ)ε2

dx−π2(1−ξ)2ε4
d(s(i,j)−x))e

−π(1−ξ)ε2
dx, (29)

−π2(1−ξ)2ε4
d

(
s(i,j)−x

)
e−π(1−ξ)ε

2
dx≤0. (30)

which shows that the objective function of problem (22) is concave. Since all the constraints of
problem (22) is linear, problem (22) is convex, which can be effectively solved via the interior
point method. To avoid the complexity of the computation, we solve our problem numerically
using the Monte Carlo simulations. The Monte Carlo simulations asymptotically converge to the
correct probability after 1000 Monte Carlo iterations.
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7 Performance Evaluation

In this section, the performance of the S-D2D caching system evaluated using Monte-Carlo
simulations. We �rst discuss the propagation environment and the channel model. Then simula-
tion results are presented. The values of parameters we use in the simulation experiments are
summarised in Tab. 1.

Table 1: Parameter values of the channel model

Parameters Values

Building dimension 100 m2

Street width 20 m2

λb (BS density) 5 m
λu (UEs density) 200
UE Height 1.5 m
εd (Transmission distance) 100 m
B (D2D/Cellular transmission) 20 MHz
fc (D2D Transmission) 2.1 GHz
fc (Cellular Transmission) 2.45 GHz
pt (D2D Transmitter Power) 20 dBm
pc (BS Transmission) 43 dBm
Gt (D2D Transmission) 12 dBm
Gt (Cellular Transmission) 12 dBm
Gr (D2D/Cellular Transmission) 0
A1, A2, A3 37.8, 36.5, 23
Floors 4
5nw light wall loss parameter for n=1
β (SINR threshold) [−20 20]
FN (Noise power density) 6
σLs(Body shadowing loss) 4.2
Ψσ (Shadowing parameter) log-normal distribution (mean=0, σ =6)

7.1 Propagation Environment

We consider a typical and isolated urban-macro cell of dimension (1000×1000-m2). We
perform our experiments for—indoor-hotspots—that typically describe big shopping malls, fac-
tories, or airports’ halls. Each building consists of multiple �oors which further may consist of
small rooms such as shops and counters. We assume that the cell �lled with square dimensional
buildings on a grid street of width 20 m. The side length of each building is 100 m. A total of
200 UEs are distributed randomly inside the buildings (indoor), and Base stations distributed with
an intensity 0.2 on the rooftop of surrounding buildings. We will focus on NLOS as our typical
urban propagation condition [30]. The distance between BS and UE is 200 m, and the maximum
transmission distance between a pair of the D2D devices is 100 m3. We also assume that the
S-D2D communication system operates at 2.4 GHz frequency and, communication from the BS
to the UE can be carried out at 2.1 GHz carrier frequency.

3 This transmission rang has been justi�ed in literature suitable for the device discovery [21].
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7.2 Channel Model
The propagation channel between a pair of D2D devices is not as same as it is between

the BS and the UE. The height of the antenna and the transmission power of the UE is very
low as compared to the eNodeB, which limits the area coverage of the D2D communication.
Therefore, we cannot directly use the channel models designed for the cellular system for the D2D
communication system [29]. We use the WINNER II path loss channel model designed to carry
out the D2D communication in the indoor-hotspot environment [29,31] as follows:

PL(εd)dB=A1log10(ε)+A2+A3log10(fc[GHz]/5+V+9σ+σLs , (31)

where fc indicates the carrier frequency. A1 includes the path loss exponent. A2 represents the
intercept, and A3 shows the path loss frequency dependency. V=5nw is the (light) wall penetration
parameter, where nw is the number of walls between the transmitter and receiver. Ψσ indicates the
shadowing parameter. Its value based on log-normal distribution with mean zero and standard
deviation σ =6. σLs=4.2 is the body shadowing loss [31]. The signal strength at the receiver is
measured by considering the transmit antenna gain as follows:

Psignal,dB=Pt+Gt+Gr−PL(εd)dB, (32)

where Pt is the transmit power of a transmitting device, Gt indicates the transmit antenna gain
and Gr indicates the receive antenna gain. The noise power on a dB scale is calculated as follows

Psignal,dB=10log10(KBTe)+10log10β+FN , (33)

where KBTe=174 dBm/Hz is the noise power spectral density and FN=6 dB represents a noise
�gure of the receiving device.

7.3 Video Caching Setup
For video streaming, we assume that each device can store 30–90 min (1800 seconds to 5400

seconds) long 1080 p YouTube video. We use the default recommended setting to measure the
size of the segments and the video.

7.4 Performance Metrics

According to the default settings, the maximum video �le size is 5.4 Gigabytes (GB)4. We vary
the segment playtime from 1 second to 10 seconds to measure the optimal beginning-segment size.
Each device requests for the video segments from a video library that comprises of 1000 distinct
video �les. We vary the video caching probability γc from 0.2 to 1.2 and request distribution
probability γr from 0.6 to 1. In the S-D2D caching system, each device will cache the beginning-
segments and the subsequent segments of the unique video �les5 based on a given value of Zipf
exponent γc from a video library of size L.

In the simulations �rst: (i) We distribute the devices randomly in a cell area then, (ii) We
assign the beginning-segments of the desired video �les in a Block-1 and the subsequent segments
in a Block-2 according to the Algorithm 1 and Algorithm 2 respectively. (iii) We generated 200
requests for beginning-segments, and subsequent segments for the large and small videos according

4 The average storage capacity of smartphones varies from 32 GB to 64 GB. Therefore, we assume that each UE in our
simulation is capable of caching video �les equivalent to one-hour long 1080p YouTube video.
5 In our simulations, we make sure that each mobile device is caching no duplicates of the video content.
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to the speci�ed values of γr. (iv) Finally, the requesting devices �nd the list of P-D2D devices
according to the segments access protocol described in a subsection.

We compare the proposed two-tiered caching approach with two traditional full video caching
schemes: the most popular content only (MPCO) caching scheme [32,33] that always stores in
the cache the most popular video �les; and the optimal cache policy (OCP) [32,34] that does not
exploit any knowledge of the users’ video abandonment behavior and always caches the unique
video �les on the users’ cache. To assess the performance of our proposed caching approaches,
we evaluate three important performance parameters: (i) Cache-hit ratio, (ii) Self-hit ratio and (iii)
Cache-throughput ratio. The cache-hit ratio measures the total number of requests satis�ed, over
the total number of requests generated for the video content. The self-hit ratio is the total number
of requests served through the requested users’ local cache, over the total number of requests
generated for the video �les. The cache-throughput ratio measures the total number of self-hits
and cache-hits (when the self-search process is unsuccessful), over the total number of requests
generated for the videos.

Next, �rst, in Fig. 4 we focus on the Block-1 of users’ cache space that evaluates the impact
of different values of γc and γr, on the size of beginning-segments for the indoor-hotspot D2D
communication scenario discussed in Section 6.1. Then, in Figs. 5–7, we assessed the performance
of our proposed caching schemes and compared them with MPCO and OCP.

7.5 Simulation Results
Figs. 4a–4c evaluate the impact of skew in video popularity and size of beginning-segments on

the average cache-hit ratio, average self-hit ratio, and average cache-throughput ratio respectively.
We dedicate 5% of the total users’ cache capacity to the ‘Block-1’ that is approximately equal to
300 seconds video clip.

It is observed from the �gures that the average cache-hit ratio, average self-hit ratio and
average cache-throughput ratio increases as the size of the beginning-segments decreases. For
instance, we can observe that, when each mobile device is caching 10 seconds beginning video
clip, we obtained the average cache-hit ratio 29.9–60.3%, average self-hit ratio 10–43% and,
average cache-throughput ratio 30.1–62.4% for different values of γc and γr. When the size of the
beginning-segments is decreased from 10 seconds to 1 second, we observed a signi�cant increase
in the performance ratio. The average cache-hit ratio increases to 84.2–91.3%, average self-hit ratio
increases to 50–79%, and average throughput-ratio increases to 83.9–93.6%. It shows that 79%
of users can start the video with zero startup-time through the self-search process, while 13%
of requests can be satis�ed through the cache-hit. This performance improvement is due to the
smaller segment size that creates a large and diverse pool of a virtual cache of beginning-segments.

Consequently, the requesting users are more likely to �nd the beginning-segments of the
desired video �les in their local cache as well as through the D2D link. This result proves
the effectiveness of delivering beginning-segments through our BSCP. We can also observe from
the �gure, that the average performance ratio of the BSCP increases as we increase the value of
γc and γr. In general, the more skewed the popularity distribution is, most viewers are interested
in a few and the most popular video content, that leads to the overall improvement in the BSCP
performance. Thus, we selected γc=1.2 as our γ(c,opt) and 1–3 seconds video clip as a possible
optimal beginning-segment size. To favor the most popular and less popular video content, we
will use γr=0.6 as our optimal request distribution exponent.
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(a) (b)

(c)

Figure 4: Evaluation of γ(c,opt) and optimal s(i,j) for different values of γc and γr. (a) Cache-hit
ratio vs. size of segments (seconds) (b) Self-hit ratio vs. size of segments (seconds) (c) Cache-
throughput ratio vs. size of segments (seconds)

Fig. 5 compares the performance of proposed cache policies for different cache sizes. We
varied the size of cache capacity from 5.4 GB to 64 GB. Figs. 5a–5c show the impact of cache
sizes on the average cache-hit ratio, average self-hit ratio and, average cache-throughput ratio
respectively. Surprisingly, a small increase in a percentage of cache capacity dedicated to the BSCP
can contribute signi�cantly to the cellular network in terms of delivering the beginning-segments
of the desired video �les with zero startup-time. For example, consider the case, when the cache
size of the Block-1 is increased from 5% to 30%. We can observe clearly from the �gure that 50%
to 95% of users can start the video with zero startup-time through the self-hit. The reason for this
improvement is that, when the percentage of cache size (Block-1) increases, it also increases the
cache space to accommodate more dynamic beginning-segments of the most popular as well as
the less popular video �les. Thus, the self-hit ratio improvement is more bene�cial for starting the
video with zero startup-time than increasing the total cache-hit ratio. However, no more bene�ts
can be obtained once the percentage of the cache Block-1 for storing the beginning-segments
increases beyond 30%.

When the performance of SLVCP and SPCP is assessed, we observed that both caching
policies follow the same trend when the percentage of cache capacity for the Block-2 is increased.
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However, for large cache space, SLVCP policy has a higher cache performance ratio. For instance,
the users of short length videos can not only start the video with zero startup-time, but up to
47.5% of users can enjoy continuous streaming delivery with zero playback-delay. While the 31%
of users can download the remaining segments of the desired short length videos from their
neighboring devices with low playback-delay. We can also observe that the performance of the
SPCP is better than the MPCO strategy. The reason behind that is that SPCP is capable of
caching more dynamic and large number of content (fully and partially) in comparison to the
MPCO strategy, which concentrates only on highly skewed popular content γc and caches the
whole video �les. The performance of the OCP is far from better. However, it was the expected
result because OCP does not exploit any knowledge of users’ priorities for watching the videos.

(a) (b)

(c)

Figure 5: Evaluation of the impact of different sizes of cache capacity on the average cache-hit
ratio, average self-hit ratio and, the average cache-throughput ratio on the BSCP, SLVCP, SPCP,
MPCO and OCP. (a) Cache-hit ratio vs. size of cache (GB) (b) Self-hit ratio vs. size of cache
(GB) (c) Cache-Throughput ratio vs. size of cache (GB)

Figs. 6a–6c evaluate the impact of different values of γr on the performance of the BSCP,
SLVCP, and SPCP. We observe that, the average cache-hit ratio, average self-hit ratio and average
throughput-ratio increases as we increase the value of γr. The implication is that for the small
value of γr the probability of �nding the less popular �les among a virtual cache pool of most
popular video �les is much smaller. However, as we increase the value of γr the average cache-hit
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ratio, average self-hit ratio and average throughput-ratio also increases. Which also increases the
probability of �nding the beginning-segments and later segments of the desired video content
within the vicinity of the requesting cellular users. Not surprisingly, our proposed cache policies
perform better than MPCO and OCP.

(a) (b)

(c)

Figure 6: Evaluation of the impact of different values of γr on the average cache-hit ratio, average
self-hit ratio and, average cache-throughput ratio on the BSCP, SLVP, SPCP, MPCO and OCP.
(a) Cache-hit ratio vs. request distribution exponent γr (b) Self-hit ratio vs. request distribution
exponent γr (c) Cache-throughput ratio vs. request distribution exponent

In Figs. 7a and 7b, we compare the performance of proposed caching schemes from sparse
to very dense environments. Fig. 7a illustrates the impact of density of P-D2D devices on the
average cache-hit ratio and Fig. 7b shows the effect of density of P-D2D devices on the average
cache-throughput ratio. Interestingly, the average cache-hit ratio and the average-cache-throughput
ratio for all caching policies are very close. They show the same trend when the density of P-D2D
devices is increased. The intuition behind this is that, as we increase the density of the P-D2D
devices in a cell, users get the opportunity to satisfy their random requests for the beginning-
segments and the subsequent segments from a very large aggregated virtual cache pool. Although
the dense user environment may lead to very intense D2D interference, users can �nd the video
segments from the devices in very close proximity. The chances of D2D success probability also
become higher. As expected, the performance of SLVCP and SPCP is even better than MPCO
and OCP. The remarks for this observation is that, as the SPCP can cache the dynamic and large
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numbers of content in the users’ cache space, the increase in the density of the P-D2D device
also linearly increases the size of the virtual cache. Thus, it increases the probability of �nding
the desired segments in the proximity of the requesting device.

(a) (b)

Figure 7: The impact of P-D2D density on average cache-hit ratio and average cache-throughput
ratio for beginning-segments, SLVP, SCP, MPCO and OCP, when γr=1.2 and γr=0.6. (a) Cache-
hit ratio vs. the number of P-D2D devices (b) Cache-throughput vs. the number of P-D2D devices

8 Conclusion

In this paper, we proposed a two-tiered S-D2D caching approach by taking into consideration
one of the important features of on-demand video streaming applications, namely, User Aban-
donment Behavior. Which is when users stop watching videos before their completion and after
watching only a few video chunks of the video. The S-D2D approach divides the cache space of
each D2D device into two blocks of different sizes. The �rst small block of the user’s cache is
reserved for storing and delivering only the beginning portion. The second block caches the latter
portion of the requested video �le’ fully or partially’ depending on the users’ video abandonment
behaviour and popularity of the video. We also proposed a segment access control protocol,
describing how the video segments are cached and shared in an S-D2D caching system. To control
the admission of segments into the user’s cache and improve the system throughput, we further
proposed and evaluated three caching algorithms, i.e., BSCP, SPCP and SLVCP. Our simulation
results showed that the BSCP achieved the average throughput-ratio from 83.9%–93.6%, among
which 79% of users can start the video with zero startup-time through the self-hit, while 13% of
requests can be satis�ed through the cache-hit. Our simulation results also proved that the SLVCP
outperforms all caching policies. We also proved in our simulations that, the SPCP performs better
than the MPCO and OCP, even if the caching conditions are not favourable. Our simulation
results also proved that the SLVCP outperforms all caching policies.
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