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Abstract: Lung cancer (LC) is the most common cause of cancer-related deaths in the UK due to 

delayed diagnosis. The existing literature establishes a variety of factors which contribute to this, 

including the misjudgement of anatomical structure by doctors and radiologists. This study set out 

to develop a solution which utilises multiple modalities in order to detect the presence of LC. A 

review of the existing literature established failings within methods to exploit rich intermediate fea-

ture representations, such that it can capture complex multimodal associations between hetero-

genous data sources. The methodological approach involved the development of a novel machine 

learning (ML) model to facilitate quantitative analysis. The proposed solution, named EMM-LC Fu-

sion, extracts intermediate features from a pre-trained modified AlignedXception model and con-

catenates these with linearly inflated features of Clinical Data Elements (CDE). The implementation 

was evaluated and compared against existing literature using F1 score, average precision (AP), and 

area under curve (AUC) as metrics. The findings presented in this study show a statistically signif-

icant improvement (p < 0.05) upon the previous fusion method, with an increase in F-Score from 

0.402 to 0.508. The significance of this establishes that the extraction of intermediate features pro-

duces a fertile environment for the detection of intermodal relationships for the task of LC classifi-

cation. This research also provides an architecture to facilitate the future implementation of alterna-

tive biomarkers for lung cancer, one of the acknowledged limitations of this study. 
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1. Introduction 

It has been recognised that lung cancer (LC) is one of the most common causes of 

cancer related deaths in the UK, and that it also accounts for 12.4% of all diagnosed can-

cers worldwide [1,2]. The diagnosis of LC commonly follows the identification of malig-

nant nodule(s) within a low-dose CT scan [3]. However, only approximately 16.2% of peo-

ple survive for more than 5 years after diagnosis [1]. Therefore, detecting malignant tu-

mours within the lung parenchyma or bronchi in a cancer’s early stages can increase the 

probability of effective treatment [2,4,5]. The pathophysiology of lung cancer is yet to be 

fully understood; however, academia within healthcare hypothesise that a continued ex-

posure to carcinogens, such as cigarette smoke, leads to genetic mutations and impacts 

protein synthesis, ultimately causing LC [2]. The symptoms of this disease can include a 

persistent cough, weight loss, dyspnea, and chest pain; a patient presenting with these 

symptoms would be referred for a computed tomography (CT) scan to provide a diagno-

sis [6]. 

As medical opinion is still highly regarded, the emergence of machine learning (ML) 

and new techniques must work in conjunction with radiologists and doctors in order to 

enhance productivity and precision [7]. The combination of modalities, such as images 

and textual information, lends itself to the medical field. This study presents a fusion ar-

chitecture designed to exploit the intermediate and intermodal relationships of CT scans 
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and clinical data elements (CDEs), which include symptoms, clinician observations, and 

cancer history, in order to provide a more accurate classification of LC. 

Current Methods 

The traditional pathway for LC diagnosis combines a multitude of screening tech-

niques including chest X-Ray scans, CT scans, and clinical biomarkers e.g., family history 

and smoking habits. Ref. [8] described three causes for the misdiagnosis of LC, namely 

observer error, tumour characteristics, and technical considerations. Indeed, 90% of 

missed LC cases occur from chest X-ray scans [8]. This highlights a fundamental problem 

with the current diagnostic methods for detecting LC. However, there is minimal discus-

sion pertaining to the future direction of LC diagnosis regarding emerging technologies, 

such as ML. More recently, this discussion was extended with regard to ML, but [5] ex-

pressed similar views upon the current limitations; marking cancerous cells is difficult 

due to the variance of intensity in CT scans and misjudgement of anatomical structure by 

doctors and radiologists. Following these studies, and providing an impetus for future 

research, [9] commented upon the use of emerging biomarkers, such as volatile organic 

compounds, sputum, metabolomics, and genetics, in conjunction with the application of 

ML. 

2. Literature Review 

2.1. Machine Learning 

Machine learning has been defined as “the extraction of knowledge from data” [7]. 

Within healthcare, various algorithms already outperform doctors and radiologists [10]. 

However, [11] addressed a number of ethical considerations and, although this study es-

tablishes a place for ML in healthcare, it also acknowledges some of the limitations that 

are present. Nevertheless, the discussion of these challenges lacks depth regarding causes 

and/or solutions. More recently, [12] extended this discussion, articulating the significance 

of unconscious bias, overreliance, and interpretability. Ultimately, ML solutions must be 

developed with respect to these limitations, as acknowledged within the evaluation of the 

findings presented in this study. 

2.1.1. Deep Learning 

Deep learning (DL) algorithms learn feature representations with multiple levels of 

abstraction [13]. Addressing this technology from the perspective of healthcare, the appli-

cation ranges from the diagnosis of Alzheimer’s to the prognosis of COVID-19 [14]. Many 

solutions adopt pre-defined networks and, in some cases, pre-trained weights to encour-

age faster convergence. Ref. [15] observed that tuning pre-trained weights can be very 

effective, allowing the network to adapt to the classification problem. This highlights the 

potential for utilising a pre-trained network for the task of LC classification. However, it 

does not acknowledge the potential limitations of this method. Ref. [16] articulated that 

their method was more effective when trained from scratch as opposed to fine-tuning 

VGG16 weights, as the gap between natural and pathological images was too large. This 

has been considered during the development of this study and, thus, pre-trained weights 

were only frozen where the distribution between training datasets were equal.  

Ref. [17] stated that pre-processing methods improve upon the accuracy of healthcare 

predictions. This implies that pre-processing methods will improve LC classification. 

However, their study only investigated the effect of this on Type II diabetes and, thus, the 

assumption cannot be made that this will apply to LC. Providing a more suitable analysis, 

[18] proposed a DL neural network which utilised pre-processing steps to reduce the noise 

and dimensionality of the data, which subsequently improved the results. The critical 

comparison of these studies underlines the general consensus that applying considered 

pre-processing steps serves for a better feature representation and, thus, a more accurate 

model.  
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Ultimately, [19] established a specific set of pre-processing steps for the task of ma-

lignant nodule detection in CT imaging. This method was recognised by many scholars 

due to the exceptional results which it produced. However, for some of these steps, mini-

mal justification was provided, specifically a number of arbitrary values which determine 

the inclusive nature of the applied mask. As a result, these steps may lack repeatability 

for alternative LC datasets whereby the distribution differs from that of the data used by 

[19]. Despite this, [20] reinforces this implementation, albeit on the same dataset. These 

steps have been used within the data pipeline of the proposed solution presented in Sec-

tion 3. However, the implementation has been discussed with respect to the lack of justi-

fication provided by [19]. 

Following the natural progression of data manipulation, [19] also implemented a 

number of data augmentation techniques specific to malignant nodule detection in LC. 

Included within these steps was rotational and horizontal flip augmentation, thus, pre-

serving the distribution of the data and improving model generalisation. Evidence pre-

sented by [21] confirms that over 60% of prior medical studies implemented basic aug-

mentation techniques, thus, validating the decision to include the techniques proposed by 

[19] within the developed solution. 

When screening at-risk patients for LC, CT is considered as one of the key methods 

[22]. As a result, convolution neural networks (CNNs) have been extensively researched 

in regard to the feature extraction of medical images [23]. In 2018, [24] achieved a sensi-

tivity and specificity of 0.87 and 0.991, respectively, using a deep convolution neural net-

work to detect LC nodules in CT scan images from the KDSB17 dataset. Acknowledged 

as a limitation, their method downsized the input images to 128 × 128 from 512 × 512 due 

to hardware constraints, which could have led to the loss of important features [24]. How-

ever, [25] extended this approach by implementing transfer learning with AlexNet, a pre-

trained variation of a CNN, achieving an accuracy of 96%. Despite this, the authors did 

not address what data they used, which negatively affects the validity and repeatability 

of this study. However, aligning with their predominant use, this study will adopt a CNN 

architecture for the feature extraction of CT scan images. 

2.1.2. Multimodal Learning 

Modality has been defined as the way in which something happens or is experienced 

[26]. Multiple modalities are inherently present within the realm of medicine [27] and, 

thus, multimodal learning can be highly effective within DL and healthcare, improving 

the accuracy, sensitivity, and specificity of some classification problems [28,29]. This es-

tablishes that the utilisation of multimodality can result in robust and accurate predic-

tions. As seen within the current diagnosis pathway, the method of diagnosis includes the 

type, size and location, and overall clinical status of the patient [30]. However, scholars 

have commented upon the difficulty of exploiting Supplementary Data as opposed to just 

complementary data within DL multimodal models [26]. In contrast, [31] identified that 

the utilisation of multiple modalities provides superior results regarding the effect of Sup-

plementary Data; a characteristic which is sought to be applied to the task of LC classifi-

cation.  

The abundance of fusion techniques has accelerated the growth of multimodal ML. 

Such techniques include joint and co-ordinated representations, as in [26]. Ref. [32] pro-

vided a critical comparison between these two techniques and presented equal arguments 

for both approaches. However, this balanced discussion is not reflected in the literature, 

as a consequence of the lack of ability to interpret more than two modalities within coor-

dinated representations. In a more recent study, [33] presented a multimodal architecture, 

projecting intermediate features into a joint space for classification. This architecture en-

riched the feature representations with unimodal models including a CNN and stacked 

denoising autoencoders. This outperformed other methods, but only for the task of Alz-

heimer’s disease (AD) classification. Thus, by taking inspiration from this approach, the 

model presented in this paper adopts similar steps. 



AI 2022, 3, 38 662 
 

In respect to LC, several modalities have been identified as good indicators, including 

CT/PET/MRI scans [22], clinical/metabolomic biomarkers [34], and volatile organic com-

pounds [35]. However, current screening trials, such as NLST, oversimplify LC risk pre-

diction, reducing the cost efficacy due to the primary use of low-dose CT scans. It has been 

recognised that the pre-test probability can be improved if other clinical biomarkers, such 

as cancer history, history of other diseases, and asbestos exposure, are used [36]. This pro-

vides evidence on the suitability of multimodal learning for LC classification. However, 

in contrast to AD, there is a lack of multimodal datasets suitable for the inclusion of these 

biomarkers. Ref. [20] utilised the NLST and VLSP datasets and applied a co-learning ap-

proach, achieving an AUC (area under curve) of 0.91. However, it was articulated that 

their approach could be improved with additional CDEs, thus, providing an impetus for 

the implementation of a novel dataset.  

The Lung Cancer Screening (LUCAS) dataset, published in 2020, provides 830 sam-

ples, including 76 CDEs and CT scans for each patient. This dataset was also presented 

alongside a benchmark ML architecture with an F1 and AUC score of 0.25 and 0.702, re-

spectively [37]. More recently, the SAMA model improved this to an F1 score of 0.341 with 

a standard deviation of 0.058 [38]. The additional CDE data, despite the smaller sample 

size, provides a solution to the aforementioned limitation expressed by [20]. However, the 

data presented by [37] lacked clarity regarding the categorical nature of the CDEs. Despite 

the critical comparison against more established datasets, [37] offers an alternative dataset 

to provide an incentive for the development of multimodal ML for LC classification.  

While the aforementioned approach proposed by [33] yielded good results for AD 

classification, the implementation for LC must be further validated. Ref. [39] identified 

that simple concatenation of the output features of unimodal models may lack the depth 

needed to exploit intermodal interactions. This implies that the implementation presented 

by [33] may fail to exploit the full potential of multiple modalities. In contrast, [16] extracts 

intermediate features from a pre-trained CNN model. It was identified that extracting 

these multi-level features from various layers within a CNN provided a richer feature 

representation and higher AUC than those purely extracted from the last fully connected 

layer. This richer fusion technique was more effective at exploiting the complex multi-

modal associations within heterogenous data, and increased the accuracy from 83.6 to 91.1 

[16]. The method presented by [16] provides an approach which can be applied to the task 

of LC classification, as demonstrated in the subsequent sections of this study.  

Although the argument presented by [16] highlights the potential benefits of extract-

ing a richer feature representation from the CT scan, there is a requirement to learn a good 

feature representation in every modality before information fusion. This establishes a 

need to increase the dimensionality of the CDEs. Ref. [16] used a denoising autoencoder 

to achieve this, with an architecture in which the dimension of the encoded layer is greater 

than the dimension of the input layer. This further questions the validity of the approach 

used by [33], as the down-sampling from successive layers within a CNN is also a process 

of information loss [16]. Acknowledging the approaches of both [16] and [33], the solution 

presented in this study aimed to improve the feature representation of each modality, 

prior to fusion, for the task of LC classification. 

2.2. Summary 

Despite the recent successes of multimodal fusion as presented by various authors, 

the literature review highlights several shortcomings pertaining to the specific features 

which are utilised for the task of LC classification. It can be observed that current solutions 

for the task of LC classification only utilise the last layer(s) of a pre-trained feature extrac-

tor prior to multimodal fusion. Acknowledging works from other diseases, this approach 

lacks the depth required to identify intermodal relationships [39]. From an architectural 

perspective, the specific contribution that this paper aims to provide addresses this gap, 

concatenating multi-level feature representations from pre-trained networks for the task 

of multimodal fusion, taking inspiration from works presented by [16]. 
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Further motivating this study, the review of relevant literature brought to light the 

scarcity of papers which utilise the multimodal dataset presented by [37], whereby a 

larger foundation of work would support the argument for adopting multimodal learning 

towards LC classification with the intention of improving existing solutions, such as [19]. 

3. Materials and Methods 

3.1. Research Strategy 

The research strategy and selection criteria applied to Section 2 was refined to present 

the most relevant papers for discussion. Google Scholar and several other repositories in-

cluding ResearchGate, IEEE, Arxiv, ScienceDirect, and PubMed were used to search for 

academic literature around the topics of medicine and machine learning, utilising combi-

nations of the following keywords: “Lung Cancer”, “Diagnosis”, “Machine Learning”, 

“Classification”, “Multimodal”, and “Fusion”. Subsequent literature was constrained by 

several variables, namely validity, relevance, and accessibility. The outstanding papers 

were then filtered using the inclusion and exclusion criterion described in Table 1 to for-

mulate a critical discussion which facilitated the process of identifying a gap in the litera-

ture. 

Table 1. Literature inclusion and exclusion criterion. 

Include Exclude 

Deep learning papers published since 

2012 
Exclude all papers published before 2002 

Peer-reviewed Studies Any thesis lower than master’s  

Multimodal solutions for other problems 
Papers written in a language other than Eng-

lish 

3.2. Development 

The development of this model explores an alternative method to improve the clas-

sification of LC diagnosis by combining techniques identified within the literature review. 

This section details the tools, datasets and model architecture which have been imple-

mented, providing where needed the justification for each decision and reasons for why 

alternative methods were not adopted. 

3.2.1. Tools/Frameworks 

Table 2 describes the tools that have been used throughout the development of this 

project. Supporting future iterations and the reproducibility of this study, their respective 

versions have also been provided. Despite many researchers regarding the differences be-

tween PyTorch and TensorFlow as personal preference, PyTorch was used, as it facilitated 

faster and more intuitively pythonic development, an observation also made by [40].  

Table 2. Development tools. 

Tool Version Use 

Language Python 3.9 Develop ML pipeline 

Libraries 

Nilearn 0.9.0 NifTI image handling 

Pandas 1.4.0 Dataset handling and sanitization 

TorchIO 0.18.76 Data augmentation 

Pytorch 1.11.0 ML network layers 

CUDA 11.3 GPU accessibility 

Scikit-learn 1.0.2 Evaluative functions 
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3.2.2. Dataset 

To facilitate parallel co-learning and to align with the proposed model architecture, 

heterogeneous data pairings were required. Table 3 lists five common datasets that have 

been used to develop ML solutions for LC diagnosis. A specific selection criteria was de-

veloped to aid this process including the type of data that was available, the number of 

samples, and its accessibility. 

Table 3. Comparison of datasets. 

Dataset Accessibility CT Scans Clinical Data Sample Size 
Appearance in 

Literature * 

NLST 1 1 1 26254 1 

KDSB17 0 1 0 1397 1 

UCI 1 1 0 32 1 

LUCAS 1 1 1 830 0 

MCL 1 0 1 61 1 

* Mentioned or referenced by at least 10 other relevant studies as of January 2022. 

In contrast to some of the more prevalent datasets identified within the literature 

review, the LUCAS dataset provided greater compatibility for the multimodal nature of 

this research problem. However, there were several limitations which impacted the adop-

tion of this dataset, including the sample size and distribution, characteristics which could 

cause overfitting and lead to questions about the generalisability of the results. Despite 

these limitations, there are few studies which develop upon the benchmark network pro-

posed by the authors and, thus, a stimulus to contribute towards the literature is provided. 

Notwithstanding this, the aforementioned limitations have been acknowledged within 

the analysis of the results. 

Pre-Processing and Data Augmentation 

Ref. [20] and previously [41] mirrored the pre-processing steps defined by [19] and, 

thus, established the validity of this approach and justified its application within this so-

lution. Interestingly, [37] omitted these pre-processing steps within their benchmark 

model, potentially limiting the performance of their solution. Consequently, applying 

these aforementioned steps within the ML pipeline provides an improvement upon pre-

vious classification tasks on the LUCAS dataset. 

Addressing the aforementioned challenge of overfitting, data augmentation should 

alleviate this and improve generalisation [42]. The implemented steps aimed to reflect the 

distribution of the original data, utilising random flip and rotation, also aligning with the 

implementation presented by [19] 

3.2.3. Model 

Established by [16], multi-layer feature extraction can provide richer feature repre-

sentations of an input image. To facilitate this and to improve upon previous works, this 

solution implemented three models, utilising a modular training scheme to extract richer 

feature representations and to improve the fusion technique previously observed 

throughout literature. The three models are listed as follows: 

1. A Unimodal 3D-CNN classification of LC in CT scans (Modified AlignedXception); 

2. A DAE for dimensionality increase in CDEs; 

3. A feature fusion network, combining stages 1 and 2. 

The two backbone models, including the DAE and modified AlignedXception net-

work, are pre-trained on the same train data, and the respective inputs are forwarded to 

the feature fusion network. Figure 1 details the overall architecture of this model. 
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Figure 1. Model architecture schematic. 

Denoising Auto Encoder Network 

As previously discussed, the motivation for implementing the DAE was to increase 

the dimensionality and, thus, the significance of CDEs during fusion. This approach was 

adopted from [16], as it was observed to improve the performance of the fusion model. 

Replicating the architecture presented by [16] and encouraging the model to learn more 

generalised representations of the data, noise is added to the input during training using 

a dropout layer where p = 0.2 (Figure 2); this incentivises the model to be robust to missing 

data and prevents the model from learning an identity function [16]. However, during 

inference, all data points are fed into the DAE. Interestingly, there is a lack of work in the 

literature investigating the efficacy of inflating the dimensionality of data using DAEs to 

improve the fusion of multiple modalities; this observation was also made by [16].  

 

Figure 2. Denoising autoencoder schematic. 

To stimulate a discussion upon the optimal architecture of the DAE for this solution, 

a number of models were developed varying the factor of inflation, where f is the number 

of features and n is the degree of inflation, such that inflation = f*n. Moreover, an 
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additional model, omitting the DAE, is also implemented to evaluate its true effect on the 

performance of the model. The results of this are discussed in Section 5. 

AlignedXception Model 

Although this study implements the approach presented by [37] as a starting point, 

their original paper lacked depth and clarity regarding the justification for implementing 

a modified AlignedXception model. Thus, it was important to understand how this model 

compares to other architectures, such as Inception and VGG, and whether a more appro-

priate model could have been used.  

Evaluating their novel architecture, [43] provided several pieces of evidence which 

motivated the keeping of this model. Interestingly, it was established that the AlignedX-

ception model could outperform InceptionV3, VGG-16, and ResNet-152 while using a 

similar number of parameters. This indicates that each layer was able to learn a more ef-

fective feature representation and, thus, lends itself to the task of enhanced feature extrac-

tion. Additionally, the authors compared the schematic architecture to VGG16 and ob-

served that in some respects they are similar, which aligns with previous studies for using 

VGG16 as a feature extractor, such as in [16,43]. Figure 3 provides the schematic of the 

developed AlignedXception architecture. 

 

Figure 3. Schematic of the AlignedXception model. 

3.3. Evaluation 

To facilitate a comprehensive comparison to existing works, this study evaluates a 

range of model architectures. This included a baseline model replicating the implementa-

tion developed by [37] (control), an enhanced CT feature representation with simple linear 

inflation of CDE (EMM-LC), and an enhanced CT feature representation with DAE en-

riched CDE (EMM-LC DAE). It is important to acknowledge that the justification for re-

implementing the approach presented by [37] is to identify how it performs compared to 

other solutions on exactly the same hardware in order to reinforce a valid comparison. 

A lack of consistency within the evaluation metrics used between studies posed a 

challenge towards understanding how this novel approach compares. Therefore, to limit 

the subjective interpretability of these results, this study implements the evaluation met-

rics used by [37], which includes F1-Score and AUC in addition to average precision (AP) 

which was used by [38]. By implementing these metrics, subsequent comparative analysis 

can better substantiate claims that this method is superior, mitigating ambiguity within 

this study. To support this discussion and to expand on these results, an independent 
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sample t-test is utilised to identify if any statistically significant improvements have been 

made.  

In addition to the aforementioned evaluation metrics, sensitivity, specificity, and ac-

curacy have also been implemented, as listed in Table 4. This was necessary in order to 

stimulate a critical discussion upon its implementation within current healthcare technol-

ogies, which commonly use these metrics, and whether it improves upon traditional di-

agnostic techniques. However, it must be acknowledged that accuracy will not inde-

pendently form an argument for the adoption of this technique, as it lacks clarity and is 

significantly affected by the uneven distribution of positive and negative samples. Table 

4 highlights this, whereby accuracy is the only metric to combine all values, obscuring 

specific performance insight. 

Table 4. Evaluation metric equations. 

Evaluation Metric Formulae 

Sensitivity 
��

(�� + ��)
 

Specificity 
��

(�� + ��)
 

Accuracy 
�� + ��

(�� +  �� + �� + ��)
 

F1 score 
��

�� +  
1
2

(�� + ��))
 

TP, true positive; FP, false positive; TN, true negative; FN, false negative. 

3.4. Summary 

The focus of this methodology was to articulate the design implementation of the 

network architecture and to provide information to support the repeatability of this study. 

Crucially, it offers justification for the decisions made in regard to its development, and 

acknowledges ways in which limitations, regarding the evaluation, were mitigated. 

4. Implementation 

4.1. Pre-Processing 

4.1.1. CT Scans 

The pre-processing steps defined by [19] are considered by numerous scholars to be 

a standard technique for pre-processing CT scans for the task of LC detection. Despite the 

overwhelming adoption of these steps, some aspects lacked clarity, as discussed in Section 

2. This ambiguity produced inaccurate results. 

To address this limitation, several arbitrary values were altered within the pre-pro-

cessing to improve the mask extraction of the image. Figure 4 provides evidence to high-

light this improvement. Details of these changes have been omitted from the main body 

of work as it is not the primary focus of this study. By reducing the threshold of certain 

values, it must be assumed that the number of distracting features increased, a character-

istic sought to be mitigated by [19]. The effect of these changes has been addressed in 

Section 6. 
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(a) (b) 

Figure 4. Random sample of pre-processed scans. (a) Previous method defined by [19] produces an 

error rate of 6/25. (b) Adapted solution, with new thresholding, produces an error rate of 1/25. 

Irrespective of the improvements observed in Figure 4, a total of six scans failed, re-

sulting in either one lung or no lungs being extracted from the scan. It was identified that 

the original image of these scans differed from the normal distribution, indicating that the 

scan was taken incorrectly or that there was a technical fault in the scanning procedure. 

This aligns with the observation made by [8] that errors can be attributed to image quality 

and or patient positioning/movement during a scan. To mitigate the impact that this had 

on the training procedure, any scans which failed the above process were removed from 

the training data in order to prevent the model learning poor features representations. 

Figure 5 illustrates the pre-processing of a single scan. 

 

Figure 5. Data pre-processing. 

4.1.2. Clinical Data Elements 

The adoption of the multivariate dataset proposed by [37] presented a number of 

challenges which may have contributed to previously low performance metrics. Figure 6 

depicts the correlation matrix between all attributes, several of which had no inputs, 

visually indicated by the missing correlation data which were removed from the dataset. 

As discussed in Section 2, some data was categorical but was not clarified within the paper 

and, thus, all values were clipped between 0 and 1. 
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Figure 6. CDE Correlation Matrix. 

4.2. Data Augmentation 

As discussed in Section 3, the acquired dataset is small and, thus, vulnerable to over-

fitting. In order to mitigate this and to better generalise to the validation set, data augmen-

tation was applied. Figure 7 illustrates the transformations applied using TorchIO for the 

3D tensor manipulations. Specific augmentation techniques included horizontal flip, 

where p = 0.5, ±20° affine transformation, and resizing to 128³, aligning with the basic aug-

mentation implemented by [19]. 

 

Figure 7. Data augmentation. 

To conclude the augmentation steps and to align with the approach presented by 

[37], weighted sampling was implemented to balance the distribution of classes. However, 

the limitations of this method were not acknowledged by [37]. Ref. [42] stated that over-

sampling a minority class can lead to overfitting. During development, this was observed. 

However, this limitation was alleviated when combined with the other previously dis-

cussed augmentation techniques. 

4.3. Training 

The networks were trained on Google Colab Pro, utilising a high-end graphics pro-

cessing unit (GPU) and storage; the hardware is detailed in Table 5. Several techniques 

were implemented in order to reduce training time, prevent overfitting, and enable re-

peatability, which involved using deterministic methods, larger batch sizes, simulated 

Original Flip Rotation [Padding] Resize 
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annealing, and reduced learning rate on plateau; these techniques were mostly employed 

by [37]. 

Table 5. Hardware. 

Component Type 

GPU Tesla P100-PCIE-16 GB 

CPU Intel(R) Xeon(R) CPU @ 2.30 GHz 

RAM 32 GB 

Storage Google Drive 100 GB 

Due to time constraints, it was not feasible to conduct statistical tests for every change 

made during development in order to justify design choices. Therefore, to validate any 

improvements made, deterministic methods were invoked. These values aimed to miti-

gate some indeterministic aspects of the learning phase which could potentially lead to 

varying results. This validates the improvements observed during testing. However, it 

must be acknowledged that these methods are not full proof, and some variability can still 

be sourced between GPU and central processing unit (CPU) extensions or different plat-

forms [44]. For tests which determined the efficacy of the overall approach, such as for the 

simple multimodal (SMM) and enhanced multimodal 75k (EMM 75k) model, tests for sta-

tistical significance were calculated, utilising indeterministic methods. 

4.4. Modified AlignedXception Model 

4.4.1. Architectural Changes 

The complexity of the architecture proposed by [37] was reduced to decrease training 

time and support smaller input sizes. From a hardware perspective, this freed up memory 

and consequently facilitated the use of batch normalisation, a technique that required suf-

ficiently large batch size in order to reduce model error [45]. Table 6 details all the archi-

tectural changes made. 

Table 6. AlignedXception architectural changes. 

Change Original Proposed 

Batch size 13 32 

Image size 256³ 128³ 

AlignedXception output fea-

tures 
512 × 4 × 4 × 4 256 × 2 × 2 × 2 

Convolution input channels 32, 64, 128, 256, 256, 512 16, 32, 64, 128, 128, 256 

Acknowledging these changes, a baseline model was re-implemented in order to pro-

vide grounds upon which an argument can be formed and, thus, to draw a direct compar-

ison between the new fusion method and previous architectures in the same environment. 

This baseline model, referred to as SMM, mirrors the fusion method proposed by [37] and 

adopts the aforementioned architectural changes and data pre-processing/augmentation 

described in Sections 4.1 and 4.2. As a result, any significant difference against the new 

method can be directly attributed to the change in fusion technique. 

4.4.2. Feature Extraction 

The extended part of this architecture which distinguishes it from previous multi-

modal techniques on this dataset is the explicit extraction of intermediate features from 

pre-trained networks. The intermediate features are returned in the forward pass of the 

pre-trained network, consisting of 65,536, 8192, and 2048 features, respectively. Following 

this extraction, they are concatenated with the features obtained from the CDEs. 
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4.5. Denoising Autoencoder Model 

Providing clarity to this implementation, all aspects described by [16] were included 

within this solution, including the specific values for dropout layers and L1 regularisation 

as to prevent the model from learning an identity function. Equation 1 provides clarifica-

tion for the mean squared error (MSE) loss function with L1 regularisation. 

�(�) =  
1

�
�(�(��; �) −  ��)�λ||��|| 

�

���

 

Equation 1. MSE Loss with L1 Regularisation. 

Despite this clarity, there was ambiguity in regard to the training parameters, such 

as the learning rate or accepted performance metrics. However, finding better hyperpa-

rameters was outside the scope of this paper, and so it was approximated. The training 

configuration for this model has been provided in Table 7. Each model was trained for 200 

epochs. 

Table 7. DAE hyperparameters. 

Hyperparameter Value 

Learning rate 0.001 

Batch size 32 

Lambda L1 regularization 0.001 

Epoch 200 

Aligning with the training methodology presented by [16] the CNN and DAE model 

were pre-trained for the use of intermediate feature extraction by freezing their weights. 

Despite [15] articulating the efficacy of tuning weights, the same training data was used 

for both models and, as a result, the weights were frozen, as both training datasets had 

equal distribution. To facilitate this, the back propagation of the gradient required to up-

date the weights was not passed through the pre-trained models. In addition, BN and 

dropout were disabled by setting the pre-trained models to evaluation mode. 

4.6. Summary 

Facilitating the validity and repeatability of this study, all aspects of the implemen-

tation have been discussed, including the data augmentation, training environments, and 

hyperparameters. In addition, further clarity has been provided within Appendix A in 

regard to the implementation of the pre-processing steps. 

5. Results 

The purpose of this study was to identify and develop a method to better exploit 

intermediate features for the task of multimodal fusion in LC classification by focusing 

efforts on improving upon the implementation proposed by [37]. In order to contribute to 

the implementation of this approach and to validate the findings of this study, additional 

evaluation metrics were implemented, consisting of F1 score, AUC, and AP, as well as 

sensitivity and specificity. This provided a clearer understanding into the performance of 

the proposed solution from both a ML and medical perspective. 

5.1. The Efficacy of Pre-Processing and Augmentation 

Implementing a simple feature concatenation method in conjunction with the im-

proved data pre-processing and augmentation methods yielded an average F1 score of 

0.402, as shown in Table 8. In comparison to the original benchmark model proposed by 

[37] which achieved 0.25, the mean F1 score of the SMM is an improvement of 60.8%. 

Improvements are also noted in AUC and AP. 
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Table 8. Descriptive statistics of SMM. 

Model F1 AUC AP 

 Mean Std Mean Std Mean Std 

LUCAS 0.25 -- 0.702 -- -- -- 

SAMA 0.341 0.058 -- -- 0.251 0.061 

SMM 0.402 0.04 0.843 0.036 0.419 0.074 

The evaluation of the SMM model was taken from five independently trained models 

to provide validity to these results. The standard deviation has also been provided within 

Table 8 to support subsequent t-tests to observe any statistically significant improvements 

that differing fusion methods provide. This model acts as a baseline to compare subse-

quent developments.  

5.2. The effect of utilising intermediate features 

As highlighted in Section 2, some scholars expressed the importance of improving 

the fusion method in order to better exploit intermodal relationships [39]. To explore this 

concept, intermediate features were extracted from a pre-trained modified AlignedXcep-

tion model and concatenated with the simple linear features of the CDEs. In total, two 

additional tests were conducted, varying the number of extracted features. Five repeat 

tests were conducted for the EMM-LC 75k model to validate the results. The mean and 

standard deviation have been provided in Table 9. 

Table 9. CT scan feature extraction, along with the SMM and EMM-LC 75K averaged results from 

five independent tests, presenting mean and std. 

Model Name CT Features F1 AUC AP 

  Mean Std Mean Std Mean Std 

SMM-LC 2048 0.402  0.040 0.843 0.036 0.419 0.074 

EMM-LC 10k 10,240 0.400 0.876 0.876 

EMM-LC 75k 75776 0.508  0.031 0.847  0.011 0.53  0.069 

The mean F1 score of 0.508 with a standard deviation of 0.031 significantly improves 

upon the original SMM fusion method by 26.37%. Figure 8 displays these results, high-

lighting that the intermediate pre-trained features improve the performance of the multi-

modal fusion network. In order to identify the statistical significance of this result, a paired 

t-test with equal variances was applied. This yielded a p-value of 0.0007, confirming the 

statistical significance to 99.93% confidence. 

 

Figure 8. Box plot comparison of SMM and EMM fusion models. 
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In order to facilitate a critical discussion of the results obtained from both an ML and 

medical perspective, the specificity and sensitivity were calculated, observing 0.9615 and 

0.5385, respectively, for the best EMM-LC 75k model. 

5.3. Enriching CDEs with a DAE 

Three tests were performed to provide a comprehensive analysis upon the effect of 

enriching the CDEs with a DAE, taking inspiration from the implementation provided by 

[16]. Although this study already investigated the efficacy of this approach at differing 

levels of inflation, it was a pre-requisite to re-implement these tests, as the complexity of 

data was increased to accommodate the added dimensionality of CT scans. Table 10 de-

tails the tests conducted. 

Table 10. Description of tests to validate the implementation of DAE. Tests were implemented in 

conjunction with the same architecture as the EMM-LC 75K model. 

CDE Description CDE Features 
Total Number of Features 

Concatenated 

DAE inflation (×10) 740 76,516 

DAE inflation (×20) 1480 77,256 

DAE inflation (×30) 2220 77,996 

Contradicting earlier studies, the implementation of the DAE to enrich the CDEs neg-

atively affected the performance of the model, as highlighted in Figure 9. In addition, there 

was no significant improvement between the degrees of inflation. In an attempt to im-

prove these results, regularisation techniques were reduced with the intention of preserv-

ing data whilst encouraging a rich feature representation. However, this did not have any 

noticeable impact on the results. 

 

Figure 9. Varying the degree of inflation with DAE. 

5.4. Summary 

The results presented within this section prove with statistical significance that by 

enhancing the feature representation of the CT scan, the performance of the model can be 

improved. Figure 10 highlights a number of studies implementing solutions towards the 

same dataset. Notwithstanding the visible improvement, this was achieved with reduced 

model complexity and half the original image size. However, contradicting the implemen-

tation proposed by [16], using a DAE to enrich the CDEs had a negative impact on the 

performance of the model. 
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Figure 10. Comparison of EMM-LC Fusion against previous benchmark models. 

6. Discussion 

The objective of this study was to identify current ML solutions for LC diagnosis and 

to improve these by developing an architecture which utilises intermediate pre-trained 

features within the fusion of multiple modalities. The tests conducted aimed to provide 

empirical evidence to support the claim that the proposed fusion method is superior to 

existing techniques.  

6.1. Main Findings 

It was found that by utilising the pre-processing steps defined by [19], see Appendix 

A for detail, and BN, in addition to reducing the model complexity, the model could out-

perform previous benchmark models on the same validation set by 60.8% (Section 5.1). As 

part of the main focus of this study, it was also established that by increasing the number 

of intermediate features extracted from the pre-trained AlignedXception network, the 

model was able to better distinguish between cancerous and non-cancerous patients. The 

statistically significant improvement of 26.37% (Section 5.2) validated the new fusion ar-

chitecture presented in this study. Interestingly, however, and contrary to the pre-existing 

literature, utilising a DAE to enrich the features of the CDEs negatively affected the pre-

dictive capabilities of the model. 

6.2. Simple Multimodal Fusion 

In order to draw a fair comparison between methods, a simple multimodal fusion 

architecture was re-implemented under the same conditions as the EMM-LC model. To 

improve upon this implementation, despite it not being the main focus of this study, the 

pre-processing, architectural changes, and training parameters increased the F1 score 

from 0.25 to 0.402 (Section 5.1). Although these results cannot be compared like for like, it 

is extremely indicative that these techniques improve upon previous literature. These re-

sults supported the initial hypothesis that justified the reasoning for utilising these tech-

niques. Clarifying the cause for these improvements, [19] articulated that the pre-pro-

cessing techniques removed distracting features; however, there is little evidence to estab-

lish the actual numerical improvement despite the prevalent adoption from other schol-

ars. Batch size has a greater impact on the efficacy of batch normalisation (BN) compared 

to instance normalisation (IN). Ref. [45] clarified that IN has limited success in visual 

recognition tasks. Originally, instance normalisation was implemented, but the results ob-

served when implementing BN align with the findings presented by [45]. 

Figure 11 shows the statistical improvements that this implementation provides re-

garding the observed F1 score, which were 0.25 and 0.402 for the LUCAS and SMM-LC 

model, respectively. It must be acknowledged that this method also exceeds in other quan-

titative measures, such as inference time, due to the decreased computational complexity 

from reducing the input image; however, the evaluation of this is outside the scope of this 

paper.  
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Figure 11. The SMM comparison against the LUCAS benchmark. 

6.3. EMM-LC Fusion 

The findings presented within this study provide a clear indication that by utilising 

an enhanced feature representation, the performance of the model can be improved sig-

nificantly and, thus, satisfies one of the main objectives of this study. However, it is im-

portant to acknowledge how these findings contribute to the existing literature. The in-

spiration for this approach originated from the implementation presented by [16], a 

‘Richer fusion network’, in which a multilevel feature representation provides a fertile 

environment for full multimodal fusion. Other scholars, particularly within the realm of 

semantic image segmentation, have also adopted similar approaches on account of the 

ability for CNNs to learn good feature representations from unstructured data [16]. How-

ever, for the task of LC classification, there was insufficient evidence to confirm that this 

approach has been used, thus, providing a valid contribution to the existing literature. 

Notwithstanding the distinction in applications, the findings with regard to the mul-

tilevel feature representation aligns with [16] and improves upon the existing benchmark 

model developed by [37], as seen in Figure 12. Visually, this graph indicates that the ar-

chitecture may further benefit from additional features. However, the existing literature 

suggests that by utilising all feature maps, no significant improvement is observed, and 

computational cost is greatly increased [16]. Therefore, this validates the implementation 

presented within this study. 

 

Figure 12. Varying degrees of CT feature enhancement. 
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The significance of the proposed architecture must be considered from a medical per-

spective in order to provide a realistic interpretation of the results. Presented in Section 

5.2, the specificity and sensitivity metrics provide an in-depth understanding of the ability 

to detect and classify true positives and true negatives. The values show the efficacy of 

detecting negative samples with a specificity of 0.9615. However, a sensitivity of 0.5385 

highlights the challenge of detecting positive samples.  

6.4. EMM-LC DAE Fusion 

Despite the significant improvements that this new fusion method provides, the ar-

gument presented by [16] suggests that the large imbalance of features would limit the 

performance potential of the model by overwhelming the low-dimensional clinical data 

by the high-dimensional CT data. However, implementing the DAE to enrich the CDEs 

did not yield the expected improvements.  

The previous literature provides a strong indication that the decline in performance 

is a reflection on the choice of CDEs, as opposed to an architectural flaw. Ref. [46] articu-

lated that the proliferation of data that is unrelated to the question of interest hinders the 

ability to detect real relationships and patterns. This signifies that the amplification of di-

mensionality inadvertently increases the number of redundant features. In relation to this 

solution, the implementation of the DAE increases the significance of variables which 

have little relevance to the task of LC classification, thus, worsening the performance of 

the model. The significance of these findings challenge the novel implementation pro-

posed by [16] but do not negate it; the limitation stems from the data, not the approach. 

However, the existing literature, or lack thereof, regarding this method does also contrib-

ute to the argument that it is not an appropriate feature inflation method.  

6.5. Summary 

This section interprets and synthesises the findings presented in this study with re-

spect to the existing literature. Moreover, this discussion establishes the contribution that 

these results provide and, crucially, identifies the cause for contradictory findings with 

respect to the relevant literature to support these claims. It also introduces some of the 

limitations in regard to the findings presented.  

7. Limitations 

The most prevalent limitation within this study stems from the quality of the data, a 

constraint that caused the conflicting results reported in previous literature. Figure 13 

draws attention to this by illustrating the correlation between the 74 CDEs and LC. It has 

already been highlighted that features which do not positively contribute to the task in 

question prevent relationships and patterns from being learned [46]. Therefore, the imple-

mentation of the DAE would increase the significance of redundant features, thus, impair-

ing the distinguishing capabilities of the multimodal model. 
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Figure 13. Correlation matrix of CDEs against cancer. 

This indicates that the utilisation of alternative biomarkers may better anticipate the 

diagnosis of malignant tumours and ultimately limit the number of diagnostic procedures 

on benign nodules [9]. It has been well established that the use of biomarkers improves 

the performance of multimodal models, but this study clearly identifies that the way in 

which these are incorporated has a significant impact on the identification of intermodal 

relationships.  

Continuing the discussion pertaining to the data used, the number of samples and 

the respective validation methods also presented challenges concerning the generalisabil-

ity of the results. In total, the test data consisted of 170 samples, 13 of which were cancer-

ous. The limited number of samples implies a statistical uncertainty with respect to the 

average test error [47]. Therefore, future work should evaluate this model using k-fold 

cross-validation, a method that was omitted due to time constraints. This approach would 

add credibility and generalisability to these results by taking the average test error across 

k-trials [47].  

The literature suggests that the current method of image resampling, namely reduc-

ing the image size to 128³, may have a tangible impact on the detective capabilities of the 

model, specifically for samples where the tumour is relatively small. Ref. [48] articulated 

that the method of resampling, utilising nearest neighbour interpolation, results in a seri-

ous loss of quality and thus, obscures small nodules. Although other sampling methods, 

such as linear interpolation may mitigate this limitation, ultimately, using the original di-

mensions would preserve all of the potentially significant features. It is recommended that 

future works investigate this in order to understand the potential impact that this has on 

the corresponding model. 

With respect to the application of this approach in healthcare, this method lacks in-

terpretability, the transparency of reasoning. Ref. [49] articulated that localised 

knowledge of a malignant nodule is required to fully harness the potential of novel bi-

omarkers. However, acknowledging this limitation, and aligning with existing percep-

tions of ML in healthcare, new techniques should work in parallel with doctors and radi-

ologists to enhance productivity and precision [7]. The significance of this recognises that 
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despite a specificity and sensitivity of 0.9615 and 0.5385, respectively, the benefits of this 

approach become evident when used in conjunction with medical professionals. Work 

should continue to develop this and to improve the detection of LC, as it has been estab-

lished that early treatment offers encouraging prognosis with a survival rate of 5 years at 

71% [50]. 

8. Future Work 

In order to develop this approach and improve its suitability within a clinical setting, 

several points must be further investigated with respect to the interpretability of the 

model, and the application of suitable biomarkers. A recommended pathway for the con-

tinuation of this proposed solution entails the implementation of class activation maps 

[51], preservation of scan resolution, and the addition of alternative biomarkers.  

For the purpose of interpretability, the future direction of this architecture should 

facilitate the application of class activation maps in order to visualise significant relation-

ships and patterns within CT scans. This would align with [46] with respect to the require-

ment for localised knowledge in order to fully harness the potential of novel biomarkers. 

It also raises an important consideration towards the efficacy of using whole scans prior 

to feature fusion. As previously discussed, data unrelated to the question of interest hin-

ders the ability to detect real relationships and patterns [43]. Therefore, the identification 

and extraction of regions of interest, prior to feature fusion, proposes a natural progres-

sion for this architecture, in addition to the preservation of scan resolution to retain all 

significant features. Several key takeaways must be acknowledged from this paper and 

adopted into existing solutions, as it has been proved that multimodal learning, using 

enhanced feature representations, improves the accuracy of lung cancer classification. 

9. Conclusions 

This study set out to critically examine existing research within the field of multi-

modal deep learning and identify ways in which current methods for LC classification 

could be improved. The findings clearly indicated that there was a lack of consideration 

for the potential that intermediate, multimodal features may provide towards identifying 

LC in CT scans. Subsequent to the literature review, this paper aimed to contribute to-

wards existing works by proposing an enhanced multimodal fusion method, named 

EMM-LC Fusion, which utilised intermediate, pre-trained features to improve the existing 

benchmark model applied to the LUCAS dataset.  

The experiments confirmed that the extraction of multi-level features, for the purpose 

of multimodal fusion, improved the ability of the model to identify intermodal relation-

ships, distinguishing true positive and true negative samples. The improvement in mean 

F1 score of 26.37% when using the EMM-LC fusion model is supported by the statistical 

significance of the results (p < 0.05). These findings complement earlier studies which have 

adopted this approach for other diseases, such as breast cancer [16], and AD [33]. This 

adds to the growing body of work which promotes the use of multiple modalities for dis-

ease diagnosis. 

Although this study successfully demonstrated that enhancing feature representa-

tions of CT scans before fusion improves performance, the results obtained from applying 

a DAE to the CDE conflicted with findings presented by earlier studies [16]. This questions 

the rationality of utilising a DAE to enrich CDEs, as it was observed to exacerbate the 

performance of the model when compared to simple linear inflation. Upon the basis that 

these conflicting results do not invalidate this approach, a natural progression of this work 

is to incorporate and analyse alternative biomarkers for LC and to evaluate whether this 

provides any significant improvements. Ultimately, this study lays the groundwork for 

future research in the use of multimodal biomarkers for the task of LC diagnosis. 

Supplementary Materials: All code is available at: https://github.com/jb4rr/EMM-LC-Fusion. Vari-

ations of this code are accessible under different branches. 
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Appendix A 

Table A1. LUCAS Clinical data elements. 

Pneumonia Asthma dyspnoea 

Bronchitis Emphysema Atelectasis 

Smoker Dry_cough Other_respiratory_history 

Cancer_history Other_medical_history Adenomegaly 

Chest_pain Pleural_effusion Presence_of_lung_nodules 

Right_upper_lobe_nod Right_middle_lobe_nod Right_lower_lobe_nod 

Left_upper_lobe_nod Left_lower_lobe_nod Lingula_nod 

Unspecified_location_nod x < 3 mm_nod 3 mm ≤ x < 6 mm_nod 

6 mm ≤ x < 10 mm_nod 10 mm ≤ x < 30 mm_nod x > 30 mm_nod 

Unspecified_size_nod Round_nod Oval_nod 

Unspecified_shape_nod Benign_nod Malignant_nod 

Unspecified_category_nod Solid_nod Soft_tissue_nod 

Ground_glass_nod Unspecified_density_nod Presence_of_lung_mass 

Right_upper_lobe_mass Right_middle_lobe_mass Right_lower_lobe_mass 

Left_upper_lobe_mass Left_lower_lobe_mass Lingula_mass 

Unspecified_loca-

tion_mass 

x < 3 mm_mass 3 mm ≤ x < 6 mm_mass 

6 mm ≤ x < 10 mm_mass 10 mm ≤ x < 30 mm_mass x > 30 mm_mass 

Unspecified_size_mass Round_mass Oval_mass 

Unspecified_shape_mass Benign_mass Malignant_mass 

Unspecified_cate-

gory_mass 

Solid_mass Soft_tissue_mass 

Ground_glass_mass Unspecified_density_mass Granuloma 

Benign_gra Malignant_gra Unspecified_category_gra 

Opacity Benign_opa Malignant_opa 

Unspecified_category_opa Lung_consolidation Benign_cons 

Malignant_cons Unspecified_cate-

gory_cons 

Tree_in_bud 

Appendix A.1. Pre-processing Steps 

Although the analysis of the implemented pre-processing steps is outside the scope 

of this paper, it is important to acknowledge the changes made so that the repeatability of 

this study is not negatively affected. Table A2 details the changes made within the pre-

processing steps defined by [19]. The following discussion presents the complete set of 

techniques that were employed to pre-process the CT scans. 

Table A2. Pre-processing threshold value changes. 

Threshold Name Previous Value Proposed Value 

Vol_limit [0.68, 7.5] [0.0, 7.5] 

Intensity_th −600 −500 

bg_patch_size 10 1 

Eccen_th (binarize_per_slice) 0.99 0.999 
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area_th (binarize_per_slice) 30 5 

Area_th (all_slice_analysis) 6e3 3e3 

To reduce the computational complexity required to process the image, the scan is 

halved in size using a nilearn affine transform. Following this, a binary mask is extracted 

using the following steps: 

1. Remove top slices; 

2. Apply Gaussian filter (stdv = 1 px); 

3. Binarize filter with a threshold of −500; 

4. Remove all 2D components which are smaller than 5 mm2 or have an eccentricity 

greater than 0.999; 

5. Remove 3D volumes of more than 7.5 litres;  

6. Remove components with average minimum distance of 62 mm from the centre;  

7. Compute convex hull of image. 

The values within the scan are clipped between −1200 and 600, and values outside of 

the mask are padded with the value of 170, the luminance of common tissue [19]. 

Appendix A.2. Tests 

Table A3. Lowered regularisation for DAE. 

Run Number F1 AUC AP 

N10 0.296 0.694 0.231 

N20 0.333 0.66 0.151 

N30 0.324 0.668 0.186 
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