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Abstract: The dynamic and heterogeneity of the urban heat island (UHI) is the result of the interac-

tions between biotic, physical, social, and built components. Urban ecology as a transdisciplinary 

science can provide a context to understand the complex social–biophysical issues such as the ther-

mal environment in cities. This study aimed at developing a theoretical framework to elucidate the 

interactions between the social–biophysical patterns and processes mediating UHI. To do it, we 

conducted a theoretical review to delineate UHI complexity using the concept of dynamic hetero-

geneity of pattern, process, and function in UHI phenomenon. Furthermore, a hypothetical hetero-

geneity spiral (i.e., driver-outcome spiral) related to the UHI was conceived as a model template. 

The adopted theoretical framework can provide a holistic vision of the UHI, contributing to a better 

understanding of UHI’s spatial variations in long-term studies. Through the developed framework, 

we can devise appropriate methodological approaches (i.e., statistic-based techniques) to develop 

prediction models of UHI’s spatial heterogeneity. 

Keywords: process-based approach; transdisciplinary research; theoretical review, urban heat  

island mitigation; social–biophysical interaction; compositional and configurational heterogeneity 

 

1. Introduction 

Urban regions consist of human and natural components that constantly change due 

to complex interactions within and between biophysical and social systems [1–3]. There-

fore, these changes lead to the formation of unique landscapes, characterized by an ex-

traordinary variety of land uses [4,5], which affect the surface–atmosphere energy balance 

and urban thermal environment (UTE) [6,7]. Dense urban settings tend to be significantly 

warmer than the nearby rural area which is known as urban heat island (UHI) phenome-

non [8,9]. The UHI phenomenon exerts impacts on human heat-related health and com-

fort, particularly during heat waves [10,11]; moreover, it affects energy consumption, wa-

ter quality, carbon dioxide emissions, and air pollution [12–17]. Due to health and envi-

ronmental concerns, the UHI effect has aroused widespread attention in recent decades, 

leading to a cumulative body of research aiming to explore its drivers, formation, and 

consequences [18–20]. 

The spatial pattern of UHI is commonly retrieved from thermal data of satellite 

images such as Landsat 8-thermal infrared sensor (TIRS) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) thermal infrared data, which are known as land 

surface temperature (LST) [21]. To capture the temperature of the heterogeneous surface 
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(i.e, various land uses) LST within an urban landscape, unmanned aerial vehicles or 

drones have been introduced to retrieve LST at sub-meter spatial resolutions. The drone’s 

spatial and temporal resolutions are highly advantageous for evaluating the variability of 

LST at fine spatial and temporal scales in an urban heterogeneous system [22,23]. 

Due to a wide diversity of socio-economic and biophysical intertwining drivers and 

outcomes, the UHI is a complex issue to study [13,24–28]. In addition to the complex in-

teractions, Cadenasso et al. [29] argued that the extreme complexity of urban issues arises 

from the spatial attribute (i.e., configuration and composition) of urban mosaic patches 

and their temporal changes. Similarly, the configuration and composition attributes of ur-

ban patches (i.e., green and built-up patches) affect the thermal environment [30–34].  
The science of urban ecology deals with the complex social–biophysical issues of cit-

ies [35,36] and investigates the interactions between complex biological systems, built 

structures, and human actions [37–39]. Considering the principle of urban ecology that 

ecological (biophysical) patterns and processes affect ecosystem services [39], it gives an 

insight into how urban ecology would be beneficial in investigating the UHI. Urban ecol-

ogy as a transdisciplinary science assists society in moving toward sustainability and re-

silience [40–42]. It focuses on spatial-temporal patterns of urbanization and how they af-

fect social–ecological processes and functions, ecosystem services, human wellbeing, and 

urban sustainability [40,43,44]. McPhearson et al. [35] argued that urban ecology provides 

a robust and holistic approach to the study of cities, helping the decision-makers to un-

derstand the complex relationships among social, ecological, economic, and technological 

systems. Therefore, developing theoretical and empirical studies related to the different 

issues in the context of urban ecology is essential [35]. In urban ecology, the pattern of an 

urban area is considered to be spatially heterogeneous and to have an influence on eco-

logical processes [45]. These processes can be investigated by considering three broad 

realms: the flow of material and energy, biotic performance, and human actions [46]. UHI, 

as a result of social–biophysical interactions, is a spatially heterogeneous and temporally 

dynamic phenomenon. Then, urban ecology can give a new insight into investigating 

UHI. 

Landscape ecology, as a holistic transdisciplinary science [47,48], explicitly empha-

sizes spatial composition and configuration, and its consequences on biophysical pro-

cesses like biogeochemical fluxes and socio-economic processes [49–51]. Recently, urban 

landscape ecology [50,52] as the invention of landscape ecology and urban ecology [52], 

provides an appropriate context for understanding the formation, the effects of spatial 

and dynamical heterogeneity, and the relationship between landscape patterns (i.e., land 

cover/land use composition and configuration) and biophysical and socio-economic pro-

cesses in multiple scales of time and space [52]. According to the urban landscape ecology, 

the compositional and configurational attributes like connectivity, distance from green 

area, shape characteristics, density, and degree of aggregation of patches exert impacts on 

thermal processes and land surface temperature [32,53–55]. 

Integrating social and ecological knowledge and data is critical to promoting the 

modeling of an urban ecosystem [56–60]. Therefore, to study the integrated complex in-

frastructural–social–ecological issues in urban ecology, different approaches and frame-

works like a human ecosystem, Metacity, ecological feedback model, pattern–process–

function, and dynamic heterogeneity like patch dynamic, dynamic heterogeneity, pat-

tern–process–function, urban–rural gradient, ecosystem service framework, ecosystem 

service integrity, human ecosystem framework have been developed in recent years 

[46,56,61–63]. 

To study the integrated complex infrastructural–social–ecological issues in urban 

ecology, different approaches and frameworks like a human ecosystem, pattern–process–

function, and dynamic heterogeneity [46,64,65], which basically include similar concepts, 

have been developing. The concept of spatial heterogeneity can be applied to urban plan-

ning and management: social–biophysical processes mediate urban functions and sustain-

ability [66]. In other words, urban ecology as transdisciplinary research integrates human 
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actions and perceptions and policymaking with biophysical components [35,42,58,67–73]. 

For instance, residents may respond to the heat in different ways like tree planting or 

using air conditioners [68], meaning that decision-making and human actions affect bio-

physical processes that change the UHI. When exploring the mechanisms behind complex 

urban phenomena, the process-based ‘dynamic heterogeneity’ approach can help clarify 

the interactions between human and biophysical components [35,68]. 

A framework in urban ecology refers to intertwined mechanisms or processes which 

can be tested using various hypotheses [40,74]. Synthesizing conceptual frameworks is 

essential in advancing urban ecology towards a strong science of cities [35]. The magni-

tude of interactions is regulated by policy, governance, culture, and individual behavior 

of the urban system of the urban system [75]. Integrating human actions into the urban 

ecosystem is widely perceived at the conceptual level, but developing effective and inte-

grative theories and their applications in an urban system study still remains a challenge 

[76,77]. 

A dynamic heterogeneity approach is a useful tool for enhancing ecological integra-

tion and exploring the interactions between social and biophysical patterns and processes 

in urban ecosystems [46]. Understanding the complex interactions between processes, 

identifying their driving factors, and, ultimately, predicting the behaviour of environmen-

tal systems are among the main objectives of environmental research [78]. It can be in-

ferred that the concept of dynamic heterogeneity can be applied to long-term research, 

facilitating the integration of ecosystem components and the development of predictive 

models [46]. 

Although there are a large number of systematic reviews related to the different as-

pects of the UHI phenomenon [79–81], it has not been investigated using a “theoretical 

review” lying in urban ecology. For instance, Deilami et al. [79] organized a synthesis re-

view to identify the spatio-temporal factors and their causal mechanisms or processes that 

mitigate the UHI effect. Considering all the above, we aimed to develop a theoretical 

framework for a better understanding of the social–biophysical mechanisms behind UHIs’ 

heterogeneity through time. In this article, we conducted a theoretical review to illuminate 

how the social–biological–physical processes contribute to forming the UHI in an urban 

ecosystem and consequently cause the dynamic and heterogeneity of UHI. To achieve the 

goal, we made two main implementations: (1) the dynamic heterogeneity approach was 

adjusted to the UHIs’ dynamics and heterogeneity and (2) a template model of the driver–

outcome spiral (i.e., heterogeneity spiral) was conceived for the UHI phenomenon. The 

proposed conceptual framework offers a comprehensive perspective of the UHI phenom-

enon in the context of urban ecology, supporting the analysis of UHIs’ spatial heteroge-

neity in long-term studies. 

2. Method 

In this article, we conducted a theoretical review [82,83] in regard to the concept of 

“dynamic heterogeneity” lying in the urban ecology context. A theoretical review consists 

of concepts, together with their definitions, and existing theories that were used for UHI 

study. A theoretical review is drawn based on the existing conceptual and empirical stud-

ies to provide a higher level of understanding of various concepts and relationships in the 

studied topic [83]. In this review, we attempted to demonstrate an understanding of the-

ories and concepts that are relevant to the UHI. In fact, in this research, we saw the UHI 

phenomenon from the aspect of the dynamic heterogeneity framework which itself is an 

inclusive framework and includes many interrelated concepts. 

Since the  basic idea of the research originated from the “dynamic heterogeneity” ap-

proach, firstly, it was necessary to define the concept of dynamic and heterogeneity in 

urban ecosystems. In the first section of the paper, we reviewed the principles of urban 

ecology in order to elucidate the UHI. The second section reviewed papers that primarily 

consisted of specific variables related to the dynamics and heterogeneity of the UHI. The 

authors organized the papers according to whether they focused on the social, biological, 
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or physical attributes that affect the dynamics and heterogeneity of the UHI. In the final 

section, a hypothetical spiral of dynamic heterogeneity of UHI was created based on em-

pirical evidence of UHI studies. Following an initial search, the abstract and the content 

of the articles identified by the search engines were reviewed. The number of articles con-

taining the keywords was extremely broad, and in many cases, the concepts that we 

sought were not recognizable only through keywords and titles. Therefore, the articles 

were screened and those which did not match our goals were excluded. 

The literature review was based on searching peer-reviewed articles in search en-

gines of ISI Web of Science and Scopus. To synthesize the literature, we used a broad range 

of keywords from diverse disciplines to identify papers related to our questions: What are 

the reciprocal interactions between physical and biological processes in the UHI phenom-

enon? What are the reciprocal interactions between physical and human processes in the 

UHI phenomenon? What are the reciprocal interactions between human and biological 

processes in the UHI phenomenon? For each process realm, we identified several varia-

bles, for instance, for the social process, we used human health, human comfort, energy 

consumption, household income, decision-making, and mitigation policy. These terms 

were chosen based on our knowledge acquired from basic literature. The keywords rep-

resented in Table 1 was related to the concepts of urban ecology and biological, physical, 

social, economic, and built variables that exert an influence on the dynamics and hetero-

geneity of the UHI. 

Table 1. The basic query for paper selection by keywords in concepts of urban ecology and UHI. 

Concepts of “Urban Ecology” Keywords in UHI Literature 

Urban ecosystem “Urbanization” OR “Urban development” OR “UHI” OR 

“cold spot and hot spot” OR ”land surface temperature” 

OR “Spatial-temporal change” OR “Human intervention” 

OR “mitigation policy” OR “tree protection policy” OR 

“climate regulation” or “cooling effect” OR “decision-mak-

ing” OR ”artificial heat production” OR “human health” 

OR “energy consumption” OR “anthropogenic heat 

sources” OR “land architecture” OR “tree diversity” OR 

“tree attribute” OR “urban forest” OR “energy and water 

flow” OR “heat wave” OR “wind direction” OR “urban 

green space” OR “cooling effect” 

Social–biophysical (ecological) interaction 

Pattern–process 

Dynamic and Heterogeneity 

Spatial heterogeneity 

Social–ecological dynamic 

Biophysical dynamic 

Complexity  

Cause and effect  

3. Dynamic and Heterogeneity in Urban Ecosystems 

In studying urban phenomena, understanding the causes and consequences of spa-

tial heterogeneity of patterns, processes, and functions are considered critical issues 

[46,84]. Pickett et al. [46] developed the dynamic heterogeneity approach as an inclusive 

theory, which provides a framework to explore the mechanisms, outcomes, and drivers 

of spatial variability over time. In the urban scientific literature, the term ‘dynamic’ indi-

cates how a patch or patch mosaic changes structurally and functionally through time 

[85], while ‘heterogeneity’ refers to the spatial variation of a property of interest across a 

landscape [86]. In particular, ‘spatial heterogeneity’ refers to the causal structure and spa-

tial variability of a specified object [40,74].  

However, Pickett et al. [46] argued that ‘heterogeneity’ is not just about the patterns, 

but also the social–biophysical processes which are spatially heterogeneous. It means that 

heterogeneity is an outcome of past social and biophysical processes, and can act as a 

driver of future social and biophysical processes (i.e., heterogeneity observed at a certain 
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time is the result of prior conditions). Therefore, by analyzing heterogeneity within dif-

ferent time intervals, it is possible to conduct long-term research in the urban ecosystem 

[46,87]. 

The urban dynamic heterogeneity approach could help recognize the interactions be-

tween social and biophysical components. Human ecosystems consist of heterogeneous 

biological, physical, social, and infrastructural components—the heterogeneous layers in-

teract with each other at different scales. Over time, these interactions create a new type 

of heterogeneity. Since there are potential interactions between all the components, the 

aim of the research determines which interactions should be investigated at a particular 

scale. The concept of the human ecosystem emphasizes how heterogeneity of human in-

terventions influences heterogeneity of buildings and infrastructures; moreover, social 

and biophysical attributes and fluxes outside urban boundaries have been found to affect 

heterogeneity over time [46]. 

According to landscape ecology, patterns are defined as spatial attributes of a land-

scape: they encompass both the composition and configuration of patches and influence 

biophysical processes [84]. Therefore, pattern heterogeneity can be explained by both 

compositional and configurational heterogeneities [88]. In an urban ecosystem, the pro-

cess refers to the transferring of energy, material, or organisms, flux, and cycling of ele-

ments within a city [65], which are inherently heterogeneous in space and occur in partic-

ular places on a landscape [89,90]. In an urban ecosystem, patterns and processes interact 

reciprocally and are theoretically inseparable (i.e., there is a coupling of patterns and pro-

cesses) [65,79,91,92]. The function is the interaction between pattern and processes that 

supports delivering ecosystem services like climate regulation in urban areas [65]. In a 

time frame, pattern heterogeneity leads to process and functional heterogeneity [46]. 

Functional heterogeneity is defined as the spatial variation of the urban ecosystem’s ca-

pacity to provide services [65]. 

Urban ecologists hypothesized that the interaction between social–biophysical pat-

terns and processes can be observed in the form of surface cover or land use/land cover 

(LULC). LULC is regarded as an ecological indicator in urban studies. It affects ecological 

patterns and processes, causing broad environmental phenomena like the UHI. The new 

biophysical conditions such as UHI affects human attitudes which may lead to the estab-

lishment of new policies. These policies themselves change the LULC over time [2,93]. 

Pickett et al. [46] outlined the existence of three interactive processes that lead to the 

hybridization of biophysical, social, and built components of the human ecosystem. These 

processes include (1) flows of material and energy (e.g., heat fluxes); (2) biological poten-

tials or biotic performances (e.g., spatial arrangement of organisms, their traits, and com-

munity dynamics); (3) human actions and interventions and decision-making in an urban 

ecosystem. 

The vast realm of material and energy flow in the urban ecosystem refers to the trans-

forming and transferring of food, goods, and fuel. In other words, they can be defined by 

the pathways as the input and output of water, food, air, fuel, and heat [94–96]. The re-

sources that stream into cities shape and modify the structure of the urban biological sys-

tem, empower, and drive urban capacities with an impact on common biological forms of 

cities, and in the long run, create yields that remain inside the boundary or are sent out 

beyond the boundary [97]. Biotic differentiation (biota differentiation) is defined as vari-

ous biodiversity (fauna and flora) and species richness within an ecosystem [98,99]. Re-

garding the social or human-made process, it involves social–economic attributes like zon-

ing regulation, lifestyle and livelihood arrangement, economic and political policy, neigh-

borhood identity, housing price, the pattern of investment, access to the road and green 

area, house density, population distribution, the market economy, general patterns of in-

come, and access to the service which make social–economic heterogeneity across the city 

[100–104]. Table 2 represents the main attributes of the urban ecosystem to illuminate dy-

namics and heterogeneity. 
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Table 2. The main attributes associated with h dynamic heterogeneity approach to elucidate UHI in 

an urban ecosystem (adapted from Pickett et al. [46]). 

• Urban systems are extraordinarily heterogeneous. 

• Heterogeneity encompasses space and time, patterns, and processes. 

• There are different layers of biophysical, social, and infrastructural heterogeneity. 

• The layers of heterogeneity interact with each other at different scales. 

• Heterogeneity acts both as driver and outcome, so mediates between the social and biophysical components in 

the urban system. 

• The interactions of different heterogeneous layers create new heterogeneities. 

• Social and biophysical fluxes outside the urban boundary affect heterogeneity through time. 

• Heterogeneity affects urban functions that lead to ecosystem services delivery, human wellbeing, and sustaina-

bility. 

• Human beings’ feedback amplify dynamic heterogeneity in urban systems. 

4. Dynamic and Heterogeneity of UHI 

In urban ecology, the human ecosystem consists of interacting biotic, physical, social, 

and built components that are temporally dynamic and spatially heterogeneous [46]. In 

association with UHI investigation, there are manifold types of biotic, physical, social, and 

built heterogeneities that mediate the spatial variation of UHI (Figure 1). There is a mul-

titude of variables to study the biotic, physical, social, and built components that contrib-

ute to the UHI spatial heterogeneity. The arrows show the potential interactions between 

the heterogeneous components. The interactions between the components can be deter-

mined by the aim of particular research. Biotic heterogeneity can be defined as the heter-

ogeneous distribution of natural and semi-natural patches (including forests, woodland, 

shrubs, green areas, and wetlands) across a city, which affect differentially the land sur-

face temperature [55,105–109]. In particular, heterogeneity of vegetation distribution, 

abundance, and tree species can affect the temperature in various ways, such as providing 

shade, modifying the landscape’s thermal properties (i.e., albedo and emissivity modifi-

cation), altering the air movement, and heat exchange (i.e., wind blowing) through evap-

otranspiration [13,109–117]. The effect of biological differentiation on the thermal envi-

ronment and the UHI phenomenon can be assessed using vegetation indices, like the 

greenness index and the normalized difference vegetation index (NDVI) [118–120]. 

Physical heterogeneity derives can be ascertained by topographic features (i.e., phys-

ical layers) like elevation, aspect, and slope. These features affect the thermal environment 

and control the UHI phenomenon [25,121,122]. Heterogeneous patterns of topographic 

attributes in an urban region alter the potential radiation and thermal loads (i.e., alter the 

energy flow process) [121]. 

In terms of the built component in the context of an urban ecosystem, it refers to a 

man-made built-up area characterized by infrastructural and technological components, 

changing through time due to human decision-making [46]. Notably, the characteristics 

of the built complex influence urban temperature and the formation of UHI. The height 

of buildings and their variability, as well as the spacing between buildings, affect air cir-

culation, wind flow, and thermal energy absorption [18,24,123–125]. More importantly, 

the material properties of roofs and walls significantly affect both albedo and emissivity, 

leading to temperature alterations [13,126]. The sky view factor (SVF) is a parameter re-

lated to urban building and measures sky visibility. A reduction of the SVF leads to an 

increase in solar radiation absorption and a lowering of wind speed, ultimately amplify-

ing the UHI effect [110,123,124,127–130]. Additionally, the normalized difference built-up 

index (NDBI), which reflects the amount of urban built-up areas, can be used to investi-

gate the effect of the built-up surface on the intensity of the UHI phenomenon [119]. 
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Figure 1. Four components of an urban ecosystem (adopted from Pickett et al. [46]) mediate the 

spatial heterogeneity of UHI. 

Social–economic heterogeneous patterns affect urban temperatures and support the 

occurrence of the UHI phenomenon [25,131,132]. For instance, heterogeneities in popula-

tion density and household income influence the intensity of this phenomenon [25]. Fur-

thermore, urban anthropogenic heat emission, derived from household energy consump-

tion and vehicular traffic, is significantly related to socio-economic activities and is con-

sidered a key factor contributing to the formation of UHI [133–135]. In this context, human 

perception is considered an important process capable of altering the intensity of the UHI 

phenomenon. For instance, there can be a tendency to plant certain species (e.g., trees that 

provide more shading) in neighborhoods [136–138]; moreover, people living in the hot 

area usually apply strategies (e.g., using air conditioning or altering the neighborhood’s 

biophysical structure through tree planting) to mitigate the UHI effect [68]. At the same 

time, policymaking outcomes (e.g., increasing vegetation, constructing living (green) 

roofs, and promoting light-coloured surfaces) effectively influence variations of the UHIs 

over time [139]. The application of policies targeting the alteration of urban structures 

(e.g., the placement and orientation of buildings) and the residents’ lifestyles can also ex-

plain temperature variations across a city [140]. 

The ultimate result of the reciprocal biotic–physical–social–built interactions de-

scribed above mediates a spatial heterogeneous mosaic of UHI (Figure 1). This mosaic 

affects the biophysical–social processes (i.e., evapotranspiration, heat exchange, and deci-

sion-making processes) in urban areas (Figure 2). Each of these three processes contrib-

uting to the UHI heterogeneity is itself a large topic. The researchers can focus on each of 

the three processes related to the others and study the feedbacks and interactions among 

them. For instance, how does the decision-making process change the vegetation surface, 

or how energy and material flow can affect human perception. 
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Figure 2. The reciprocal interaction between the processes of ‘energy and material flows’, ‘biotic 

differentiation’, and ‘human action’ (adapted from Pickett et al. [46]) contribute to the formation of 

UHI. For each process realm, several variables have been outlined. 

Integrating Figures 1 and 2, we can adjust the dynamic heterogeneity for the case of 

UHI. As shown in Figure 3, the interactions between the above-mentioned coupling so-

cial–biophysical patterns and processes over time may lead to a new heterogonous UHI 

pattern. In other words, the interactions between the patterns and processes change the 

UHI heterogeneity over time which can be called “dynamic heterogeneity of UHIs”. As 

shown in Figure 3, the interactions among a multitude of heterogeneous built–social–bio-

physical layers drive social–biophysical processes, and the process feedbacks change the 

pattern heterogeneity. The coupling interaction between heterogeneous patterns and pro-

cesses can hence give birth to a new heterogeneous UHI pattern over time that is called 

“dynamic heterogeneity of UHI”. 

 

Figure 3. Dynamic heterogeneity approach in UHI: The interactions between four biotic–physical–

social–built heterogeneous layers (variables in the left oval) make a heterogeneous pattern. The right 

oval shows different kinds of energy and material, biotic differentiation, and human action pro-

cesses that interact reciprocally. 



Land 2022, 11, 1155 9 of 17 
 

5. Driver–Outcome Spiral of UHI: Building a Model Template 

The UHI is affected by numerous social–biophysical factors, as well as by the spatial 

arrangement of the LULC [25,141] and affects energy consumption, human health, water 

quality, and air pollution [14,142,143]. A template of heterogeneity or a spiral of dynamic 

heterogeneity [46] is a model template that indicates how a set of factors associated with 

a problem are potentially linked to each other. In addition, it represents the mechanisms, 

causes, effects, and interactions for a specific subject in a social–ecological system [68]. The 

above template, which was adopted from biological theories [64], follows the ‘conditional 

statement’ or ‘if-then statements’ (i.e., if A happens, then B is predicted: if a condition or 

relationship is verified, then certain results can be expected) [46,64]. 

In creating a driver–outcome spiral, due to the extremely wide diversity of the com-

ponents, variables, and driver–outcome interactions involved, a myriad of templates can 

be developed to illustrate the causes and effects of the UHI. The choice of which template 

to build depends on the specific analytical goal: a large number of mechanistic spirals can 

be proposed by considering the various drivers and outcomes of the UHI. Figure 4 de-

scribes a simplified hypothetical driver–outcome spiral (i.e., a model template of the UHI 

dynamic heterogeneity), which was created based on a literature review. Here, heteroge-

neity is temporally dynamic and influences social–biophysical processes: physical, biolog-

ical, and social–economic heterogeneities result from past interactions and are the drivers 

of future changes [46]. In this figure, the heterogeneous patterns of vegetation and imper-

vious surfaces alter the land surface temperature pattern through biophysical processes 

(e.g., evapotranspiration and heat exchange) between time 1 and time 2. These, in turn, 

affect human comfort and health (between time 2 and time 3). Environmental concerns 

lead to the establishment of new policies for the mitigation of urban temperature. The 

decision-making policy process is expected to cause changes in land cover over time. No-

tably, the occurrence of pulse events (i.e., regional events out of the urban boundary) at a 

given time may affect heterogeneity at a subsequent time. Note: the starting point of the 

driver–outcome spiral, which encompasses intrinsic physical attributes (e.g., topography 

and climatic zone) and corresponds to 0, is not shown in this figure. 

The assumptive spiral starts with a heterogeneous pattern of impervious and green 

patches, which are linked to changes in biophysical processes (e.g., evapotranspiration, 

shade, and heat exchange) through time (heterogeneity at time 1). The above heterogene-

ity led to a heterogeneous land surface temperature pattern (heterogeneity at time 2); in 

turn, temperature variations typically affect human thermal comfort and health (hetero-

geneity at time 3) [144–149]. In addition, high temperatures can trigger specific atmos-

pheric chemistry procedures (e.g., increased ozone production, hydrocarbon, PM10, and 

VOC concentrations), which lead to a worsening of air pollution [143,150]. Health and 

environmental issues deriving from high temperatures and air pollution may lead to 

changes in policies (heterogeneity at time 4), which would ultimately result in the allevi-

ation of UHIs’ effects [151]. Hence, policymaking processes would be the drivers of new 

land cover heterogeneities, starting a new turn of the spiral, which would continue to re-

peat through time [93]. Moreover, disturbances or pulsed events (e.g., heatwave) occur-

ring outside urban regions (i.e., at a regional scale) [43,46] are expected to affect the UHI 

[152–154], giving rise to a new heterogeneity of the UHI in subsequent time. 
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Figure 4. Model template: hypothetical driver–outcome spiral explaining the dynamics and hetero-

geneity of the UHI based on empirical evidence. 

6. Quantifying and Modeling the Interactions and Feedback among the Processes Me-

diating UHI 

Due to the complexity and lacking direct measurement of different social–biological–

physical processes and interactions in the context of urban ecology, various approaches 

and statistical models have been developed to quantify the specific goal [46]. The re-

searcher can investigate the following interactions in UHI: how biotic differentiation (e.g., 

forest and woodland change) may influence physical processes like solar energy flux or 

the wind blowing; how physical processes like heat flux affect biotic performance; how 

the decision-making process and human perceptions can affect biotic differentiation; how 

human preferences and attitudes towards particular types of plants may affect the biodi-

versity of the urban area that consequently change UHI intensity; how biotic attributes 

can change human activities or how green space and plant diversity may influence human 

perceptions, leading to alteration of the urban temperature. Mechanistic models can de-

scribe a complex system by bringing the components together, providing a method to test 

the hypotheses in holistic ways. It also can describe a phenomenon through a hypothe-

sized or assumed mechanism/process [155,156]. This model can be applied in studying 

the complex issue of UHI. In addition, a Bayesian Network model is a useful tool to deal 

with various social–ecological processes in a specific phenomenon [157,158] and can be 

used in evaluating probable outcomes in complex ecological systems [159]. This approach 

allows for a combination of different types of data like quantitative data, expert or local 

knowledge, and outputs from scenario building, and can deal with lacking data, hence 

they are useful in areas such as ecology or social science [157]. To analyze the relationship 

between the unobservable variables and the observed measurement, the state-space 

model can also be used [160] as a flexible approach [161]. In the case of UHI, for instance, 

there is some unobservable variable like human perception. In this case, the researcher’s 

knowledge from the past is needed to estimate the future change of each variable [162]. 
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7. Implications of the Theoretical Framework for Urban Planning toward UHI Mitiga-

tion 

The urban ecology defines the cities as complex mosaics [66], engaging numerous 

social, ecological, and economic issues and strategies. In addition, landscape ecology as a 

science for dynamic and heterogeneity study focuses on spatial patchiness [163]. A city 

can be planned in a way to mitigate the UHI based on the transdisciplinary science of 

urban ecology and landscape ecology. In urban ecology, the urban heterogeneity com-

prises spatial variation within the physical, natural, and technological structures [40,46]. 

Urban planners consider how heterogeneity changes over time as the fundamental aspect 

of an urban ecosystem [66]. In addition, the compositional and configurational heteroge-

neity also affects the UHI intensity. 

Therefore, the mitigation measures lying in this theoretical framework not only focus 

on the biotic components but also consider a hybrid of social–biological–physical–built 

components. Further, it emphasizes the pattern–process–function, considering how the 

composition and configuration of different patches within an urban landscape change the 

processes and functions and consequently, alleviate urban temperature. 

8. Conclusions 

Urban ecosystems are considered thermally heterogeneous because they typically 

comprise many small hot and cold spots which form a spatially heterogeneous pattern 

[164]. When dealing with this complexity, it is hence essential to recognize the mecha-

nisms, components, and interactions between the social–biophysical components that 

contribute to the creation of UHI. In this context, the holistic science of urban ecology can 

be appropriate for investigating urban complex issues. Urban ecology studies are gener-

ally based on custodial frameworks, which enable the integration of biophysical and social 

components [68]. The concepts and tools introduced by transdisciplinary urban ecology 

have opened new pathways to tackle urban environmental concerns and ultimately im-

prove related planning and management activities [66]. 

In this study, conceptualization and delineation of the causes and effects of spatial 

heterogeneity are essential in urban development [46]. In the case of UHI, the literature 

review indicated that pattern–process–function is heterogeneous and dynamic within an 

urban landscape (see the previous sections). In this study, by implying dynamic hetero-

geneity as an underlying approach in urban ecology, we developed a theoretical frame-

work to understand the mechanisms behind the formation of UHI. In other words, the 

concept of dynamic heterogeneity was adopted to UHI: the interaction between social–

biophysical patterns and processes over time leads to a new heterogeneous thermal envi-

ronment. Furthermore, a hypothetical ‘driver–outcome’ spiral (i.e., heterogeneity spiral) 

was set up to better understand the UHI. In creating a driver–outcome spiral, due to an 

excessive diversity of components, variables, and driver–outcome interactions, a myriad 

of templates can be developed to illustrate a spiral of heterogeneity. Building a template 

depends on a specific analytical goal. Pickett and colleagues outlined that an “if-then” 

statement or “conditional statement” (i.e., if A happens then B is predicted, can support 

setting up a driver–outcome hypothesis. The synthesis of the literature review in this re-

search demonstrated that UHI, as a specific subject that lies in a human ecosystem, can be 

defined through the dynamic heterogeneity approach. It enables us to integrate biophys-

ical and social processes and patterns contributing to the UHI. 

However, there are limitations to responding to all the questions related to the inter-

action between social–biophysical processes and their impact on UHI. As many variables 

and their effects are not directly observable, it means that the social–ecological feedback 

is not well understood. So, computer programs, simulation models, and special statistical 

models facilitate quantitative analysis of long-term data. Further, because of excessive di-
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versity of components and driver–outcome interactions, a myriad of templates to illus-

trate the dynamic heterogeneity spiral can be developed. Building the model template is 

dependent on the specific analytical goal. 

Overall, the theoretical framework in this paper allowed the examination of UHI 

from an ecological point of view, demonstrating that the concept of dynamic heterogene-

ity can describe UHI complexity. However, there are limitations to responding to all these 

questions related to the interaction between processes and their impact on the social–

built–biological–physical components. As many of the variables and their effects are not 

directly observable, then social and biophysical complexes, their feedback, and interaction 

are not well understood. So, computer programs, simulations, and statistical models 

should be used to facilitate the quantitative analysis of long-term data for sustainable ur-

ban planning. The conceptual framework can be insightful in heterogeneity management 

of an urban system in a way to achieve temperature mitigation and an increase of climate 

regulation services. According to the transdisciplinary urban ecology, in future studies, 

ecologists and landscape architects are urged to collaborate with city residents to mitigate 

the UHI effects. Moreover, potentially, the developed framework can give the insight to 

understand the complexity of social–biophysical phenomena like air pollution, water flow 

and pollution, and soil pollution toward urban sustainability. 
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