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ABSTRACT 
 

Seabirds are one of the most threatened groups of birds and large-scale monitoring is 

needed to link changing population trends to causative factors, in order to address 

population declines. Rapid advances in technology are offering new and exciting 

possibilities to expand monitoring over larger spatial and temporal scales, however, they 

also raise new challenges, such as dealing with increased amounts of data and ensuring 

the data obtained are comparable to that from ‘traditional’ monitoring methods. 

Specifically, this research focused on the use of time-lapse cameras to monitor the Black-

legged Kittiwake Rissa tridactyla, a species listed as Vulnerable on the International 

Union for Conservation of Nature (IUCN) Red List. Chapters one and two used a case 

study on Skomer Island, Wales, to compare measurements of productivity and phenology 

obtained from fieldwork with expert analysis of time-lapse images. Chapter two then 

went on to explore the effects of weather on Kittiwake nest survival on Skomer. Chapter 

three used data from across a much wider area, to compare expert analysis of time-lapse 

images with citizen science analysis. This study showed that both field and image-derived 

data have inherent biases, but together can inform meaningful investigation into the 

factors contributing to Kittiwake decline. I found that strong westerly winds may be 

reducing egg and chick survival at the Wick colony, Skomer, and high daily maximum 

temperatures could also be lowering egg survival. If these results represent a longer-term 

pattern, then it could have important implications for Kittiwake population dynamics with 

climate change, which is predicted to increase the frequency and intensity of weather 

extremes. Expanding the scale of monitoring via the citizen science project, Seabird 

Watch, was found to have promising potential; although further work is needed to ensure 

volunteer data are as good as expert classification. Many factors affected the accuracy of 

citizen science results and these must be carefully considered before using the data to 

answer bigger scientific questions. Overall, this study has shown the potential of using 

time-lapse imagery to monitor a cliff-nesting seabird and will likely become an 

increasingly cost-effective monitoring solution in the coming years.  
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INTRODUCTION 
 

Seabirds are one of the most threatened groups of birds (Croxall et al. 2012). 

According to the International Union for Conservation of Nature (IUCN) Red List, 

31% of seabird species are globally Threatened and 11% are Near-Threatened 

(BirdLife International 2018). Almost half of seabird species are undergoing 

population decline, primarily due to invasive species, climate change and fisheries 

bycatch (BirdLife International 2012, Dias et al. 2019). Changes in seabird population 

dynamics can have widespread impacts on marine ecosystem function via top-down 

effects, as seabirds are apex predators (Horswill et al. 2016, Lescroël et al. 2016, 

Suryan et al. 2006). Additionally, changes in abundance at lower trophic levels will 

influence seabirds from the bottom-up (Suryan et al. 2006, Horswill et al. 2016, 

Sydeman et al. 2017a, 2017b, Pacyna et al. 2019, Reynolds et al. 2019). As a result, 

seabirds have often been used as indicators of ecosystem health, and understanding 

the causes of their decline is necessary to implement successful conservation action at 

both the level of the species and ecosystem (Lescroël et al. 2016, Sydeman et al. 

2017a, 2017b, Bland et al. 2018, Pacyna et al. 2019, Reynolds et al. 2019). In order 

to achieve this, effective monitoring of seabird populations is required.  

 

UK seabird monitoring   
Historically in the UK, the relationship between humans and seabirds was largely one 

of exploitation, with humans viewing seabirds as a source of food and feathers (Tasker 

2000). However, diminishing harvests in the early 20th century began to indicate 

possible declines in UK seabird populations, and led to the foundation of the Royal 

Society for the Protection of Birds (RSPB) and some of the first bird conservation 

legislation (Tasker 2000). Seabird population counts began to be formally conducted 

at this time, including counts of Northern Gannet Morus bassanus, Northern Fulmar 

Fulmarus glacialis, and Black-legged Kittiwake Rissa tridactyla colonies in Britain 

and Ireland (Gurney 1913, Fisher 1959, Coulson 1963, Tasker 2000). These species-

specific population counts were expanded to provide a census of all regularly breeding 

UK seabirds 1969-70, which was termed Operation Seafarer (Cramp et al. 1974, 
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Tasker 2000). From the 1950s, biologists also began to study parameters other than 

population size (Tasker 2000). In 1991, Dunnet reported on 41 years of Northern 

Fulmar population ecology on Eynshallow, Orkney (Dunnet 1991). The study 

measured frequency of breeding, breeding success, age of first breeding and longevity, 

as well as population size (Dunnet 1991). These initial seabird surveys in the early to 

mid-20th century helped provide the impetus for focused national monitoring. 

Operation Seafarer showed that the UK held internationally important seabird 

populations, and that more comprehensive and coordinated monitoring would be 

needed to ensure these populations remained healthy (Tasker 2000). In 1986, the UK 

Seabird Monitoring Programme (SMP) was established.  

The Seabird Monitoring Programme is an annual monitoring programme 

involving 19 partner organisations and is coordinated by the Joint Nature Conservation 

Committee (JNCC). It aims to collect sample data on the breeding abundance, 

breeding success, and, where possible, survival, phenology and diet of 25 seabird 

species that regularly breed in Britain and Ireland: Northern Fulmar Fulmarus 

glacialis, Manx Shearwater Puffinus puffinus, European Storm-petrel Hydrobates 

pelagicus, Leach’s Storm-petrel Oceanodroma leucorhoa, Northern Gannet Morus 

bassanus, Great Cormorant Phalacrocorax carbo, European Shag Phalacrocorax 

aristotelis, Arctic Skua Stercorarius parasiticus, Great skua Stercorarius skua, Black-

legged Kittiwake Rissa tridactyla, Black-headed Gull Chroicocephalus ridibundus, 

Mediterranean Gull Larus melanocephalus, Common Gull Larus canus, Lesser Black-

backed Gull Larus fuscus, Herring Gull Larus argentatus, Great Black-backed Gull 

Larus marinus, Little Tern Sternula albifrons, Sandwich Tern Sterna sandvicensis, 

Common Tern Sterna hirundo, Roseate Tern Sterna dougallii, Arctic Tern Sterna 

paradisaea, Common Guillemot Uria aalge, Razorbill Alca torda, Black Guillemot 

Cepphus grylle and Atlantic Puffin Fratercula arctica (Joint Nature Conservation 

Committee 2020). This annual data is collected from keys sites spread geographically 

around the UK: Skomer Island (west Wales); Isle of May (east Scotland); Fair Isle 

(Northern Isles); Canna/Rum/St Kilda (west Scotland) (Tasker 2000). Annual 

monitoring is then complemented by complete censuses conducted every 10 to 15 

years, to provide counts for all UK breeding seabird colonies. So far, national censuses 

have been undertaken 1969-70 (Operation Seafarer), 1985-88 (Seabird Colony 
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Register), 1998-2002 (Seabird 2000) and 2015-2021 (Seabirds Count) (Joint Nature 

Conservation Committee 2020).  

Having a well-organised long-term monitoring programme is important so that 

trends in population numbers, productivity, survival and diet can be determined and 

species conservation status can be assessed. This information is also critical for 

assessing the potential impact of development and infrastructure on breeding seabirds, 

for example when licensing near-shore windfarms. Methods for the current Seabird 

Monitoring Programme are provided in the ‘Seabird Monitoring Handbook for Britain 

and Ireland’ to ensure the methodology used is consistent across colonies and the 

results are comparable (Walsh et al. 1995). However, these methods are not without 

their limitations and indeed monitoring seabird populations is often challenging.  

Pelagic seabird species only visit land to breed and spend the rest of the year 

at sea. Many species nest on exposed cliffs which are difficult to access, particularly 

during inclement weather. Some species nest underground in burrows and those 

nesting on the ground surface may be concealed by vegetation or camouflage. 

(Mitchell & Parsons 2007, Robinson & Ratcliffe 2010). As well, frequently visiting 

breeding colonies can cause disturbance, is logistically challenging in remote 

locations, and expensive in terms of time and money (Anker-Nilssen et al. 1996, Field 

et al. 2005, Huffeldt & Merkel 2013, Southwell & Emmerson 2015). Consequently, 

the temporal and spatial scale of seabird monitoring is often small (Evans 1986, Lynch 

et al. 2012a, Paleczny et al. 2015). 

 Recent advances in digital photography and videography offer considerable 

potential for overcoming some of the difficulties associated with monitoring seabird 

populations. While time-lapse photography has been used for behavioural studies for 

decades, digital photography for wildlife monitoring has tended to be limited to small 

studies observing animals opportunistically, using animal-triggered or handheld 

cameras (Penney 1968, Harris 1982, Black 2018). Now, improved optics, increased 

battery life and data storage have transformed the potential of remote imaging and 

made it possible to monitor hard to access populations (Bolton et al. 2007, Kucera & 

Barrett 2011, Anderson & Gaston 2013, Black 2018). Nonetheless, choosing suitable 

equipment for a specific monitoring purpose can be difficult with such a wide array of 

technology now available. Furthermore, there are challenges associated with how to 
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handle and analyse large volumes of digital data. For the first part of my MSc by 

Research, I conducted a literature review which discussed the potential uses of 

different types of digital imaging technology in seabird monitoring and research, as 

well as methods for processing the data. This review has since been published in Ibis 

and is included in Appendix 1 (Edney & Wood 2020). One type of digital imaging 

technology discussed in the review are time-lapse cameras, which shall be the focus 

of this thesis. Parts of the following text on ‘Time-lapse cameras’ are taken directly 

from Edney & Wood (2020) with permission.  

 

Time-lapse cameras  
Time-lapse cameras record photographs at predetermined time-intervals regardless of 

subject presence (Cutler & Swann 1999). They have been utilised for avian studies 

since the technology first became commercially available, however their potential uses 

in ornithology are quickly increasing with advances in digital technology (Dodge & 

Snyder 1960, Green & Anderson 1961, Cowardin & Ashe 1965, Temple 1972, Weller 

& Derksen 1972, Harris 1982, Harris 1987, Huffeldt & Merkel 2013). The increased 

availability of affordable cameras, requiring less frequent maintenance, reduced power 

consumption and larger storage capacity has seen the field of time-lapse photography 

rapidly expand in recent years (Bolton et al. 2007).  

Time-lapse photography is most appropriate for studying animals frequently 

present at a location, where a single vantage point gives a representative view of 

individuals, and the measurement of interest will not activate a motion-triggered 

camera (Cutler & Swann 1999, Black 2018). Species that aggregate at high densities 

at some point in their life-history, such as breeding seabirds, therefore represent ideal 

candidates for use (Black 2018). Time-lapse cameras are suited for collecting data as 

part of long-term studies, principally time-series data such as annual breeding success 

and phenology, and can achieve this at scales otherwise unfeasible in terms of both 

time and money (Southwell & Emmerson 2015, Merkel et al. 2016, Black et al. 2018a, 

Hinke et al. 2018). They can capture images in locations and at times when human 

observation would be almost impossible, including harsh conditions in remote places 

and at night (Black 2018, Black et al. 2017, Black et al. 2018a, Southwell & 

Emmerson 2015). Table 1 offers a more detailed summary of the advantages and 
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disadvantages of time-lapse photography as a tool for monitoring seabirds (Edney & 

Wood 2020).   

 
Table 1 Advantages and disadvantages of using time-lapse photography to monitor breeding seabirds 

(Edney & Wood 2020).  

Advantages  Disadvantages 

Cost-effective: saves time and money during 

fieldwork.  

For example, difficult for a single researcher to 

record detailed nest activity across multiple nests 

at a colony.  
(Weller & Derksen 1972, Black 2018, De Pascalis et 

al. 2018) 

Mechanical failures.   
(Cutler & Swann 1999, Merkel et al. 2016, Black 

2018) 

Increased spatial and temporal scale of 

monitoring.  
(Southwell & Emmerson 2015, Merkel et al. 2016) 

Programming errors.  
(Cutler & Swann 1999, Black 2018) 

Operates at locations and times when field 

observation would be near-impossible.  

For example, remote locations, harsh weather 

conditions, at night.  
(Cutler & Swann 1999, Southwell & Emmerson 2015, 

Black et al. 2017, Sinclair et al. 2017, Black 2018, 

Black et al. 2018) 

Maintenance required.  

For example, images are vulnerable to camera 

movements caused by harsh weather conditions.   
(Merkel et al. 2016, Black 2018) 

Removes observer bias from variation in 

surveyor experience and alertness over a long 

period.  
(Cowardin & Ashe 1965, Weller & Derksen 1972, 

Cutler & Swann 1999, Black 2018) 

More affordable cameras take lower resolution 

images.  
(Black 2018) 

More frequent observations than field workers 

allows observation of elusive species, obscure 

behaviours and phenology.  
(Cutler & Swann 1999, Black 2018) 

Large camera networks needed to monitor an 

entire colony, which are expensive to install and 

maintain.  
(Black 2018) 

Permanent record viewable any number of times 

and available for independent verification.  
(Cutler & Swann 1999, Merkel et al. 2016; Sinclair et 

al. 2017, Black, 2018) 

Large amount of data to handle and analyse.  
(Merkel et al. 2016, Black 2018) 

 

Easier to maintain comparable study effort 

between years.  
(Merkel et al. 2016) 

Cameras rarely possess thermal imaging or infra-

red sensors, making night monitoring difficult.  
(Black et al. 2018) 
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Infrequent visitation lowers nest and site 

disturbance.  
(Cutler & Swann 1999) 

 

 

The wide range of studies already using time-lapse cameras to monitor seabird 

populations demonstrates their considerable potential for improving the scale of 

seabird monitoring. Photographs have been used to obtain baseline ecological data on 

seabirds, such as breeding success and population counts, as well as finer scale 

ecological and behavioural information (Cowardin & Ashe 1965, Southwell & 

Emmerson 2015, Black et al. 2018a, Hinke et al. 2018, De Pascalis et al. 2018). This 

includes monitoring nest activity (such as nest attendance and division of labour 

between parents), re-sighting marked birds to determine adult survival and foraging 

behaviour (including foraging trip duration and frequency of foraging trips), predation 

and the timing and duration of phenological events (Weller & Derksen 1972, Mudge 

et al. 1987, Collins et al. 2014, Southwell & Emmerson 2015, Black et al. 2017, Black 

et al. 2018b, Hinke et al. 2018, De Pascalis et al. 2018).  

Most studies so far have deployed time-lapse cameras at a small-scale, for 

example to monitor a single colony of interest, and so manual image analysis has been 

feasible (Southwell & Emmerson 2015, Black et al. 2017). However, as the scale of 

study increases, the number of raw images collected can quickly exceed researchers’ 

processing capabilities (De Pascalis et al. 2018). This has likely prevented time-lapse 

cameras from monitoring seabird colonies across large spatial scales.  

One method of processing huge volumes of data is to use volunteer citizen 

scientists to analyse photographs. Image annotation from citizen scientists can also be 

used to train computer algorithms to learn to recognise birds in photographs (Jones et 

al. 2020). Before machine learning can be deployed, researchers must be confident 

that observations from time-lapse photographs are comparable to field observations, 

and image analysis by citizen scientists is equivalent to examination by skilled image 

analysts who are ‘experts’ in the field. My thesis aims to compare expert observations 

from time-lapse images with field and citizen science observations, to assess the 

suitability of time-lapse imagery for monitoring a threatened seabird species: the 

Black-legged Kittiwake Rissa tridactyla.  
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Study species  

Population status 
Black-legged Kittiwakes (hereafter Kittiwake) are a small, pelagic gull found 

throughout the Northern Hemisphere. The global population is estimated at nine 

million adults, making them the world’s most numerous gull (Coulson 2011). 

However, the species has declined rapidly over the past 40-50 years with no evidence 

of slowing, leading to their classification as ‘Vulnerable’ on the IUCN Red List 

(BirdLife International 2019). In the British Isles, the breeding Kittiwake population 

has declined by 23% since the mid-1980s (Mitchell et al. 2004). Nationally, Scotland 

has suffered the greatest loss, with the 2014 index being 72% below the 1986 baseline 

(Wilkie et al. 2019). Severe declines have also been observed at higher latitudes, 

namely Greenland, Iceland, mainland Norway and the Faroe Islands (Hentati-

Sundberg, 2011; Sandvik et al., 2014).  

 

Productivity and phenology  
Typically, changes in seabird populations are attributed to changes in post-fledging 

and adult survival (Weimerskirch et al. 1997, Mitchell et al. 2004). This is because 

seabird life-history is characterised by long-lifespan and low fecundity, as they mature 

late and produce few chicks per annum (Bennett & Owens 2002). This means their 

populations may be buffered by short-term variation in productivity due to a long life-

span providing many opportunities to reproduce (Sæther & Bakke 2000, Jenouvrier et 

al. 2005). Seabirds are therefore ‘k-selected’ species. Conversely, the population 

growth rate of birds with low adult survival and high fecundity (r-selected species) is 

most sensitive to breeding success (Sæther & Bakke 2000). Nevertheless, recent 

evidence suggests poor breeding success can also be an important driver of seabird 

population decline alongside survival (Reiertsen 2013). This is particularly evident if 

productivity is reduced in multiple consecutive years, as has occurred at many 

Kittiwake colonies (Mitchell et al. 2004). Time-lapse cameras are well suited to 

monitoring productivity, as Kittiwakes usually return to the same locations to breed 

each year (Boulinier et al. 2008, Ponchon et al. 2015). This means a fixed-position 

camera can record the same nests every breeding season, providing comparable data 

over time. Furthermore, cameras can measure breeding phenology by recording the 
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date of parent arrival, egg laying, egg hatching, chick fledging and parent departure. 

Associations between the precise timing of events and other variables can be explored 

to provide an insight into the factors contributing to low productivity and ultimately 

Kittiwake decline.  

In the North Sea there is evidence that increasing sea surface temperature 

(SST) linked to climate change is altering the availability of Kittiwake’s primary prey, 

Lesser Sandeel Ammodytes marinus (Eerkes-Medrando et al. 2017). This is likely due 

to a decrease in sandeel abundance (Frederiksen et al. 2004, 2005, 2007, 2013), as 

well as a shift in phenology causing a decline in prey energy-value at peak demand 

(Burthe et al. 2012). This decrease in prey availability has been compounded by 

sandeel fishing off south-east Scotland in the 1990s, which lowered adult survival and 

breeding success relative to years before the fishery opened and after it closed 

(Frederiksen et al. 2004).  

Despite SST playing an important role in Kittiwake decline in some areas of 

Scotland, the same has not been shown across the UK. Winter SST was not a reliable 

indicator of Kittiwake breeding success at Fowlsheugh on the east coast of Scotland 

(Eerkes-Medrano et al. 2017) and there was no relationship between Celtic Sea STT 

and breeding success or population growth of Welsh breeding Kittiwakes (Lauria et 

al. 2012, Cook et al. 2014). Instead, the North Atlantic Oscillation (NAO) appeared 

to have a weak positive effect on Kittiwake population growth rate (Lauria et al. 2012). 

This may have been related to the direct effects of wind speed or storm frequency 

which are positively correlated with NAO (Lauria et al. 2012), although NAO can also 

be positively associated with SST making the results difficult to interpret (Qu et al. 

2012). It is therefore evident that different mechanisms are likely contributing to 

lowered Kittiwake productivity in different locations (Carroll et al. 2015). SST is 

having a greater effect on colonies in Scotland, while there is less certainty regarding 

factors contributing to the decline in Wales. As well as assessing the suitability of 

time-lapse cameras for measuring Kittiwake phenology and productivity, this thesis 

will also explore the effect of weather on Kittiwake nest survival at a colony in Wales, 

to investigate the importance of prevailing weather conditions on Kittiwake breeding 

success.  
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Thesis aims and structure  
Overall, there are three main aims to this thesis, which have been separated into three 

chapters.  

1. Chapter one 

Aim: To determine the effectiveness of time-lapse photography for 

measurements of Black-legged Kittiwake nest success and phenology, by 

comparing field observations with expert analysis of photographs.   

This chapter uses a case study of part of the Kittiwake colony on Skomer 

Island, Wales, to compare measurements of productivity and phenology from field 

observations and expert annotation of time-lapse images by researchers.  

2. Chapter two 

Aim: To explore associations between Black-legged Kittiwake nest survival 

and weather events.  

This chapter uses data from field observations and time-lapse images on 

Skomer in 2019 (i.e. from chapter one) to model the survival rate of Kittiwake eggs 

and chicks with different temporal, intrinsic, extrinsic variables. Based on the 

hypothesis that prevailing weather conditions could be having a greater impact on 

Kittiwake breeding success in Wales than SST, the extrinsic variables used were 

weather parameters (Lauria et al. 2012). This chapter aims to act as a preliminary study 

to see if there is any support for weather events contributing to the gradual reduction 

in Kittiwake breeding success on Skomer Island.  

3. Chapter three 

Aim: To determine the effectiveness of time-lapse photography for 

measurements of Black-legged Kittiwake abundance, nest success and 

phenology at wider spatio-temporal scales than can be achieved by individual 

researchers, by comparing citizen science and expert analysis of photographs.   

This chapter uses data from the citizen science project Seabird Watch 

(www.seabirdwatch.org) to compare counts of adult and juvenile Kittiwakes in time-

lapse images by citizen scientists and ‘gold standard’ annotation by researchers.  
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Following the final chapter there is a general discussion of the use of time-

lapse cameras for monitoring Kittiwakes, which brings together the results and 

conclusions from all three chapters.  
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CHAPTER ONE: Comparing field 

observations and expert analysis of 

time-lapse photographs 
 

ABSTRACT 
Monitoring seabird phenology and productivity is essential to understand long-term 

population trends. However, it can be logistically difficult, expensive in terms of time 

and money, and often precludes detailed phenology data depending on the frequency 

with which observations are made. Using time-lapse cameras to take photographs of 

cliff-nesting seabirds can potentially overcome some of these challenges. I compared 

Black-legged Kittiwake Rissa tridactyla phenology and productivity measured from 

time-lapse images and field observations, on Skomer Island, Wales, in 2019 to assess 

the effectiveness of digital monitoring relative to ‘traditional’ methods. Analysis of 

photographs recorded nests as ‘apparently occupied’ on average 3.7 days earlier than 

field observations. Photographs also observed chicks for the first and last time on 

average 13.9 and 9.6 days later respectively. Productivity measured from photographs 

ranged from 0.46 to 0.83 depending on the method used to determine the number of 

fledged chicks per nest. Field observations calculated productivity as 0.83. This study 

has shown that time-lapse photography has potential to improve seabird monitoring 

provided the camera can be positioned sufficiently close to the colony, or an 

appropriate magnification achieved with an optical lens.  While the time-lapse camera 

on Skomer Island has potential to assist Kittiwake monitoring, improvements in 

camera lens magnification are needed to realise the full potential of this technology.  
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INTRODUCTION 
Long-term monitoring programmes are essential for determining trends in seabird 

population ecology, which are necessary to assess species conservation status and 

understand potential causes of population change. The UK Seabird Monitoring 

Programme (SMP) has coordinated annual seabird monitoring in Britain and Ireland 

since 1986, with detailed data being collected at several key sites around the UK (Joint 

Nature Conservation Committee 2020). Annual estimates of breeding population size 

allow population trends to be determined, while measurements of phenology, breeding 

success, survival and diet can provide insights into the reasons for population change. 

The Seabird Monitoring Programme follows methodology provided in the ‘Seabird 

Monitoring Handbook for Britain and Ireland’, with consistent use of methods helping 

to ensure results are comparable across colonies (Walsh et al. 1995). However, most 

of the methods used are time-intensive, as fieldworkers must regularly visit sites to 

obtain the measurements required. For example, regular repeat visits are needed to 

resight large numbers of colour rings for survival studies and obtain time-series data 

to allow measurements of phenology and breeding success. Furthermore, many 

seabird species breed in remote locations, such as islands, which can be difficult and 

expensive to access. As a result, annual seabird monitoring is only conducted at a few 

key sites around the UK, limiting the spatial scale of our understanding of the UK 

breeding seabird population.  

One solution to try and overcome some of the challenges of current field 

monitoring methods is to use remote sensing technologies (Edney & Wood 2020). In 

particular, time-lapse cameras could offer a means of collecting detailed time-series 

data without the need for regular field visits. Cameras set to record images once per 

hour may only need their SD cards and batteries changing every one to two years, 

allowing a single field visit per annum to collect data (Merkel et al. 2016). Installing 

a network of time-lapse cameras around the UK may therefore be a comparatively 

cost-effective solution to expand both the spatial and temporal scale of UK seabird 

monitoring.  However, before such a task is undertaken, it is important to ensure that 

measurements from time-lapse cameras are comparable to traditional field 

observations. This requires a comparative study at a site where both field and time-

lapse data have been collected.   
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Skomer Island is owned by Natural Resources Wales (NRW) and managed by 

the Wildlife Trust of South and West Wales (WTSWW). It is part of a Marine 

Conservation Zone and is a nationally important site for breeding seabirds (Stubbings 

et al. 2017). Long-term monitoring of seabirds has been conducted here since the 

1960s and focuses on a number of species, including the Black-legged Kittiwake Rissa 

Tridactyla (hereafter Kittiwake) (Brown et al. 2004, Wilkie et al. 2019). Monitoring 

of Kittiwakes aims to gather four main pieces of information: the number of breeding 

birds, productivity (i.e. breeding success), timing of breeding and breeding adult 

survival. This data has shown that while the UK decline in breeding Kittiwakes has 

been most rapid in Scotland, a gradual decrease is occurring in Wales (Wilkie et al. 

2019).  On Skomer, Kittiwake numbers have fallen by 42% since 1986, likely a result 

of low productivity coupled with low survival (Wilkie et al. 2019). Preliminary 

Population Viability Analysis has shown that if current rates of survival and 

productivity continue, then the breeding population will decline to a few hundred by 

the end of the 21st century, and if parameters worsen the species may be locally extinct 

within 70 years (Horswill, Perrins & Wood, unpublished).  

In 2019, a time-lapse camera was installed at one of the Skomer Kittiwake 

colonies to provide consistent year-round monitoring and hopefully give further 

insight into the factors affecting Kittiwake productivity and survival, which is the first 

step in developing measures to reverse their decline. This chapter aims to investigate 

how measurements of Kittiwake productivity and phenology from time-lapse 

photographs compare with field observations on Skomer Island. This will help assess 

whether time-lapse photography can improve the temporal and spatial scale of seabird 

monitoring.   

 

METHODS 

Data sources and collection 

Field observations  
Kittiwake productivity and phenology have been monitored at the same three sub-

colonies on Skomer Island since 1989: South Stream (plots SS1 and SS2), High Cliff 

(plot HC2) and the Wick (plots W3, W4, W5 and W6) (Fig. 1). Observations are made 

in accordance with the Seabird Monitoring Handbook for Britain and Ireland 
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(hereafter Seabird Monitoring Handbook) (Walsh et al. 1995). In 2019 the fieldworker 

was employed by the WTSWW and the data were gathered by Alex Piggott.   

 

 

To measure productivity, each plot is visited in late May and early June, and 

the following features are marked on a study map photo:  

a) nests with birds apparently incubating; 

b) other complete attended nests; 

c) other site-holding birds with even a trace of a nest; 

d) any unattended well-built nests (empty or otherwise). 

Complete and trace nests are numbered sequentially, and from early June each plot is 

visited every 14 days until the first chicks reach medium size, when visits increase to 

a minimum of every five days (Walsh et al. 1995, Wilkie et al. 2019). In 2019, the 

Wick 4 and Wick 5 study plots were visited 13 times between the 22nd May and 11th 

August (Table 1). Nest state is recorded as one of the follow categories:  

 

Figure 1 Kittiwake productivity monitoring on Skomer Island takes place at three sub-

colonies which are divided into seven plots: the Wick (plots W3, W4, W5 and W6), High 

Cliff (plot HC2) and South Stream (plots SS1 and SS2). These plots are viewed by the 

fieldworker from observation points 1, 2, 3, 4 and 5. Image: Skomer Management Plan, 

WTSWW, 2015 (Mike Alexander).  

Kittiwake productivity plots and observati 
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a) t/N = Trace nest, where N is the number of attending adults  

b) 0 = No adults and well-built empty nest  

c) 1, 2 = number of adults (1 or 2) attending a well-built but empty nest.  

d) i = Adults apparently incubating 

e) c/x = Adult at well-built nest, contents unknown (adult not incubating) 

f) c/0 = No eggs seen but adult acting as incubating on and off  

g) c/? = Egg/s seen, number in clutch unknown 

h) c/N = Clutch size, where N is the number of eggs 

i) b/x = Chick/s seen, number of chicks unknown (adult incubating) 

j) b/N = Brood size, where N is the number of chicks 

k) Chick size, according to Table 2.  

Categories c-k are defined as apparently occupied nests (AONs).  
 

Table 1 Number of days between nest checks at Wick 4 and Wick 5 study plots in 2019.   

 

Table 2 Guide for assessing size- or age-categories of Kittiwake chicks (Walsh et al. 1995).  

Visit dates Interval between visits / days 

22/05/2019 - 

17/06/2019 26 

25/06/2019 8 

02/07/2019  9 

08/07/2019 6 

13/07/2019 5 

17/07/2019 4 

21/07/2019 4 

25/07/2019 4 

29/07/2019 4 

02/08/2019 4 

07/08/2019 6 

10/08/2019 (Wick 4), 11/08/2019 (Wick 5)  3 (Wick 4), 4 (Wick 5) 

Description Size-category 

Chick completely downy Small (S) 

Downy chick, but black tips to upper wing-coverts just visible S 

Clear grey/black pattern visible on upper-side of wing, but still some 

down on upper-wing, and mainly downy elsewhere 

Medium (M) or M/S 

No down on upper-side of wings, some down elsewhere Large (L) or M/L 
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No down visible, wing tips at least equal to length of tail 

Wing tips 1-2 cm longer than tail 

Wing tips 3-4 cm longer than tail 

L 

'Fledgable' (F) 

Fully fledged (FF) 

The Sea.bird Monitoring Handbook suggests chicks with 'wing tips l-2cm 

longer than the tail' are 'fledgable ' and 'wing tips 3-4cm longer than the tail' are 'fully 

fledged ' . However, this level of detail is not recorded on Skomer, and instead these 

chicks are categorised as 'large', and all lru·ge chicks ru·e assumed to fledge. 

Productivity at each plot is calculated as: total number of lru·ge chicks divided by the 

total number of AONs ( categories c-k). 

This method of monitoring is sufficient to determine productivity but precludes 

detailed phenological data as nests are rru·ely checked more frequently than once eve1y 

four days. If the exact date of key events, such as nest failure, ru·e unknown then it can 

be difficult to con elate failure with external variables, like weather. On the other hand, 

time-lapse images have the potential to make obse1vations more frequently and 

therefore provide precise timings of key biological events. 

Observations from time-lapse photographs 

Camera set-up 
In 2019 a Reconyx time-lapse camera (HF2XODG HyperFire 2 Covert IR Camera 

OD) was installed opposite the Wick Kittiwake colony (Fig. 2). The distance between 

camera and colony is in the order of 90 m, and so a zoom lens (HF2 Telephoto Lens, 

Nar Illum & Matched PIR) was fitted to provide 2x magnification compared to the 

standard lens. The cost of the camera and lens was US$609.98 (US$459.99 camera, 

US$149.99 lens) . The camera captured images of the Wick 4 and Wick 5 study plot 

eve1y hour throughout the year. 

Figure 2 The time-lapse camera was positioned 90 m away from the Wick Kittiwake 23 
colony. 
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Monitoring  
Nest monitoring from time-lapse photographs was conducted as similarly as possible 

to field observations on Skomer Island. Potential nest sites were marked and numbered 

on a photograph and each nest was followed from the 11th April, when the first 

photograph was taken, to the 15th August, when the breeding season was complete and 

Kittiwakes were not present in further images. Only the midday image was observed 

each day, as it was not achievable to thoroughly examine 24 photos per day in the time 

available. On some days the midday image was unsuitable due to poor weather 

conditions reducing visibility, or a bird in flight in the foreground obscuring part of 

the colony. In such cases the next suitable photograph either side of 12.00 was chosen. 

Ideally this was either the 11.00 or 13.00 image, although for a few days it was as late 

as 18.00. Nest state was recorded using the codes in Table 3. These were designed to 

match those used by the fieldworker as closely as possible, but image resolution meant 

eggs could not be seen and chick size could not be reliably determined. Only complete 

nests with an adult and/or chick present were ‘apparently occupied’ and included in 

the number of apparently occupied nests (AONs) used in the productivity calculation.  
 

Table 3 Description of codes used to record nest state in time-lapse images.  

Description Code 

One adult standing/sitting on the cliff but not occupying a trace nest or complete 

nest  1a 

Two adults standing/sitting next to each other but not occupying a trace nest or 

complete nest 2a 

Trace nest with no adults present t0 

Trace nest with one adult present t1 

Trace nest with two adults present t2 

Empty complete nest n0 

Complete nest with one adult present (AON)  n1 

Complete nest with two adults present (AON) n2 

One adult and one chick at a complete nest (AON) 1a1c 
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One adult and two chicks at a complete nest (AON) 1a2c 

Two adults and one chick at a complete nest (AON) 2a1c 

Two adults and two chicks at a complete nest (AON) 2a2c 

 

All image analysis was conducted before examining the field data. This meant 

that knowledge of nest location and outcome determined by the fieldworker did not 

bias results, and so the results from each method were completely independent. 

Likewise, all photographs were analysed prior to exploring the weather data used for 

survival analysis in chapter two. This helped ensure that the image analyser recorded 

exactly what they observed in the photographs, and not what they expected to be 

observed. For example, if the analyser knew a storm occurred on a particular day, then 

they might expect there to be fewer chicks in the photograph the following day, due 

to some nests being blown or washed off the cliffs. This could have biased the number 

of chicks ‘seen’ and recorded in post-storm images. Image analysis was conducted by 

one person (myself) to ensure consistency in observations.  

 

Data analysis  

Comparing observations in the field and from time-lapse photographs  
The first step in the comparison was to match each nest monitored by the fieldworker 

with the corresponding nest identified in time-lapse images and assign each 

corresponding nest the same number. Nests only identified in the field or only 

identified in photos were assigned a unique number. The new numbers assigned to 

each nest are given in the Supplementary Material (Table S1).  

Next, each code used to describe nest contents in the field had to be matched 

to the equivalent code used when analysing time-lapse photographs. Due to the 

differences between field and photo monitoring methods, all data were reassigned to 

a new category system, which is shown in Table 4.  Inconsistencies in the field data 

made this a time-consuming task. For example, using a mix of capital and non-capital 

letters and including and not including forward dashes (e.g. B1, b1, B/1, b/1) vastly 

increased the number of individual codes used. Checking all of the field data for 

inaccuracies also identified two nests (86 and 89 at Wick 5, which were reassigned 

numbers 158 and 166 respectively) that had been recorded with an apparently 



1 Comparing field and gold standard photo data 
 

26 
 

incubating adult present (code i) yet were given an AON score of zero. The 

fieldworker did not count these nests as AONs because one was recorded as a trace 

nest, and the other was a well-built empty nest or contained one non-incubating adult 

on all other days. This delayed re-coding the data, as incubating should have implied 

that the nest went on to become an AON. Once data processing was complete, 

productivity and phenology determined from field and photo data were compared to 

assess the effectiveness of time-lapse photography as a monitoring tool at the Wick. 
 

Table 4 Codes used when making field (field code) and photo (photo code) observations were 

reassigned to the same values for analysis (reassigned code). Codes that classify as apparently 

occupied nests (AONs) are indicated by a ‘y’ (yes), and those that do not are given an ‘n’ (no).  
 

Field 

code 

Field code 

description 

Photo 

code 

Photo code 

description 

Reassigned 

code 

AON 

(y/n) 

0 No adults and well-

built nest empty 

n0 Empty complete nest n0 n 

1 One adult attending 

empty nest 

n1 Complete nest with 

one adult present  

N y 

2 Two adults attending 

empty nest 

n2 Complete nest with 

two adults present  

N y 

t  Trace nest t0, t1, t2 Trace nest with zero, 

one or two adults 

present 

T n 

t1 Trace nest with one 

adult 

t1 Trace nest with no 

adults present 

T n 

t2 Trace nest with two 

adults 

t2 Trace nest with two 

adults present 

T n 

i Adults apparently 

incubating 

n1, n2 Complete nest with 

one or two adults 

present  

N y 

c/x Adult at well-built 

nest, contents 

n1, n2 Complete nest with 

one or two adults 

present  

N y 
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unknown (adult not 

incubating) 

c/? Egg/s seen, number in 

clutch unknown 

n1, n2 Complete nest with 

one or two adults 

present  

N y 

c/0 No eggs seen but adult 

acting as incubating 

on and off 

n1, n2  Complete nest with 

one or two adults 

present  

N y 

c/1+ Clutch of one egg 

minimum 

n1, n2 Complete nest with 

one or two adults 

present  

N y 

c/2+ Clutch of two eggs 

minimum 

n1, n2 Complete nest with 

one or two adults 

present  

N y 

c/3+ Clutch of three eggs 

minimum 

n1, n2 Complete nest with 

one or two adults 

present  

N y 

b/x Chick/s seen, number 

of chicks unknown 

(adult incubating) 

1c, 1a1c, 

2a1c, 2c, 

1a2c, 2a2c 

One chick, one adult 

one chick, two adults 

one chick, two chicks, 

one adult two chicks, 

two adults two chicks 

at a complete nest  

C y 

b/1+ Brood of one chick 

minimum 

1c, 1a1c, 

2a1c 

One chick, one adult 

one chick, two adults 

one chick at a 

complete nest  

C y 

b/2+ Brood of two chicks 

minimum 

2c, 1a2c, 

2a2c 

Two chicks, one adult 

two chicks, two adults 

two chicks at a 

complete nest  

C y 

(s) Small chick 1c, 2c One chick, two chicks C y 

(m) Medium chick 1c, 2c One chick, two chicks C y 

(l) Large chick 1c, 2c One chick, two chicks C y 
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Phenology  
Three dates were determined for each nest site from field data and photographs: the 

date a nest was first recorded as an AON and the dates a chick was first and last seen. 

This allowed the length of the incubation and chick-rearing periods to be determined. 

The incubation period was defined as the number of days difference between the first 

time a nest was recorded as an AON and the first time a chick was seen, and the chick-

rearing period was the difference between the first and last time a chick was seen at 

the nest. The date of first adult arrival could not be determined as Kittiwakes had 

already returned to the site before the first photograph was taken and first field 

observation was made. The average number of days difference between dates 

estimated from field observations and image analysis were calculated, along with the 

proportion of nest sites where the photo derived date was equal to, less than and greater 

than the field date.  

Shapiro-Wilk normality tests assessed whether the differences in first AON, 

first chick and last chick date recorded in the field compared to photographs were 

normally distributed. Paired t-tests determined whether these differences were 

significant if the data were normally distributed, otherwise Wilcoxon signed rank tests 

were used.  

The accuracy of methods cannot be directly assessed, as the ‘true’ state of each 

nest is unknown. However, predictions regarding the difference in dates between 

methods are possible. It was predicted that image analysis would record earlier first 

AON and later last chick dates, because the initiation and completion dates of time-

lapse observations were earlier and later respectively than for field observations. In 

contrast, it was unclear how first chick dates would differ between field and photo 

observations. On the one hand, the increased frequency of observations provided by 

images (daily rather than every 3-26 days) might allow small chicks to be first seen 

closer to their true hatch date. Conversely, fieldworkers can wait for incubating birds 

to move and reveal nest contents, and behavioural information, such as incubating 

postures, may be easier to discern, allowing fieldworkers to spot small chicks for the 

first time before image analysis methods.  
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Productivity  
Productivity was calculated as the total number of fledged chicks divided by the total 

number of AONs. For field observations, a chick was presumed to have fledged if it 

had reached ‘large’ size. Small and medium sized chicks that disappeared between 

visits were assumed to have died. The size of chicks was not recorded from time-lapse 

photographs as the images could not be viewed in sufficient detail to accurately 

determine chick size according to fieldworker methods. This made it difficult to 

determine from photographs which chicks fledged. The image data were therefore 

examined in greater detail and five methods were used to calculate the number of 

fledged chicks from photographs and thus productivity. The productivity calculated 

from each of these five methods was then compared with the productivity calculated 

from field observations to assess which method gave the most similar value to in the 

field. Methods deemed ‘similar enough’ to field observations, could then be used in 

future years to determine the number of chicks fledged from photographs and 

subsequently productivity if field data were not available. The methods used were as 

follows: 

1. All chicks fledged 

This assumed that all chicks seen in photographs fledged.  

2. Chicks seen for a minimum of 21 days fledged.  

Previous studies using time-lapse cameras have assumed that Kittiwake chicks present 

in the nest for a minimum of 21 days could fledge and those observed for less than 21 

days do not survive (Ryan 2019, Barry 2020). This assumption was based on Coulson 

and White (1958) who reported a minimum fledge period of 36 days in Great Britain 

from field observations. Since small chicks can be very difficult to observe in the first 

one to two weeks after hatching due to parental brooding, it was assumed that chicks 

observed for more than 20 days survived, but less than 21 days was unrealistic despite 

allowances for variable incubation periods (Coulson & White 1958, Gabrielsen et al. 

1992, Coulson 2011).  

3. Chicks only seen on/after the 14th July fledged.  

Table 5 shows the dates of key phenological events across all Kittiwake study plots 

on Skomer Island. In the past 14 years, the earliest date a chick was first seen was on 

the 8th June in 2010. Using Coulson and White’s (1958) minimum fledge period of 36 

days, it would be expected that this chick fledged no earlier than the 14th July. 
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Therefore, based on this data, it might be assumed that only chicks still present on/after 

the 14th July could go on to fledge. 

4. Chicks only seen on/after 21st July fledged.  

The average date a chick was first observed in the past 14 years was the 15th June 

(Table 5). Adding 36 days onto this suggests the earliest hatched chicks were, on 

average, likely to fledge on the 21st July. From this, it could be assumed that only 

chicks seen on/after 21st July were large enough to fledge.  

5. Chicks first seen on/after 1st August were not included in the number of 

fledged chicks.  

Examination of the data showed that a chick was first seen on/after 1st August for nests 

23, 26 and 102 in photographs and that these chicks were only seen once. It is most 

likely that the chicks were not from these nests but had instead fledged from other 

nests within the colony. Kittiwake chicks may leave the nest sometime after 36 days, 

but rarely head straight out to sea. Instead, they typically make short excursions around 

the colony and will attempt to land on suitable cliff sites. This means they may be 

found in nests other than their own (Tanedo & Hollémen 2020).  

 

Table 5 Kittiwake phenology records from all study plots 2005 – 2018 (Taylor et al. 2010, 

Wilkie et al. 2019). Incubation period is: first chick – first egg. Fledge period is: first fledge – 

first chick.  

 

Year Nest 

building 

start / date 

First 

egg  

/ date 

First 

chick  

/ date 

First 

fledge 

/ date 

Incubation 

period  

/ days 

Chick-rearing 

period /days 

2005 29-Apr 18-May 11-Jun - 24 - 

2006 07-May 23-May 19-Jun - 27 - 

2007 07-May 19-May 16-Jun - 28 - 

2008 08-May 24-May 20-Jun - 27 - 

2009 30-Apr 11-May 11-Jun - 31 - 

2010 30-Apr 21-May 08-Jun - 18 - 

2011 07-May 13-May 10-Jun - 28 - 

2012 07-May 20-May 11-Jun - 22 - 

2013 10-May 28-May 23-Jun - 26 - 

2014 23-Apr 22-May 24-Jun 27-Jul 33 33 
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2015 04-May 19-May 20-Jun 24-Jul 32 34 

2016 02-May 20-May 14-Jun 25-Jul 25 41 

2017 06-May 23-May 14-Jun 25-Jul 22 41 

2018 11-May 25-May 20-Jun 28-Jul 26 38 

Mean 04-May 20-May 15-Jun 25-Jul 26.4 37.4 

 

 

The McNemar test was used to test the null hypothesis that the relative 

probability of nest success did not differ when measured by a fieldworker or time-

lapse camera. This test can be used when the dependent variable is dichotomous, such 

as success or fail. AONs that fledged one or more chicks were successful (1) while 

AONs that did not fledge a chick failed (0).  Since the McNemar test did not take into 

account the number of chicks fledged per nest, paired t-tests or the non-parametric 

equivalent (Wilcoxon signed rank tests) were used to test the null hypothesis that the 

mean number of chicks fledged per AON did not differ when measured from field data 

compared to time-lapse photographs. Prior to this, the Shapiro-Wilk normality test 

determined whether the number of chicks fledged per nest was normally distributed. 

Paired t-tests were used if the data were normally distributed, whereas Wilcoxon 

signed rank tests were used if the data were not. All statistical analyses were conducted 

in the R environment (R Core Team 2019). 

 

RESULTS 

Individual nests 
The time-lapse camera captured photographs of most of the Wick 4 and Wick 5 study 

plots. A total of 144 potential nests (those that at least reached trace stage) were 

recorded both in the field and in photographs (Fig. 3). An additional 18 potential nests 

were only identified in photographs: of these, 12 terminated as trace nests and six 

became apparently occupied nests (AONs) but did not produce a chick. Conversely, 

five potential nests were only recorded by the fieldworker. One of these terminated as 

a trace nest, two became AONs but without a chick, one successfully fledged one chick 

and the other successfully fledged two chicks. Out of the 144 potential nests, 129 were 

recorded as an AON in both field and photographs. An additional 14 nests were 
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identified as an AON in photographs only compared to three AONs recorded only in 

the field (Table 6).  

Table 6 The number of potential nests, trace nests and complete nests recorded in the field, in 

photographs and in both field and photographs. The number recorded in ‘field and photo’ refer 

to corresponding nests e.g. the same 129 AONs were recorded in both the field and photos.   

Method 
Number of… 

Potential nests (trace & complete) Complete nests (AON) 

Photo 162 143 

Field 149 132 

Field and Photo 144 129 

 

Phenology  
The date trace nests were first recorded could not be compared between field and 

photographs, as some nests were already complete when the fieldworker made the first 

visit on the 22nd May. Figures 4-6 show the date a nest was first recorded as complete 

and a chick was first and last seen, for each complete nest observed in the field and/or 

in photographs. The first date a nest was complete was on average 3.7 (σ = 8.2) days 

earlier in photographs than in the field. The date a chick was first and last recorded 

was 13.9 (σ = 7.6) and 9.6 (σ = 5.7) days later respectively in photographs compared 

to field observations (Table 7, Fig. 7). In all cases, these differences in date were 

significant when comparing the 129 complete nests observed in both field and photos 

(first nest: Wilcoxon signed rank test, V = 4210, P < 0.001; first chick: Paired t-test, t 

= -18.1, P < 0.001; last chick: Wilcoxon signed rank test, V = 28.5, P < 0.001). 

The duration of the egg stage, defined as the period between the date on which 

a nest was completed and a chick was first seen, was on average 16.8 (σ = 10.5) days 

longer when calculated from photographs compared to field data. Conversely, the 

duration of the chick stage, defined as the period between the date a chick was first 

and last seen, was 4.3 (σ = 9.4) days shorter when measured from photographs (Table 

7, Fig. 7). Again, these differences were statistically significant (length of egg stage: 

Paired t-test, t = -15.8, P < 0.001; length of chick stage: Paired t-test, t = 4.51, P < 

0.001).  
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Table 7 Comparison of key dates obtained from 129 complete nests observed in both the field 

and photographs at the Wick, Skomer, 2019. ‘Average difference’ is the mean of all 

differences between field and photograph dates for each nest. Each difference was calculated 

as field date – photograph date, meaning negative values show that dates from photographs 

were on average later than in the field, while positive values show that dates from photographs 

were earlier. σ  is the standard deviation of the average difference. ‘Proportion of sites where 

photo = field’ is the proportion of nests where the date was the same in the field and  image. 

‘Proportion of sites where photo > field’ and ‘photo < field’ is the proportion of nests where 

the date was greater (i.e. later) in images than the field and smaller (i.e. earlier) in images than 

in the field, respectively.  

Date of Average 

difference  
σ  Proportion of 

nests where 

photo = field 

Proportion of 

nests where 

photo > field  

Proportion of 

nests where 

photo < field  

Complete 

nest first 

recorded 

3.71 8.16 0.20 0.20 0.60 

Chick 

first 

recorded 

-13.90 7.61 0.01 0.93 0.06 

Chick 

last 

recorded 

-9.63 5.70 0.071 0.90 0.03 

Length 

of egg 

stage 

-16.82 10.52 0.03 0.94 0.03 

Length 

of chick 

stage 

4.27 9.36 0.03 0.36 0.36 
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Figure 3 Time-lapse photograph with all potential (trace & complete) nest sites labelled. Purple circles are nests recorded in the field and in time-lapse images (n 
= 144). Cyan triangles are nests recorded in time-lapse images only (n = 18). Orange diamonds are nests recorded in the field only (n = 5).  
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Figure 4 D
ifference in date a com

plete nest w
as first seen betw

een field and photograph observations for each com
plete nest recorded in the field and/or 

photographs. The infrequency of site visits early in the season m
eant the fieldw

orker recorded m
ost nests as com

plete on the 22
nd M

ay.  
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Figure 5 D
ifference in date a chick w

as first seen betw
een field and photograph observations for each com

plete nest recorded in the field and/or photographs.  
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   Figure 6 D

ifference in date a chick w
as last seen betw

een field and photograph observations for each com
plete nest recorded in the field and/or 

photographs.  
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Productivity  
Productivity was calculated as the total number of chicks that fledged divided by the 

total number of AONs. 143 AONs were recorded in time-lapse photographs and 132 

were recorded in the field. The same 129 AONs were seen in both photographs and in 

the field. At least one chick was recorded in 107 out of 143 AONs (74.8%) seen in 

photographs, whereas 103 out of 132 AONs (78%) recorded a chick(s) in the field.  

Productivity was calculated from photographs using five different methods to 

determine which gave the closest estimate to field observations (Table 8). Productivity 

was generally very similar (0.80 - 0.83) to that calculated by the fieldworker, who 

assumed that only large chicks fledged (0.83). When the ‘minimum fledge period’ of 

21 days was used to determine the number of chicks that fledged, productivity dropped 

by 0.16 (19%) in the field and 0.4 (48%) in photos, compared to when only large 

chicks fledged. However, comparing the number of chicks seen per nest in the field 

and in photographs revealed numerous differences, despite apparently similar 

productivity values. These nest by nest differences were explored further to assess the 

reliability of each productivity estimate.  

 

Table 8 Productivity estimates from field and photo data using five different methods to 

determine the number of fledged chicks.  

Field Photo 

Fledged chicks Productivity Fledged chicks Productivity 

Only large chicks  109 / 132 = 0.83 All chicks  119 / 143 = 0.83 

Chicks seen for minimum 

of 21 days 

89 / 132 = 0.67 Chicks seen for minimum of 21 

days  

62 / 143 = 0.43 

Medium, medium/large 

and large chicks  

(i.e. chicks last seen 

on/after 14th July) 

126 / 132 = 0.95 Only chicks last seen on/after 

14th July   

(i.e. excludes nest 60) 

118 / 143 = 0.83 

  Only chicks last seen on/after 

21st July   

(i.e. excludes nest 60 and 72) 

117 / 143 = 0.82 
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  Only chicks last seen on/after 

14th July (i.e. excludes nest 60)  

AND first seen on/before 31st 

July (i.e. excludes nest 23, 26 

and 102) 

115 / 143 = 0.81 

  Only chicks last seen on/after 

21st July (i.e. excludes nest 60 

and 72)  

AND first seen on/before 31st 

July (i.e. excludes nest 23, 26 

and 102) 

114 / 143 = 0.80 

 

Number of fledged chicks 
Out of the 144 potential nests observed in both the field and in photographs, the same 

number of chicks (including zero) were recorded in the field and in images for 89 nests 

(62%). Of the 55 nests (38%) where there was a difference in the number of chicks 

seen, photographs were more likely to observe fewer chicks per nest compared to field 

observations (31%) (Fig. 8A). When comparing the number of chicks per nest in 

photographs, with the number of large chicks per nest (i.e. those that fledged) in the 

field, only 39 nests (27%) had a difference in the number of chicks (Fig. 8B).  

Compared to Fig. 8A, Fig. 8B shows more nests where chick number was equal 

in photos and in field (photo = field) and greater in photos (photo > field), but fewer 

nests where there were less chicks observed in photos (photo < field). For 42 nests 

(29%), the fieldworker recorded two chicks when only one was observed from 

photographs; however, for 22 of these, one chick did not reach large size, and for 6 

nests both chicks did not reach large size. Failure of one or both chicks in two chick 

broods, would have increased the proportion of nests where the number of large chicks 

in the field equalled (photo = field) and was less than (photo > field) the number of 

chicks in photos (Fig. 8B), relative to when comparing the number of chicks seen in 

the field and in photos irrespective of size (Fig. 8A). Table S3 in the Supplementary 

Material explains in further detail why there may have been discrepancies in the 

number of chicks fledged per nest from field and photo data. The implications of this 

for productivity estimates will be explored further in the discussion. 
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The mean number of chicks fledged per AON did not significantly differ 

between field and photo data when only large chicks fledged in the field and 1) all 

chicks, 2) chicks last seen after 13th July, or 3) chicks last seen after 20th July, fledged 

from photographs (Table 9). Conversely, there was a significant difference in the 

number of chicks fledged per AON when large chicks fledged from the field, but only 

1) chicks last seen after 13th July and first seen before 1st August, or 2) last seen after 

21st July and first seen before 1st August, fledged from photographs (Table 9). Equally, 

there was a significant difference in the number of chicks seen per nest, which is 

equivalent to assuming all chicks fledged from every nest seen in the field and in 

photographs. These results support Fig. 8 and Table S3 in the Supplementary Material, 

which suggest there were numerous discrepancies in the number of chicks seen per 

nest in field and photos. However, depending on the criteria used to determine 

fledging, the number of chicks fledged per nest and thus productivity could be very 

similar.  

 

 

 

Figure 8 Proportion nests where the number of chicks seen in photographs was less than, 

equal to and greater than the number of A) chicks and B) large chicks seen in the field. n = 

144 potential nests seen in both the field and photographs.  
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Table 9 Results of statistical analyses used to test the null hypothesis: the mean number of 

chicks fledged per AON does not differ when measured by a fieldworker compared to time-

lapse photographs. The number of chicks fledged per AON for field and photo data are given 

in the comparison column. All Shapiro-Wilk normality tests were significant meaning the data 

were normally distributed and Wilcoxon signed rank tests were used to test the null hypothesis. 

n = 129 AONs seen in both the field and photographs.  

Comparison Shapiro-Wilk 

normality test 

 

Wilcoxon signed 

rank test Field Photo 

Only large chicks 

fledge 

All chicks fledge W = 0.735, P < 0.001   V = 273, P = 0.0652 

Only large chicks 

fledge 

Only chicks last 

seen on/after 14th 

July fledge   

(i.e. excludes nest 

60) 

W = 0.729, P < 0.001 V = 266, P = 0.0873 

Only large chicks 

fledge 

Only chicks last 

seen on/after 21st 

July fledge   

(i.e. excludes nest 

60 and 72) 

W = 0.723, P < 0.001 V = 259, P = 0.116 

Only large chicks 

fledge 

Only chicks last 

seen on/after 14th 

July fledge (i.e. 

excludes nest 60)  

AND first seen 

on/before 31st July 

(i.e. excludes nest 

23, 26 and 102) 

W = 0.716, P < 0.001 V = 252, P = 0.152 

Only large chicks 

fledge 

Only chicks last 

seen on/after 21st 

July fledge (i.e. 

excludes nest 60 

and 72)  

AND first seen 

on/before 31st July 

(i.e. excludes nest 

23, 26 and 102) 

W = 0.709, P < 0.001 V = 245, P = 0.198 
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All chicks  All chicks W = 0.775, P < 0.001 V = 1265, P < 0.001 

 

Time investment  
The time required to analyse each image was between 20 and 30 minutes. This 

included identifying the nest contents of each pre-labelled nest and entering it into a 

spreadsheet. In total, 127 images were examined, meaning image analysis took 

approximately 42-64 hours. Additional time was needed pre-image analysis to extract 

the midday image for each day, and mark and number potential nest sites on a 

photograph. Identifying corresponding nests seen in both the field and in photographs 

and extracting information on phenology and productivity also required further time 

post-image analysis.  

In comparison, the time taken by each field visit varied across the breeding 

season. On average, each visit took around 30 to 40 minutes per plot mid-season, when 

the chicks were mostly small/medium size, although later visits became much shorter 

in length as the fate of more and more nests were determined (i.e. either failure of 

fledging) (A. Piggott, pers. comm) . Assuming visits took 30 minutes and thirteen 

visits were made to each of the Wick 4 and Wick 5 study plots in 2019, then fieldwork 

took around 13 hours total. Extra time was spent inputting data into a spreadsheet and 

extracting information on phenology and productivity.  

 

DISCUSSION 
This chapter aimed to investigate how measurements of Kittiwake phenology and 

productivity from time-lapse photographs compared with field observations in 2019 

on Skomer Island. Overall, measurements from photographs first recorded nests as 

‘apparently occupied’ earlier than field observations, but chicks were observed for the 

first and last time later in photographs compared to in the field. Productivity measured 

from photographs was variable, ranging from 0.46 to 0.83, depending on the method 

used to determine the number of chicks that fledged. The highest productivity 

calculated from image analysis was the same as that calculated from field observations 

(0.83).  
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Individual nests 
The same 144 potential nests (trace and complete) and 129 apparently occupied nests 

(AONs) were recorded by both field and photo analysis. Field and photographic 

methods each recorded additional nests not seen using the other method; however, in 

total, photographs recorded 13 more potential nests and 11 more AONs compared to 

field observations. Having ~150 nests per image meant most nest sites appeared to be 

small in photographs. Provisional examination of the time-lapse images showed that 

adult and juvenile Kittiwakes could be identified, although with reduced clarity than 

seen by the fieldworker, who was able to use a scope to zoom in further on the nests 

being monitored. It was therefore surprising that more potential nests and AONs were 

identified in photographs given the lower image resolution. One possible explanation 

is that some or all of the 18 trace nests seen only in images were abandoned before the 

fieldworker made their first visit at the end of May, and did not remain sufficiently 

intact to be recorded as a trace nest upon the fieldworker’s arrival. Alternatively, these 

trace nests could have been misidentified in photographs, and been marks on the rock 

rather nesting material.  

 

Phenology 
The dates of key phenological events during the Kittiwake breeding season were 

significantly different when measured from time-lapse photographs compared to field 

observations. Complete nests were first seen earlier in images, while chicks were first 

and last seen later. Earlier first complete nest dates and later first chick dates resulted 

in the length of the egg stage being significantly longer when measured in 

photographs, while the length of the chick stage was significantly shorter.  

Earlier first complete nests were observed in photographs because time-lapse 

images started being recorded before the fieldworker made their first observation. The 

first day a complete set of images were collected (i.e. one every hour) took place on 

the 11th April, whereas the fieldworker made their first visit on the 22nd May. This 

meant some nests were already completed when the fieldworker arrived. Equally, the 

fieldworker finished their observations on the 11th August, while the time-lapse 

camera records year-round. Kittiwakes were last observed in images on the 15th 

August, meaning some chicks from late nests may have still been present after the 

fieldworkers’ last visit, resulting in the date a chick was last seen being later in images. 
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These differences highlight how time-lapse cameras can expand the temporal scale of 

monitoring, as they can record images throughout the year when fieldworkers may not 

be present at sites. This includes early and late in the breeding season, but also in 

winter, which can give an insight into colony attendance outside of breeding (Mudge 

et al. 1987, Black et al. 2017, Black et al. 2018b). However, it is important to consider 

whether the last chicks seen in time-lapse images were from the nest they were 

observed at. Juvenile Kittiwakes often make short flights around the colony sometime 

after 36 days post-hatching, but do not typically leave the colony until ~10 days after 

their first flight (Coulson 2011). While their parents will only feed them at their own 

nest, the juveniles may land at other empty nest sites, meaning offspring are 

increasingly likely to be seen at nests other than their own towards the end of the 

breeding season (Tanedo & Hollémen 2020). Consequently, without marking chicks 

it is difficult to be sure whether large chicks capable of fledging are from the nest they 

are observed at.  

The later first chick dates recorded in photographs compared to in the field 

suggest that small chicks were harder to spot in images. Chicks are typically brooded 

continuously by a parent for the first 15-16 days after hatching, which can make them 

hard to see in a single static image (Gabrielsen et al. 1992). Analysis of photographs 

likely struggled to observe these young chicks for several reasons. Firstly, the time-

lapse camera was positioned 90 m from the colony, which meant image resolution was 

fairly low. In the order of 150 nests were observable per image, which is greater than 

many other studies using time-lapse cameras (Southwell & Emmerson 2015, Hinke et 

al. 2018, Ryan 2019, Barry 2020). Increasing the number of nests per image (i.e. 

sample size) may give a more representative measure of colony productivity but will 

reduce the detail seen at each nest and therefore accuracy of observations. Conversely, 

while the fieldworker viewed the Wick Kittiwake colony from the same distance as 

the time-lapse camera, the use of a scope with a zoom lens allowing up to 50x 

magnification meant each nest could be viewed at much higher resolution compared 

to the 2x magnification afforded by the camera. This allowed the size of chicks to be 

established and small chicks were more likely to be spotted. Furthermore, field 

observations may be better able to detect chicks as the observer can spend time 

watching each nest, waiting for the adult and/or potential chick to move and allow 

confirmation of chick presence or absence (Tanedo & Hollémen 2020). The precise 
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timing of imaging means such behaviour may be missed and so chicks are only likely 

to be seen once they are large enough to no longer need brooding.  

The differences in dates between fieldworker and photo estimation, led to the 

length of the egg stage and chick stage being significantly longer and shorter 

respectively when measured in photographs compared to in the field. While this is 

fairly intuitive given previous explanations for the difference in dates, Fig. 4-6 suggest 

there may have also been a temporal aspect to the disparity between field and photo 

observations. For example, the disparity between first AON date appears to be greater 

for AONs completed earlier in the season compared to AONs completed later in the 

season. This needs further investigation, such as by doing a regression of disparity 

against time (e.g. days from first arrival).  

Having accurate measurements of phenology is important for understanding 

the effect of environmental change on breeding. Successful reproduction depends on 

the seasonal peak in food availability matching the food needed to raise offspring (Moe 

et al. 2009). Changes in the timing of peak food availability associated with global 

climate change are therefore predicted to alter the timing of breeding in order to avoid 

mismatch (Walther et al. 2002, Frederiksen et al. 2004, Moe et al. 2009). Several 

studies have reported Kittiwakes breeding later, as measured by later first egg (i.e. 

egg-laying) dates (Frederiksen et al. 2004, Wanless et al. 2009) and hatch dates (Moe 

et al. 2009) across the time periods measured. Frederiksen et al. (2004) reported 

Kittiwake first egg dates becoming 5.1 days later per decade on the Isle of May, 

Scotland. These changes in Kittiwake phenology have been negatively associated with 

sea surface temperature (SST) (Frederiksen et al. 2004, Moe et al. 2009) and the North 

Atlantic Oscillation (NAO) index (Frederikesen et al. 2004, Wanless et al. 2009), 

meaning breeding occurred earlier in years with mild, wet winters (high NAO) and 

high winter (February-March) and spring (April-May) temperatures. Years with late 

breeding have been associated with low clutch size and mean annual breeding success 

at some locations, suggesting poor investment and food availability (Moe et al. 2009). 

It therefore seems apparent that knowledge of only one phenological 

parameter, namely first egg or hatch dates, is required to understand the relationship 

between environmental change, phenology and breeding success. Time-lapse cameras 

may struggle to precisely determine chick hatch dates but are useful for determining 

when nests are finished being built. This is presumed to be a reasonable proxy for first 

egg dates, as Kittiwakes typically lay their first egg within one day of nest completion 
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and the gap between laying subsequent eggs is normally no more than two days 

(Coulson 2011). Obtaining accurate chick fledge dates could also be useful to assess 

whether changing environmental variables are affecting breeding period duration, 

defined as the time between egg laying and chick fledging. Time-lapse cameras may 

provide more accurate fledge dates than fieldworkers when site visits finish before the 

final chicks have fledged. Accurate phenology measurements are further important for 

obtaining productivity estimates.  

Productivity 
Productivity calculated from photographs varied from 0.43 to 0.83 depending on the 

conditions used to determine the number of chicks that fledged. The productivity 

calculated by the fieldworker, assuming only large chicks fledged, was 0.83.  

The greatest difference in productivity occurred when chicks seen for a 

minimum of 21 days were deemed to have fledged in photographs (0.43), compared 

to large chicks fledging in the field (0.83). Field productivity was also reduced (0.67) 

when re-calculated using this minimum fledge period. This suggests that overall, the 

21 day minimum fledge time underestimates the number of chicks that fledged and 

lowers productivity estimates. Using a minimum fledge period to determine which 

chicks fledge relies on accurate hatch dates being obtained, as chicks are considered 

fledged after some number of days post-hatching (Tanedo & Hollémen 2020). Based 

on the a priori assumption that small chicks brooded by parents would be difficult to 

observe in photographs, leading to recorded hatch dates being later than the true hatch 

dates, the minimum fledge period chosen was 15 days less than the 36 days observed 

by Coulson and White (1958) in Great Britain (Ryan 2019, Barry 2020). Indeed, this 

assumption was supported, as phenology comparison showed that on average, the date 

a chick was first seen was 13.6 days later from photos than in the field. It is therefore 

surprising that productivity estimates from images were considerably reduced when 

using a 21 day fledge period, relative to field observations, as this means a large 

number of chicks were not even observed for 21 days. In future, it would be advised 

to try an alternative approach of adding 26 days incubation period and 36 days fledge 

period to the date of nest completion, which approximates egg-laying, to give a likely 

fledge date (Coulson 2011). Chicks last seen before their likely fledge date could be 

assumed to have failed. This would hopefully avoid the problem of not observing 
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small chicks due to obscuration, for example by parents, rocks, shadows, or another 

chick in the nest.  

All other methods of determining the number of chicks fledged from 

photographs gave similar productivity estimates to field data. The ‘best’ method was 

when all chicks fledged from photographs, as this gave the same productivity estimate 

as in the field: 0.83. However, when comparing the number of chicks per nest in 

photographs, with the number of chicks (irrespective of size) and number of large 

chicks per nest in the field, it became evident that fewer chicks were observed per nest 

in photographs. In 50% of cases where the fieldworker observed two chicks but only 

one was recorded from photos, the second chick did not reach large size. Second 

chicks may have died before they were large enough to be seen in images, meaning 

the number of chicks seen (and therefore fledged) in photos still equalled the  number 

of large chicks in the field for these nests, despite the number of eggs hatched per nest 

being different. Differences like this would not have altered productivity values, 

explaining why productivity was so similar, regardless of the differences in the number 

of chicks seen per nest between field and photo data.  

Nonetheless, knowing the number of chicks that fledged relative to the number 

of eggs that hatched is important for understanding other aspects of Kittiwake 

population dynamics, including factors influencing daily survival rate, such as food 

availability and weather. For example, loss of one chick in two chick broods could 

suggest insufficient food was available to raise both chicks (Benowitz-Fredericks et 

al. 2013). Of course, this insight would only be possible if monitoring recorded both 

eggs hatching but just one chick fledging. In this study, there were several nest sites 

where chicks were only recorded by the fieldworker and not in images. At nest 17, the 

fieldworker observed a small chick on the 8th July, but it was not seen in subsequent 

field visits, and image analysis recorded zero chicks. This supports the conclusion that 

small chicks were less likely to be spotted in photographs and demonstrates how only 

using time-lapse data from the Wick for survival analysis could incorrectly lower the 

number of failed chicks, despite colony level productivity being unaffected. This will 

be discussed further in chapter two. On the other hand, with sufficient image 

resolution, time-lapse imagery could increase detection of failed nests and improve 

the accuracy with which nest fate is determined.  For example, fieldworkers observed 

an apparently incubating adult at nest 60 on the 17th June but did not record evidence 

of breeding on the next two checks (25th June and 2nd July) or any subsequent visits. 
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Conversely, one chick was seen at nest 60 in the 12.00 image on the 26th June yet was 

not seen again. This suggests the chick hatched, but also died, in between field 

observations on the 25th June and 2nd July. More frequent observations provided by 

time-lapse cameras could therefore increase the probability of recording chicks that 

failed shortly after hatching, provided the images have high enough resolution to 

observe small chicks.  

Assuming chicks only fledged if they were seen for the last time on/after the 

14th or 21st July and/or first seen on/before the 31st July, lowered productivity slightly 

(by up to 0.03) compared to field calculations. Using these thresholds increased the 

plausibility of productivity estimates, as chicks seen for the last time before the 14th or 

21st July were more likely to have died than fledged, and those seen for the first time 

after the 31st July may have been chicks fledged from other nests. The number of 

chicks fledged per nest in photographs did not significantly differ from field 

observations when fledged chicks were last seen on/after the 14th or 21st July. 

However, the difference was significant when fledged chicks must have been first seen 

on/before 31st July, as well as last seen on/after the 14th or 21st July in images. This 

highlights the importance of accurately determining which chicks fledge, as the 

addition of one extra rule (first seen on/before 31st July) changed the difference 

between field and photo data from non-significant to significant. Selecting nests that 

are most visible, rather than trying to obtain data for every nest, could increase the 

probability of observing chicks and therefore obtaining accurate dates for key events. 

It would also reduce the amount of time spent analysing images if fewer nests were 

studied.  

 

Time investment  
Manual image analysis of time-lapse photographs took longer than field observations 

in 2019. In total, 42-64 hours were spent examining 127 images, compared to 

approximately 13 hours in the field. The large amount of time required to manually 

examine digital imagery has often limited the use of time-lapse cameras for seabird 

monitoring (De Pascalis  et al. 2018).  

In this study, one image was examined per day, despite the camera being 

programmed to take one image every hour. More frequent sampling might have 

allowed the metrics quantified from image observations to be closer to their true 
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values. For example, it would be expected that as the number of images examined 

increased (i.e. the time between sampled images decreased), chicks would first be seen 

closer to their true hatch date. It is recommended that future studies using time-lapse 

cameras conduct a stand-alone assessment of the optimum number of images needed 

to quantify metrics of interest, in this case phenology and productivity. This should 

create an asymptotic view, showing the measured variable plateauing to a particular 

value as the number of images sampled increases, thus allowing the optimal number 

of images to be determined (Tanedo & Hollémen 2020).  

Of course, sampling more images takes more time, and there is an evident 

trade-off between accuracy and effort. Outsourcing image analysis to paid employees 

or volunteer citizen scientists represent possible solutions to this problem (Arteta et 

al. 2016). Increasingly, many researchers are developing machine learning algorithms 

to identify birds in images and allow the scale of time-lapse monitoring to be expanded 

(Edney & Wood 2020).  

 

Summary and future considerations  
Comparison of phenology and productivity measurements from field and time-lapse 

camera data at the Wick, Skomer, has shown that photographs provide similar results 

to field observations and in some cases may be more accurate, but are currently 

unlikely to improve present monitoring methods. Analysis of photographs likely 

recorded more accurate dates for first date of nest completion and possibly date of last 

chick seen, but recorded later hatch dates and often only recorded one chick in two 

chick broods. These last two differences led to variable productivity estimates, 

especially when fledging was determined by chick age.  

One of the main factors affecting the accuracy of identifying target 

reproductive stages and behaviours from photos and videos, is camera setup 

(Lorentzen et al. 2010). Increasing the horizontal distance between camera and colony 

increases the number of birds viewed per image, which should give measurements that 

are more representative of the entire colony but will lower image resolution. The 

‘optimal’ distance is also dependent on a number of other factors, including the 

purpose of the study, topography, species and density. Typically, around 20 – 40 nests 

may be reliably monitored to measure breeding success (Southwell & Emmerson 

2015, Hinke et al. 2018, Ryan 2019, Barry 2020), although for time-intensive studies 
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requiring high temporal resolution, such as investigating foraging or incubation 

behaviour, fewer than five nests may be required (De Pascalis et al. 2018, Collins et 

al. 2014).  Furthermore, vertical distance and camera angle is important for identifying 

nest contents, with cameras positioned above the colony and facing downwards being 

better able to see into nests and observe small chicks (Lorentzen et al. 2010, Merkel 

et al. 2016).  

Despite field observations of the Wick colony taking place from the same 

distance as the time-lapse camera, photographs were unable to view nests at the same 

resolution as the fieldworker, who used a scope with a 25-50x magnification eyepiece 

lens to get a better view of nest contents. In comparison, the time-lapse camera was 

fitted with a 2x magnification zoom lens. The time-lapse camera cannot be positioned 

any closer to the Kittiwake colony, as the camera is on one side of a gully, and thus 

separated from the colony by an inlet of ocean. In order to improve image resolution, 

a different type of camera and/or lens with greater magnification would be needed to 

allow accurate identification of reproductive state. Merkel et al. (2016) used a DSLR 

Canon camera fitted with a 15-85mm or 18-105 mm Canon zoom lens, set at 60 mm 

and 105 mm respectively, to estimate breeding success of Brünnich's Guillemot Uria 

lomvia. This setup allowed identification of Guillemot chicks, which can be hard to 

spot as they are usually sheltered between the adults and the cliff-face. DSLR cameras 

should provide higher quality images than Reconyx time-lapse cameras but are more 

expensive and require heftier batteries. Using a better zoom lens could also improve 

phenology and productivity measurements, although optical zoom is preferred over 

digital zoom, as the latter reduces image quality (Lorentzen et al. 2010). Nonetheless, 

increased magnification reduces the number of nests monitored by the camera, 

meaning measurements may not be representative of the entire colony (Merkel et al. 

2016, De Pascalis et al. 2018). This trade-off between sample size and resolution needs 

to be considered before using time-lapse cameras to monitor seabird colonies.  

Time-lapse cameras have the advantage of recording observations more 

frequently than fieldworkers, and so it is expected that with improved image 

resolution, the Wick camera would record the timing of key events more precisely 

than field observations. Less frequent photo sampling significantly delayed detection 

of nest, incubation and hatch initiation in Kittiwakes in Resurrection Bay, Gulf of 

Alaska, compared to daily observations (Tanedo & Hollémen 2020). This discrepancy 

increased with greater intervals between sampling, as many of these events occurred 
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between sampling points (Tanedo & Hollémen 2020). Accurate determination of 

breeding phenology is important for understanding how seabirds are responding to 

changes in their environment, which is in turn important for understanding long-term 

population trends (Tanedo & Hollémen 2020). Kittiwakes may alter the timing of 

breeding by as little as 0.58 - 0.88 days per year relative to sea surface temperatures, 

and so these small changes in breeding phenology could be lost in field observations 

spaced five to 14 days apart (Frederiksen et al. 2004, Byrd et al. 2008, Tanedo & 

Hollémen 2020). In addition, accurately recording breeding phenology is important 

for estimating productivity, especially when chick age is used to determine fledging 

(Tanedo & Hollémen 2020).  

Having appropriate image resolution to accurately record nest state and the 

timing of key events is also essential if researchers intend to make the most of the high 

temporal resolution afforded by time-lapse cameras. For example, with increased 

image frequency, photographs can be used to re-sight marked birds to determine adult 

survival, nest activity (such as nest attendance and division of labour between parents) 

and foraging behaviour (Weller & Derksen 1972, Black et al. 2017, Black et al. 2018b, 

De Pascalis et al. 2018). Recording foraging duration from the timing of parental 

switch-overs could provide a non-invasive and time efficient method of indirectly 

assessing food availability, as adults are predicted to travel further and therefore spend 

longer foraging when food is scarce (Chivers et al. 2012, De Pascalis et al. 2018). 

Furthermore, the ability to observe each nest more often might increase the likelihood 

of capturing infrequent events not purposefully monitored (Harris 1982, Black et al. 

2017, Black et al. 2018b). For example, Kittiwake chick predation by a Peregrine 

Falcon Falco peregrinus was recorded from time-lapse images on Puffin Island, Wales 

(Collins et al. 2014). Predation may be under-recorded by fieldworkers as human 

presence could deter predatory activity. Consequently, the high temporal resolution 

possible with time-lapse cameras may offer further insight into the causes of 

population decline, provided the images are of sufficient quality to record the 

measurements of interest. Increasing image resolution at the Wick is therefore a 

priority if we intend to use time-lapse cameras to help properly understand the causes 

of Kittiwake decline on Skomer. 

Improving image quality would have the further benefit of making the 

photographs more suitable for citizen science and machine learning. Adult and 

juvenile Kittiwakes from time-lapse images at Protheroe’s Dock, Skomer, are 



1 Comparing field and gold standard photo data 
 

53 
 

identified by citizens participating in the Seabird Watch project. This reduces the 

workload on researchers and is essential if photographs are recorded more frequently 

(e.g. every five minutes) to measure variables requiring high temporal resolution, like 

foraging duration. Moreover, with improved image resolution machine learning 

algorithms will be more likely to accurately identify Kittiwakes in photographs. The 

Pengbot algorithm, developed by the Penguin Watch team, automatically identifies 

and counts penguins in time-lapse images, and a similar tool is currently being 

developed for Seabird Watch (Jones et al. 2020, T. Hart pers. comm.).  

 

CONCLUSION 
This study has shown that cameras can provide important phenological and 

productivity information, with the potential to give more accurate data in some cases 

than can be delivered by infrequent repeat visits throughout the season. Such 

information will be crucial in understanding seabird responses to increasing 

anthropogenic pressures, like climate change and fisheries interactions. Effective 

camera placement and appropriate image resolution is, however, required to fully 

reach this potential. Understanding the different biases and detection abilities between 

field and time-lapse methods during the timeline of breeding is key to scaling up the 

use of cameras to non-fieldworker sites. It is hoped that such networks of time-lapse 

cameras will provide cost-effective means of large-scale seabird monitoring; a feat 

especially important when money is limited for conservation endeavours (Waldron et 

al. 2013).  

 

SUPPLEMENTARY MATERIAL 
Table S1 Nests were assigned different numbers in the field (field number) and from time-

lapse photographs (photograph number). To allow comparison between the same nests 

observed in the field and from images, field numbers were re-assigned to match photograph 

numbers (field assigned number). Nests only identified in the field or only identified in photos 

were assigned a unique number.  ‘na’ means the nest was not recorded in either the field or 

from photographs. An explanation of the reassigned number has been provided where 

necessary.  

Field site Field number Photograph number Field reassigned number  
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wick 5 11 1 1 

wick 5 12 4 4 

wick 5 14 12 12 

wick 5 15 2 2 

wick 5 16 3 3 

wick 5 17 13 13 

wick 5 18 14 14 

wick 5 19 15 15 

wick 5 20 16 16 

wick 5 21 17 17 

wick 5 22 18 18 

wick 5 23 9 9 

wick 5 24 10 10 

wick 5 25 5 5 

wick 5 26 11 11 

wick 5 27 6 6 

wick 5 28 7 7 

wick 5 29 8 8 

wick 5 30 na 165 

wick 5 31 21 21 

wick 5 32 22 22 

wick 5 33 23 23 

wick 5 34 19 19 

wick 5 35 24 24 

wick 5 36 28 28 

wick 5 37 25 25 

wick 5 38 26 26 

wick 5 39 27 27 

wick 5 40 29 29 

wick 5 41 30 30 

wick 5 42 31 31 

wick 5 43 107 107 

wick 5 44 32 32 

wick 5 45 33 33 

wick 5 46 36 36 

wick 5 47 37 37 

wick 5 48 34 34 

wick 5 51 38 38 

wick 5 52 39 39 
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wick 5 53 42 42 

wick 5 54 43 43 

wick 5 55 44 44 

wick 5 56 41 41 

wick 5 57 45 45 

wick 5 58 47 47 

wick 5 59 48 48 

wick 5 60 49 49 

wick 5 61 50 50 

wick 5 62 51 51 

wick 5 63 52 52 

wick 5 64 53 53 

wick 5 65 54 54 

wick 5 66 55 55 

wick 5 67 56 56 

wick 5 68 57 57 

wick 5 69 58 58 

wick 5 70 144 144 

wick 5 71 61 61 

wick 5 72 62 62 

wick 5 73 63 63 

wick 5 74 68 na 

See nest 69 (photo) for 

explanation. 
 

wick 5 74 69 69  

Nest 68 and 69 (photo) are in 

the same approximate 

location as nest 74 (field). I 

decided that nest 74 (field) 

corresponds to nest 69 

(photo) because both raised 

one chick. Nest 68 (photo) 

did not produce any chicks 

and was presumed to have 

not been seen in the field.  

wick 5 75 70 70 

wick 5 76 65 65 

wick 5 77 71 71 

wick 5 78 72 72 
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wick 5 79 73 73 

wick 5 80 64 64 

wick 5 81 59 59 

wick 5 No nest was 

assigned 

number 82 in 

the field.  

na  na 

wick 5 83 60 60 

wick 5 84 66 66 

wick 5 85 67 67 

wick 5 86 158 158 

wick 5 87 153 153 

wick 5 88 78 78 

wick 5 89 na 166 

wick 5 90 75 75 

wick 5 91 74 74 

wick 5 92 152 152 

wick 5 93 147 147 

wick 5 94 76 76 

wick 5 95 77 77 

wick 5 96 79 79 

wick 5 97 80 80 

wick 5 98 81 81 

wick 5 99 150 150 

wick 5 100 82 82 

wick 5 101 92 92 

wick 5 102 83 83 

wick 5 103 84 84 

wick 5 104 99 99 

wick 5 107 46 46 

wick 5 108 20 20 

wick 5 49/50 35 49 field  35  

50 field  167 

Nest 49 and 50 (field) are in 

the same approximate 

location as nest 35 (photo). I 

decided that nest 49 (field) 

corresponds to nest 35 

(photo) because both raised 
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one chick. Nest 50 (field) had 

two successful chicks and so 

was presumed to have not 

been seen in photos. It was 

assigned a new unique 

number: 167.  

wick 5 na 40 na 

wick 5 na 145 na 

wick 5 na 146 na 

wick 5 na 148 na 

wick 5 na 149 na 

wick 5 na 155 na 

wick 5 na 159 na 

wick 5 na 160 na 

wick 5 na 161 na 

wick 5 na 162 na 

wick 5 na 93 na 

wick 5 na 102 na 

wick 5 na 106 na 

wick 4 10 139 139 

wick 4 11 138 138 

wick 4 12 140 140 

wick 4 13 135 135 

wick 4 14 134 134 

wick 4 15 133 133 

wick 4 16 137 137 

wick 4 17 132 132 

wick 4 18 130 130 

wick 4 19 131 131 

wick 4 20 136 136 

wick 4 21 129 129 

wick 4 22 128 128 

wick 4 23 126 126 

wick 4 24 125 125 

wick 4 26 123 123 

wick 4 27 122 122 

wick 4 28 154 154 

wick 4 29 114 114 

wick 4 30 119 119 
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wick 4 31 118 118 

wick 4 32 117 117 

wick 4 33 116 116 

wick 4 34 121 121 

wick 4 35 120 120 

wick 4 36 113 113 

wick 4 37 112 112 

wick 4 38 115 115 

wick 4 39 110 110 

wick 4 40 111 111 

wick 4 41 109 109 

wick 4 42 108 108 

wick 4 43 142 142 

wick 4 44 98 98 

wick 4 45 97 97 

wick 4 46 156 156 

wick 4 47 104 104 

wick 4 48 105 105 

wick 4 49 103 103 

wick 4 50 101 101 

wick 4 51 95 95 

wick 4 52 91 91 

wick 4 53 90 90 

wick 4 54 89 89 

wick 4 55 88 88 

wick 4 56 87 87 

wick 4 57 86 86 

wick 4 58 94 94 

wick 4 59 85 85 

wick 4 60 100 100 

wick 4 61 96 96 

wick 4 62 na 163 

wick 4 63 127 127 

wick 4 64 124 25 field 124 

64 field  164  

Nest 25 and 64 (field) are in 

the same approximate 

location as nest 124 (photo). I 

decided that nest 24 (field) 
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corresponds to nest 124 

(photo) because both had one 

chick. Nest 64 (field) had 

zero chicks and so was 

presumed to have not been 

seen in photos. It was 

assigned a new unique 

number: 164.  

wick 4 na 141 na 

wick 4 na 143 na 

wick 4 na 151 na 

wick 4 na 157 na 

 

Table S2 The difference in the number of chicks assumed to have fledged between field and 

photo data, when the fieldworker assumed only large chicks fledged but time-lapse 

photographs assumed all chicks fledge. ‘No. chicks field (A)’ is the number of chicks seen at 

each nest site in the field, regardless of size. ‘No. large chicks field (B)’ is the number of large 

chicks seen at each nest site in the field. ‘No. chicks photo (C)’ is number of chicks seen at 

each nest in photos regardless of size. ‘Difference (B – C)’ is the difference between the 

number of chicks assumed to have fledged based on field versus image observation. ‘Photo 

(C) = Field B’ is assigned a 1 if the ‘Difference’ is 0, and a 0 otherwise. ‘Photo (C) > Field 

(B)’ is assigned a 1 if the ‘Difference’ is -1 and a 0 otherwise, and ‘Photo (C) < Field (B) is 1 

if the ‘Difference’ is 1 and a 0 otherwise. The 144 potential nests recorded in both in the field 

and in photographs are shown in this table. The 23 sites monitored only in the field or only in 

photographs are not included.  

Nest 

site 

No. 

chicks 

field 

(A) 

No. 

large 

chicks 

field (B) 

No. 

chicks 

photo 

(C) 

Difference 

(B – C) 

Photo (C)  

= Field (B) 

Photo (C) 

> Field (B) 

Photo (C)  

< Field (B) 

1 2 2 1 1 0 0 1 

2 1 0 1 -1 0 1 0 

3 2 0 1 -1 0 1 0 

4 1 0 1 -1 0 1 0 

5 1 0 1 -1 0 1 0 

6 0 0 0 0 1 0 0 

7 0 0 0 0 1 0 0 

8 0 0 0 0 1 0 0 
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9 0 0 0 0 1 0 0 

10 0 0 0 0 1 0 0 

11 0 0 0 0 1 0 0 

12 0 0 0 0 1 0 0 

13 0 0 0 0 1 0 0 

14 0 0 0 0 1 0 0 

15 0 0 0 0 1 0 0 

16 2 0 1 -1 0 1 0 

17 1 0 0 0 1 0 0 

18 0 0 0 0 1 0 0 

19 2 1 1 0 1 0 0 

20 0 0 1 -1 0 1 0 

21 2 1 1 0 1 0 0 

22 2 2 1 1 0 0 1 

23 0 0 1 -1 0 1 0 

24 2 2 2 0 1 0 0 

25 2 1 1 0 1 0 0 

26 0 0 1 -1 0 1 0 

27 2 1 1 0 1 0 0 

28 0 0 0 0 1 0 0 

29 1 1 1 0 1 0 0 

30 1 1 1 0 1 0 0 

31 2 2 1 1 0 0 1 

32 2 1 1 0 1 0 0 

33 1 1 1 0 1 0 0 

34 2 1 1 0 1 0 0 

35 1 1 1 0 1 0 0 

36 1 1 1 0 1 0 0 

37 2 2 1 1 0 0 1 

38 2 2 2 0 1 0 0 

39 0 0 0 0 1 0 0 

41 0 0 1 -1 0 1 0 

42 1 1 1 0 1 0 0 

43 1 1 1 0 1 0 0 

44 2 1 1 0 1 0 0 

45 0 0 0 0 1 0 0 

46 1 0 1 -1 0 1 0 

47 1 1 1 0 1 0 0 

48 0 0 0 0 1 0 0 
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49 1 1 1 0 1 0 0 

50 1 1 1 0 1 0 0 

51 2 0 1 -1 0 1 0 

52 2 2 1 1 0 0 1 

53 2 2 1 1 0 0 1 

54 2 2 1 1 0 0 1 

55 0 0 0 0 1 0 0 

56 1 1 1 0 1 0 0 

57 1 1 1 0 1 0 0 

58 0 0 0 0 1 0 0 

59 2 2 2 0 1 0 0 

60 0 0 1 -1 0 1 0 

61 0 0 0 0 1 0 0 

62 1 1 1 0 1 0 0 

63 1 1 2 -1 0 1 0 

64 2 1 1 0 1 0 0 

65 1 1 1 0 1 0 0 

66 1 1 1 0 1 0 0 

67 2 1 1 0 1 0 0 

69 1 1 1 0 1 0 0 

70 1 1 1 0 1 0 0 

71 1 1 1 0 1 0 0 

72 1 0 1 -1 0 1 0 

73 2 2 2 0 1 0 0 

74 0 0 0 0 1 0 0 

75 2 2 2 0 1 0 0 

76 2 0 2 -2 0 1 0 

77 2 1 1 0 1 0 0 

78 1 0 1 -1 0 1 0 

79 0 0 1 -1 0 1 0 

80 1 1 1 0 1 0 0 

81 2 1 1 0 1 0 0 

82 2 1 1 0 1 0 0 

83 1 1 1 0 1 0 0 

84 2 1 1 0 1 0 0 

85 1 1 1 0 1 0 0 

86 2 2 2 0 1 0 0 

87 1 1 2 -1 0 1 0 

88 2 2 2 0 1 0 0 
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89 1 1 1 0 1 0 0 

90 2 2 1 1 0 0 1 

91 1 1 1 0 1 0 0 

92 0 0 1 -1 0 1 0 

94 1 0 1 -1 0 1 0 

95 1 1 1 0 1 0 0 

96 1 1 1 0 1 0 0 

97 2 2 1 1 0 0 1 

98 2 2 2 0 1 0 0 

99 2 1 1 0 1 0 0 

100 1 0 1 -1 0 1 0 

101 0 0 1 -1 0 1 0 

103 0 0 0 0 1 0 0 

104 1 0 0 0 1 0 0 

105 0 0 0 0 1 0 0 

107 2 0 1 -1 0 1 0 

108 2 2 1 1 0 0 1 

109 2 1 1 0 1 0 0 

110 0 0 0 0 1 0 0 

111 2 0 1 -1 0 1 0 

112 1 1 1 0 1 0 0 

113 1 1 1 0 1 0 0 

114 0 0 0 0 1 0 0 

115 1 1 1 0 1 0 0 

116 2 1 1 0 1 0 0 

117 1 1 1 0 1 0 0 

118 1 1 1 0 1 0 0 

119 2 1 1 0 1 0 0 

120 2 0 0 0 1 0 0 

121 0 0 0 0 1 0 0 

122 2 0 1 -1 0 1 0 

123 2 2 1 1 0 0 1 

124 2 1 1 0 1 0 0 

125 1 1 1 0 1 0 0 

126 1 1 1 0 1 0 0 

127 0 0 0 0 1 0 0 

128 1 1 1 0 1 0 0 

129 1 1 1 0 1 0 0 

130 2 1 1 0 1 0 0 
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131 2 2 1 1 0 0 1 

132 2 1 1 0 1 0 0 

133 2 2 1 1 0 0 1 

134 2 1 1 0 1 0 0 

135 1 1 1 0 1 0 0 

136 2 1 1 0 1 0 0 

137 1 1 1 0 1 0 0 

138 0 0 0 0 1 0 0 

139 2 2 2 0 1 0 0 

140 0 0 0 0 1 0 0 

142 2 2 1 1 0 0 1 

144 0 0 0 0 1 0 0 

147 0 0 0 0 1 0 0 

150 0 0 0 0 1 0 0 

152 0 0 0 0 1 0 0 

153 0 0 0 0 1 0 0 

154 0 0 0 0 1 0 0 

156 0 0 0 0 1 0 0 

158 0 0 0 0 1 0 0 

TOTAL 

(144) 
    105 25 14 
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Table S3 More detailed analysis of the 64 nest sites where the number of chicks assumed to have fledged differed between field and photograph, when 

the fieldworker assumed only large chicks fledged but all chicks were presumed to have fledged from photographs. Blue shading is where image 

analysis recorded fewer fledged chicks in the nest than field observations. Red shading is where image analysis recorded more fledged chicks than in 

the field. Green shading is where the number of fledged chicks was equal for field and photo data; however, the fieldworker recorded more non-large 

chicks which were presumed to have died and not fledged. The 'Explanation' column summarises why there were differences in the number of fledged 

chicks between field and photo where appropriate. 

No. No.large No. Explanation 
Nest Difference Photo (C) Photo (C) Photo (C) 

chicks chicks chicks 
site (B - C) 

field (A) field (B) photo (C) 
= Field (B) > Field (B) < Field (B) Field Photo 

2 2 1 1 0 0 1 

64 
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One small chick last seen No chicks observed. 
17 l 0 0 0 l 0 0 

2019-07-08. 

Two small chicks last 

19 2 l 1 0 l 0 0 
seen together 2019-07-08. 

One large chick last seen 

2019-07-25. 

Two mediwn/large chicks 

21 2 l l 0 l 0 0 
last seen together 2019-

08-02. One large chick 

last seen 2019-08-07. 

22 2 2 l l 0 0 l 
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25 2 0 

27 2 1 1 0 1 

31 2 2 1 1 0 

32 2 1 1 0 1 

0 0 

0 0 

0 1 

0 0 
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Two small chicks last 

seen together 2019-07-08. 

One large chick last seen 

2019-07-25. 

Two medium chicks last 

seen together 2019-07-13. 

One large chick last seen 

2019-07-25. 

Two small chicks last 

seen together 2019-7-13. 

One large chick last seen 

2019-07-29. 

66 



34 2 1 0 1 0 

37 2 2 1 1 0 0 

44 2 0 0 

52 2 2 0 0 

53 2 2 0 0 

54 2 2 0 0 

0 

1 

0 

1 
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Two small chicks last 

seen together 2019-07-02, 

although two chicks may 

have been present until 

2019-07-21. One large 

chick last seen 2019-07-

29. 

Two small chicks last 

seen together 2019-07-08. 

One large chick last seen 

2019-07-25. 

67 
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One or more medium 

chicks last seen together 

64 2 I 1 0 1 0 0 2019-07-13. One large 

chick last seen 2019-07-

25. 

Two small chicks last 

67 2 1 1 0 1 0 0 
seen together 2019-07-13. 

One large chick last seen 

2019-07-25. 
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77 2 0 0 

81 2 1 1 0 1 0 

82 2 1 1 0 1 0 

84 2 1 0 1 0 

0 

0 

0 

0 

1 Comparing field and gold standard photo data 

Two mediwn/large chicks 

last seen together 2019-

07-21. One large chick 

last seen 2019-07-25. 

Two mediwn/large chicks 

last seen together 2019-

07-21. One large chick 

last seen 2019-07-25. 

Two medium chicks last 

seen together 2019-07-13. 

One large chick last seen 

2019-07-25. 

Two small chicks last 

seen together 2019-07-
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97 2 2 I I 

99 2 1 I 0 

0 0 I 

I 0 0 

1 Comparing field and gold standard photo data 

02. One large chick last 

seen 2019-07-25. 

Two mediwn/large chicks 

last seen together 2019-

07-21. One large chick 

last seen 2019-07-25. 

70 



1 Comparing field and gold standard photo data 

108 2 2 1 1 0 0 1 

Two mediwn/large chicks 

109 2 1 1 0 1 0 0 
last seen together 2019-

07-17. One large chick 

last seen 2019-07-25. 
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1 Comparing field and gold standard photo data 

Two small chicks last 

116 2 1 1 0 1 0 0 
seen together 2019-07-08. 

One large chick last seen 

2019-08-02. 

Two small chicks last 

119 2 1 1 0 1 0 0 
seen together 2019-07-08. 

One large chick last seen 

2019-07-25. 

Two medium chicks last 
120 2 0 0 0 1 0 0 

One or more chicks last 

124 2 1 1 0 1 0 0 
seen together 2019-07-08. 

One large chick last seen 

2019-08-02. 

Two small chicks last 

130 2 1 1 0 1 0 0 
seen together 2019-07-

08. One large chick last 

seen 2019-07-25. 

131 2 2 1 1 0 0 1 

Two small chicks last 
132 2 1 1 0 1 0 0 

seen together 2019-07-08. 
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1 Comparing field and gold standard photo data 

One large chick last seen 

2019-07-25. 

133 2 2 1 1 0 0 1 

Two small chicks last 

134 2 1 1 0 1 0 0 
seen together 2019-07-08. 

One large chick last seen 

2019-07-25. 

One or more small chicks 

136 2 1 1 0 1 0 0 
last seen together 201 9-

07-08. One large chick 

last seen 2019-08-02. 

142 2 2 1 1 0 0 1 

TOTAL 
105 25 14 

(64) 
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CHAPTER TWO: Adverse weather 

conditions lower Black-legged 

Kittiwake Rissa tridactyla egg and 

chick survival 
 

ABSTRACT 
The Black-legged Kittiwake Rissa tridactyla is a species of conservation concern. In 

the UK, where 8% of the world population breeds, there has been a 23% decline since 

the mid-1980s. There is strong evidence for reduced breeding success in Scotland 

being associated with overfishing and increasing sea surface temperatures reducing 

prey availability; however, the cause of decline in Wales is far from certain. I 

investigated the effect of prevailing weather conditions on Kittiwake egg and chick 

survival during the 2019 breeding season on Skomer Island, Wales, to determine the 

relative importance of weather on breeding success. I found support for strong 

westerly winds reducing egg and chick daily survival rate, while high daily maximum 

temperature appeared to lower egg survival only. There was also evidence that egg 

and chick survival rate decreased towards the end of the incubation and chick-rearing 

period respectively. If the results of this study represent a longer-term pattern, then 

predicted increases in the frequency and intensity of extreme weather events with 

climate change could have severe adverse consequences on Kittiwake breeding 

success.   

 

INTRODUCTION 
The Black-legged Kittiwake Rissa tridactyla (hereafter Kittiwake) is the world’s most 

numerous gull species and is found throughout the Northern Hemisphere (Coulson 

2011). However, over their past three generations, Kittiwake populations have 

undergone rapid decline which shows no evidence of slowing (BirdLife International 



2 Effect of weather on nest survival 

75 
 

2019). This has led to their classification as ‘Vulnerable’ on the IUCN Red List 

(BirdLife International 2019). In the British Isles, the breeding Kittiwake population 

has decreased by 23% since the mid-1980s, which is particularly concerning given 

that 8% of the world population breeds on UK cliffs (Mitchell et al. 2004). Nationally, 

the greatest loss has occurred in Scotland, where the 2014 index was 72% below the 

1986 baseline. (Wilkie et al. 2019). 

Changes in seabird populations are most often attributed to changes in post-

fledging and adult survival (Weimerskirch et al. 1997, Mitchell et al. 2004). Seabird 

life-history is characterised by long-lifespan and low fecundity, meaning populations 

may be buffered by short-term variation in productivity due to a long life-span 

providing many opportunities to reproduce (Sæther & Bakke 2000). However, recent 

evidence suggests breeding success can also be an important driver of seabird 

population dynamics (Reiertsen 2013). In Scotland lowered Kittiwake breeding 

success has been associated with reduced prey availability as North Sea sea surface 

temperatures (SST) have increased. This shortage of food has been exacerbated by 

overfishing and increased predation (Regehr & Montevecchi 1997, Frederiksen et al. 

2004, Cook et al. 2014). Conversely, no relationship was found between SST in the 

Celtic Sea and Kittiwake breeding success or population growth (Lauria et al. 2012, 

Cook et al. 2014).  Instead, the North Atlantic Oscillation appeared to have a weak 

positive effect on Kittiwake population growth rate which may have been related to 

the direct effects of wind speed or storm frequency (Lauria et al. 2012). Although far 

less is known about the causes of Kittiwake decline in Wales compared to in Scotland, 

it has been suggested that increasingly extreme weather may be having a greater 

impact on Welsh Kittiwake productivity than SST.   

Intensification of weather extremes has been described as ‘one of the most 

important facets of climate change’ but has received less attention compared to rising 

SSTs so far (Jentsch et al. 2007, Daunt & Mitchell 2013). Extreme weather events are 

typically defined as those having a low frequency of occurrence (< 5%) but large 

ecological impact and are increasing in frequency and intensity as the climate alters 

(Daunt et al. 2013, Descamps et al. 2015). In this study, I explored the relative 

importance of weather on Kittiwake nest survival on Skomer Island, Wales. Skomer 

Island is a nationally important site for breeding seabirds, but Kittiwake numbers have 

fallen by 42% since 1986 (Stubbings et al. 2017, Wilkie et al. 2019). Preliminary 

Population Viability Analysis has shown that the breeding population could decline to 
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a few hundred by the end of the century if current rates of survival and productivity 

continue, or become locally extinct within 70 years if parameters worsen (Horswill, 

Perrins & Wood, unpublished). Understanding the factors affecting Kittiwake nest 

survival could provide crucial insight into falling productivity on Skomer and allow 

strategy development to help reverse the negative population trend. It may also direct 

research into the causes of Kittiwake decline at other colonies in Wales if primary 

factors are identified.   

This chapter compares the effect of extrinsic weather variables, temporal and 

intrinsic factors on nest survival across the entire breeding season and during the egg 

and chick stages separately. I used data from field observations and time-lapse cameras 

in 2019 to test the three a priori hypotheses that nest survival is affected by: 1) time 

2) weather conditions and 3) brood size. I predicted that survival would decrease 

across the breeding season as nests gradually failed (1), but the decline would be 

greatest at the end of the egg stage when parents deserted unhatched eggs. As well, I 

predicted that high temperatures and strong westerly winds seen in 2019 (2) could 

reduce survival of eggs and chicks through heat stress and knocking nest contents off 

the cliffs. Although I did not examine the effect of prey availability directly, I 

predicted that survival would be most affected by brood size (3) if prey was limited 

and parents could not supply sufficient food to support multiple offspring.  
 

METHODS 

Data collection 

Study sites and nest monitoring 
Monitoring was conducted at the Wick, Skomer Island, Wales (51°40N, 05°15W) 

during the 2019 breeding season (Fig. 1). A total of 132 nests were monitored at Wick 

4 and 5 study plots both in the field and using a Reconyx time-lapse camera (HyperFire 

2 Covert IR Camera OD) fitted with a 2x magnification lens (HF2 Telephoto Lens, 

Nar Illum & Matched PIR). Study plots were visited a total of 13 times between the 

22nd May and 11th August, with visits occurring a minimum of every five days once 

the first chicks reached medium size (Walsh et al. 1995, Wilkie et al. 2019). One 
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photograph was examined every day from the 11 th April to 15th August, which was the 

last date Kittiwakes were seen in images. 
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Figure 1 Map of Skomer Island, Wales. The Kittiwake colony studied is marked with an 
orange star. 

Comparison of phenology data obtained from field and photo observations 

showed that on average, potential nests were first recorded as apparently occupied 

nests (AONs) 3.7 (cr = 8.2) days earlier in photos than in the field, while chicks were 

first and last seen 13.9 (cr = 7.6) and 9.6 (cr = 5.7) days later respectively in photographs 

(refer to chapter one). Time-lapse cameras likely recorded earlier first AONs and later 

last chick dates because they captured images before and after the fieldworkers' first 

and last visit. Earlier first chick dates may have been recorded in the field because 

small, recently hatched chicks were harder to spot in images. The fieldworker could 

spend time watching the nest, waiting for the adult and/or potential chick to move and 

confnm chick presence or absence, while the precise timing of imaging meant such 

behaviour could be missed (Tanedo & Hollemen 2020). To reduce these known biases 

in field and photo derived phenology, dates for survival analysis were chosen by 

comparing field and photo data. First AON and first chick dates were selected by 

examining both field and photo phenology and choosing the earliest dates per nest, 

while last chick dates were obtained by choosing the latest dates per nest. 
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Weather data 
Daily total rainfall (mm), mean wind speed (kmh-1) and mean wind direction were 

obtained from the Milford Haven Conservancy Board weather station (51°43N, 

05°03W) ~17 km south-east of Skomer Island (Met Office 2012). Wind direction was 

converted from degrees to the cosines and sines of the radians. This removed the 

circularity of wind direction and generated a measure of northern wind direction for 

cosine values, from north = 1 to south = -1, and eastern wind direction for sine values, 

from east = 1 to west = -1 (Michielsen et al. 2019). Daily minimum, mean and 

maximum temperature (°C) were obtained from the time-lapse camera which had an 

inbuilt temperature sensor. During the study period, the daily minimum, mean and 

maximum temperature ranged from 7 to 16°C, 10.1 to 21.6°C and 11 to 34°C 

respectively. Daily total rainfall ranged from 0.2 to 18.6mm on days when it rained 

but was 0 mm on 58% of days. Daily mean wind speed was between 7.6 and  36.7 

kmh-1.  

 

Data analysis  

Collinearity of explanatory variables  
Collinearity between explanatory variables can increase the probability of type I errors 

and was assessed using the ‘usdm’ R package (Lauria et al. 2012, Naimi et al. 2014, 

Mwangi et al. 2018). The ‘vifstep’ function calculated the variance inflation factor 

(VIF) for each variable and excluded those with VIF greater than three through a 

stepwise procedure. VIF greater than ten indicates high correlation with one or more 

predictor variables and a collinearity problem, although VIF greater than three may be 

used as a more stringent approach (Naimi et al. 2014, Zuur et al. 2010, Mwangi et al. 

2018). This procedure was carried out for all explanatory variables across the entire 

nesting period (egg&chick stage), incubation period (egg stage) and chick-rearing 

period (chick stage). Variables with VIF < 3 for all stages were used in the survival 

analysis: daily maximum temperature, mean wind speed, mean eastern wind direction, 

mean northern wind direction and linear or quadratic time (Table 1). Linear and 

quadratic time could not be used in the same survival model as they were highly 

correlated. Total rainfall was excluded from the survival analysis as it showed a strong 

correlation (≥ 0.5) with maximum temperature (r = -0.51) across the entire nesting 

period; maximum temperature (r = -0.65) and mean temperature (r = -0.56) during the 
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egg stage; and mean wind speed (r = 0.51) during the chick stage. As well, total rainfall 

was zero for 58% of the study period which could have led to zero-inflated data in the 

survival analysis (Zuur et al. 2010).  

 

Table 1 Explanatory variables and their notation used in survival analysis  

Explanatory variable (unit)  Notation 

Time (days) T 

Time2 (days2) TT 

Daily maximum temperature (°C) max_temp 

Daily mean wind speed (km/h) wind_speed 

Daily mean eastern wind direction 

i.e. sine of the mean wind direction 

sin_dir 

Daily mean northern wind direction 

i.e. cosine of the mean wind direction  

cos_dir 

Number of chicks brood_size 

 

Survival of Kittiwake nests  
Nest daily survival rate (S) was defined as the probability that a nest survives a single 

day and was calculated for the entire nesting period (egg&chick stage), incubation 

(egg stage) and chick-rearing period (chick stage) using Dinsmore et al’s (2002) nest 

survival model in the R package ‘RMark’ (Rotella et al. 2004, Laake 2013). This uses 

the R interface to run models in the program MARK (White & Burnham 1999, White 

2011).  

The nest survival model uses a generalised linear modelling approach based 

on binomial likelihood, where nest daily survival rates are modelled as a function of 

group-specific, nest-specific and/or time-specific covariates (Rotella et al. 2004). This 

means daily survival rates can vary among groups of nests, among individual nests 

and/or among days, respectively. The logit (logistic regression) link function is used 

to characterise the relationship between daily survival rate and covariates and is given 

by: 

 
 

 

logit(Si): ln (Si / (1 – Si)) = β0 + Σj βj χji 
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where Si is the daily survival rate (i.e. the probability that a nest smvives from day i to 

day i + 1 ); Xji G= 1,2, .. . J) are values for j covariates on day i; and the {Bj} are 

coefficients to be estimated from the data (Dinsmore et al. 2002, Rotella et al. 2004). 

These coefficients are refetTed to as 'beta' estimates since they are estimated 'slopes '/ 

beta te1ms from the linear model, and they can take any value (Rotella et al. 2004). 

The estimate of daily survival rate is obtained by back-transfo1mation (i.e. calculating 

the inverse logit function) using the plogis function in R, to give: 

Si = exp(Po + L j Pj Xii) 

1 + exp(Po + L j Pj Xii) 

The coefficients here are refetTed to as 'real ' estimates, as they have been back­

transfonned from the 'transfo1med' scale to the 'real' probability scale, and are 

bounded between 0 and 1 (Dinsmore et al. 2002). 

In this study, the egg and chick stage were modelled separately, as well as 

together, to allow easy dissemination of the different factors affecting daily smvival 

rate dming the incubation and chick-rearing period. Daily survival rates of individual 

eggs and chicks were not calculated, due to the lack of independence between 

eggs/chicks from the same nest. Instead, when modelling the egg stage, nests were 

successfol if at least one egg hatched, and nests were successful across the entire 

period and in the chick stage if at least one chick reached fledging (large) size. This 

definition of nest success follows Rotella et al. (2004). The number of chicks in each 

nest was included as a factor in chick stage models, to dete1mine its effect on at least 

one chick smviving to fledge. 

Construction of nest smvival models required the date an egg/chick was ' first 

found' and ' last present' at each nest, the date the nest was ' last checked' and its fate 

( assigned zero if success fol and one if unsuccessfol) (Rotella et al. 2004, Dinsmore & 

Dinsmore 2007). Using a model that included both 'last present' and 'last checked' 

meant the exact date of nest failme did not need to be known or assumed; however, it 

was assumed that 'last checked' equalled 'last present' for successfol nests (Rotella et 

al. 2004). Since eggs were difficult to obse1ve both in the field and in time-lapse 

photographs, I used the first time a site was recorded as an 'apparently occupied nest' 

as a proxy for egg-laying date. Table 2 lists the dates used for failed and successful 

nests when modelling smvival across the egg&chick, egg and chick stages. 
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Table 2 Dates used for ‘First found’, ‘Last present’ and ‘Last checked’ values in nest survival 

models for successful and failed nests during different breeding stages: entire nesting period 

(egg&chick stage), incubation period (egg stage) and chick-rearing period (chick stage). First 

AON and first chick dates were selected by examining both field and photo phenology and 

choosing the earliest dates per nest, while last chick dates were obtained by choosing the latest 

dates per nest.   

Model parameter  Egg&chick stage Egg stage Chick stage 

First found First AON First AON First chick  

Failed: Last present Egg stage: Last time 

AON recorded 

Chick stage: Last time 

small/medium chick 

recorded 

Last time AON 

recorded 

Last time 

small/medium chick 

recorded 

Failed: Last checked Egg stage: First time 

empty nest recorded or 

adult not adopting 

incubation position 

Chick stage: First time 

an empty nest recorded 

First time empty nest 

recorded or adult not 

adopting incubation 

position 

First time an empty 

nest recorded 

Successful: Last 

present 

Last time large chick 

recorded 

First chick  Last time large chick 

recorded  

Successful: Last 

checked 

Last time large chick 

recorded 

First chick  Last time large chick 

recorded 

 

Model development and selection 
Subsets of models were developed according to three a priori biological hypotheses 

on factors affecting egg and chick survival: 1) time 2) weather conditions and 3) brood 

size. I included a maximum of two explanatory variables and one interaction per model 

to reduce the number of parameters to be estimated and thus model complexity 

(Christensen-Dalsgaard et al. 2018). Based on methods used by Christensen-

Dalsgaard et al. (2018), each hypothesis group was considered separately and then all 

hypothesis groups were considered together to assess the relative importance of 

temporal, extrinsic and intrinsic sources of variation on daily survival rate (Fig. 2).  

 

 



, 
Hypothesis group 1 
(temporal factors) 

time 
time2 

/ 
Hypothesis group 2 
(extrinsic factors) 

max_temp 
wind_speed 
sin_dir 

cos_dir 

Hypothesis group 3 
(intrinsic factors) 

brood_size 

Figure 2 Flowchait showing the modelling process. 
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Hypothesis group 
1 &2 &3 

time 

time2 

max_temp 
wind_speed 
sin_dir 

cos_dir 

brood_size 

Model selection was perfo1med using Akaike's inf01m ation criterion adjusted 

for small sample size (AICc) (Bmnham et al. 2011). The best model had the lowest 

AICc value and highest weight (wi). Models within two AICc of the best model (~ 

AIC < 2) are sometimes considered equally parsimonious, however for the pmposes 

ofthis study, only the model with the lowest AIC was selected (Bmnham & Anderson 

2002, Bmnham et al. 2011). Parameters within each model were statistically 

significant if the 95% confidence interval did not overlap zero. For the best model in 

each hypothesis group, daily smvival rates from real parameter estimates were 

multiplied together to give the total probability of smvival across the period of interest 

(i.e. the probability that a nest/egg/chick was successful) (Rotella et al. 2004, Conkling 

et al. 2015). To help evaluate the effect of covai·iates on the daily survival ofKittiwake 

nests/eggs/chicks, selected values of each covariate were substituted into the best 

model 's logistic regression equation for each hypothesis group, and then back­

transfonned to give daily smvival rates between 0 and I for each value. For models 

containing two covariates, one covariate was held at its minimum, mean and maximum 
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value while the other changed on a continuous scale, to give three daily survival rate 

curves plotted on the same axes (Dinsmore et al. 2002, Pierce 2017).   

 

RESULTS 
Between the 11th April and 15th August 2019, 132 nests were monitored. The length 

of the entire nesting period from the first AON to the last chick observed was 92 days. 

The length of the entire incubation period (egg stage) from the first AON to the last 

chick hatched was 73 days, and the entire chick-rearing period (chick stage) from the 

first chick hatched to the last chick fledged was 50 days. For nests where an egg 

successfully hatched, the mean length of the incubation period was 39.5 days per nest, 

and for nests that fledged at least one chick, the mean length of the chick-rearing 

period was 38.2 days per nest. 22% of nests failed during the egg stage and 14% failed 

during the chick stage. 64% of nests successfully fledged at least one chick.  

Hypothesis group one: temporal factors 

When considering the effect of temporal factors on 

survival across the entire breeding period, one 

model had Δ AICc < 2 (wi = 0.98) which described 

nest daily survival rate as a function of linear time 

(Table 3). The model showed that daily survival 

rate significantly decreased as the breeding season 

progressed (β = -0.0541, SE = 0.00869, 95% CI -

0.0711 to -0.0370) (Table 4, Fig. 3). The logistic 

regression equation for this model was: logit(S) = 

8.25 – 0.0541(T). 

When modelling the effect of temporal 

factors on egg survival, the best fit model (wi = 

0.92) showed daily survival rate decreasing with 

linear time (β = -0.222, SE = 0.0269  95% CI -

0.274 to -0.169) (Table 3-4) and its logistic 

regression equation was: logit(S) = 15.6 – 

0.222(T). During the chick-rearing period, the best fit temporal model (wi = 0.81) 

Figure 3 Estimated relationship 
between daily survival rate of 
Kittiwake nests and linear time 
across the entire nesting period. 
Estimates are from the best model 
in hypothesis group one, where  
logit(S) = 8.25 – 0.0541(T). 
(Table 3).  
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described daily survival rate as a function of quadratic time (Table 3). This negative 

relationship was significant (β = -0.00201, SE = 0.000448, 95% CI -0.00280 to -

0.00113) (Table 4) and the logistic regression equation for the model was given by: 

logit(S) = 7.28 – 0.00201(TT). 

 

Hypothesis group two: extrinsic factors 
For the effect of extrinsic variables on nest daily survival rate throughout the breeding 

period, two models had Δ AICc < 2 (wi = 0.68, 0.32), both of which included maximum 

temperature and mean eastern wind direction (Table 3). The model with the lowest 

AICc showed that higher daily maximum temperatures significantly lowered the daily 

probability of survival (β = -0.585, SE = 0.0817, 95% CI -0.745 to -0.425) (Fig. 4A). 

Furthermore, daily survival rate was positively associated with mean eastern wind 

direction (β = 3.08, SE = 0.522 , 95% CI 2.06 to 4.10), meaning that increasingly 

westerly winds decreased the daily survival probability (Table 4). The logistic 

regression equation for this model was: logit(S) = 22.2 – 0.585(max_temp) + 

3.08(sin_dir). Fig. 4A shows an additive effect of temperature and wind direction, 

suggesting that daily survival rate decreases at lower temperatures when the wind is 

more westerly. The best model for hypothesis group two was also the second most 

parsimonious model when considering temporal and extrinsic factors together across 

the entire breeding period (wi = 0.19) (Table 3).  

During the egg stage, one model had Δ AICc < 2 (wi = 0.84) and showed a 

significant negative effect of maximum temperature (β = -1.07, SE = 0.150, 95% CI -

1.37 to -0.778), mean eastern wind direction (β = -23.4, SE = 7.17, 95% CI -37.5 to -

9.39) and a positive effect of the interaction between them, on egg daily survival rate 

(β = 0.883, SE = 0.234, 95% CI 0.425 to 1.34) (Table 3-4, Fig. 4B). The logistic 

regression equation for this model was: logit(S) = 34.5 – 1.07(max_temp) – 

23.4(sin_dir) + 0.883(max_temp:sin_dir). This is very similar to the best supported 

weather model across the entire breeding period, except it also included the interaction 

term. For the chick stage, two models had Δ AICc < 2 (wi = 0.38, 0.17)  and the model 

with the lowest AICc suggested that mean wind speed significantly lowered chick daily 

survival rate (β = -0.134, SE = 0.0430, 95% CI -0.219 to -0.05) (Table 3-4). The effect 

of lowered daily survival rate with increasingly westerly winds was not statistically 

significant (β = 1.91, SE = 1.13, 95% CI -0.301 to 4.12) (Fig. 4C, Table 4). This model 
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Figure 4 Estimated daily survival rate (S) of 
Kittiwake nests A) across the entire nesting period, 
B) during the egg stage only and C) during the 
chick stage only, when considering the effect of 
extrinsic weather variables on survival. Estimates 
are from the best model in hypothesis group two 
for each breeding stage (Table 3). A) Model: 
logit(S) = 22.2 - 0.585(max_temp) + 3.08(sin_dir). 
Nest daily survival rate decreased as daily 
maximum temperature increased and mean eastem 
wind direction decreased. B) Model: logit(S) = 
34.5 - l.07(max_temp) - 23.4(sin_dir) + 
0.883(max_temp:sin_dir) . Egg daily survival rate 
decreased as temperature increased and mean 
eastem wind direction decreased. C) Model: 
logit(S) = 8.44 - 0.134(wind_speed) ­
l.91(sin_dir) . Chick daily survival rate decreased 
as wind speed increased. The effect of wind 
direction was non-significant. 

Hypothesis group three: intrinsic factors 

For intrinsic variables, brood size had ve1y little effect on the probability of at least 

one chick smv iving on a given day (wi = 0.16). Constant chick daily smv ival rate(~ 

= 5.32, SE= 0.236, 95% Cl 4.85 to 5.78) explained four times more variation in chick 

smv ival (wi = 0.84) (Table 3-4). 
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All hypothesis groups: temporal, extrinsic and intrinsic factors 
When temporal and extrinsic variables were considered together, two models had Δ 

AICc < 2 for the egg&chick stage (Table 3). The model with the lowest AICc value (wi 

= 0.49) showed that nest daily survival rate was affected by time, mean wind speed 

and the interaction between time and wind speed; although only mean wind speed (β 

= 0.757, SE = 0.252 , 95% CI 0.263 to 1.25) and the interaction term were significant 

(β = -0.00879, SE = 0.00303 , 95% CI -0.0147 to -0.00285) (Table 3-4, Fig. 5A). The 

logistic regression equation for this model was given by: logit(S) = -0.452 + 0.0444(T) 

+ 0.757(wind_speed) – 0.00879(T:wind_speed).  

Four models had Δ AIC < 2 when temporal and extrinsic factors were 

considered during the egg stage (wi = 0.25, 0.25, 0.17, 0.08) (Table 3). The top two 

models only differed by 0.02 AICc and therefore had almost equal support. The first 

model showed a significant decrease in egg daily survival rate with linear time (β = -

0.227, SE = 0.0292 , 95% CI -0.284 to -0.169) and as mean wind direction became 

more westerly (β = 2.14, SE = 0.867, 95% CI 0.440 to 3.84) (Table 3-4, Fig. 5B). The 

logistic regression equation was: logit(S) = 16.9 + -0.227(T) + 2.14(sin_dir). The 

second model showed a decrease in egg daily survival rate with linear time and mean 

wind speed, as well as the interaction between them, although none of these parameters 

were significant (Table 3-4, Fig. 5C). When all hypotheses were addressed together 

for the chick stage, four models had Δ AICc < 2.  The most parsimonious model was 

1.25 AICc from the next best model and showed chick daily survival rate as a function 

of quadratic time, mean eastern wind direction and the interaction term, however only 

the interaction had a significant effect (β = 0.00245, SE = 0.00104, 95% 0.000412 to 

0.00448) (Table 3-4). Fig. 5D shows that the probability of a chick surviving from one 

day to the next is much lower towards the end of the chick-rearing period, although 

the presence of strong westerly winds could lower daily survival rate earlier in the 

season. The logistic regression equation for this model was: logit(S) = 6.458 + -

0.00046(TT) – 1.34(sin_dir) + 0.00245(TT:sin_dir).   
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Figure 5 Estimated daily survival rate (S) of Kittiwake nests A) across the entire 
nesting period, B) dU1ing the egg stage only and C) dming the chick stage only, when 
considering the effect of temporal and extrinsic weather variables on smvival. Estimates are 
from the best model in hypothesis groups one and two combined for each breeding stage (Table 
3). A) Model: logit(S) = -0.452 + 0.0444(T) + 0.757(wind_speed) - 0.00879(T:wind_speed). 
B) Model: logit(S) = -9.09 + 0.0963(T) + 2.60(wind_speed) - 0.0346(T:wind_speed). Egg 
daily survival rate de.creased with time and at higher wind speed. High wind speed may 
conttibute to a sharp decline in daily sU1vivaI rate near the end of the egg stage. C) Model: 
logit(S) = 16.9 + -0.227(T) + 2.14(sin_dir). Egg daily smvival rated decreased with time and 
as the wind direction became more westerly. Stt·ong westerly winds may lead to egg daily 
smvival rate declining earlier in the season compared to when the wind is coming from the 
east. D) Model: logit(S) = 6.458 + -0.00046(TT) - 1.34(sin_dir) + 0.00245(TT:sin_dir). Chick 
daily smvival rate decreased with quadratic time, meaning the probability of chick loss between 
two consecutive days increased towards the end of the chick-rearing pe1iod, and as the wind 
became more westerly. Strong westerly winds may lead to chick daily smvival rate declining 
earlier in the chick-rearing period compared to when the wind is coming from the east. 
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Survival probability  
Overall, assuming constant daily survival rate, mean daily survival probability was the 

same at 0.995 for the egg&chick stage (95% CI 0.993 to 0.996), egg stage only (95% 

CI 0.992 to 0.996) and chick stage only (95% CI 0.992, 0.997). Likewise, the total 

probability of survival across the period examined, assuming constant daily survival 

rate, was similar for all stages: 0.628 (95% CI 0.542 to 0.707) for the egg&chick stage, 

0.686 (95% CI, 0.585 to 0.771) for the egg stage only, and 0.787 (95% CI 0.687 to 

0.861) for the chick stage only (Table S5).  

In comparison, the best model from hypothesis groups one and two combined 

for the egg&chick stage (logit(S) = -0.452 + 0.0444(T) + 0.757(wind_speed) – 

0.00879(T:wind_speed)) predicted a mean daily survival rate of 0.992 and a total 

probability of survival across the entire nesting period of 0.493 (95% CI 0.347 to 

0.640) when model parameters were kept at their average values (Table S5). For the 

egg stage, the best model for hypothesis groups one and two (logit(S) = 16.9 + -

0.227(T) + 2.14(sin_dir)) gave a mean daily survival rate of 0.950 and a total 

probability of survival across the egg stage of 0.0120 (95% CI 0.00134 to 0.0988). For 

the chick stage, the most parsimonious model out of all hypotheses combined (logit(S) 

= 6.458 + -0.00046(TT) – 1.34(sin_dir) + 0.00245(TT:sin_dir)) gave a mean chick 

daily survival rate of 0.988  and a total probability of survival of 0.539 (95% CI 0.330, 

0.735) (Table S5). However, it should be noted, that individual eggs/chicks are 

extremely unlikely to have survived the entire length of the egg stage (73 days)/ chick 

stage (50 days) without having hatched/fledged. On average,  successful eggs hatched 

after 39.5 days and successful chicks fledged after 38.2 days. The mean daily survival 

rate and total probability of survival across the average length of the egg stage, from 

day nine to 48, were 0.999 and 0.971 respectively; while the corresponding values 

across the average length of the chick stage, from day six to 43, were 0.996 and 0.841. 

Day nine and day six are the mean day of egg-laying (first AON) and egg-hatching 

(first chick) respectively.  
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Table 3 Model selection results for models where Δ AICc  < 2. Explanatory variable codes: 1 

constant; T time; TT time2; max_temp daily maximum temperature; wind_speed daily mean 

wind speed; sin_dir daily mean eastern wind direction; cos_dir daily mean northern wind 

direction. npar is the number of parameters in each model. See Supplementary Material for 

models where Δ AICc  > 2.   

Stage Hypothesis 

group 

Model npar AICc Δ AICc ѡi Deviance 

Egg + 

Chick 

1 ~T 2 408.19 0 0.979 404.19 

Egg 1 ~T 2 128.96 0 0.920 124.96 

Chick 1 ~TT 2 164.72 0 0.809 160.72 

Egg + 

Chick 

2 ~max_temp + sin_dir 3 397.27 0 0.683 391.27 

Egg + 

Chick 

2 ~max_temp + sin_dir + 

max_temp:sin_dir 

4 398.81 1.53 0.317 390.80 

Egg 2 ~max_temp + sin_dir + 

max_temp:sin_dir 

4 131.98 0 0.842 123.97 

Chick 2 ~wind_speed + sin_dir 3 178.10 0 0.380 172.09 

Chick 2 ~wind_speed 2 179.73 1.63 0.168 175.72 

Chick 3 ~1 1 185.72 0 0.842 183.72 

Egg + 

Chick 

1 & 2 ~T + wind_speed + 

T:wind_speed 

4 395.38 0 0.486 387.38 

Egg + 

Chick 

1 & 2 ~max_temp + sin_dir 3 397.27 1.89 0.189 391.27 

Egg 1 & 2 ~sin_dir + T 3 122.50 0 0.247 116.50 

Egg 1 & 2 ~T + wind_speed + 

T:wind_speed 

4 122.52 0.016 0.245 114.51 

Egg 1 & 2 ~wind_speed + T 3 123.23 0.73 0.171 117.23 

Egg 1 & 2 ~sin_dir + T + sin_dir:T 4 124.43 1.93 0.093

9 

116.42 

Chick 1, 2 & 3 ~sin_dir + TT + 

sin_dir:TT 

4 163.08 0 0.267 155.07 

Chick 1, 2 & 3 ~sin_dir + T + sin_dir:T 4 164.34 1.25 0.143 156.33 
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Table 4 Parameter estimates, standard error (SE), 95% lower (lcl) and upper (ucl) intervals 

for models within 2 Δ AICc of the most parsimonious model. Parameter estimates are given 

on the logit scale (beta β estimates), rather than real estimates. Parameters that had a significant 

effect on daily survival rate are in bold. Explanatory variable codes: 1 constant; T time; TT 

time2; max_temp daily maximum temperature; wind_speed daily mean wind speed; sin_dir 

daily mean eastern wind direction; cos_dir daily mean northern wind direction. 

Chick 1, 2 & 3 ~sin_dir + TT 3 164.65 1.56 0.122 158.64 

Chick 1, 2 & 3 ~TT 2 164.72 1.64 0.118 160.72 

Stage Hypothesis 

group 

Model  Parameters  β 

Estimate 

SE lcl ucl 

Egg + 

Chick 

1 ~ T Intercept 8.250 0.584 7.105 9.395 

T -0.0541 0.00869 -0.0711 -0.0370 

Egg 1 ~ T Intercept 15.560 1.553 12.515 18.604 

T -0.222 0.0269 -0.274 -0.169 

Chick 1 ~ TT Intercept 7.276 0.628 6.0450 8.508 

TT -0.00201 0.000448 -0.00289 -0.00113 

Egg + 

Chick 

2 ~max_temp + 

sin_dir 

Intercept 22.241 2.438 17.463 27.0197 

max_temp -0.585 0.0817 -0.745 -0.425 

sin_dir 3.082 0.522 2.0587 4.105 

Egg + 

Chick 

2 ~max_temp + 

sin_dir + 

max_temp:sin_dir 

Intercept 19.0255 5.323 8.593 29.458 

max_temp -0.482 0.176 -0.826 -0.137 

sin_dir -1.431 6.898 -14.952 12.090 

max_temp:sin_dir 0.146 0.225 -0.295 0.586 

Egg 2 ~max_temp + 

sin_dir + 

max_temp:sin_dir 

 

Intercept 34.531 4.405 25.897 43.165 

max_temp -1.073 0.150 -1.368 -0.778 

sin_dir -23.443 7.172 -37.499 -9.386 

max_temp:sin_di

r 

0.883 0.234 0.425 1.340 

Chick 2 ~wind_speed + 

sin_dir  

 

Intercept 8.435 1.042 6.394 10.477 

wind_speed -0.134 0.0430 -0.219 -0.0501 

sin_dir 1.911 1.128 -0.301 4.122 

Chick 2 ~wind_speed Intercept 7.460 0.777 5.936 8.984 
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 wind_speed -0.128 0.0383 -0.203 -0.0528 

Chick 3 ~1  Intercept 5.316 0.236 4.853 5.780 

Egg + 

Chick 

1 & 2 ~T + wind_speed + 

T:wind_speed 

Intercept -0.452 2.536 -5.423 4.519 

T 0.0444 0.0317 -0.0178 0.107 

wind_speed 0.757 0.252 0.263 1.250 

T:wind_speed -0.00879 0.00303 -0.0147 -0.00285 

Egg + 

Chick 

1 & 2 ~max_temp + 

sin_dir 

Intercept 22.241 2.438 17.463 27.0197 

max_temp -0.585 0.0817 -0.745 -0.425 

sin_dir 3.082 0.522 2.0587 4.105 

Egg 1 & 2 ~sin_dir + T 

 

Intercept 16.918 1.884 13.225 20.612 

sin_dir 2.140 0.867 0.440 3.840 

T -0.227 0.0292 -0.284 -0.169 

Egg 1 & 2 ~T + wind_speed + 

T:wind_speed  

 

Intercept -9.086 14.854 -38.200 20.0288 

T 0.0963 0.2109 -0.317 0.510 

wind_speed 2.595 1.690 -0.718 5.908 

T:wind_speed -0.0346 0.0241 -0.0818 0.0126 

Egg 1 & 2 ~wind_speed + T  

 

Intercept 13.834 2.0432 9.829 17.839 

wind_speed 0.243 0.118 0.0120 0.475 

T -0.241 0.0351 -0.310 -0.172 

Egg 1 & 2 

 

~sin_dir + T + 

sin_dir:T 

Intercept 17.947 4.471 9.184 26.711 

sin_dir 3.747 6.189 -8.379 15.873 

T -0.244 0.0729 -0.387 -0.101 

sin_dir:T -0.0271 0.103 -0.228 0.174 

Chick 1, 2 & 3 

 

~sin_dir + TT + 

sin_dir:TT 

Intercept 6.458 0.587 5.307 7.610 

sin_dir -1.344 1.112 -3.522 0.835 

TT -0.00046 0.0009 -0.00223 0.00130 

sin_dir:TT 0.00245 0.00104 0.000412 0.00448 

Chick 1, 2 & 3 

 

~sin_dir + T + 

sin_dir:T 

Intercept 7.394 0.869 5.691 9.0974 

sin_dir -2.825 1.32073 -5.413 -0.236 

T -0.0483 0.0376 -0.122 0.0254 

sin_dir:T 0.130 0.0396 0.0519 0.207 

Chick 1, 2 & 3 

 

~ sin_dir + TT Intercept 7.628 0.701 6.255 9.00224 

sin_dir 1.190 0.907 -0.588 2.967 

TT -0.00188 0.000442 -0.00275 -0.00102 

Chick 1, 2 & 3 

 

~TT Intercept 7.276 0.628 6.0450 8.508 

TT -0.00201 0.000448 -0.00289 -0.00113 
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DISCUSSION 
Kittiwake nests were monitored during the 2019 breeding season to determine the 

relative importance of time, weather parameters, brood size and stage of the breeding 

season on nest survival. Overall, I found a strong time effect on nest survival when 

considering the egg and chick stages separately and egg and chick stages combined. I 

also found that mean eastern wind direction and wind speed were important during the 

egg and chick stage, while maximum temperature appeared to have an effect mainly 

during the egg stage. Brood size did not significantly affect chick survival.  

 

Time 
Time showed a negative relationship with overall nest, egg and chick survival (Fig. 

3). The increased probability of an egg not surviving on a given day towards the end 

of the egg stage (as shown by the drop in egg daily survival rate) could suggest that 

eggs were more likely to fail nearer their hatching than laying date. However, it could 

also be explained by parental perception of egg failure. Unless eggs suffer an obvious 

misfortune (i.e. disappearance or damage) parents are unlikely to ‘know’ that their 

egg(s) have failed, so would continue to incubate eggs until they were ‘expected’ to 

hatch. Waiting a sufficient period of time before nest desertion could therefore lead to 

more eggs appearing to fail towards the end of the incubation period.  

Equally, the increased probability of chick failure towards the end of the 

breeding season could suggest that chicks were more likely to fail just prior to fledging 

than just after hatching. The best supported model (wi = 0.49) across the entire nesting 

period when considering all variables (hypothesis groups one & two) predicted that 

daily survival rate was a function of time, mean wind speed and the interaction term, 

with a large predicted increase in failures near the end of the breeding season at high 

wind speed. Nearly fledged Glaucous Gull Larus hyperboreus chicks have been blown 

off cliffs by strong downdrafts when testing their wings, suggesting that strong winds 

could hinder fledging success (Mallory et al. 2009). However, the drop off in chick 

daily survival rate at the end of the chick-rearing period, could partly be due to the 

nature of field observations. Following the UK Seabird Monitoring Programme 

guidelines, fieldworkers assume that only ‘large’ chicks are capable of fledging, and 

so a few medium and medium/large chicks remaining in late August were presumed 

to have failed (Walsh et al. 1995). This meant several chicks appeared to fail around 
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the same time, despite their fate being unknown. The ability of cameras to record data 

outside of the field season could reduce this uncertainty.  

 

Wind 
Alongside temporal factors, eastern wind direction also consistently featured in the 

top models across the entire nesting period, egg and chick stage, while northern wind 

direction was not present. Daily survival rate typically lowered with increasingly 

westerly winds. When considering extrinsic factors (hypothesis group two) during the 

entire nesting period and egg stage only, eastern wind direction interacted with 

maximum temperature, such that daily survival rate was predicted to decrease at lower 

temperatures when the wind was coming from the west rather than the east. The 

orientation of Skomer Island means the Kittiwake colony is buffered from north, south 

and easterly winds by land (Fig. 1), however it is exposed to westerly winds which 

blow straight into the Wick. Previous studies have shown that Kittiwake chicks are 

vulnerable to chilling at low temperatures, the effects of which are exacerbated by 

wind and rain (Kennedy 1970, Kildaw 1999). However, temperature did not appear to 

have an important role in chick stage models, and 2019 was a particularly dry and 

warm year, with temperatures above average in May, June and July (Wilkie et al. 

2019). It is perhaps more likely that westerly winds lowered survival rates by directly 

knocking eggs and/or chicks from their nests or generating large waves that washed 

them away. Across the entire breeding season and particularly during the chick stage, 

there was also support for increasing wind speed lowering daily survival rate, 

supporting the idea that strong westerly winds could have knocked or washed nests 

from the cliffs. It is also possible that chicks may drown or succumb to hypothermia 

after being drenched by waves, an effect made worse at lower temperatures, even if 

they were not washed from their nests into the sea (Seddon & van Heezik 1991, 

Sherley et al. 2012).  

In 2020, many Guillemot Uria aalge, Razorbill Alca torda and Kittiwake eggs 

on Skomer and its neighbouring Island, Skokholm, were lost due to large waves 

generated by gales from the 21st - 23rd May (Brown & Eagle pers. obs., Wilkie & 

Zbijewska pers. obs.). In one plot on Skokholm 60% of Razorbill pairs lost their eggs, 

although 2/3rds re-laid from the 6th - 8th June (Brown & Eagle  pers. obs.). Loss of nests 

due to storms is not an uncommon phenomenon and has been shown to reduce seabird 
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nest survival (Mallory et al. 2009, Sherley et al. 2012, Newell et al. 2015, Christensen-

Dalsgaard et al. 2018). Orientation of nests relative to wind direction is critical, as is 

the timing of inclement weather relative to the breeding season. Newell et al. (2015) 

recorded failure in 15.6% of Kittiwake nests in exposed plots compared to only 1.9% 

in sheltered plots following a summer storm. While some pairs re-laid, the success of 

re-lays was lower than pairs that survived, meaning re-laying only provided partial 

compensation (Newell et al. 2015). Storms occurring later in the breeding season are 

expected to result in even greater loss, as fewer pairs are likely to re-lay (Golet et al. 

2004). Predicted increases in storm frequency with climate change could therefore 

have severe implications for Kittiwake breeding success (Seneviratne et al. 2012).  

 

Temperature 
This study also suggests that predicted increases in global surface temperature over 

the coming years may lower Kittiwake productivity (Seneviratne et al. 2012). During 

the egg stage there was support for high daily maximum temperatures having a 

negative effect on egg daily survival rate, although the magnitude of this effect was 

dependent on wind direction. At high temperatures eggs may fail due to heat stress 

(Ayo et al. 2011) or from indirect effects, like predation and disease. For example, 

heat-stressed Great Skua Catharacta skua on Foula, Shetland, regularly left chicks 

unattended at air temperatures >14°C in order to bathe (Oswald et al. 2008). Nest 

attendance was lowered further on hot days in years of poor food availability, when 

more time was also spent foraging. This reduced nest attendance increased the risk of 

chick predation by neighbouring conspecifics and likely contributed to low chick 

survival in warm, poor food years (Oswald et al. 2008). Furthermore, egg loss among 

Brünnich’s Guillemot Uria lomvia at Coats Island, northern Hudson Bay, was 

associated with high daily maximum temperatures and mosquito abundance, but not 

high temperatures only (Gaston et al. 2002). During periods with high numbers of 

mosquitos, many nests were deserted, and in three instances egg predation was 

observed at deserted nests by Glaucous Gulls (Gaston et al. 2002).  

On Skomer, it is therefore possible that Kittiwake nest attendance may be 

lower at higher temperatures, which could indirectly reduce egg daily survival rate. 

The fieldworker on Skomer witnessed nest predation at the Wick by Great Black-

backed Gulls Larus marinus and a Peregrine Falcon Falco peregrinus, although it is 
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unclear whether this was facilitated by reduced parental attendance at high 

temperatures (Wilkie et al. 2019). Predation was not seen when analysing one time-

lapse photograph per day, although it may be observed by increasing the frequency of 

photo sampling. This could allow further exploration into the relationship between 

abiotic conditions and Kittiwake nest predation. Moreover, it is possible that high 

temperatures combined with strong westerly winds could leave eggs vulnerable to 

being blown or washed off cliffs, if parents abandon incubation duties at high 

temperatures. This relationship between temperature and wind direction may be less 

pertinent during the chick stage, because larger chicks are regularly left alone in the 

nest as they are better able to cope with external conditions. Conversely, eggs and 

small chicks are very vulnerable if left unattended. Eggs would normally be incubated 

continuously until hatching and then small chicks brooded until ~15-16 days post-

hatching when they become homeothermic (Gabrielsen et al. 1992). Further research 

into the exact mechanism by which daily maximum temperature and wind direction 

may be affecting Kittiwake egg survival is needed.  

 

Alternative factors  
Daily maximum temperature did not appear to negatively affect chick survival, and in 

general there was less support for models explaining survival as a function of extrinsic 

variables during the chick stage, compared to the egg stage and egg&chick stage. The 

best models for hypothesis group two (extrinsic factors) in the chick stage explained 

38% of the variation in daily survival rate, compared to 84% for the egg stage and 

68% for the egg&chick stage. This could suggest that weather variables had a greater 

effect on egg than chick survival. During storms, parents may leave nests to avoid 

being buffeted by waves, leaving eggs and small chicks vulnerable to being blown or 

washed from nests, while medium/large chicks should be better able to withstand the 

assault (Sherley et al. 2011). Equally, parents may be more likely to brood chicks and 

provide protection during inclement weather compared to eggs, as they have invested 

considerable energy in reproduction by the time chicks have hatched, but much less 

when their reproductive attempt is only at the egg stage. Furthermore, other factors 

not investigated in this study, such as prey availability, may have been more important 

than the direct effects of weather in influencing the probability of a chick surviving to 

fledge.  
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Food availability has a direct effect on chick survival but only an indirect effect 

on egg survival. Prey availability can, in turn, be affected by weather, as wind and rain 

can inhibit foraging and lower food provisioning rates to chicks. Increased wind speed 

can reduce prey visibility to surface feeders, like Kittiwakes, by increasing turbidity 

of surface waters (Taylor 1983, Mitchell et al. 2018). High wind speed will also 

increase energy expenditure during flight and mean adults have to work harder to catch 

prey (Christensen-Dalsgaard et al. 2018).  

I predicted that higher brood size would lower survival if food was limited. 

The probability of at least one chick fledging was not affected by the number of chicks 

per nest, suggesting food provisioning may have been sufficient. However, this 

analysis did not assess how brood size affects the likelihood of different numbers of 

chicks fledging (e.g. zero, one or two) and it did not consider how many chicks fledged 

relative to the number of eggs laid. Moreover, the largest brood size on Skomer was 

two, despite three-chick broods being observed at other Kittiwake colonies (Coulson 

2011). Prey availability could therefore already be limiting the number of eggs laid, 

although this in itself is dependent on a variety of factors, including parental fitness, 

age and conditions during the non-breeding season (Coulson & White 1961, Coulson 

& Porter 1985, Chastel et al. 1995, Coulson 2011).  

 

CONCLUSION 
The relationship between temporal, extrinsic and intrinsic factors on Kittiwake nest 

survival is complicated. This study provides initial support for the hypothesis that 

weather variables may be contributing to nest failure on Skomer Island, Wales. 

Digitising nest monitoring data going back to the early 1990s is of priority to allow 

this preliminary survival analysis to be extended and evaluate the impact of weather 

on Kittiwake productivity over the past few decades. With more years of data, the 

effect of ‘extreme’ versus ‘average’ weather could also be investigated, to assess the 

impact of climate change on breeding success. This could provide insight into the 

gradual decline in Kittiwake productivity on Skomer Island, and with expansion to 

landscape level monitoring enabled by novel imaging technologies, like time-lapse 

cameras, it could help identify factors contributing to population decline in Wales.  
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SUPPLEMENTARY MATERIAL  
Table S1 VIF for explanatory variables with VIF < 3 when assessing collinearity of all 

candidate variables. NA indicates that this variable was excluded through the stepwise 

procedure implemented using the ‘vifstep’ function in R. Explanatory variable codes: T time; 

TT time2; max_temp daily maximum temperature; min_temp daily minimum temperature; 

mean_temp daily mean temperature; total rain daily total rainfall; wind_speed daily mean 

wind speed; sin_dir daily mean eastern wind direction; cos_dir daily mean northern wind 

direction. 
 

Explanatory 

variables 

Egg + chick stage  Egg stage Chick stage 

max_temp 2.070827 2.442336  NA 

min_temp NA NA 2.581015 

mean_temp NA  NA 1.267133 

total_rain 1.695375 1.940486 1.635243 

wind_speed 1.632525 1.487364 1.779399 

cos _dir 1.207371 1.244018 2.305048 

sin _dir 1.080126 1.082939 1.186121 

T NA 1.289431 NA 

TT 1.524245 NA 1.422533 

 

Table S2 VIF for explanatory variables with VIF < 3 when assessing collinearity of time or 

quadratic time, maximum temperature and mean wind speed and direction. ‘Not included’ 

means the variable was not used in the collinearity assessment. Explanatory variable codes: T 

time; TT time2; max_temp daily maximum temperature; wind_speed daily mean wind speed; 

sin_dir daily mean eastern wind direction; cos_dir daily mean northern wind direction. 

 

 

 

 

 

 

 

Explanatory variables Egg + chick 

stage 

Egg stage Chick stage 

max_temp 1.560995 1.518730 1.366613 

wind_speed 1.520868 1.481102 1.551015 

cos_ dir 1.204095 1.234330 1.393939 

sin_ dir 1.019785 1.033824 1.184155 

T 1.382341 Not included 1.278736 

TT Not included  1.269624 Not included
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Table S3 Model selection results for the top three models in each stage and hypothesis group. 

Explanatory variable codes: 1 constant; T time; TT time2; max_temp daily maximum 

temperature; wind_speed daily mean wind speed; sin_dir daily mean eastern wind direction; 

cos_dir daily mean northern wind direction. npar is the number of parameters in each model. 

Stage Hypothesis 

group 

Model npar AICc Δ AICc ѡi Deviance 

Egg + 

Chick 

1 ~T 2 408.1934 0 0.979075 404.1921 

Egg + 

Chick 

1 ~TT 2 415.885 7.69131 0.020925 411.8834 

Egg + 

Chick 

1 ~1  1 457.253 49.05958 2.18E-11 455.2526 

Egg 1 ~T 2 128.961 0 0.91972 124.9591 

Egg 1 ~TT 2 133.838 4.8771 0.08028 129.8362 

Egg 1 ~1 1 273.481 144.5198 0 271.4804 

Chick 1 ~TT 2 164.721 0 0.809136 160.7178 

Chick 1 ~T 2 167.6101 2.88904 0.190842 163.6068 

Chick 1 ~1 1 185.7219 21.00086 2.23E-05 183.7208 

Egg + 

Chick 

2 ~max_temp + 

sin_dir 

3 397.2741 0 0.682776 391.2715 

Egg + 

Chick 

2 ~max_temp + 

sin_dir + 

max_temp:sin_dir 

4 398.8072 1.533151 0.317218 390.8029 

Egg + 

Chick 

2 ~max_temp + 

wind_speed + 

max_temp:wind_

speed 

4 420.5746 23.30051 5.95E-06 412.5702 

Egg 2 ~max_temp + 

sin_dir + 

max_temp:sin_dir 

4 131.9793 0 0.842331 123.972 

Egg 2 ~max_temp + 

wind_speed + 

max_temp:wind_

speed 

4 135.3773 3.39806 0.154029 127.37 

Egg 2 ~max_temp + 

sin_dir 

3 142.8692 10.88998 0.003637 136.8649 

Chick 2 ~wind_speed + 

sin_dir 

3 178.0967 0 0.379768 172.0901 
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Chick 2 ~wind_speed 2 179.7262 1.629511 0.168141 175.7229 

Chick 2 ~wind_speed + 

sin_dir + 

sin_dir:wind_spe

ed 

4 180.098 2.001308 0.139617 172.087 

Chick 3 ~1 1 185.7219 0 0.84225 183.7208 

Chick 3 ~brood_size 3 189.072 3.350132 0.15775 183.0655 

Egg + 

Chick 

1 & 2 ~T + wind_speed 

+ T:wind_speed 

4 395.3827 0 0.486063 387.3783 

Egg + 

Chick 

1 & 2 ~max_temp + 

sin_dir 

3 397.2741 1.891379 0.188793 391.2715 

Egg + 

Chick 

1 & 2 ~sin_dir + T 3 397.9549 2.572199 0.134322 391.9523 

Egg 1 & 2 ~sin_dir + T 3 122.4998 0 0.24658 116.4955 

Egg 1 & 2 ~T + wind_speed 

+ T:wind_speed 

4 122.516 0.016137 0.244598 114.5087 

Egg 1 & 2 ~wind_speed + T 3 123.2311 0.7313 0.171064 117.2268 

Chick 1, 2 & 3 ~sin_dir + TT + 

sin_dir:TT 

4 163.0838 0 0.267391 155.0728 

Chick 1, 2 & 3 ~sin_dir + T + 

sin_dir:T 

4 164.3387 1.2549 0.142774 156.3277 

Chick 1, 2 & 3 ~sin_dir + TT 3 164.6483 1.564502 0.122298 158.6417 
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Table S4 Real parameter estimates, standard error (SE) and 95% lower (lcl) and upper (ucl) 

levels for significant parameters in the most parsimonious model for each stage and hypothesis 

group. Explanatory variable codes: 1 constant; T time; TT time2; max_temp daily maximum 

temperature; wind_speed daily mean wind speed; sin_dir daily mean eastern wind direction; 

cos_dir daily mean northern wind direction. 

 

Table S5 Mean daily survival probability and total probability of survival for the null 

hypothesis (Survival~1) and the most parsimonious model for each stage and hypothesis 

group. Model parameters were kept at their average values and real parameter estimates were 

used, rather than beta (β) parameter estimates. Explanatory variable codes: 1 constant; T time; 

TT time2; max_temp daily maximum temperature; wind_speed daily mean wind speed; sin_dir 

daily mean eastern wind direction; cos_dir daily mean northern wind direction. 

Stage Hypothesis 

group 

Model Mean daily survival 

probability  

Probability of surviving the 

duration of the study  

Egg + 

Chick 

1 ~1 0.9949  

(95% CI 0.993-0.996) 

0.6284  

(95% CI 0.542-0.707) 

Stage Hypothesis 

group 

Model npar Real 

Estimate 

SE lcl ucl 

Egg + 

Chick 

1 ~T T 0.486 0.502 0.482 0.491 

Egg 1 ~T T 0.445 0.507 0.432 0.458 

Chick 1 ~TT TT 0.499 0.500 0.499 0.500 

Egg + 

Chick 

2 ~max_temp + 

sin_dir 

max_temp 0.358 0.520 0.322 0.395 

sin_dir 0.956 0.628 0.887 0.984 

Egg 2 ~ max_temp + 

sin_dir + 

max_temp:sin_dir 

 

max_temp 0.255 0.538 0.203 0.315 

sin_dir 6.59E-11 0.999 5.18E-

17 

8.39E-

05 

max_temp:sin_dir 0.707 0.558 0.605 0.793 

Chick 2 ~ wind_speed + 

sin_dir 

wind_speed 0.466469 0.511 0.446 0.487 

Egg + 

Chick 

1 & 2 ~T + wind_speed 

+ T:wind_speed 

wind_speed 0.680663 0.563 0.565 0.777 

T:wind_speed 0.498 0.501 0.496 0.499 

Egg 1 & 2 ~ sin_dir + T T 0.444 0.507 0.429 0.458 

sin_dir 0.895 0.704 0.608 0.979 

Chick 1 & 2 ~ sin_dir + TT + 

sin_dir:TT 

sin_dir:TT 0.501 0.500 0.500 0.501 
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Egg + 

Chick 

1 ~T 0.9931 0.530  

(95% CI 0.425-0.632) 

Egg 1 ~1 0.9948  

(95% CI 0.992-0.996) 

0.686  

(95% CI 0.585-0.771) 

Egg 1 ~T 0.947 0.00897  

(95% CI 0.000856- 0.0873) 

Chick 1 ~1 0.995  

(95% CI 0.992, 0.997) 

0.787  

(95% CI 0.687, 0.861) 

Chick 1 ~TT 0.991  0.631  

(95% CI 0.447, 0.783) 

Egg + 

Chick 

2 ~max_temp + 

sin_dir 

0.9951 0.633  

(95% CI 0.547-0.712) 

Egg 2 ~ max_temp + 

sin_dir + 

max_temp:sin_

dir 

0.986  0.266  

(95% CI 0.146-0.435) 

Chick 2 ~ wind_speed + 

sin_dir 

0.992 0.673  

(95% CI 0.475, 0.825) 

Egg + 

Chick 

1 & 2 ~T + 

wind_speed + 

T:wind_speed  

0.9923 0.493  

(95% CI 0.347-0.640) 

Egg 1 & 2 ~sin_dir + T 0.950  0.0120  

(95% CI 0.00134-0.0988) 

Chick 1 & 2 ~ sin_dir + TT + 

sin_dir:TT 

0.988  0.539  

(95% CI 0.330, 0.735) 
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CHAPTER THREE: Comparing 

citizen science and expert annotated 

imagery from time-lapse photographs 
 

ABSTRACT 
Citizen science has the potential to expand the magnitude and scope of scientific 

investigations and enable research that would not otherwise be possible or practical, 

in terms of time and resources. Seabird Watch is one such citizen science project, 

which asks volunteers to count seabirds in time-lapse images. However, before data 

from this approach can be used to answer larger scientific questions related to seabird 

productivity and phenology, it is essential to validate volunteer data against ‘gold 

standard’ classification provided by experts. This study compared aggregated citizen 

science counts and gold standard counts of adult and juvenile Black-legged Kittiwake 

Rissa tridactyla in images from five sites and spanning three years. Using the optimal 

aggregation threshold of > 2 ( meaning at least three users must have clicked on a bird 

for it to be counted as a Kittiwake), the lowest average percentage differences between 

gold standard and citizen science counts ranged from 3.35% to 21.80% Kittiwakes, 

but could exceed 70.00% when comparing counts of chicks only. Accuracy of 

volunteer counts varied depending on a number of factors, including aggregation 

threshold, whether adults and chicks were considered together or separately, and 

site/camera, which was related to camera setup, the number of birds in the field of 

view and species present. I conclude that validation of Seabird Watch data must occur 

independently for each site, and that whilst aggregated volunteer results are currently 

not ‘as good as’ a single expert, this is likely due to issues with the clustering algorithm 

rather than the performance of Seabird Watch volunteers,  
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INTRODUCTION 
Citizen science, the engagement of the general public in the process of science, has 

the potential to greatly expand the magnitude and scope of research (Swanson et al. 

2016). In the last decade there have been significant advances in online citizen science, 

with the creation of the Zooniverse platform being one such example (Cox et al. 2015). 

The Zooniverse is ‘the world’s largest and most popular platform for people-powered 

research’ (Zooniverse 2020a) and engages > 1.1. million registered users worldwide 

(Cox et al. 2015). The website (www.zooniverse.org) comprises numerous projects 

that span a range of disciplines from astronomy to ecology, but all of which use 

volunteers to analyse large datasets and therefore enable research that would not 

otherwise be possible or practical (Cox et al. 2015, Zooniverse 2020a). Motivation to 

participate in projects largely stems from a desire to contribute to science and the 

ability to engage in scientific discussion via the Zooniverse discussion forums 

(Raddick et al. 2010, 2013, Mugar et al. 2014, Swanson et al. 2016). However, despite 

the enormous potential of citizen science, many researchers remain apprehensive of 

non-expert derived data (Foster-Smith & Evans 2003, Dickinson et al. 2010, Bonter 

& Cooper 2012, Swanson et al. 2016). Citizen science projects have used a range of 

methods to improve quality of volunteer data, including training volunteers prior to 

participation, requiring volunteers to pass a competency test, or, in the case of many 

Zooniverse projects, aggregating the results of multiple users to form a consensus 

(Dickinson et al. 2010, Swanson et al. 2016).  

Seabird Watch is a Zooniverse project established in 2017, which uses 

volunteers to mark seabirds in images, from which a count can then be obtained. A 

clustering algorithm aggregates the raw clicks of multiple users to form ‘consensus’ 

clicks which are summed to give the number of birds in the image. Specifically, adult 

and juvenile Kittiwakes and Guillemots are counted. So far, Seabird Watch has 10,782 

registered users who have made 533,604 classifications across 54,116 images. These 

images are from a network of cameras located at 13 sites and span more than five 

years, meaning there is now sufficient data across a large enough temporal and spatial 

scale to inform meaningful analyses, such as investigating the phenology and nest 

success of breeding seabirds (Zooniverse 2020b). Nonetheless, before such analyses 

are undertaken, it is essential to validate the data against gold standard classifications 
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provided by experts, and therefore ensure the citizen science output is reliable 

(Swanson et al. 2016, Bruggemann et al. 2018).  

This chapter aims to assess the accuracy of the Seabird Watch dataset and 

determine whether aggregated volunteer data are of equal or greater accuracy than the 

results from a single expert. The methods used here are similar to those developed to 

validate Penguin Watch (Jones et al. 2018), so all conclusions made are comparable 

for these two sister projects. Accuracy was predicted to vary by aggregation threshold 

level, site/camera (related to camera setup, number of birds per image and image 

resolution) and whether adults and chicks were considered together or separately.  

 

METHODS 
Data collection 

Study sites and camera setup 
Photographs were obtained from time-lapse cameras (Reconyx Hyperfire or Reconyx 

Ultrafire) setup as part of the citizen science project Seabird Watch.  Each camera is 

programmed to take one photo every hour throughout the year, although gaps in the 

dataset exist during some winters and when annual visits to change the SD cards and 

batteries were not possible. Images from five cameras deployed at five colonies (3 in 

Svalbard, 1 in Iceland, and 1 in Ireland) were chosen to represent a range of ‘views’, 

as the cameras are positioned at different distances and angles to the colonies of 

interest (Table 1). Based on differing ‘views’ each camera was ranked according to 

the perceived likelihood of accurately recording nest contents (Table 1). In a few 

instances camera position changed between years (MITTa2015a to MITTa2017a, 

OSSIa2016a to OSSIa2017a), however these cameras were still treated as the same 

site to prevent small sample sizes (< 30 images) limiting the reliability of analysis.  

 

Citizen science image annotation 
Images were annotated by members of the public via the citizen science project, 

Seabird Watch (www.seabirdwatch.org), on the Zooniverse platform 

(www.zooniverse.org). Users are given a brief tutorial, which provides examples of 

how birds appear in images and explains how to select the correct identification tool, 

before they are shown their first image  and follow the workflow outlined in Fig. 1 to 
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identify adult and chick Kittiwakes and Guillemots. A field guide of animals likely to 

be seen in images is also available to aid identification, as well as a Frequently Asked 

Questions page and online discussion forum which is moderated by scientists.  

Each image is first shown to four participants and if no birds are identified or 

the image is too dark/blurry to classify, the image is retired. This means it is removed 

from the active dataset and not seen by further volunteers. However, if any of the four 

participants identifies an animal, then the image is shown to an additional 11 people 

before being retired, meaning 15 users view each image containing birds. Previously, 

20 users viewed each image containing birds (i.e. the subject retirement was 20), 

although this was lowered to 15 to increase the rate of image retirement. Participants 

do not have to classify every bird in each image to help prevent loss of interest when 

the photograph contains many individuals. It is assumed that every bird will be 

classified between the 15 independent viewers, meaning completed images could, in 

theory, have up to 15 marks for each animal. These classifications are aggregated using 

a clustering algorithm to generate a single ‘consensus click’ for each marked object. 

This method uses agglomerative hierarchical clustering to group coordinates of clicks 

by their spatial position and produce an average x,y coordinate for each tightly 

clustered group of markings, thus averaging volunteer input (Jones et al. 2018). Clicks 

made by the same user are placed in separate clusters.  

Output data were processed to produce comma-separated values (csv) files 

containing: image name (image_id), consensus click coordinates, number of markings 

contributing to each consensus click (num_markings), number of people that marked 

all birds in the image (marked_all), number of people that said the image was too 

dark/blurry to classify (dark_num_votes), and date, time and temperature when the 

image was taken. Images were not carried forward for analysis if zero volunteers 

marked all birds, as these do not reflect the true number of birds per image. Equally, 

images were excluded if greater than three people said the image was too dark/blurry 

to classify. Consensus clicks had to be formed from greater than one mark 

(num_markings > 1) to be included in the dataset. This helped filter out accidental 

markings. 
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I Start I 
' . 

Click on all the animals in Have you marked every bird 
this image. -11 in this image? 

Don't wony if there ru·e too I Yes I many. Please just mark as 
many as you can before you 
move on to the next image. 

INo I If there ru·e no animals in the 
image, just click 'Next'. This image is too dark/ blurry 

to classify 

< Kittiwakes 

❖ Guillemots -
❖ Kittiwake chicks 

Guillemot chicks 

❖ Other 

This image is too dark/ blurry ' t 

I I End& Talk to classify - End 

Figure 1 Tue Seabird Watch workflow. If the image contains an animal, then participants are asked 

to mark individuals by clicking on them, and classify individuals as 'Kittiwakes', 'Guillemots' , 

'Kittiwake chick', ' Guillemot chick' and ' Other'. After classification, pa1ticipants can choose 

whether they would like to 'talk' about it on a Sea bird Watch fornm. Brown boxes mean participants 

must give an answer, grey boxes mean a process must be carried out, such as clicking on animals. 

This workflow is based on Penguin Watch (Jones et al. 2018). 

Gold standard image annotation 

Gold standard annotation was perfo1med using an inactive version of the Seabird 

Watch project (kittiwake project), which is only available to researchers. This allowed 

106 
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specific sets of images to be uploaded and viewed. Conversely, Seabird Watch 

presents the user with random images from a very large dataset. 

Images from MITTa, OSSIa, HVITa and SKELa were annotated by myself, 

while images from ALKEa were classified by three other researchers (Rachel Ryan, 

Mark Jessopp and Tom Hart) as part of a previous project. For HVITa the 13.00 

images during the breeding period were annotated; whereas the 10.00, 12.00 and 13.00 

images were randomly sampled across the dataset at OSSIa, and the 12.00 images 

were randomly sampled at SKELa and ALKEa. At MITTa some 11.00-13.00 images 

were randomly selected for annotation, but a continuous series of 12.00 images from 

2014-2015 were also analysed. By analysing a continuous time-series of images (i.e. 

one image per day for a set time period) at MITTa and HVITa it allows future work 

to compare phenology measured from gold standard and citizen science annotation, 

rather than just comparing counts. Photographs from MITTb were also classified but 

too few images had citizen science annotations available so they could not be used in 

this study. 

 

Table 1 Location, sampling method and rank (R) of each camera providing images for gold 

standard and citizen science comparison. Cameras were ranked according to perceived 

likelihood of accurately recording nest contents from the images, where 1 gave the best view 

of nest contents (i.e. highest quality image) and 5 gave the worst view. Random sampling 

means images were chosen at random from the dates and times provided. Time-series 

sampling means one image per day at the given time, was selected between a specific date 

range.  

Camera 

name 

Location Country GPS Sampling method R 

MITTa  

(MITTa2015a, 

MITTa2017a) 

Midterhukfjellet Svalbard 77.663908°N, 

14.87916°E 

Random 

Times: 11.00, 12.00, 13.00 

Dates: 10/06/2014 - 20/06/2015 

& 02/07/2016 - 24/03/2017 

Time-series 

Time: 12.00  

Dates: 10/06/2014 - 20/06/2015 

 

4 

OSSIa 

(OSSIa2016a, 

OSSIa2017a) 

Ossian 

Sarsfjellet 

Svalbard 78.941015°N, 

12.491033°E 

Random 

Times: 10.00, 12.00, 13.00 

2 
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Dates: 12/07/2015 – 7/08/2015 

& 6/07/2016 - 5/06/2017 

ALKEa2016a Alkhornet Svalbard 78.211362°N, 

13.783972°E 

Random 

Time: 12.00  

Dates: 25/06/2015 – 19/06/2016 

3 

HVITa 

(HVITa2016a, 

HVITa2016b)  

Hvitabjarnarey Iceland 65.08°N, 

22.68°W 

Time-series 

Time: 13.00 

Dates: 22/06/2016 – 20/08/2016 

1 

SKELa2015a Skellig Michael Ireland 51.771486°N, 

10.539689°W 

Random  

Time: 12.00 

Dates: 08/09/2014 – 29/08/2015 

5 

 

 

Data analysis  

Comparing citizen science and gold standard analysis  

Images without Kittiwakes 

For images where gold standard annotation stated that no Kittiwakes were present, I 

compared the total number of Kittiwakes (adults and chicks combined) per image 

between gold standard (GS) and citizen science (CS) classification. I calculated the 

average difference (GS – CS) in the number of Kittiwakes per image, and the 

proportion of images where the CS count was equal to (GS = CS) and greater than (GS 

< CS) the GS count (i.e. matches and overestimates). Accuracy was dependent on the 

average count difference, where higher accuracy was defined as a smaller average 

difference between GS and CS counts.  

 

Images with Kittiwakes 

For images where GS annotation stated that at least one Kittiwake (adult or chick) was 

present, I calculated the number of adults, number of chicks and number of adults and 

chicks combined for GS and CS classification (consensus clicks) at different threshold 

levels of num_markings and marked_all. The threshold levels used ranged from two 

to 10 for num_markings and one to 10 for marked_all. The lowest threshold level of 

num_markings was > 2 because the minimum number of raw clicks that formed a 

consensus click was three, meaning num_markings > 1 and num_markings > 2 would 

give the same results. I calculated the average difference (GS – CS), average 
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percentage difference ((GS – CS / GS) * 100) and proportion of images where the CS 

count was equal to (GS = CS), greater than (GS < CS) and less than (GS > CS) the GS 

count, for adults only, chicks only and adults and chicks combined at each threshold 

level. For comparison of chicks only, I used images where either GS or CS annotation 

recorded at least one chick. This prevented images with adult birds but no chicks being 

included in the chick only comparison. For calculations of average percentage 

difference, images containing zero birds in GS classification were removed, as it is not 

possible to divide by zero.  

Comparisons were conducted separately for each site/camera to assess how 

different image ‘views’ might affect the reliability of citizen science classification 

relative to gold standard. For images with large differences between gold standard and 

citizen science counts, the x,y coordinates of each click (consensus click for citizen 

science classifications) were plotted onto the image to investigate the cause of the 

discrepancy.  

 

RESULTS 
Comparing citizen science and gold standard analysis   
Images without Kittiwakes 

The percentage agreement between GS and CS classifications in images where GS 

classification recorded zero Kittiwakes, was highest at HVITa and OSSIa (100%). All 

images were marked as containing no Kittiwakes. This was followed by MITTa 

(97%), ALKEa (96%), and SKELa (88%) (Table 2). The single SKELa image where 

GS and CS classifications differed had been erroneously marked by Seabird Watch 

volunteers, leading to a count difference of one. For MITTa, nine images recorded 

Kittiwakes in CS classifications but not in GS classifications. In one image, two 

Kittiwakes had been erroneously marked by Seabird Watch volunteers, and for two 

images GS classification missed one Kittiwake. Three images were partially obscured 

by a bird in the foreground and were marked as ‘too dark/blurry to classify’ by the 

gold standard analyser and one to three Seabird Watch volunteers, but still had some 

Kittiwakes marked from volunteer consensus clicks. In the remaining three images, 

Seabird Watch volunteers recorded greater than 30 Kittiwakes (49, 71 and 117 adults) 

compared to zero in gold standard classification, despite these images being of good 

quality. Likewise, three images at ALKEa had between 26 and 69 adult Kittiwakes 
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recorded from CS classification but zero from GS classification. It should be noted 

that image sample size was < 30 for HVITa (n = 2), OSSIa (n = 26) and SKELa (n = 

8) meaning the results may not be representative of the true agreement between GS 

and CS classifications in images with zero Kittiwakes.   

 
Table 2. Comparison of counts between gold standard (GS) and citizen science (CS) 

classification in images where GS classification recorded zero Kittiwakes. ‘Average 

difference’ is the mean GS minus CS count and σ is the standard deviation. ‘Proportion of 

differences 0 or 1’ is the proportion of images for which the CS count was equal to the GS or 

different by one individual. The proportion of GS classifications that are equal to (GS = CS) 

and less than (GS < CS) CS classifications is also given. ‘n’ is the number of images in the 

sample. The results presented are for images where GS classification did not record any 

Kittiwakes.  

Camera Average 

difference 
σ Proportion of  

differences 0 or 1 

GS < CS GS = CS n 

HVITa 0 0 1 0 1 2 

OSSIa 0 0 1 0 1 26 

ALKEa -1.58228 8.871747 0.962025 0.037975 0.962025 79 

MITTa -0.95 8.761127 0.982143 0.032143 0.967857 280 

SKELa -0.125 0.353553 1 0.125 0.875 8 

 

Images with Kittiwakes 

Accuracy was predicted to vary by threshold level, site/camera and whether adults 

and chicks were considered together or separately.  

Threshold values 

When comparing Kittiwake counts between GS and CS classifications at 

different threshold levels of num_markings (the number of volunteer clicks aggregated 

to produce a consensus click), the most accurate results (i.e. lowest average 

differences) occurred when num_markings was > 2 for all cameras (Table S1-3). At 

this threshold level, the average differences ranged from 0.12 (σ = 11.64) to 17.09 (σ 

= 43.49) Kittiwakes, and the average percentage differences ranged from -0.26% (σ = 

70.05) to 79.50% (σ = 20.68). Increasing num_markings typically increased both the 

average difference and average percentage difference and therefore decreased 

accuracy.  
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Using num _ markings > 2, the percentage agreement between GS and CS 

classifications (GS = CS) was low for all cameras. It ranged from 0% at OSSia and 

SKELa when comparing counts of adults and chicks combined and chicks only 

respectively, to 15% at SKELa when comparing counts of adults and chicks combined 

(Fig. 2). 
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■ GS < CS ■ GS = CS GS> CS 

Figure 2 Proportion of gold standru·d (GS) classifications that ru·e greater thru1 (GS > CS), 

equal to (GS = CS) and less than (GS < CS) citizen science (CS) classifications for 

num _ mru·kings > 2 when compruing counts of A) adults and chicks, B) adults and C) chicks 

at each camera. 

When comparing Kittiwake counts at different threshold levels of marked_ all 

(the number of volunteers that marked all birds in the image), the threshold that gave 

the most accmate results varied by camera. Generally, the most accmate results were 

obtained at higher threshold levels of marked_ all compared to num _ markings (> 2) 

and varying marked_ all gave more accurate results than vaiying num _ markings. The 

lowest average differences obtained when adjusting the marked_ all threshold ranged 

from 0 (cr = 13.63) to 5.19 (cr = 4.79) Kittiwakes and 0.01 % (cr = 27.85) to 17.49% (cr 

= 45.22) average percentage difference (Table Sl-3). Figures 3-4 show how average 

difference for adults and chicks changed with increased num _ markings and 

mru·ked all thresholds. 
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Figure 3 Average differences (+/- σ) between gold standard (GS) and citizen science (CS) adult 

Kittiwake counts for different threshold levels of num_markings and marked_all at cameras A) 

HVITa, B) OSSIa, C) ALKEa, D) MITTa and E) SKELa. Average difference is the mean GS 

minus CS count. A ‘num_markings’ threshold of ‘> 2’ means at least three Seabird Watch 

volunteers must have clicked an area for it be counted as a Kittiwake. A ‘marked_all’ threshold 

of ‘> 1’ means at least two Seabird Watch volunteers marked all birds in the image.  

Figure 4 Average differences (+/- σ) between gold standard (GS) and citizen science (CS) 

Kittiwake chick counts for different threshold levels of num_markings and marked_all at 

cameras A) HVITa, B) OSSIa, C) ALKEa, D) MITTa and E) SKELa. Average difference is the 

mean GS minus CS count. A ‘num_markings’ threshold of ‘> 2’ means at least three Seabird 

Watch volunteers must have clicked an area for it be counted as a Kittiwake. A ‘marked_all’ 

threshold of ‘> 1’ means at least two Seabird Watch volunteers marked all birds in the image. 
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Camera 

Accuracy also varied markedly by site/camera. For num_markings > 2, the average 

difference between GS and CS classifications for adults and chicks combined was 

greatest at MITTa (17.09,  σ  = 43.49), followed by OSSIa (14.47, σ = 43.67), HVITa 

(5.47, σ = 10.05) and ALKEa (0.76 σ = 11.61), with the lowest average difference at 

SKELa (-0.21, σ = 6.01). This order changed when adults and chicks were considered 

separately. The average difference in the number of adults was highest at MITTa (14.3, 

σ = 40.32), followed by OSSIa (12.97, σ  = 36.55), HVITa (-1.94, σ = 6.91), SKELa 

(-1.63, σ = 6.11) and then ALKEa (0.12 +/- 11.64); while the average difference in the 

number of chicks was highest at HVITa (7.82, σ = 5.87) followed by MITTa (7.15, σ 

= 10.50), SKELa (6.73, σ = 8.08), OSSIa (2.07, σ = 11.24), and ALKEa (2.00, σ = 

1.63) (Table 3, Table S1-3). Having said this, average difference does not consider the 

number of birds per image. Larger average differences would be expected for cameras 

viewing a greater number of Kittiwakes. The highest number of Kittiwakes recorded 

in a single image from GS classification was at MITTa (229), followed by OSSIa 

(198), SKELa (88), HVITa (62) and finally ALKEa (60) (Table 3). Table 3 compares 

the average absolute and percentage differences between GS and CS counts for each 

site.  

As well, accuracy could have been affected by the proportion of images where 

a high number of Seabird Watch volunteers (≥ 10) marked all birds. HVITa and SKELa 

had the highest proportion of images where ≥ 10 Seabird Watch users marked all birds 

(71% and 65% respectively), whereas the highest proportion of images (~50%) were 

marked by 7, 8 or 9 users at OSSIa, ALKEa and MITTa (Table S4, Fig. 3).  
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Table 3 Average absolute and percentage differences between gold standard (GS) and citizen 

science (CS) counts of adults and chicks combined, adults only and chicks only for 

num_markings > 2.  Average difference is the mean GS minus CS count and σa is the standard 

deviation. Average percentage difference is the mean GS minus CS count divided by the GS 

count and multiplied by 100, and σp is the standard deviation. Maximum number is the 

maximum number of adults, chicks, and adults and chicks combined recorded from GS 

classification for each camera. 

Camera Average 

difference 
 σa Average % 

difference  
σp Maximum 

number 

HVITa      

Adults + Chicks 5.47 10.05 21.80 36.52 62 

Adults -1.95 6.91 -25.38 86.06 36 

Chicks 7.82 5.87 50.80 34.24 31 

OSSIa      

Adults + Chicks 14.48 43.67 10.48 30.64 198 

Adults 12.87 36.55 10.29 29.81 153 

Chicks 2.07 11.24 -0.26 70.05 55 

ALKEa      

Adults + Chicks 0.76 11.61 3.35 35.56 60 

Adults 0.12 11.64 1.74 35.78 57 

Chicks 2.00 1.63 70.77 42.71 10 

MITTa      

Adults + Chicks 17.09 43.49 14.43 34.77 229 

Adults 14.30 40.32 13.23 35.06 209 

Chicks 7.15 10.50 46.92 44.89 57 

SKELa      

Adults + Chicks -0.21 6.01 6.06 33.96 88 

Adults -1.63 6.11 3.76 34.79 70 

Chicks 6.73 8.08 79.50 20.68 26 
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Adults and chicks combined or separate 

For each site, accuracy differed depending on whether adults and chicks were 

considered together or separately. Average difference between GS and CS counts was 

lowest at MITTa (7.15, σ = 10.50) and OSSIa (2.07, σ = 11.24) when considering 

chicks only, at ALKEa (0.12, σ = 11.64) when considering adults only, and at HVITa 

(5.57, σ =10.05) and SKELa (-0.21, σ = 6.01) for adults and chicks combined. This 

changed at MITTa and SKELa when using average percentage difference, which was 

lowest for counts of adults (Table 3). The proportion of GS counts that equalled CS 

counts for adults only was typically either the same or higher than for chicks (Fig. 2).  

 

 

Figure 5 Proportion of images for each camera where 1-3, 4-6, 7-9 and ≥10 users marked all 

birds, in images where at least one Kittiwake was seen in gold standard (GS) classifications.  
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DISCUSSION 
Counts of adult and juvenile Kittiwakes in time-lapse images made by citizen science 

(CS) and gold standard (GS) analysers were compared across five sites. Percentage 

difference between GS and CS classification was very low (< 5%) in images where 

GS classification recorded zero Kittiwakes. Percentage difference was generally 

higher for images containing Kittiwakes, especially when comparing counts of chicks 

only. Using num_markings > 2 gave the lowest percentage difference for all sites, 

while a single optimal marked_all threshold was not found. Overall, accuracy of 

volunteer counts was dependent on several factors, including threshold values, 

whether adults and chicks were considered together or separately, and site/camera, 

which was related to camera setup, the number of birds in the field of view and species 

present.  

Images without Kittiwakes 
For images where GS classification recorded zero Kittiwakes, percentage agreement 

between GS and CS classifications was generally high (> 95%) and was only lower at 

SKELa (88 %) for which sample size was small (n = 8 images). This suggests that 

Seabird Watch volunteers and GS classification perform almost equally well when the 

image contains zero Kittiwakes. In a few cases volunteer consensus clicks erroneously 

marked one or more Kittiwakes, and GS classification occasionally missed a bird. At 

MITTa and ALKEa, GS classification appeared to miss greater than 25 Kittiwakes in 

several images. While any user may accidentally miss some birds, it seems improbable 

that gold standard analysis would fail to notice so many individuals. It is more likely 

that the image was skipped by the gold standard analyser who intended to classify the 

image later, however the image was incorrectly retired and recorded with zero 

Kittiwakes instead.   

 

Images with Kittiwakes 
For images containing Kittiwakes, accuracy varied depending on threshold level, 

site/camera and whether adults and chicks were considered together or separately.  

 



3 Comparing citizen science and gold standard photo data 

117 
 

Threshold values 
Exploring the effect of num_markings and marked_all thresholds on the difference 

between GS and CS classification was important to try and find an optimal threshold 

that minimises those differences. For all cameras, the average difference was lowest 

with num_markings > 2, meaning consensus clicks drawn from a cluster with fewer 

than three classifications were discarded.  At this threshold the number of false 

positives (where a CS consensus click incorrectly marked an area as a Kittiwake) and 

false negatives (where an area containing a Kittiwake was not marked by a consensus 

click) was at a minimum. As the threshold level was increased further, the proportion 

of overestimates by CS classification (GS < CS) decreased, as more marks were 

required per consensus click for it to be counted (Table S1-3). This helped filter out 

erroneous marks by volunteers, which were likely made by accident. Increasing the 

num_markings threshold also increased the proportion of underestimates (GS > CS) 

as more consensus clicks were excluded from the Kittiwake count, despite their x,y 

coordinates pertaining to the location of a Kittiwake (i.e. a false negative) (Table S1-

3). Overall, the average difference between GS and CS counts tended to increase and 

become more positive as num_markings increased, due to GS classification recording 

increasingly more Kittiwakes than CS classification (Fig 3-4, Table S1-3). 

 The increasing average count difference with num_markings could suggest 

that consensus clicks comprising few raw clicks are not necessarily erroneous (i.e. 

false positives), and in fact excluding them from the results means numerous 

Kittiwakes are incorrectly ‘lost’ from the CS count. Alternatively, the average 

difference might generally increase as num_markings is increased, because volunteers 

are not required to mark all birds in the image. As num_markings is raised, the number 

of volunteers that must have marked the image increases, and so the probability that 

any one observer will miss any one bird also increases. Nevertheless, Fig 3-4 show 

that the average difference between GS and CS counts does not consistently increase 

with num_markings for every camera. At HVITa, the average difference reaches a 

maximum at num_markings > 9 and num_markings > 6 when comparing adult only 

and chick only counts respectively, and then decreases beyond these values. It is 

therefore not necessarily a mathematical certainty that accuracy decreases as 

num_markings is increased. Importantly, this analysis has established that regardless 
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of the trend with increasing num_markings, num_markings > 2 is optimal for all 

cameras, and reflects the best balance between over- and underestimation.  

Using marked_all to filter out incorrect classifications appeared to increase 

accuracy more than num_markings. The optimal marked_all threshold gave either 

equal or higher accuracy than the optimal num_markings threshold (Fig. 3-4). For 

example, discarding images where fewer than eight people marked all birds 

(marked_all > 7) gave an average difference of -1.13 (σ = 27.50) Kittiwakes at MITTa, 

compared to 17.09 (σ = 43.49) Kittiwakes when at least three clicks contributed to 

each consensus click (num_markings > 2). As the marked_all threshold increased, the 

proportion of overestimates (GS < CS) increased and underestimates (GS > CS) 

decreased, whereas when increasing num_markings the opposite was true (Table S1-

3). This suggests that CS classification is more likely to miss birds and therefore 

underestimate the number of Kittiwakes when fewer users mark all birds in the image. 

Altering the Seabird Watch tutorial to encourage users to mark all birds could reduce 

underestimation, however some users may just skip images containing too many birds 

to avoid having to annotate them all.  

Of course, it should be noted that marked_all and num_markings thresholds 

have different effects on the data. The num_markings threshold prevents consensus 

clicks being included if they contain less than a certain number of raw clicks. This 

means photographs will only be removed from the dataset if all consensus clicks in 

the image are discarded, and so num_markings primarily affects the image bird count. 

Conversely, the marked_all threshold discards entire images if less than a certain 

number of people marked all birds in the photograph. This means the image bird count 

does not change, but the number of images in the sample is reduced. Determining an 

optimal num_markings and marked_all threshold that will maximise accuracy while 

minimising the number of images discarded, thus maximising sample size, could be 

an important step for using Seabird Watch data in future analysis. While 

num_markings > 2 was consistently best across all cameras used in this study, the 

optimal marked_all threshold varied by camera and was perhaps more dependent on 

the proportion of images that fell into different marked_all categories (e.g. 1-3, 4-6, 7-

9 and ≥ 10 users marked all birds). The optimal num_markings and marked_all 

threshold combination may therefore need to be established on a camera by camera 

basis and should be the initial focus of future work using the Seabird Watch dataset. 

For the purpose of this study, investigation into the effect of other factors on CS count 
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accuracy was conducted using num_markings > 2 and all marked_all values (i.e. 

marked_all > 1).  

  

Clustering algorithm 
At num_markings > 2 the average difference between GS and CS counts was still high 

for some cameras and was often associated with large standard deviations. When 

comparing the number of adults and chicks combined between GS and CS 

classification at MITTa, the lowest average difference was 17.09 (σ = 43.49) 

Kittiwakes and the lowest average percentage difference was 14.43% (σ = 34.77%). 

Such a large standard deviation shows how variable the GS and CS counts were, and 

that CS classification both under- and overestimated the number of Kittiwakes. 

Plotting the GS and CS consensus clicks onto images with a large difference between 

GS and CS classification, showed that there were frequently two CS consensus clicks 

per Kittiwake (Fig. 6). Both CS and GS classification missed some birds, but the 

greatest difference in counts appeared to be due to the clustering algorithm generating 

multiple consensus clicks per bird from CS data. While Seabird Watch users are asked 

to click on the centre of birds, it seems that this is not always followed, with some 

users consistently clicking on the head and others on the tail. If the head and tail of the 

same Kittiwake are far enough apart, then the clustering algorithm appears to group 

the head and tail marks into separate clusters, therefore generating two consensus 

clicks for one bird. This issue might be exacerbated at cameras positioned close to the 

colony and for birds in the foreground, as these birds will appear larger in the frame 

and so have a greater difference between their head and tail coordinates. Small birds 

in the background will have similar coordinates for marks on the head and tail, so are 

more likely to be aggregated into the same consensus click.   



3 Compruing citizen science and gold standru·d photo data 

Figure 6 Gold standard and citizen science classification of the 12.00 image on 

31/07/2014 at MITTa. The following colom codes were used: gold standru·d adult = gold, 

citizen science adult = yellow, gold standru·d chick = dark blue, citizen science chick = 

light blue. Citizen science marks are consensus clicks rather than raw clicks. Red circles 

show examples of where two consensus clicks were marked per bird. 

Adjusting the clustering algorithm to generate one consensus click per bird 

from CS raw clicks is of priority for the development of Seabird Watch, however it 

could prove challenging. Like Seabird Watch, validation of Penguin Watch data 

showed a decrease in overestimates and increase in underestimates as num _markings 

increased, although it did not highlight an issue with the clustering algorithm. 

Accm acy was generally much higher for Penguin Watch, and the prop01iion of 

differences that were zero or one ranged from 0.15 to 0.94 for images containing 

penguins, compared to 0.00 to 0.40 for Seabird Watch images containing Kittiwakes 

(Jones et al. 2018). 

One reason for such differing results between Seabird Watch and Penguin 

Watch data is likely the nature of the photographs. Most Penguin Watch images 

contain fewer nests per photo and so the penguins are larger in the frame and fmiher 
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apart. Penguins also typically nest further apart than Kittiwakes. As a result, 

neighbouring Kittiwakes appear to be touching in some images, especially those from 

MITTa and OSSIa. Raw clicks intended for differing individuals may therefore merge, 

leading to extra consensus clicks being generated at the boundaries between birds, as 

well as near the centre of each individual. It will be interesting to see how the algorithm 

fares when comparing GS and CS classification of Guillemots, which nest even closer 

(pers. obs.). Such little spatial separation could increase the likelihood of 

underestimation (GS > CS), if users struggle to distinguish between individuals and/or 

raw clicks intended for different individuals are grouped in the same consensus click. 

Discussing the operation of the clustering algorithm with the Zooniverse team is 

recommended to ascertain how it could be improved for use with Seabird Watch data.  

 

Camera 
The accuracy of results varied greatly depending on the site/camera being examined. 

When using the optimal num_markings threshold (> 2), the largest average difference 

between GS and CS counts was associated with MITTa (17.09, σ = 43.49 Kittiwakes), 

followed by OSSIa, HVITa, ALKEa and SKELa. However, average count difference 

does not account for the number of birds present in images, which was expected to 

influence accuracy. In fact, the greatest average percentage difference between GS and 

CS counts was associated with HVITa (21.80%, σ = 36.52%) followed by MITTa 

(14.43%, σ = 34.77%), OSSIa (10.48, σ = 30.64%), SKELa (6.06%, σ = 33.96%) and 

ALKEa (3.35%, σ = 35.56%). This broadly supports the assumption that accuracy 

decreases with colony size, as the maximum number of Kittiwakes recorded from GS 

classification at MITTa was 229, compared to 198, 88, 62 and 60 at OSSIa, SKELa, 

HVITa and ALKEa respectively.  

The high percentage difference at HVITa is unusual given the colony size is 

small, and the camera is positioned close to the colony providing high image 

resolution. Further examination of HVITa 13.00 images shows that the sun casts dark 

shadows over the site on some days, which may make it harder to spot birds. Equally, 

bright sunlight sometimes reflects off the white guano on the cliffs. This could make 

it difficult to see the Kittiwakes, which have a white body and pale grey back in adult 

plumage. It is therefore evident that both the number of Kittiwakes viewed, and other 

site-specific factors affect volunteer counts. Additionally, some cameras captured 
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Guillemots as well as Kittiwakes (MITTa, OSSIa, SKELa), and so the maximum count 

of all species, not just Kittiwakes, could influence accuracy.  

Examination of Penguin Watch data suggested that citizen scientists find it 

harder to distinguish individuals when presented with larger groups (Jones et al. 2018). 

Furthermore, users might begin to lose patience and become more careless as they 

mark an increasing number of birds in an image, which could lead to lower accuracy. 

This could also explain why the average difference between GS and CS counts is 

larger for Seabird Watch than Penguin Watch, as Seabird Watch images typically 

contain more birds than images used on Penguin Watch. Cropping images with many 

birds to focus on those in the foreground could help increase Seabird Watch accuracy, 

both in terms of number of Kittiwakes counted (adults and chicks combined) and bird 

identity (whether the Kittiwake is an adult or chick). Users may struggle to spot chicks 

and distinguish between adult and juvenile Kittiwakes at the back of images, especially 

at sites like MITTa where a large number of nests are present towards the rear. 

Segmentation of images does not, however, prevent partial or complete obscuration of  

individuals by conspecifics, which increases the probability of some birds being 

missed (Jones et al. 2018). Again, this problem may be greater for Seabird Watch than 

Penguin Watch, as Kittiwakes and Guillemots nest closer together than penguins, 

meaning individuals are more likely to be obscured by their neighbours.  

As well, the number of volunteers that marked all birds in the image might 

contribute to variable accuracy between sites. Fewer birds were expected to be missed 

when more users marked all birds in the image. Cameras where a high proportion of 

images had all birds marked by many users (i.e. 7 - 9 or ≥ 10) should have fewer 

underestimates (GS > CS) than if few users marked all birds (i.e. 1 - 3 or 4 - 6). This 

appeared to hold true when comparing adults only (num_markings > 2), as HVITa had 

the greatest proportion of images where 7 - 9 and ≥ 10 users marked all birds (99 %), 

followed by SKELa (94 %), OSSIa (86 %), ALKEa (83 %), then MITTa (75 %); and 

the proportion of underestimates (GS > CS) was lowest at HVITa (31 %), followed by 

SKELa (35 %), ALKEa (37 %), OSSIa (49 %), then MITTa (55 %). However, this 

pattern did not apply when comparing chicks only and adults and chicks combined. 

This could be because at each camera ≥ 75% of images had at least seven users mark 

all birds, and so there were not many images where few users marked all birds. Any 

expected trend would therefore be less apparent.  
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Adults and chicks separate or combined  
Using num_markings > 2, chick counts appeared to be less accurate (i.e. higher 

average difference) than adult counts at HVITa (average difference 7.82, σ = 5.87 

chicks; -1.95, σ = 6.91 adults), ALKEa (2.00, σ = 1.63 chicks; 0.12, σ = 11.64 adults) 

and SKELa (6.73, σ = 8.08 chicks; -1.63, σ = 6.11 adults), but more accurate at MITTa 

(7.15, σ = 10.50 chicks; 14.30, σ = 40.32 adults) and OSSIa (2.07, σ = 11.24 chicks; 

12.87, σ = 36.55 adults) (Table S2-3). Average percentage difference was lower for 

chick counts than adult counts at OSSIa only. Despite this, the proportion of images 

where GS and CS counts were equal (GS = CS) for chicks only was equal to or higher 

than adults only at ALKEa (8% chicks, 7% adults), HVITa (4% chicks, 3% adults), 

MITTa (5% chicks, 5% adults) and OSSIa (7% chicks, 1% adults), but was much 

lower at SKELa (0% chicks, 13% adults).  

Lower accuracy of chick estimation at HVITa, ALKEa and SKELa could be 

due to incorrect identification. Chicks may be labelled as adults or vice versa, 

especially when juvenile Kittiwakes are near fledging and look similar to adults. This 

is perhaps more likely to have occurred at SKELa, where the camera is positioned 

considerably further away from the colony compared to the other sites, and so the birds 

appear smaller and are harder to identify. However, if incorrect identification was the 

main issue, then accuracy should have been highest when adult and chick counts were 

combined (Jones et al. 2018), which was not the case for HVITa and ALKEa. 

Accuracy was highest when comparing adult counts only at these two sites. The 

proportion of overestimates (GS < CS) was greater than the proportion of 

underestimates (GS > CS) for adults at num_markings > 2, but the proportion of 

underestimates was greater than overestimates at all threshold levels when comparing 

chick counts (Table S1-3). This suggests that chicks are often missed by volunteers at 

HVITa and ALKEa (Jones et al. 2018). Chicks may be partially concealed by a parent, 

particularly during the first two weeks post-hatching when they are continuously 

brooded (Gabrielsen et al. 1992) and might be more likely to be missed at HVITa and 

ALKEa than other sites due to camera setup. For example, at ALKEa the camera is 

angled upwards making it harder to observe nest contents. Cameras are best positioned 

slightly above the colony and facing down (Lorentzen et al .2010). Including more 

images of young chicks and information on expected lay dates on the Seabird Watch 

interface could improve volunteers’ abilities to notice chicks (Jones et al. 2018).  
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Validation of Penguin Watch data also found that chicks were frequently 

missed during classification, which could in part stem from the project workflow. 

Users are not required to mark all birds in each image in order to maintain interest, 

which does not detrimentally affect the accuracy of adult counts (Jones et al. 2018). 

However, if most volunteers choose to mark adults first, perhaps because they are 

easier to identify, then they might consistently move onto the next image before 

marking any chicks. As suggested for Penguin Watch, adjusting the Seabird Watch 

tutorial to request that volunteers classify a range of seabird ‘types’ before moving 

onto the next image, could help minimise chick underestimation (Jones et al. 2018). 

Adult underestimation was also a problem at some Seabird Watch sites, 

namely MITTa and OSSIa. The proportion of underestimates (GS > CS) was greater 

than or equal to the proportion of overestimates (GS < CS) for counts of adults only 

and chicks only at all threshold levels of num_markings, suggesting adult and chick 

counts were underestimated when considered separately. Counts of adults and chicks 

combined were likewise underestimated for all threshold levels at MITTa, but were 

overestimated with num_markings > 2 at OSSIa. This suggests that all birds, 

regardless of ‘type’ were underestimated by volunteers at MITTa, which recorded the 

highest maximum number of birds in a single image (209). Users could become 

fatigued or start to lose interest after marking a large number of birds in one image, 

thus increasing the likelihood of missing individuals, even if they thought they had 

marked all. Equally, some of the marks themselves could obscure other birds, 

especially in colonies with many individuals breeding close together. As previously 

suggested, asking users to only mark birds in the foreground or cropping/sub-sampling 

images with many birds could provide one option for minimising underestimation. 

Identifying these potential sources of error and developing solutions to overcome 

them, is an essential process in all citizen science projects to ensure integrity in non-

expert derived data.  

 
 

CONCLUSION 
Comparison of the Seabird Watch dataset with gold standard classification has 

highlighted sources of inaccuracy that will need to be resolved going forwards. The 

lowest average percentage differences between GS and CS Kittiwake counts (achieved 
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using num_markings > 2) ranged from 3.35% to 21.80% across the five sites 

examined, but could exceed 70% when comparing counts of chicks only. Count 

accuracy is lower for Seabird Watch than its sister project, Penguin Watch, most likely 

due to the nature of the images and study species. Understanding how these differences 

could be affecting the aggregation of raw volunteer marks into consensus clicks may 

be important for improving count accuracy, without needing to change the Seabird 

Watch interface. Nonetheless, changes to the Seabird Watch tutorial and field guide 

might still be necessary to resolve other problems, like chick underestimation. 

Comparing citizen science and gold standard datasets from time-lapse cameras is 

challenging, given the range of factors that can affect results. This study alone has 

highlighted several variables affecting count accuracy, including: camera setup and 

study site, species, ‘type’ of animal (adult or chick), number of animals per image, 

proportion of users marking all animals in an image and aggregation threshold. It is 

therefore essential that validation of citizen science datasets occurs on a case-by-case, 

or for this study, camera-by-camera basis.  
 

SUPPLEMENTARY MATERIAL 
Table S1 Comparison between gold standard (GS) and citizen science (CS) counts of adult 

and chicks (combined) for five cameras at different num_markings and marked_all 

thresholds. num_markings threshold of ‘> 5’ means at least six people must have clicked an 

area for it be counted as a Kittiwake, while marked_all threshold of ‘ > 5’ means at least six 

people marked all birds in the image. ‘Da’ refers to ‘average difference’ and is the mean GS 

minus CS count, and σa is the standard deviation. ‘Dp’ refers to ‘average percentage difference’ 

and is the mean GS minus CS count divided by the GS count and multiplied by 100, and σp is 

the standard deviation. ‘PD 0/1’ is the ‘Proportion of differences 0 or 1’; the proportion of 

images for which the CS count was equal to the GS or different by one individual. The 

proportion of gold standard (GS) classifications that are greater than (GS > CS), equal to (GS 

= CS) and less than (GS < CS) citizen science (CS) classifications for the threshold value with 

the lowest average difference is also given. ‘na’ is the number of images in the sample for 

average difference and proportion calculations and ‘np’ is the number of images used for 

percentage difference calculations. The results presented are for images where Kittiwakes 

(adults and/or chicks) were present according to gold standard and/or citizen science 

classifications. 
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Threshold Da σa PD 0/1 GS < 
CS 

GS = 
CS 

GS > 
CS 

na Dp σp np 

HVITa           
num_markings           
>2 5.47 10.05 0.16 0.29 0.03 0.67 58 21.80 36.52 58 
>3 16.42 12.65 0.12 0.00 0.04 0.96 57 47.13 28.86 57 
>4 23.86 14.63 0.05 0.00 0.02 0.98 57 65.25 24.85 57 
>5 29.00 15.39 0.04 0.00 0.00 1.00 56 77.62 19.23 56 
>6 32.12 15.48 0.04 0.00 0.00 1.00 52 85.07 14.01 52 
>7 32.36 16.00 0.05 0.00 0.00 1.00 42 90.06 9.77 42 
>8 30.90 17.21 0.07 0.00 0.00 1.00 29 92.96 7.07 29 
>9 29.71 19.38 0.10 0.00 0.00 1.00 21 95.25 4.85 21 
>10 24.50 21.65 0.14 0.00 0.00 1.00 14 97.30 3.04 14 
marked_all           
>1 5.47 10.05 0.16 0.29 0.03 0.67 58 21.80 36.52 58 
>2 5.47 10.05 0.16 0.29 0.03 0.67 58 21.80 36.52 58 
>3 5.47 10.05 0.16 0.29 0.03 0.67 58 21.80 36.52 58 
>4 5.47 10.05 0.16 0.29 0.03 0.67 58 21.80 36.52 58 
>5 5.07 9.67 0.16 0.30 0.04 0.67 57 21.20 36.55 57 
>6 5.07 9.67 0.16 0.30 0.04 0.67 57 21.20 36.55 57 
>7 4.53 9.24 0.16 0.31 0.04 0.65 55 19.42 35.73 55 
>8 3.94 8.46 0.16 0.31 0.02 0.67 51 18.79 35.84 51 
>9 2.91 7.50 0.15 0.35 0.02 0.63 46 17.84 37.01 46 
>10 -0.17 5.50 0.24 0.48 0.03 0.48 29 17.49 45.22 29 
OSSIa           
num_markings           
>2 14.48 43.67 0.03 0.51 0.00 0.49 71 10.48 30.64 71 
>3 51.82 44.99 0.06 0.10 0.00 0.90 71 38.75 30.25 71 
>4 74.39 45.61 0.01 0.00 0.01 0.99 70 55.77 29.07 70 
>5 86.79 43.31 0.00 0.00 0.00 1.00 62 65.16 25.58 62 
>6 99.91 40.51 0.00 0.00 0.00 1.00 56 74.88 22.00 56 
>7 110.55 40.61 0.00 0.00 0.00 1.00 49 82.88 18.49 49 
>8 118.32 37.55 0.00 0.00 0.00 1.00 38 88.84 14.73 38 
>9 120.04 38.56 0.00 0.00 0.00 1.00 27 92.38 13.25 27 
>10 120.92 36.88 0.00 0.00 0.00 1.00 13 93.28 10.61 13 
marked_all           
>1 14.48 43.67 0.03 0.51 0.00 0.49 71 10.48 30.64 71 
>2 14.48 43.67 0.03 0.51 0.00 0.49 71 10.48 30.64 71 
>3 14.48 43.67 0.03 0.51 0.00 0.49 71 10.48 30.64 71 
>4 10.94 40.78 0.03 0.53 0.00 0.47 68 7.87 28.31 68 
>5 6.48 38.61 0.03 0.57 0.00 0.43 63 4.22 25.97 63 
>6 2.97 33.53 0.03 0.59 0.00 0.41 61 2.08 23.46 61 
>7 -4.00 25.06 0.04 0.67 0.00 0.33 54 -2.14 20.16 54 
>8 -9.05 21.12 0.05 0.73 0.00 0.27 44 -5.91 17.32 44 
>9 -15.04 21.64 0.00 0.80 0.00 0.20 25 -10.17 16.46 25 
>10 -22.38 20.24 0.00 0.92 0.00 0.08 13 -17.01 14.85 13 
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ALKEa           
num_markings           
>2 0.76 11.61 0.24 0.56 0.07 0.37 41 3.35 35.56 41 
>3 8.10 9.17 0.10 0.10 0.05 0.85 39 22.55 28.68 39 
>4 13.59 8.88 0.03 0.03 0.00 0.97 39 37.30 26.23 39 
>5 19.42 8.75 0.00 0.00 0.00 1.00 38 52.86 22.93 38 
>6 25.56 9.64 0.00 0.00 0.00 1.00 36 66.06 19.79 36 
>7 30.48 10.84 0.00 0.00 0.00 1.00 33 77.48 16.34 33 
>8 33.76 11.11 0.00 0.00 0.00 1.00 29 86.22 11.54 29 
>9 36.50 11.94 0.00 0.00 0.00 1.00 20 92.48 7.67 20 
>10 38.60 14.82 0.00 0.00 0.00 1.00 10 95.37 4.38 10 
marked_all           
>1 0.76 11.61 0.24 0.56 0.07 0.37 41 3.35 35.56 41 
>2 0.76 11.61 0.24 0.56 0.07 0.37 41 3.35 35.56 41 
>3 -0.18 10.09 0.25 0.58 0.08 0.35 40 1.22 33.27 40 
>4 -0.28 10.20 0.26 0.59 0.08 0.33 39 0.92 33.65 39 
>5 -0.76 9.88 0.26 0.61 0.08 0.32 38 -0.24 33.31 38 
>6 -1.11 9.92 0.25 0.61 0.08 0.31 36 -0.99 33.87 36 
>7 -1.38 10.16 0.24 0.69 0.07 0.24 29 -2.51 34.52 29 
>8 -0.38 10.70 0.25 0.63 0.08 0.29 24 0.85 36.00 24 
>9 0.60 13.36 0.20 0.60 0.07 0.33 15 3.81 45.50 15 
>10 5.00 15.42 0.25 0.63 0.00 0.38 8 18.19 51.47 8 
MITTa           
num_markings           
>2 17.09 43.49 0.07 0.39 0.04 0.57 192 14.43 34.77 192 
>3 45.01 43.46 0.07 0.06 0.03 0.91 190 39.92 32.73 190 
>4 61.23 45.86 0.04 0.01 0.03 0.97 174 53.53 29.38 174 
>5 75.81 48.12 0.02 0.01 0.01 0.98 161 64.84 27.06 161 
>6 87.20 48.55 0.02 0.01 0.01 0.99 146 74.90 23.31 146 
>7 95.10 46.22 0.02 0.01 0.00 0.99 118 81.57 19.05 118 
>8 101.60 46.46 0.02 0.00 0.00 1.00 95 87.20 15.33 95 
>9 108.67 51.56 0.01 0.00 0.00 1.00 67 91.34 11.55 67 
>10 118.50 53.24 0.03 0.00 0.00 1.00 36 94.10 7.45% 36 
marked_all           
>1 17.09 43.49 0.07 0.39 0.04 0.57 192 14.43 34.77 192 
>2 15.01 39.93 0.07 0.39 0.04 0.57 189 13.16 33.53 189 
>3 12.86 37.95 0.08 0.40 0.04 0.55 184 11.63 32.45 184 
>4 10.42 36.32 0.08 0.42 0.05 0.53 176 9.74 31.57 176 
>5 5.01 29.57 0.09 0.46 0.05 0.49 161 5.91 28.98 161 
>6 2.94 29.48 0.09 0.49 0.05 0.46 145 3.27 28.27 145 
>7 -1.13 27.50 0.10 0.54 0.05 0.41 124 0.01 27.85 124 
>8 -5.70 22.62 0.11 0.62 0.04 0.34 91 -4.45 26.06 91 
>9 -11.71 18.70 0.05 0.76 0.02 0.22 55 -9.42 28.33 55 
>10 -17.81 19.01 0.06 0.87 0.03 0.10 31 -15.45 32.97 31 
SKELa           
num_markings           
>2 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>3 5.61 8.96 0.33 0.12 0.16 0.73 51 24.68 28.93 51 
>4 10.02 12.40 0.16 0.02 0.08 0.90 50 34.39 28.87 50 
>5 14.27 15.42 0.12 0.02 0.06 0.92 49 45.22 30.26 49 
>6 18.91 17.90 0.09 0.00 0.06 0.94 47 56.30 30.10 47 
>7 24.38 20.55 0.08 0.00 0.05 0.95 40 63.38 29.44 40 
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Table S2 Comparison between gold standard (GS) and citizen science (CS) counts of adults 

(only) for five cameras at different num_markings and marked_all thresholds. num_markings 

threshold of ‘> 5’ means at least six people must have clicked an area for it be counted as a 

Kittiwake, while marked_all threshold of ‘> 5’ means at least six people marked all birds in 

the image. ‘Da’ refers to ‘average difference’ and is the mean GS minus CS count, and σa is 

the standard deviation. ‘Dp’ refers to ‘average percentage difference’ and is the mean GS 

minus CS count divided by the GS count and multiplied by 100, and σp is the standard 

deviation. ‘PD 0/1’ is the ‘Proportion of differences 0 or 1’; the proportion of images for which 

the CS count was equal to the GS or different by one individual. The proportion of gold 

standard (GS) classifications that are greater than (GS > CS), equal to (GS = CS) and less than 

(GS < CS) citizen science (CS) classifications for the threshold value with the lowest average 

difference is also given. ‘na’ is the number of images in the sample for average difference and 

proportion calculations and ‘np’ is the number of images used for percentage difference 

calculations.  The results presented are for images where adults were present according to gold 

standard and/or citizen science classifications. 

 

>8 30.43 22.90 0.06 0.00 0.00 1.00 35 76.51 21.84 35 
>9 40.09 23.41 0.04 0.00 0.00 1.00 23 85.03 17.35 23 
>10 45.06 25.61 0.06 0.00 0.00 1.00 18 91.08 12.94 18 
marked_all           
>1 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>2 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>3 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>4 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>5 -0.21 6.01 0.40 0.44 0.15 0.40 52 6.06 33.96 52 
>6 -0.92 4.93 0.42 0.46 0.16 0.38 50 4.91 34.06 50 
>7 -1.02 4.87 0.44 0.46 0.17 0.38 48 5.02 34.74 48 
>8 -1.00 4.79 0.44 0.46 0.15 0.39 41 6.44 37.21 41 
>9 -1.63 4.55 0.43 0.51 0.11 0.37 35 6.08 40.04 35 
>10 -2.19 5.08 0.38 0.52 0.14 0.33 21 12.15 44.01 21 
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Threshold Da σa PD 0/1 GS < 
CS 

GS = 
CS 

GS > 
CS 

na Dp σp np 

HVITa           
num_markings           
>2 -1.95 6.91 0.22 0.66 0.03 0.31 58 25.38 86.06 55 
>3 5.12 8.54 0.25 0.19 0.11 0.70 57 17.13 60.67 54 
>4 9.84 9.74 0.21 0.07 0.11 0.82 57 46.14 38.46 54 
>5 12.96 10.49 0.20 0.00 0.05 0.95 56 63.39 28.63 54 
>6 14.52 10.44 0.15 0.00 0.04 0.96 52 71.63 24.41 50 
>7 15.36 10.70 0.12 0.00 0.05 0.95 42 79.52 18.85 40 
>8 14.76 9.97 0.14 0.00 0.07 0.93 29 86.49 11.24 27 
>9 15.90 10.98 0.19 0.00 0.10 0.90 21 92.18 07.08 19 
>10 14.79 13.50 0.29 0.00 0.14 0.86 14 95.66 04.51 12 
marked_all           
>1 

-1.95 6.91 0.22 0.66 0.03 0.31 58 
-
25.38 86.06 55 

>2 
-1.95 6.91 0.22 0.66 0.03 0.31 58 

-
25.38 86.06 55 

>3 
-1.95 6.91 0.22 0.66 0.03 0.31 58 

-
25.38 86.06 55 

>4 
-1.95 6.91 0.22 0.66 0.03 0.31 58 

-
25.38 86.06 55 

>5 
-2.18 6.75 0.23 0.67 0.04 0.30 57 

-
26.47 86.48 54 

>6 
-2.18 6.75 0.23 0.67 0.04 0.30 57 

-
26.47 86.48 54 

>7 
-2.53 6.55 0.24 0.69 0.04 0.27 55 

-
29.70 86.45 52 

>8 
-2.78 6.39 0.24 0.71 0.04 0.25 51 

-
30.20 87.18 49 

>9 
-3.43 6.03 0.24 0.74 0.04 0.22 46 

-
33.32 90.31 44 

>10 
-4.83 5.71 0.28 0.79 0.07 0.14 29 

-
35.98 103.60 27 

OSSIa           
num_markings           
>2 12.87 36.55 0.07 0.49 0.01 0.49 71 10.29 29.81 71 
>3 45.34 38.39 0.04 0.07 0.00 0.93 71 38.25 29.60 71 
>4 64.84 37.96 0.01 0.01 0.00 0.99 70 55.26 28.62 70 
>5 75.87 35.77 0.00 0.00 0.00 1.00 62 64.68 25.53 62 
>6 87.55 32.85 0.00 0.00 0.00 1.00 56 74.46 22.02 56 
>7 96.96 33.00 0.00 0.00 0.00 1.00 49 82.40 18.66 49 
>8 105.82 31.02 0.00 0.00 0.00 1.00 38 88.40 15.21 38 
>9 107.81 32.16 0.00 0.00 0.00 1.00 27 92.03 13.92 27 
>10 108.08 29.87 0.00 0.00 0.00 1.00 13 92.97 11.02 13 
marked_all           
>1 12.87 36.55 0.07 0.49 0.01 0.49 71 10.29 29.81 71 
>2 12.87 36.55 0.07 0.49 0.01 0.49 71 10.29 29.81 71 
>3 12.87 36.55 0.07 0.49 0.01 0.49 71 10.29 29.81 71 
>4 9.37 32.75 0.07 0.51 0.01 0.47 68 7.69 27.38 68 
>5 5.19 29.90 0.08 0.56 0.02 0.43 63 4.10 25.02 63 
>6 2.74 26.65 0.08 0.57 0.02 0.41 61 2.13 22.84 61 
>7 -2.59 20.29 0.07 0.65 0.02 0.33 54 -1.71 19.95 54 
>8 -6.93 16.76 0.07 0.73 0.00 0.27 44 -5.43 17.53 44 
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>9 -11.96 16.71 0.04 0.76 0.00 0.24 25 -9.80 17.73 25 
>10 

-16.92 16.94 0.00 0.92 0.00 0.08 13 
-
15.89 19.22 13 

ALKEa           
num_markings           
>2 0.12 11.64 0.22 0.56 0.07 0.37 41 1.74 35.78 41 
>3 7.28 9.09 0.13 0.13 0.08 0.79 39 21.12 28.82 39 
>4 12.69 8.84 0.05 0.03 0.03 0.95 39 36.06 26.55 39 
>5 18.47 8.92 0.00 0.00 0.00 1.00 38 51.77 23.49 38 
>6 24.50 9.75 0.00 0.00 0.00 1.00 36 65.19 20.29 36 
>7 29.30 10.80 0.00 0.00 0.00 1.00 33 76.86 16.80 33 
>8 32.34 10.69 0.00 0.00 0.00 1.00 29 85.75 11.70 29 
>9 34.80 11.02 0.00 0.00 0.00 1.00 20 92.26 07.73 20 
>10 37.40 14.67 0.00 0.00 0.00 1.00 10 95.22 04.41 10 
marked_all           
>1 0.12 11.64 0.22 0.56 0.07 0.37 41 1.74 35.78 41 
>2 0.12 11.64 0.22 0.56 0.07 0.37 41 1.74 35.78 41 
>3 -0.83 10.06 0.23 0.58 0.08 0.35 40 -0.43 33.40 40 
>4 -0.95 10.16 0.23 0.59 0.08 0.33 39 -0.77 33.77 39 
>5 -1.37 9.95 0.24 0.61 0.08 0.32 38 -1.86 33.52 38 
>6 -1.61 10.13 0.22 0.61 0.08 0.31 36 -2.43 34.28 36 
>7 -2.00 10.39 0.21 0.69 0.07 0.24 29 -4.30 34.92 29 
>8 -1.04 10.98 0.21 0.63 0.08 0.29 24 -1.09 36.60 24 
>9 0.00 13.63 0.13 0.60 0.07 0.33 15 1.84 46.20 15 
>10 3.75 16.32 0.13 0.63 0.00 0.38 8 14.63 53.66 8 
MITTa           
num_markings           
>2 14.30 40.32 0.07 0.40 0.05 0.55 192 13.23 35.06 192 
>3 40.47 40.78 0.07 0.09 0.03 0.88 190 38.6 33.06 190 
>4 55.39 41.88 0.04 0.01 0.03 0.97 174 52.40 29.74 174 
>5 69.47 44.58 0.02 0.01 0.01 0.98 161 63.82 27.43 161 
>6 80.35 45.42 0.02 0.01 0.01 0.99 146 74.04 23.77 146 
>7 88.07 42.99 0.02 0.01 0.00 0.99 118 80.83 19.58 118 
>8 94.48 42.95 0.02 0.00 0.00 1.00 95 86.62 15.73 95 
>9 100.51 47.05 0.01 0.00 0.00 1.00 67 90.91 11.80 67 
>10 108.61 46.69 0.03 0.00 0.00 1.00 36 93.82 7.48 36 
marked_all           
>1 14.30 40.32 0.07 0.40 0.05 0.55 192 13.23 35.06 192 
>2 12.48 37.73 0.07 0.41 0.05 0.54 189 11.95 33.80 189 
>3 10.43 35.66 0.07 0.42 0.05 0.53 184 10.40 32.68 184 
>4 8.24 34.10 0.07 0.44 0.05 0.51 176 8.49 31.75 176 
>5 3.12 27.41 0.08 0.48 0.06 0.47 161 4.62 29.12 161 
>6 0.79 26.98 0.08 0.52 0.06 0.43 145 1.76 28.35 145 
>7 -2.79 25.50 0.09 0.56 0.06 0.38 124 -1.36 28.06 124 
>8 -6.48 21.04 0.10 0.64 0.05 0.31 91 -5.57 26.37 91 
>9 

-12.02 17.26 0.05 0.80 0.04 0.16 55 
-
10.66 28.52 55 

>10 
-16.90 16.21 0.06 0.87 0.03 0.10 31 

-
16.12 32.99 31 

SKELa           
num_markings           
>2 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>3 3.78 7.73 0.35 0.18 0.18 0.65 51 22.36 29.82 51 
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Table S3 Comparison between gold standard (GS) and citizen science (CS) counts of chicks 

(only) for five cameras at different num_markings and marked_all thresholds. num_markings 

threshold of ‘> 5’ means at least six people must have clicked an area for it be counted as a 

Kittiwake, while marked_all threshold of ‘> 5’ means at least six people marked all birds in 

the image. ‘Da’ refers to ‘average difference’ and is the mean GS minus CS count, and σa is 

the standard deviation. ‘Dp’ refers to ‘average percentage difference’ and is the mean GS 

minus CS count divided by the GS count and multiplied by 100, and σp is the standard 

deviation. ‘PD 0/1’ is the ‘Proportion of differences 0 or 1’; the proportion of images for which 

the CS count was equal to the GS or different by one individual. The proportion of gold 

standard (GS) classifications that are greater than (GS > CS), equal to (GS = CS) and less than 

(GS < CS) citizen science (CS) classifications for the threshold value with the lowest average 

difference is also given. ‘na’ is the number of images in the sample for average difference and 

proportion calculations and ‘np’ is the number of images used for percentage difference 

calculations.  The results presented are for images where chicks were present according to 

gold standard and/or citizen science classifications. 

>4 8.02 10.15 0.16 0.02 0.08 0.90 50 32.38 29.24 50 
>5 12.12 12.89 0.12 0.02 0.06 0.92 49 43.46 30.69 49 
>6 16.57 14.75 0.09 0.00 0.06 0.94 47 54.82 30.37 47 
>7 21.60 16.78 0.08 0.00 0.05 0.95 40 62.17 29.43 40 
>8 27.26 18.39 0.06 0.00 0.00 1.00 35 75.75 21.89 35 
>9 37.30 19.77 0.04 0.00 0.00 1.00 23 84.59 17.35 23 
>10 41.50 20.84 0.06 0.00 0.00 1.00 18 90.96 12.88 18 
marked_all           
>1 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>2 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>3 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>4 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>5 -1.63 6.11 0.38 0.52 0.13 0.35 52 3.76 34.79 52 
>6 -2.10 5.52 0.40 0.54 0.14 0.32 50 2.91 34.97 50 
>7 -1.79 5.30 0.42 0.52 0.15 0.33 48 3.67 35.45 48 
>8 -1.93 5.26 0.44 0.54 0.12 0.34 41 4.78 38.05 41 
>9 -2.71 4.97 0.43 0.60 0.09 0.31 35 4.13 40.93 35 
>10 -3.10 5.40 0.38 0.62 0.10 0.29 21 10.41 45.16 21 
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Threshold Da σa PD 0/1 GS < 
CS 

GS = 
CS 

GS > 
CS 

na Dp σp np 

HVITa           
num_markings           
>2 7.82 5.87 0.11 0.02 0.04 0.95 55 50.80 34.24 55 
>3 11.93 6.66 0.09 0.00 0.00 1.00 54 67.97 26.20 54 
>4 14.80 7.60 0.06 0.00 0.00 1.00 54 80.41 20.31 54 
>5 16.94 8.22 0.04 0.00 0.00 1.00 53 87.68 16.10 53 
>6 18.67 8.36 0.04 0.00 0.00 1.00 49 93.99 9.37 49 
>7 18.31 9.19 0.05 0.00 0.00 1.00 39 96.90 6.00 39 
>8 18.00 10.22 0.08 0.00 0.00 1.00 26 97.87 4.24 26 
>9 16.11 11.54 0.11 0.00 0.00 1.00 18 98.68 3.07 18 
>10 12.36 10.65 0.18 0.00 0.00 1.00 11 98.86 2.65 11 
marked_all           
>1 7.82 5.87 0.11 0.02 0.04 0.95 55 50.80 34.24 55 
>2 7.82 5.87 0.11 0.02 0.04 0.95 55 50.80 34.24 55 
>3 7.82 5.87 0.11 0.02 0.04 0.95 55 50.80 34.24 55 
>4 7.82 5.87 0.11 0.02 0.04 0.95 55 50.80 34.24 55 
>5 7.65 5.79 0.11 0.02 0.04 0.94 54 49.89 33.89 54 
>6 7.65 5.79 0.11 0.02 0.04 0.94 54 49.89 33.89 54 
>7 7.46 5.75 0.12 0.02 0.04 0.94 52 48.80 33.79 52 
>8 7.15 5.44 0.10 0.02 0.04 0.94 48 46.39 33.28 48 
>9 6.79 5.37 0.12 0.02 0.05 0.93 43 45.43 34.01 43 
>10 5.19 4.79 0.19 0.04 0.08 0.88 26 44.16 36.09 26 
OSSIa           
num_markings           
>2 2.07 11.24 0.13 0.44 0.07 0.49 55 -0.26 70.05 55 
>3 8.36 11.86 0.20 0.20 0.09 0.71 55 37.07 52.45 55 
>4 12.15 12.73 0.16 0.05 0.09 0.85 55 59.91 39.66 55 
>5 14.10 12.76 0.15 0.02 0.02 0.96 48 70.98 29.84 48 
>6 15.73 13.03 0.09 0.00 0.00 1.00 44 81.51 24.20 44 
>7 16.65 12.77 0.08 0.00 0.00 1.00 40 89.83 17.35 40 
>8 15.83 10.82 0.07 0.00 0.00 1.00 30 96.02 10.18 30 
>9 16.50 11.01 0.05 0.00 0.00 1.00 20 97.32 8.16 20 
>10 18.56 11.96 0.00 0.00 0.00 1.00 9 97.49 7.53 9 
marked_all           
>1 2.07 11.24 0.13 0.44 0.07 0.49 55 -0.26 70.05 55 
>2 2.07 11.24 0.13 0.44 0.07 0.49 55 -0.26 70.05 55 
>3 2.02 11.44 0.11 0.45 0.08 0.47 53 -4.04 68.51 53 
>4 1.65 11.82 0.12 0.49 0.08 0.43 49 -10.53 66.97 49 
>5 0.30 9.99 0.13 0.51 0.09 0.40 47 -14.54 65.39 47 
>6 -1.85 8.00 0.15 0.59 0.10 0.32 41 -25.69 62.19 41 
>7 -2.82 7.34 0.15 0.64 0.09 0.27 33 -34.72 61.03 33 
>8 -3.85 7.98 0.20 0.65 0.15 0.20 20 -28.00 44.42 20 
>9 -7.89 6.60 0.22 0.89 0.11 0.00 9 -54.70 33.84 9 
>10 2.07 11.24 0.13 0.44 0.07 0.49 55 -0.26 70.05 55 
ALKEa           
num_markings           
>2 2.00 1.63 0.38 0.08 0.08 0.85 13 70.77 42.71 13 
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>3 2.46 1.33 0.31 0.00 0.00 1.00 13 84.10 30.49 13 
>4 2.69 1.38 0.23 0.00 0.00 1.00 13 90.00 25.17 13 
>5 3.00 1.71 0.17 0.00 0.00 1.00 12 94.17 13.79 12 
>6 3.17 1.95 0.17 0.00 0.00 1.00 12 96.67 7.78 12 
>7 3.25 2.18 0.17 0.00 0.00 1.00 12 97.50 6.22 12 
>8 3.42 2.47 0.17 0.00 0.00 1.00 12 100.00 0.00 12 
>9 3.40 2.63 0.20 0.00 0.00 1.00 10 100.00 0.00 10 
>10 3.00 1.63 0.25 0.00 0.00 1.00 4 100.00 0.00 4 
marked_all           
>1 2.00 1.63 0.38 0.08 0.08 0.85 13 70.77 42.71 13 
>2 2.00 1.63 0.38 0.08 0.08 0.85 13 70.77 42.71 13 
>3 2.00 1.63 0.38 0.08 0.08 0.85 13 70.77 42.71 13 
>4 2.00 1.63 0.38 0.08 0.08 0.85 13 70.77 42.71 13 
>5 1.92 1.68 0.42 0.08 0.08 0.83 12 68.33 43.66 12 
>6 1.64 1.43 0.45 0.09 0.09 0.82 11 65.45 44.58 11 
>7 1.64 1.43 0.45 0.09 0.09 0.82 11 65.45 44.58 11 
>8 1.78 1.56 0.33 0.11 0.11 0.78 9 57.78 46.04 9 
>9 1.80 1.92 0.40 0.20 0.00 0.80 5 44.00 42.78 5 
>10 2.50 1.29 0.25 0.00 0.00 1.00 4 60.00 27.08 4 
MITTa           
num_markings           
>2 7.15 10.50 0.16 0.12 0.05 0.83 75 46.92 44.89 74 
>3 11.99 11.25 0.14 0.03 0.01 0.96 72 70.17 33.13 72 
>4 15.16 12.68 0.10 0.01 0.00 0.99 67 80.60 24.48 67 
>5 16.74 13.44 0.10 0.02 0.00 0.98 61 88.11 19.90 61 
>6 18.18 13.81 0.11 0.00 0.00 1.00 55 92.90 14.79 55 
>7 18.44 13.81 0.09 0.00 0.00 1.00 45 95.89 9.94 45 
>8 19.88 14.80 0.09 0.00 0.00 1.00 34 97.75 5.93 34 
>9 21.04 15.75 0.08 0.00 0.00 1.00 26 99.14 2.75 26 
>10 23.73 18.06 0.00 0.00 0.00 1.00 15 100.00 0.00 15 
marked_all           
>1 7.15 10.50 0.16 0.12 0.05 0.83 75 46.92 44.89 74 
>2 6.64 9.11 0.17 0.13 0.06 0.82 72 44.67 44.45 71 
>3 6.49 9.25 0.17 0.13 0.06 0.81 69 43.87 45.02 68 
>4 5.91 9.14 0.18 0.14 0.06 0.80 65 43.62 46.24 64 
>5 5.24 8.88 0.17 0.16 0.07 0.78 58 38.80 46.35 57 
>6 5.87 8.80 0.17 0.13 0.08 0.79 53 40.85 44.11 52 
>7 4.68 8.73 0.20 0.16 0.09 0.75 44 35.62 46.12 43 
>8 2.37 8.25 0.27 0.23 0.13 0.63 30 25.65 48.10 29 
>9 0.89 8.43 0.26 0.21 0.16 0.63 19 19.06 45.58 19 
>10 -2.80 8.82 0.40 0.30 0.30 0.40 10 1.65 49.46 10 
SKELa           
num_markings           
>2 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>3 11.63 8.80 0.25 0.13 0.00 0.88 8 89.60 14.17 7 
>4 12.50 9.59 0.25 0.13 0.00 0.88 8 93.55 7.67 7 
>5 15.00 9.11 0.14 0.00 0.00 1.00 7 95.82 5.33 7 
>6 15.71 9.52 0.14 0.00 0.00 1.00 7 99.32 1.80 7 
>7 15.86 9.60 0.14 0.00 0.00 1.00 7 100.00 0.00 7 
>8 15.86 9.60 0.14 0.00 0.00 1.00 7 100.00 0.00 7 
>9 16.00 10.52 0.25 0.00 0.00 1.00 4 100.00 0.00 4 
>10 16.00 10.52 0.25 0.00 0.00 1.00 4 100.00 0.00 4 
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Table S4 Average number of Seabird Watch users and proportion of images where 1-3, 4-6, 
7-9 and ≥10 users marked all birds, in images where at least one Kittiwake was seen in gold 
standard (GS) classifications. ‘n’ is the number of images in the sample for each camera.  

Camera Average  σ 1-3 4-6 7-9 ≥10 n 

HVITa 10.06897 1.745793 0 0.017241 0.275862 0.706897 58 

OSSIa 8.760563 2.154496 0 0.140845 0.507042 0.352113 71 

ALKEa 8.243902 2.332172 0.073171 0.097561 0.512195 0.317073 41 

MITTa 8.078125 2.427836 0.041667 0.208333 0.46875 0.28125 192 

SKELa 10 2.249183 0.019231 0.038462 0.288462 0.653846 52 

marked_all           
>1 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>2 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>3 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>4 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>5 6.73 8.08 0.36 0.36 0.00 0.64 11 79.50 20.68 7 
>6 5.90 8.01 0.40 0.40 0.00 0.60 10 77.12 21.58 6 
>7 4.63 8.55 0.50 0.50 0.00 0.50 8 88.51 13.65 4 
>8 5.43 8.90 0.43 0.43 0.00 0.57 7 88.51 13.65 4 
>9 5.43 8.90 0.43 0.43 0.00 0.57 7 88.51 13.65 4 
>10 3.17 7.22 0.50 0.50 0.00 0.50 6 93.65 11.00 3 
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DISCUSSION 
 

The premise behind this thesis was to assess the use of time-lapse imagery for 

monitoring Black-legged Kittiwake productivity and phenology and to provide a 

provisional insight into some of the potential factors contributing to population 

change. Kittiwakes are listed as Vulnerable on the IUCN Red List and so effective 

monitoring is increasingly important to understand the causes of decline (BirdLife 

International 2019). Time-lapse cameras could allow cost-effective monitoring over 

much larger spatial and temporal scales than current fieldwork enables, provided that 

methods are in place to process and analyse the large volume of images collected. In 

chapters one and two, I investigated the use of Kittiwake nest monitoring data from 

expert analysis of time-lapse images compared to field observations, using a case study 

on Skomer Island, Wales. Chapter three then went on to explore the reliability of 

citizen science derived data compared to expert analysis of time-lapse images.  

The case study on Skomer Island showed that time-lapse imagery has the 

potential to provide reliable measurements of Kittiwake nest success and phenology, 

but achieving results ‘as good as’ current field monitoring methods is very much 

dependent on camera type and positioning (Lorentzen et al. 2010, Merkel et al. 2016). 

The distance between camera and colony at The Wick, Skomer, is in the order of 90 

m, which is much higher than previous studies capturing photographs of Kittiwakes 

(Collins et al. 2014, De Pascalis et al. 2018). Despite having a 2x magnification lens, 

which increased image resolution compared to the ‘standard’ camera, the distance was 

still too large to reliably record nest contents in each of over 100 nests. In particular, 

annotation of images was less likely to identify both chicks in two chick broods, and 

chick hatch dates were significantly later than for field observations, as small chicks 

being brooded by parents were hard to spot in images. While the results of this 

investigation are specific to Skomer Island, the general principles can be applied more 

broadly and highlight the importance of considering site suitability and setup when 

using any form of digital camera for monitoring wildlife populations (Edney & Wood 

2020). This concept was further reiterated in chapter three when comparing Kittiwake 

counts between images annotated by Seabird Watch volunteers and gold standard 

analysers.  
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The agreement between gold standard and citizen science counts varied 

according to a number of factors, including aggregation threshold, whether adults and 

chick counts were considered together or separately, and site/camera, which was 

linked to the number of birds per image and species present. Camera setup followed 

the same overall protocol at each site, but the nature of each location meant some 

cameras were a greater distance from the colony of interest than desired, leading to a 

large number of nests being present in each image. Images with a high number of birds 

in both the foreground and background can result in some users only counting birds in 

the foreground, while others count everything in the photograph, leading to a wide 

range of counts (Swanson et al. 2016). Objects in the background of images are also 

more likely to be missed completely or misidentified, such as juvenile Kittiwakes 

being mistaken for adults. Equally, some cameras were positioned slightly below the 

colony of interest, which made it harder to accurately determine nest contents, 

compared to if the camera had been positioned above and pointing downwards 

(Lorentzen et al. 2010).  

Aggregating the classifications of multiple users per image can help overcome 

some of the challenges posed by variable image quality. Having multiple users classify 

images is typically more reliable than a single person, even when that single person is 

an expert (Swanson et al. 2016, Jones et al. 2018). While volunteer aggregations are 

not yet more reliable than gold standard classifications for Seabird Watch, it is true 

that accuracy was greater when at least three volunteers must have marked an area for 

it to be counted as a bird. Further investigation of the clustering algorithm used to 

aggregate volunteer classifications should improve reliability of Seabird Watch data, 

such that it becomes of equal or greater accuracy than classification by a single expert. 

When this is achieved, we may expect accuracy to increase asymptotically with the 

number of classifiers (Swanson et al. 2016). Optimising the trade-off between effort 

(number of classifiers) and accuracy will then be critical to ensure a steady stream of 

image processing without compromising data quality and thus ensuring time-lapse 

imagery remains a credible monitoring tool (Swanson et al. 2016).  

In the future, with the expansion of Seabird Watch to other species, further 

considerations will need to be made when processing images. For images with mixed 

species groups, accuracy is likely to vary by species and may relate to rarity (Swanson 

et al. 2016). Another Zooniverse project, Snapshot Serengeti, found that visually 
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striking species which are clearly identifiable, like giraffes, were almost always 

correctly identified by volunteers. Conversely, rare species, like aardwolves, presented 

fewer opportunities for learning and people were more eager to report them, leading 

to much lower accuracy. Based on this study and the findings of my own research, I 

would recommend that a sample of aggregated citizen science data are always 

validated against images verified by experts when deploying new cameras. It is not 

enough to make a comparison at just a few sites within a dataset and assume the trend 

applies to all. Instead, data from every camera should be validated to account for site-

specific variation. Further comparison is therefore needed for the other cameras in the 

Seabird Watch network which were not considered here.  

Validation studies may seem less ‘exciting’ than actually using citizen science 

to answer bigger scientific questions, but it is essential work to ensure the reliability 

and credibility of citizen science. Many researchers remain sceptical of data from non-

experts (Foster-Smith & Evans 2003, Dickinson et al. 2010, Bonter & Cooper 2012, 

Swanson et al. 2016), making it even more important to be able to confirm its 

reliability. Citizen science has the potential to massively increase the rate of image 

annotation and expand the scope and scale of monitoring (Swanson et al. 2015, 2016). 

Within three days of launching Snapshot Serengeti, an 18-month backlog of images 

had been processed (Swanson et al. 2016) and on average, Zooniverse projects save 

34 full-time working years due to volunteer involvement (Cox et al. 2015). Using 

volunteer classifications to train computer algorithms to classify images is the next 

step for optimising image processing. This has already been achieved for several 

Zooniverse projects, including Penguin Watch, and is in the process of being 

developed for Seabird Watch. Images from sites where algorithms consistently 

perform poorly in species identification, can be purposefully assigned to volunteers, 

to create an optimal balance between citizen science and machine learning for image 

classification (Jones et al. 2020). This will allow larger scientific questions to be 

answered. For Seabird Watch this could help understand why threatened seabirds are 

declining.  

One of the main causes of Kittiwake decline is thought to be changes in prey 

availability associated with climate change, and linked to this, weather extremes. 

Chapter two provided a preliminary investigation into the effect of weather on 

Kittiwake nest survival and highlighted the potential adverse impacts of high 
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temperatures during the egg stage, and strong winds buffeting colonies during the 

chick stage. However, further investigation is required across multiple years and 

multiples sites. It is hoped that these data could in part be provided by Seabird Watch.  

Annotating images using a citizen science project, like Seabird Watch, will 

become increasingly important if the deployment of time-lapse cameras is to be 

expanded to increase the spatial and temporal scale of seabird monitoring and better 

understand the reasons for population change. Manually identifying birds and nest 

contents in images is time-consuming, and as chapter one revealed, can sometimes 

take longer than fieldwork. While citizen science can significantly reduce the 

workload of researchers and increase the rate of image processing, it is limited by 

volunteer interest. Both the Seabird Watch and Penguin Watch programmes invest 

substantial time promoting their projects and developing effective public engagement 

strategies to maintain interest and a high rate of image annotation (T. Hart, pers. 

comm.). As the technology develops, it is hoped that an increasing number of projects 

using digital imagery will develop machine learning algorithms to automatically detect 

objects in images. While many annotated images may initially be needed to train the 

algorithm, in the long-term this should minimise the need for manual image analysis 

and rapidly increase image processing time.  

Having a network of cameras monitoring Kittiwake colonies over the coming 

years and a streamlined image processing system to supplement sites already 

monitored by fieldworkers, would greatly benefit this species and indeed other cliff- 

and ground-nesting seabirds of conservation concern. Combining camera data from 

the breeding grounds with other sources of information, such as GPS tracking, could 

provide novel insights into the ecology and behaviour of seabirds, and hopefully a 

better understanding of how we can assist threatened species.  
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The following manuscript is the final draft submitted to Ibis prior to acceptance and 

publication. The published article can be accessed here:  

Edney, A.J. and Wood, M.J. (2020), Applications of digital imaging and analysis in 

seabird monitoring and research. Ibis. doi:10.1111/ibi.12871 
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Applications of Digital Imaging and Analysis in Seabird 
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Rapid advances in digital imaging technology  offer efficient and cost-effective 

methods for measuring seabird abundance, breeding success, phenology, survival and 

diet. These methods can facilitate understanding of long-term population trends, and 

design and implementation of successful conservation strategies. This paper reviews 

the suitability of  satellites, manned aircraft, Unmanned Aerial Vehicles (UAVs), fixed 

position, handheld and animal-borne cameras for recording digital photographs and 

videos used to measure seabird demographic and behavioural parameters. It considers 

the disturbance impacts, accuracy of results obtained, cost-effectiveness, and scale of 

monitoring possible compared to ‘traditional’ fieldworker methods. Given the ease of 

collecting large amounts of imagery, image processing is an important step in realising 

the potential of this technology. The effectiveness of manual, semi-automated and 

automated image processing are also reviewed.  Satellites, manned aircraft and UAVs 

have most commonly been used for population counts. Spatial resolution is lowest in 

satellites, limiting monitoring to large species and those with obvious signs of 

presence, such as penguins. Conversely, UAVs have the highest spatial resolution, 

which has allowed fine-scale measurements of foraging behaviour. Time-lapse 

cameras are more cost-effective for collecting time-series data such as breeding 

success and phenology, as human visits are only required infrequently for 

maintenance. However, the colony of interest must be observable from a single 

vantage point. Handheld, animal-borne and motion-triggered cameras have fewer 

cost-effective uses, but have provided information on seabird diet, foraging behaviour 

and nest predation. The latter has been important for understanding the impact of 
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invasive mammals on seabird breeding success. Advances in automated image 

analysis are increasing the suitability of digital photography and videography to 

facilitate and/or replace traditional seabird monitoring methods. Machine learning 

algorithms, such as Pengbot, have allowed rapid identification of birds, although 

training requires thousands of pre-annotated photographs. Digital imaging has 

considerable potential in seabird monitoring, provided that appropriate choices are 

available for both image capture technology and image processing. These technologies 

offer opportunities to collect data in remote locations and increase the number of sites 

monitored. The potential to include such solutions in seabird monitoring and research 

will develop as the technology evolves, which will be of benefit given funding 

challenges in monitoring and conservation.  

 

Keywords: remote sensing, photography, videography, population ecology, 

conservation, seabirds  

 
Seabirds are one of the most threatened groups of birds, with almost half of seabird 

species experiencing population declines (Croxall et al. 2012). Effective monitoring 

is essential to understand long-term population trends, so that conservation action can 

be implemented (Walsh et al. 1995, Anker-Nilssen et al. 1996, Petersen et al. 2008). 

However, monitoring seabird populations can be challenging. Pelagic species spend 

most of the year at sea, only returning to land to breed. Many nest on exposed cliffs 

with difficult access, especially during periods of inclement weather, while ground 

nesting birds may be concealed by camouflage or vegetation and some species nest 

underground (Mitchell & Parsons 2007, Robinson & Ratcliffe 2010). Furthermore, 

regularly visiting breeding colonies is logistically difficult in remote locations, can 

cause disturbance, and is often expensive in terms of time and money (Anker-Nilssen 

et al. 1996, Field et al. 2005, Huffeldt & Merkel 2013, Southwell & Emmerson 2015). 

As a result, monitoring efforts are often restricted to small temporal and spatial scales 

(Evans 1986, Lynch et al. 2012a, Paleczny et al. 2015). 

 Recent advances in digital imaging technology offer considerable potential for 

overcoming some of the challenges associated with monitoring seabird populations. 

Digital photography has a long-history in wildlife monitoring but has previously been 

limited to small studies that observe animals opportunistically, using handheld or 
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animal-triggered cameras (Black 2018). Now, increased battery life, data storage and 

better optics, have transformed the potential of remote photography and videography 

and made it possible to monitor populations that are hard to access (Bolton et al. 2007, 

Kucera & Barrett 2011, Anderson & Gaston 2013, Black 2018). Nevertheless, the 

wide range of technology available can make it challenging to decide which type of 

equipment is most suitable for a specific monitoring purpose, and how to handle and 

analyse large amounts of digital data. 

  Here we summarise the main technologies available for collecting digital data 

on seabird populations, and offer a critical assessment of each data collection methods. 

The suitability of each technology for measuring demographic and behavioural 

parameters is assessed in relation to the disturbance caused, accuracy of results 

obtained, cost-effectiveness, and scale of monitoring possible, compared to non-digital 

(termed ‘traditional’) methods. In particular, we focus on the ability of satellites, 

manned aircraft, Unmanned Aerial Vehicles (UAVs), and handheld, animal-borne and 

fixed position (including time-lapse, video and motion-triggered) cameras to monitor 

the abundance, breeding success, phenology, survival, and diet of seabird populations 

at sea and on land. This includes surface-nesting and cliff-nesting seabirds, seaducks 

on inland bodies of water, and seabirds at sea. We assess the accuracy and cost of 

manual, semi-automated, and automated image analysis methods, as well as 

considering future developments needed in the field. Our hope is that by drawing 

information together from many individual studies, this review can help researchers 

decide where digital photography and videography could facilitate seabird monitoring, 

in a world that can be short of time and money for conservation endeavours (Waldron 

et al. 2013).  

 

COLLECTION OF DIGITAL IMAGERY 

Satellites 
One of the first developments in remote sensing technology was the use of satellites 

for aerial surveys. Although more commonly used to survey vegetation, satellite 

imagery was used for seabird monitoring as early as the 1980s (Schwaller et al. 1989, 

Nowak et al. 2019). Images have been used to locate and count seabird populations, 

including penguins, Masked Booby Sula dactylatra, and Wandering Albatross 
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Diomedea exulans (Fig. 1) (Schwaller et al. 1989, Guinet et al. 1995, Fretwell & 

Trathan 2009, Hughes et al. 2011, Fretwell et al. 2012, Lynch et al. 2012b, Fretwell 

et al. 2014, Waluda et al. 2014, Fretwell et al. 2017, Borowicz et al. 2018, Dolliver et 

al. 2019). The downward-facing perspective of satellites means images are unlikely to 

provide a representative view of cliff-nesting species, but they are suitable for 

observing surface-nesting seabirds, seabirds at sea and seaducks inland.  

 The primary advantage of satellite imagery is its global coverage. This has 

allowed the discovery of previously unknown populations, often in remote, 

inaccessible areas (Fretwell & Trathan 2009, Fretwell et al. 2012, 2014, Ancel et al. 

2017, Borowicz et al. 2018). Moreover, satellite data collection occurs at such high 

altitude that it does not disturb birds or habitats, unlike ground, boat or other aerial 

surveys, making satellites ideal for monitoring sensitive species and locations.  

This high-altitude view and the lack of control over the spectral, spatial and 

temporal resolution of images means that many populations are not visible in sufficient 

detail to be accurately counted from satellites (Rush et al. 2018, Nowak et al. 2019). 

The trade-off between spatial and temporal resolution also limits their ability to collect 

the frequent, high resolution images needed to measure breeding success. Terra and 

Aqua satellites with MODIS sensors have high temporal resolution (four images every 

24 hours), but very low spatial resolution; whereas Landsat or Sentinel-2 satellites 

have high spatial resolution (10-30 m) but low temporal resolution (one image every 

16 days) (Nowak et al. 2019). A fixed re-visit time means image frequency may be 

further reduced if poor weather conditions such as low cloud obscure the area of 

interest when in the satellite’s view (Müllerova et al. 2017, Nowak et al. 2019). 

Ground cover will also affect bird visibility, making satellite imagery unsuitable for 

monitoring burrow-nesting species and those nesting in dense habitat, like long grass. 

Furthermore, none of the freely available satellite images have < 1 m spatial resolution 

and acquiring images from commercial suppliers is expensive (Nowak et al. 2019). 

Consequently, satellites can offer a cost-effective method of counting some seabird 

populations, but only if they can be viewed at the necessary spatial and temporal 

resolution from freely available images. This means satellites are most likely to be 

cost-effective in remote locations that are not readily accessible, and are more suitable 

for monitoring bigger species, like penguins, and those that leave obvious signs of 

presence, such as substantial areas of faecal staining (Fretwell & Trathan 2009). 
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Satellites are unlikely to facilitate monitoring of large numbers of small breeding 

seabird colonies.  

 

Manned aircraft 
Aerial seabird surveys are more commonly conducted with manned aircraft (Fig. 2) or 

UAVs, rather than satellites (Loarie et al. 2007, Rush et al. 2018).  Compared to boats, 

manned aircraft afford a more cost-effective technique for surveying large areas of sea 

and inland bodies of water (Camphuysen et al. 2004). The shorter survey time of 

manned flights at high speed reduces the risk of double counting, which increases 

count-accuracy.  However, this benefit may be negated by reduced time to detect and 

identify smaller or less abundant species, meaning that surveys of inshore seaducks 

rarely detect grebes, Common Goldeneye Bucephala clangula, or Black-throated 

Diver Gavia arctica (Joint Nature Conservation Committee 2010). As a result, land- 

and boat-based counts are often used alongside aerial surveys to ensure that birds are 

not missed (Joint Nature Conservation Committee 2010). This increases survey effort 

and thus time and money required for effective monitoring using manned aircraft. 

Installing manned aircraft with cameras might reduce the need for 

accompanying land- and boat-based surveys. Photographs and videos provide a 

permanent record that can be used to identify additional individuals that surveyors 

might have missed (Hutchinson 1980). This is supported by a study in Carmarthen 

Bay (Wales, UK) which found that visual aerial surveys gave lower estimates of 

Common Scoter Melanitta nigra abundance compared to digital images and videos 

taken from an aeroplane (Buckland et al. 2012). Digital aerial surveys could also be 

used to count surface-nesting seabirds, including Arctic Skua Stercorarius parasiticus, 

terns, and Lesser Black-backed Larus fuscus and Great Black-backed Gull Larus 

marinus. Aerial surveys reduce habitat disturbance compared to traditional colony 

walk-through methods and also reduce disruption to nesting birds (Brisson-Curadeau 

et al. 2017, Rush et al. 2018). Taking digital photographs and videos from manned 

aircraft can further lower behavioural stress responses, as it allows the vehicle to be 

flown at higher altitude. This is because aerial surveyors must be close enough to the 

birds to allow accurate identification and counts, whereas images can be magnified 

during analysis (Thaxter & Burton 2009, Kemper et al. 2016).  
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 The benefits of reduced disturbance and increased accuracy must be balanced 

against the high purchase and operation costs of manned aircraft (Hutchinson 1980). 

This includes the price of fuel, hiring a pilot with a professional aviation licence, and, 

if photographs or videos are desired, camera installation and hiring a camera operator 

(Wilhelm et al. 2015, Nowak et al. 2019). In the past, photographs were taken through 

windows using handheld cameras, while most studies today install fixed cameras to 

improve image quality and consistency (Hutchinson 1980, Wilhelm et al. 2015). 

Additionally, manned aircraft are restricted in where they can operate, as they require 

a nearby airport, fulfilment of aviation procedures and are not manoeuvrable over 

small areas (Nowak et al. 2019). Moreover, at sea aerial surveys are not advised in 

winds greater than Beaufort 4 to reduce the likelihood of inaccurate counts as can 

happen, for example, if white wave caps are confused with gulls (Thaxter & Burton 

2009).  

 Monitoring seabirds using imagery from manned aircraft has some 

disadvantages. The high cost means that temporal resolution is typically low, so 

manned flight surveys are best deployed to obtain infrequent population counts, rather 

than time-series data such as breeding success (Anderson & Gaston 2013, Lyons et al. 

2019). Manned aircraft are unlikely to reduce disturbance to surface-nesting seabirds 

that can be monitored from a single vantage point, although they could be a useful 

alternative to walk-through surveys. The benefits of using manned aircraft are 

therefore context and species dependent, but could appreciably benefit sensitive 

species and sites. Increasingly, many studies are now turning to UAVs for aerial 

monitoring, to overcome some of the challenges faced by manned aircraft (Anderson 

& Gaston 2013). 

 

Unmanned Aerial Vehicles (UAVs) 
The number of environmental biology papers using UAVs has increased 

markedly in the past 20 years, particularly since 2011 (Nowak et al. 2019). UAVs are 

known under a variety of terms, including: Unmanned Aerial Systems, Remotely 

Piloted Aircraft, and colloquially as ‘drones’. They are small, powered aerial vehicles 

that can be flown remotely or autonomously and can carry a payload, such as a camera 

(Fig. 3).  
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To date, UAV imagery has mainly been used for counting nests or individuals 

and has even identified ‘new’ populations (Nowak et al. 2019, Pfeifer et al. 2019). A 

wide range of seabirds have been monitored using UAVs, including penguins 

(Spheniscidae) (Hodgson et al. 2016, Borowicz et al. 2018, Korczak-Abshire et al. 

2019, Pfeifer et al. 2019), albatrosses (Diomedeidae) (McClelland et al. 2016), terns 

and gulls (Laridae) (Sardà-Palomera et al. 2012, Grenzdörffer 2013, Chabot et al. 

2015, Hodgson et al. 2016, Brisson-Curadeau et al. 2017, Rush et al. 2018), shags and 

cormorants (Phalacrocoracidae) (Irigoin-Lovera et al. 2019, Korczak-Abshire et al. 

2019, Oosthuizen et al. 2020), auks (Alcidae) (Brisson-Curadeau et al. 2017), 

frigatebirds (Fregatidae) (Hodgson et al. 2016, Villegas et al. 2018), boobies (Sulidae) 

(Irigoin-Lovera et al. 2019), pelicans (Pelecanidae) (Irigoin-Lovera et al. 2019), and 

giant petrel species (Macronectes spp.) (Korczak-Abshire et al. 2019). Since most 

UAVs allow camera rotation, cliff-nesting seabirds can be readily surveyed – a feat 

more difficult to achieve with satellites (Brisson-Curadeau et al. 2017). However, 

unlike satellites and manned aircraft, distant sea surveys  are limited as UAVs must 

typically remain in the line of the sight of the controller to satisfy flight regulations 

(Nowak et al. 2019).  

Increasingly, UAVs are being used for monitoring purposes other than 

population or nest counts. For example, UAV surveys have recorded fine-scale 

foraging behaviour of terns in relation to wakes created by strong currents interacting 

with man-made structures (Lieber et al. 2019). In addition, UAVs might also collect 

time-series data, for example to measure nesting success. They create less disturbance 

than manned aircraft due to being smaller and less noisy and are cheaper to purchase 

and operate (Goebel et al. 2015). This means multiple flights throughout the breeding 

season are more feasible in terms of animal welfare and cost, and flight height can be 

lower, which increases spatial resolution and accuracy. For example, minimum flight 

height for at-sea surveys using manned aircraft is 450 m, whereas UAVs are regularly 

flown at < 100 m (Thaxter & Burton 2009). Nonetheless, UAVs can still disturb 

breeding seabirds. The behavioural response to UAV flight should be measured before 

studies to ensure that it does not exceed that of traditional field monitoring methods 

such as walk-through surveys. 

 The magnitude of behavioural response depends on the type of UAV; flight 

parameters, including altitude and speed; take-off location relative to the colony; and 

the species being monitored  (Rümmler et al. 2016, Brisson-Curadeau et al. 2017, 
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Mulero-Pázmány et al. 2017, Rush et al. 2018, Weimerskirch et al. 2018, Irigoin-

Lovera et al. 2019). Rümmler et al. (2018) found that Adélie Penguins Pygoscelis 

adeliae reacted to a small octocopter UAV at the highest test altitude of 50 m, whereas 

Gentoo Penguins Pygoscelis papua only reacted below 30 m. In another study, Adélie 

Penguins did not respond to fixed-wing electric UAVs at 350 m altitude but did show 

vigilance and increased activity levels in response to UAVs flown at the same height 

but powered by a piston engine (Korczak-Abshire et al. 2016). Deciding on a suitable 

flight protocol to minimise disturbance is therefore difficult, as it will vary between 

and within species depending on a variety of factors. For example, there may be intra-

species variation in response at different locations due to variable aerial predation 

levels or variation in response by the same colony at different times of the year. 

Consequently, it seems wise that test flights should always be conducted before using 

UAVs for seabird monitoring.  

 National flight regulations mean both a pilot and ground level observer are 

often required for UAV flights (Nowak et al. 2019). While this increases the cost of 

UAV studies, especially as pilots require training, it allows a dedicated ground level 

observer to focus on monitoring disturbance levels to ensure that flights are conducted 

safely. Legal restrictions also limit UAV flight parameters, including maximum 

altitude, speed, and use over reserves, which can affect the possibility of data 

acquisition (Nowak et al. 2019). This may be further limited by adverse weather 

conditions, as UAVs are more vulnerable to damage during aerial surveys than 

manned aircraft and satellites. For example, many small, lightweight UAVs, such as 

the Al-Multi (by Aerial Insight, Brandon, MB, Canada), cannot operate in 

precipitation and wind often reduces image quality due to camera movements during 

flight (Chabot et al. 2015, Goebel et al. 2015).  

 Overall, UAV-based monitoring is likely to be effective for measuring 

breeding success or counting nesting seabirds, provided disturbance is not greater than 

traditional monitoring methods. UAVs are particularly cost-effective if the window 

for fieldwork is short, and they can survey areas inaccessible by foot or vehicle, such 

as sea-stacks (Lyons et al. 2019, Oosthuizen et al. 2020). On the other hand, aerial 

surveys are not necessary for seabirds that can be viewed from a single vantage point 

(Table 1). Instead, time-lapse photography may be a better alternative to traditional 

point surveys than UAVs.   
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Fixed position cameras 

Time-lapse cameras 
Time-lapse photography records images at predetermined time-intervals regardless of 

subject presence (Cutler & Swann 1999). It has been used for avian studies since the 

technology first became commercially available, although its potential uses in 

ornithology are quickly increasing with advances in digital technology (Dodge & 

Snyder 1960, Green & Anderson 1961, Cowardin & Ashe 1965, Temple 1972, Weller 

& Derksen 1972, Harris 1982, Huffeldt & Merkel 2013). The increased availability of 

affordable cameras, requiring less frequent maintenance, reduced power consumption, 

and larger data storage capacity has seen the field of time-lapse photography rapidly 

expand in recent years (Bolton et al. 2007).  

 Time-lapse cameras are most appropriate for studying animals frequently 

present at a location, where a single vantage point gives a representative view of 

individuals, and the measurement of interest will not activate a motion-triggered 

camera (Cutler & Swann 1999, Black 2018). Species that aggregate at high densities 

at some point in their life-history, such as breeding seabirds, therefore represent ideal 

candidates for use (Fig. 4) (Black 2018). Time-lapse cameras are suited for collecting 

data as part of long-term studies, principally time-series data such as annual breeding 

success and phenology, and have a number of advantages over traditional field 

observations (Southwell & Emmerson 2015, Merkel et al. 2016, Black et al. 2018a, 

Hinke et al. 2018).  

Firstly, time-constraints placed on fieldworkers and external conditions such 

as weather mean direct observations of nesting success are typically recorded less 

frequently than time-lapse photographs (Walsh et al. 1995). Most studies set cameras 

to record one image per hour and are only returned to once per year to change SD 

cards and batteries (Southwell & Emmerson 2015, Black et al. 2018a). This means 

that time-lapse photography can improve temporal resolution and data accuracy with 

reduced time investment.   

 High temporal resolution also makes time-lapse photography suitable for 

measuring numerous other parameters. This includes nest activity (such as nest 

attendance and division of labour between parents), re-sighting marked birds to 

determine adult survival and foraging behaviour, and population counts of breeding 

birds year-round, allowing insights into over-winter site attendance (Weller & 
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Derksen 1972, Mudge et al. 1987, Black et al. 2017, Black et al. 2018b, Pascalis et al. 

2018). Additionally, time-lapse cameras can provide evidence of infrequent events not 

purposefully monitored (Harris 1982, Black et al. 2017, Black et al. 2018b).  For 

example, time-lapse photographs have recorded Black-legged Kittiwake Rissa 

tridactyla chick predation by a Peregrine Falcon Falco peregrinus (Collins et al. 

2014). Predation may be under-recorded by fieldworkers and aerial surveys, as both 

human and aircraft presence could deter predatory activity. Similarly, cameras might 

capture adult seabirds carrying prey, which could give information on chick diet.  

 As well as their diverse range of uses, time-lapse cameras are unlikely to 

adversely affect the wildlife they monitor, provided that they are installed and 

maintained outside the breeding season and are located at a safe distance from 

breeding birds (Merkel et al. 2016). Determining a ‘safe’ distance is difficult, but the 

distance kept by fieldworkers could be a provisional minimum (Joint Nature 

Conservation Committee 2016). Limited disturbance also means cameras can collect 

data regardless of abiotic conditions. For example, the UK ‘Seabird Count’ instructs 

surveyors to avoid visiting colonies in winds stronger than Beaufort 4 or during heavy 

and continuous rain, as disturbance during wet weather can leave eggs and chicks 

vulnerable to chilling, and  weather conditions can affect colony attendance so that 

this strict protocol helps to ensure count comparability across years and colonies (Joint 

Nature Conservation Committee 2016).   

 The infrequency of human visits (i.e., yearly maintenance) allows time-lapse 

cameras to capture images in locations and at scales otherwise unfeasible in terms of 

time, money, and human capabilities, such as in harsh conditions and remote places 

(Weller & Derksen 1972, Black et al. 2017, Black 2018, Black et al. 2018a, Black et 

al. 2018b , Pascalis et al. 2018). Already, extensive camera networks in the Antarctic 

have provided data on previously unmonitored penguin colonies (Southwell & 

Emmerson 2015). Nonetheless, maintaining camera networks is expensive, and if only 

visited once annually, a large amount of data could be lost from mechanical failure 

between visits. Camera set-up is also a crucial consideration to ensure useful and 

reliable data is obtained (Lorentzen et al. 2010). Increasing the distance between 

camera and colony will increase the number of birds viewed per frame but will lower 

image resolution. A study on pygoscelid penguins suggested approximately 20 nests 

could be reliably monitored for the duration of the breeding season, but this depended 

on nest density and topography (Hinke et al. 2018). The optimal camera angle and 



Appendix 

163 
 

horizontal and vertical distance from the colony will therefore be specific to location, 

study species and study purpose (Lorentzen et al. 2010). A summary of the advantages 

and disadvantages of time-lapse photography as a tool for monitoring seabirds is given 

below (Table 2).  

 

Video cameras 
Videography is similar to time-lapse photography, except that observations are 

recorded continuously. It may be preferable when constant field measurements are 

required, as time-lapse cameras might miss an event that occurred between 

photographs and results would not be comparable with field observations, introducing 

bias into long-term studies. Examples include recording incubation behaviour, 

thermoregulatory responses and rate of adult provisioning (Frederiksen et al. 2019, 

Cook et al. 2020, Williams & DeLeon 2020).  

Frederiksen et al. (2019) used video surveillance to measure chick feeding 

rates of Little Auk Alle alle in north-east Greenland. Traditional methods required 12- 

or 24-hour surveillance in the field, which is time-consuming, physically demanding, 

and renders results liable to error from observer fatigue, even when monitoring is 

conducted in shifts (Harding et al. 2007, Mosbech et al. 2017). Although videos take 

a long time to analyse manually, the ability to increase playback speed means that 

periods of inactivity can be watched quickly, while important events can be slowed 

down, re-wound, and re-watched innumerable times, to ensure that accurate records 

are made. Moreover, processing can take place independent of external abiotic 

conditions that inhibit direct observations in the field. Having said this, poor weather 

can reduce image quality, meaning that neither video and nor time-lapse cameras 

deliver useable data in all conditions.    

Unfortunately, the large amount of data recorded by video cameras per unit 

time means that SD cards and batteries must be replaced regularly, often daily 

(Mosbech et al. 2017, Frederiksen et al. 2019). This makes continuous videography 

only suitable in locations readily accessible by humans. For most studies requiring 

data with high temporal resolution, time-lapse cameras are a more cost-effective 

option.  

 

Motion-triggered cameras 
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For studies where measurements do not need to be made at regular intervals or 

continuously, motion-triggered cameras are an alternative to static time-lapse or video 

cameras. Movement in front of the sensor triggers photographs or a short video 

sequence to be recorded, allowing capture of individual, instantaneous events (Black 

2018). So far, motion-triggered cameras have been most frequently deployed in 

seabird research to examine the impact of nest predation on breeding success (Hervías 

et al. 2013, Thiebot et al. 2014, Davies et al. 2015, Ekanayake et al. 2015, Luna et al. 

2018, Whelan et al. 2018, Stolpmann et al. 2019). In some cases, this has provided 

support for removal of introduced predators at seabird colonies (Davies et al. 2015). 

Motion-triggered cameras are likely to be more effective at monitoring predation than 

time-lapse cameras, as the camera should be triggered whenever a predator enters the 

field of view, rather than at specific time points. Another use of motion-triggered 

cameras has been to understand nesting seabird behaviours, such as incubation and 

foraging patterns. They can record the time at which parents exchange incubation duty 

or when one parent returns from a foraging trip to feed the young (Hart et al. 2016, 

Mendez et al. 2017). This could allow assessment of seabird diet for species that load 

prey in their bills.  

One of the difficulties of deploying motion-triggered cameras is to prevent 

irrelevant motion in the surrounding environment causing false triggers. This is often 

due to vegetation moving in the wind, and while some vegetation could be removed 

from the camera’s zone of detection, the environment should ideally be altered as little 

as possible (Van Berkel 2014). Alternatively, positioning cameras closer to the object 

of interest, such as a seabird nest, can reduce false triggers but severely limits spatial 

coverage (Van Berkel 2014). Each camera might therefore only view one or two nests. 

This greatly increases the number of cameras required, and thus cost, if many nests 

need to be monitored.  

 

Handheld cameras 
Another form of digital photography that has been used to investigate seabird diet is 

the handheld camera (Table 3). Although time-lapse and motion-triggered cameras 

may capture seabirds with prey, purposefully taking photographs of prey-carrying 

seabirds can record the diet of  a greater number of individuals, given that handheld 
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cameras do not have a fixed field of view. Traditional techniques to investigate seabird 

diet predominantly focus on morphological analysis and include visual identification 

of prey species and size in the field, as well as mist-netting adults to obtain whole prey 

or regurgitates or collecting regurgitates from chicks, either from the ground or using 

ligatures (Votier et al. 2003, Barrett et al. 2007, Forys & Havesh 2017, Gaglio et al. 

2017). More recently, the use of molecular and biochemical techniques in diet studies 

has dramatically increased, particularly DNA and stable isotope analysis of blood and 

faecal samples (Horswill et al. 2018). Each method of diet analysis has its own 

advantages and limitations. In general, sample collection has the obvious disadvantage 

of disturbing birds, while direct observation is more likely to result in incorrect 

identification, especially when trying to estimate prey size in the field. Conversely, 

taking photographs of adult seabirds carrying prey is non-invasive provided that a safe 

distance is kept between bird and photographer. It also produces a permanent record 

for checking identification of species and size and is more likely to capture the entire 

prey item. For example, terns often only regurgitate the posterior body and caudal fin, 

making identification of similar species challenging (McLeay et al. 2009).  

 Gaglio et al. (2017) showed that photo-sampling produced similar estimates of 

Greater Crested Tern Thalasseus bergii prey composition and size compared to 

regurgitations, and at a faster species accumulation rate. Over three breeding seasons 

they were able to double the known diversity of prey taken by two Great Crested Tern 

colonies. Likewise, photo-sampling increased the known number of fish species fed 

to Black Skimmer Rynchops niger chicks by 29 % (Forys & Havesh 2017).  

 Handheld cameras could allow seabird diet to be monitored at greater scales 

than before, as photographs can be accumulated faster than prey samples. There is 

already a vast wildlife photography community capturing seabirds with prey, offering 

a rich source of diet data. This use of citizen science was recognised by Forys & 

Havesh (2017), who used Facebook and Flickr to ask for photographs of Black 

Skimmer adults carrying prey. From 211 photographs, they conducted a small study 

of chick diet during the 2015-2016 breeding season. At a much larger scale, the 

RSPB’s Project Puffin UK is currently requesting photographs of Atlantic Puffins 

Fratercula arctica carrying prey from any year, to better understand spatial and 

temporal variation in diet (Fig. 5) (RSPB 2020).  

Of course, using photography to investigate diet is only feasible for seabirds 

that carry prey in their bills. Moreover, photographs take time to process and strict 
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protocols are required to minimise bias. For example, birds should be photographed at 

random, rather than focussing on individuals carrying large, interesting or multiple 

prey items. For studies using citizen science, it can be hard to ensure that protocols 

have been followed, especially when mining existing databases, and so quantification 

of suspected biases in method is essential. Project Puffin UK suspected that puffins 

carrying large prey were more likely to be spotted and photographed than those 

carrying small prey. To quantify this potential size-bias, a researcher took photographs 

of any puffin approaching a colony on the Farne Islands (England, UK) regardless of 

whether it appeared to have prey. Photographs containing prey will be compared with 

images taken by members of the public at the same location and in the same year to 

quantify any size-bias (E. Owen pers. comm.).  

 

Animal-borne cameras  

The final type of digital imaging device to consider are animal-borne cameras. 

Originally, the large size of these devices limited their deployment to mammals and 

captive and/or flightless birds (Watanuki et al. 2008). However, gradual 

miniaturisation of the technology has since allowed use on unhabituated, free-ranging 

seabirds (Moll et al. 2007, Watanuki et al. 2008). Bird-borne cameras can record still 

images or videos and are unique in that they provide observations from the perspective 

of the animal (Moll et al. 2007, Tremblay et al. 2014). This makes them particularly 

well suited for understanding fine-scale interactions between seabirds and their 

environment (Moll et al. 2007). Cameras on seabirds have been particularly useful for 

providing insight into foraging behaviours. This includes foraging habitat selection 

(Watanuki et al. 2008); movement patterns (Ponganis et al. 2000, Tremblay et al. 

2014); and interactions with prey (Grémillet et al. 2006, Handley et al. 2016, Handley 

et al. 2018), fisheries (Votier et al. 2013), conspecifics (Takahashi et al. 2004, Yoda 

et al. 2011) and other predator species during foraging (Sakamoto et al. 2009, Yoda 

et al. 2011, Thiebault et al. 2014).  

One of the main limitations of animal-borne cameras is system lifespan (Moll 

et al. 2007). The ethical requirement for minimised camera size limits battery capacity 

and means that recording duration is often under two hours, especially for continuous 

video recordings (Grémillet et al. 2006, Moll et al. 2007, Hooker et al. 2008, Yoda et 

al. 2011, Thiebault et al. 2014, Tremblay et al. 2014, Handley et al. 2018). Battery 
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power is a greater limitation than data storage capacity for cameras connected to a 

transmitter, because the data can be relayed to a remote downloading station (Moll et 

al. 2007, Hays 2015). Downloading data remotely is advantageous, because it means 

data is not lost if the device cannot be retrieved. However, constraints on bandwidth 

available through data relay platforms, such as the Argos service, can again limit the 

duration of camera deployment (Hays 2015).  

Recapturing birds to recover cameras can be challenging and frequently 

restricts studies to breeding adults that can be re-caught on the nest (Watanuki et al. 

2008, Sakamoto et al. 2009, Votier et al. 2013, Tremblay et al. 2014). Equally, the 

difficulty of recapture, ethical implications of handling and attaching devices to birds, 

and high cost of each device, means most studies only deploy cameras on a small 

number of individuals, commonly < 10 (Ponganis et al. 2000, Takahashi et al. 2004, 

Grémillet et al. 2006, Moll et al. 2007, Bluff & Rutz 2008, Watanuki et al. 2008, 

Sakamoto et al. 2009, Yoda et al. 2011, Bicknell et al. 2016). Small sample size can 

sacrifice robust population-level inferences, although the ability to collect novel data 

from the field of view of the seabird should not be overlooked (Hebblewhite & Haydon 

2010).  

 

Night-vision 
One advantage of using any form of digital imaging technology for seabird monitoring 

is the improved ability to make observations at night using infra-red illumination 

and/or thermography. Infra-red illumination allows cameras to take photographs and 

videos in the dark, by shining infra-red light on the area of interest. This reduces 

disturbance to burrow nesting seabirds and seabirds being monitored at night 

compared to visible light flash photography, as infra-red wavelengths are invisible to 

birds and mammals (Perkins et al. 2018). Collins et al. (2014) were able to observe 

night-time predation of Black-legged Kittiwake nests on Puffin Island (Wales, UK) 

from infra-red images captured by a Ltl-Acorn 5210MC time-lapse camera. 

Conversely, infra-red thermography (thermal imaging) does not itself emit light, but 

instead detects infra-red radiation (heat) emitted by animals (McCafferty 2013). It is 

often used to detect and count nesting sites, with Israel & Reinhard (2017) using a 

UAV-borne thermal camera to detect camouflaged Northern Lapwing Vanellus 
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vanellus nests. This has potential for locating inconspicuous nests of surface-nesting 

seabirds, like gulls and terns.  

 

Limitations of digital image collection  
In summary, digital imaging technology has the potential to increase accuracy, cost-

effectiveness and scale of seabird data collection, while reducing disturbance to 

breeding birds. Nevertheless, it is not a ‘silver bullet’ solution. Different technologies 

have different uses  and some species cannot easily be monitored using digital 

imagery, like burrow-nesting seabirds. Perkins et al. (2018) concluded that infra-red 

filming was a costly and inefficient method for counting European Storm Petrels 

Hydrobates pelagicus relative to tape playback, due to the large amount of expensive 

equipment and reviewing time needed. It would only be beneficial at sites that cannot 

otherwise be surveyed safely or where disturbance is a concern.  

One of the main trade-offs for most digital imaging technologies is between 

cost and image resolution, which affects how well the object(s) of interest can be 

identified in photographs and videos. Image resolution is clearly affected by the choice 

of camera, including the number of pixels and optical quality of the lens. However, it 

is also influenced by factors specific to the image capture method. For example, 

reducing the flight speed of manned aircraft will improve video quality but increase 

flight time, and the latter increases costs of fuel and pilot hire (Mellor et al. 2007). 

Conversely, faster speeds can be achieved with less reduction in quality if higher frame 

rates are used or the number of pixels is increased, both of which increase camera cost 

(Mellor et al. 2007). Increasing the depth of frame from 1000 pixels to 2500 pixels 

means a bird would stay in frame for the same amount of time at double the flight 

speed, or alternatively stay in frame for over twice as long at a given speed (Mellor et 

al. 2007). Dealing with this trade-off between cost and image resolution is difficult 

when funding is limited for wildlife monitoring (Waldron et al. 2013). Users must 

remember that image quality should be ‘good enough’ to provide data of equal or 

better accuracy than traditional non-digital methods, but it does not need to be 

‘exceptional’. Selecting an affordable method that will provide imagery of sufficient 

quality for the monitoring purpose is therefore all that can be recommended.  
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DATA PROCESSING AND ANALYSIS 

For seabird species where digital photography and videography could aid data 

collection, it is  important to consider current data processing and analysis methods. 

These must be feasible, in terms of time and money, and provide accurate data for the 

technology to be of value to seabird monitoring. So far, manual methods have been 

deployed most commonly, although rapid advances in semi-automated and automated 

information extraction are revealing that digital imagery can be a powerful and cost-

effective monitoring technique.  

 

Manual image analysis 
Manual image analysis requires researchers to examine photographs individually and 

make the appropriate measurement, such as count the number of each species present 

or record re-sighted birds. If multiple images have been collected over time, then 

parameters such as breeding success and phenology can be calculated. For 

photographs taken by UAVs and manned aircraft, the images must be orthorectified 

prior to analysis to produce an orthomosaic (mosaic image with positional accuracy) 

using software like Agisoft Photoscan (Rush et al. 2018).   

 

Accuracy 
One of the most important considerations to make when deciding whether to manually 

analyse images is accuracy. An ‘accurate’ estimate can be defined as one that is close 

to the true value, for example the true population count (Gregory et al. 2004, Hodgson 

et al. 2016). The accuracy of manual counts firstly depends on the researchers’ 

intrinsic ability to correctly identify and count individuals in an image. This can be 

termed ‘count-accuracy’. Secondly, it depends on the image itself, and whether it has 

captured all the individuals of interest, for example all active nests on the section of 

cliff being examined. This is ‘image-accuracy’.  

To increase count-accuracy by reducing misidentification of birds and 

counting errors most studies have used counting tools. Users click on a bird to mark 

it, and the computer programme automatically sums the number of marks to give a 

total count per image. Software commonly used includes ImageJ (Merkel et al. 2016, 

Hurford 2017, Hodgson et al. 2018), Adobe Photoshop’s count tool (Chabot et al. 
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2015, Goebel et al. 2015, Hodgson et al. 2016, Sinclair et al. 2017) and GIS 

environments (Sardà-Palomera et al. 2012, Lyons et al. 2019). ImageJ and QGIS are 

free, whereas users must pay for ArcGIS and Adobe Photoshop. Some researchers 

have built their own purpose designed annotation software, such as ‘Penguin Nest 

Picture Analyser’ in Java (Southwell & Emmerson 2015) and the Penguin Watch 

interface on Zooniverse (Black et al. 2017, Jones et al. 2018, Jones et al. 2020). 

Overall, the availability of free, easy-to-use counting tools means that researchers 

should not be limited by software in their ability to manually analyse digital images. 

To further assist with manual counting, several studies have overlaid grid cells on 

photographs and then made systematic, cell-specific counts (Hodgson et al. 2016, 

Korczak-Abshire et al. 2019).  Count-accuracy can also be increased by brightening 

dull photographs (Sinclair et al. 2017).  

 It is not possible to directly assess count-accuracy, unless the true image count 

is known. Instead, precision within counts of the same and different observers should 

be calculated (Sinclair et al. 2017). This means calculating the variance and/or 

standard deviation between replicated counts by the same and different counters 

attempting to count the same sample (Gregory et al. 2004, Hodgson et al. 2016, 

Sinclair et al. 2017, Korczak-Abshire et al. 2019). Unfortunately, this increases the 

time required for an already laborious task, so it has not become common practice.  

 As with count-accuracy, it is not possible to assess image-accuracy, unless the 

true count in the wild is known. Nevertheless, comparison between traditional and 

digital photography methods can be informative. If results from traditional monitoring 

and digital image analysis do not significantly differ, then digital photography is at 

least ‘as accurate as’ traditional techniques. For example, no significant difference was 

found between ground and UAV-derived counts of penguins in Antarctica and terns 

in Australia, suggesting UAVs were suitable for these population counts (Goebel et 

al. 2015, Hodgson et al. 2016). Equally, a significant correlation between direct and 

time-lapse photography measurements of penguin breeding success in Antarctica, 

supports the use of time-lapse cameras for measuring nesting success (Southwell & 

Emmerson 2015, Hinke et al. 2018). It is important that different researchers conduct 

ground surveys and image analysis to allow valid comparison of methods (Goebel et 

al. 2015).  

 Alternatively, if there is a statistically significant difference between 

traditional and digital image derived results, then interpreting the accuracy of digital 
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photography is more complicated. Further analysis of the data is required to assess 

whether traditional or digital methods are more accurate. For example, counts of 

Common Tern Sterna hirundo from UAV-derived images were 93-94 % of traditional 

ground counts in North America (Chabot et al. 2015). UAV-derived counts were 

presumed to be less accurate, due to variable visibility of birds with ground cover, 

weather conditions and image quality. Conversely, UAV-derived counts of penguins 

and frigatebirds in Australia were significantly larger than ground counts. The authors 

suggested the downward-facing perspective of UAV images reduced the number of 

birds missed by topography and other birds obscuring the counters’ line of sight in 

ground surveys (Hodgson et al. 2016). Such problems are likely to be species and 

habitat specific, thus reinforcing that assessment of accuracy should be made on a 

case-by-case basis.  

 Depending on the parameters being measured, it may not be possible to 

perform statistical analyses with small sample size. Southwell and Emmerson (2015) 

found that the first date of Adélie Penguin arrival was zero to two days later in time-

lapse images compared to direct observation, over eight years; and the first egg was 

seen two to six days later in camera images, over two years. Later detection of first 

arrival was expected given the cameras’ restricted spatial coverage compared to direct 

observers, and first egg detection was limited by temporal resolution. Incubating 

parents huddle tightly on the egg and reliable detection requires near-continuous 

observation (Southwell & Emmerson 2015). But, should these small differences in 

dates prevent time-lapse cameras being used to measure penguin phenology? The 

answer will largely depend on the individual situation. Do the other advantages of 

time-lapse cameras compared to direct observation, outweigh the costs of marginally 

different phenology measurements?  
 Moreover, in some locations, monitoring has only occurred with digital 

photography, making comparison to traditional methods impossible. This is typical of 

remote locations at high latitude with harsh environmental conditions, and highlights 

how digital imaging technology can greatly increase the scale of monitoring (Black et 

al. 2017, 2018a, b, Korczak-Abshire et al. 2019). For these studies, it is particularly 

important to calculate the variance of intra- and inter-observer counts of the same 

image to ensure high count-accuracy.  
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Cost 
One of the main disadvantages of manual image analysis is the time required. This has 

likely prevented the wide-scale use of digital imaging methods such as  time-lapse 

photography to date, as the volume of raw imagery collected can quickly exceed 

researchers’ processing capabilities (Pascalis et al. 2018). To date, most studies have  

monitored only a single colony of interest (Southwell & Emmerson 2015, Black et al. 

2017). The time required per image depends on the number of birds per photograph, 

image quality and experience of the analyser, although this can be decreased using a 

variety of methods. Sinclair et al. (2017) assessed how manual counts of Common 

Guillemot Uria aalge were affected if only one-quarter of the original image was 

counted. They found that counts from all quarters of an image were significantly 

correlated, meaning only the top-right hand corner needed to be sampled. This reduced 

post-processing from seven to three minutes per photo. However, this method is only 

possible when seabirds are evenly distributed across the image.  

 Another, and increasingly common method to reduce the time researchers 

spend processing images, at little extra cost, is to engage volunteer citizen scientists. 

Two projects currently advocating citizen science for seabird monitoring are Penguin 

Watch and Seabird Watch on the Zooniverse platform (https://www.zooniverse.org). 

Time-lapse photographs are uploaded onto the platform, and volunteers click on birds 

to classify them as either adult or juvenile penguins (Penguin Watch), Black-legged 

Kittiwakes or guillemots (Seabird Watch) (Fig. 6). Each image is shown to four 

participants and if no animals are identified or the image is too dark/blurry to classify, 

the image is retired from the active dataset and not seen by further volunteers. If any 

of the four participants identifies an animal, then the image is shown to an additional 

six people before being retired (Jones et al. 2018). Having multiple people view each 

image increases data reliability and a field guide is available to aid bird identification 

and increase accuracy. For Penguin Watch, comparison between annotations made by 

citizen scientists and ‘gold standard’ researchers, has validated the use of citizen 

science for identifying penguins in time-lapse photographs (Jones et al. 2018). This 

process is currently being undertaken for Seabird Watch, as well as a comparison 

between results from field observations and  ‘gold standard’ researcher analysed 

images (A. Edney unpubl. data).  
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 Although citizen scientists reduce researcher post-processing time, the total 

amount of time for images to be analysed is often much longer. Volunteers cannot be 

given strict deadlines like paid researchers, meaning a large number of volunteers are 

needed for images to be analysed quickly. There are also concerns that an increasing 

number of citizen science projects will effectively ‘flood the market’, resulting in 

fewer participants per project. The most effective way to increase cost-efficiency of 

digital image analysis is to develop semi-automated and automated techniques.  

 

Semi-automated image analysis 
Semi-automated classification is a form of supervised classification. It is user-driven 

and cannot identify and count birds without human guidance (Fretwell et al. 2012, 

Rush et al. 2018). Most semi-automated classification involves finding a unique 

spectral signature for the object in question (e.g., the head of a gull) that can be used 

to identify all occurrences of this object in the image (Schwaller et al. 1989, Fretwell 

et al. 2012, Grenzdörffer 2013, Waluda et al., 2014, Hodgson et al. 2018).   

Rush et al. (2018) offer a comprehensive description of one approach to semi-

automated classification of nesting Lesser Black-backed Gulls counts from UAV 

images. In brief, the training sample manager tool in ArcGIS identified different 

spectral signatures of three species of gull and surrounding habitat features. The 

maximum likelihood tool performed supervised classification and identified the gull 

species in each image. A shapefile, with the outlines of objects identified as birds, was 

overlaid on every original image for manual editing. This process was fast to complete 

and involved systematically scanning the image and confirming if objects in the 

shapefile were indeed birds. Non-bird objects were deleted. The number of Lesser 

Black-backed Gulls from semiautomated classification had a mean agreement of 104 

% with manual counts, due to some non-bird objects being incorrectly identified as 

gulls. Agreement was reduced to 98 % via manual editing. This demonstrates that 

semi-automated classification of UAV images can provide accurate counts of a 

surface-nesting seabird with minimal disturbance.  

Semi-automated classification would be especially useful for classifying birds 

in time-lapse photographs, as the sheer number of raw images collected can make 

manual classification unfeasible. While it may be difficult for species that do not have 

good contrast with their surroundings, such as shags and cormorants on dark rocks, 
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initial spectral analysis can quickly determine this (Grenzdörffer 2013, Lyons et al. 

2019). It is also important to remember that human vision is limited to visible light, so 

different objects that appear the same colour to the human eye, might still have a 

unique spectral signature that allows them to be separated.  

 

Automated image analysis 

Automated image analysis is a rapidly developing field that has the potential to vastly 

increase the scale of seabird monitoring. Automatic cell counting is frequently 

performed by cell biologists in ImageJ, using the ‘Automatic cell counter’ tool, but its 

transferability to seabird monitoring is limited due to the complexity of seabird 

colonies (Grishagin 2015).  

ImageJ’s automated counter cannot differentiate between species and is most 

accurate when birds occur against a plain background (Hurford 2017). It is liable to 

underestimate the true count, due to overlapping birds being counted as one object, 

while birds with strongly contrasting plumage patterns may be overestimated (Hurford 

2017). The high nest density of cliff-breeding species and the complex background 

created by the natural environment, mean automated counts in ImageJ are unlikely to 

be accurate for most seabird colonies. Nest density, terrain, and vegetation should be 

carefully considered when deciding on seabird colonies suitable for automated image 

analysis (Hinke et al. 2018).  

Recently, more studies are developing machine learning algorithms to identify 

birds in images, including those obtained from videos (Williams & DeLeon 2020). 

One example is the Pengbot algorithm, developed by the Penguin Watch team, to 

automatically identify and count penguins in time-lapse photographs (Jones et al. 

2020).  A similar tool is in the process of being developed for Seabird Watch (T. Hart, 

pers. comm.). Pengbot uses a Convolutional Neural Network (CNN) to estimate an 

object (penguin) density map, from which the number of objects (penguins) can be 

obtained. Training the algorithm to recognise penguins and then testing it required in 

the order of 82 000  pre-annotated images, which were provided by citizen scientists 

via Penguin Watch (Arteta et al. 2016). Without citizen science, labelling photographs 

is expensive in terms of time and money, especially if professionals are paid to do so 

via micropayment sites like Amazon Mechanical Turk (Arteta et al. 2016, Wang et al. 

2019).  
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Consequently, whilst automated image analysis can be cost-effective once 

machine learning algorithms are up and running, it is important to remember the effort 

that goes into their development. For small-scale studies on a single species, manual 

or semi-automated analysis may be more achievable. Nevertheless, automated 

analysis of time-lapse photographs could monitor species at very large scales, by 

installing time-lapse cameras across their range.  

 

CONCLUSIONS 

We have critically assessed the use of a wide range of digital imaging methods for 

seabird monitoring, both from a data collection and data analysis perspective. All types 

of digital photography and videography create a permanent record of observations that 

can be validated and re-analysed. Many offer a cost-effective means of overcoming 

challenges associated with ‘traditional’ methods for measuring specific demographic 

and behavioural parameters. The extent to which digital imaging methods are 

incorporated into seabird monitoring over the coming years, will largely depend on 

advances in automated image analysis.  

 This leaves researchers to consider whether digital imaging technology could 

facilitate and/or replace their traditional monitoring techniques. There is a trade-off 

between potentially increased accuracy, cost-effectiveness, and reduced disturbance, 

with reduced consistency in long-term studies. Long-term research conducted in the 

same way for many years needs to consider the risk of new methods biasing results. 

Where digital imaging could replace traditional methods, researchers must also 

consider the transition time required: how long should traditional and new methods be 

run in parallel before traditional methods are phased out? Decisions like this must be 

made on a case-by-case basis. Despite these unanswered questions, digital imaging 

technology has the potential to greatly assist seabird monitoring in a research 

environment with increasingly limited time and funding for conservation (Waldron et 

al. 2013).  

 
We would like to thank Sarah Money and Peter Fretwell for providing photographs to include 

in the paper. We would also like to thank the University of Gloucestershire’s Environmental 

Dynamics and Governance RPA for awarding AJE a bursary to undertake an MSc by 

Research. Two anonymous reviewers provided helpful feedback on the manuscript.  



Appendix 

176 
 

 

DATA AVAILABILITY STATEMENT 
This work has no associated data.  

 

REFERENCES 
Ancel, A., Cristofari, R., Trathan, P.N., Gilbert, C., Fretwell, P.T. & Beaulieu, M. 

2017. Looking for new emperor penguin colonies? Filling the gaps. Global 

Ecology and Conservation 9: 171–179. 

Anderson, K. & Gaston, K.J. 2013. Lightweight unmanned aerial vehicles will 

revolutionize spatial ecology. Frontiers in Ecology and the Environment 11: 

138–146. 

Anker-Nilssen, T., Erikstad, K.E. & Lorentsen, S.-H. 1996. Aims and effort in 

seabird monitoring: an assessment based on Norwegian data. wbio 2: 17–26. 

Arteta, C., Lempitsky, V. & Zisserman, A. 2016. Counting in the wild. Eur. Conf. 

Comput. Vis. LNCS., 9911: 483–498. 

Barrett, R.T., Camphuysen, K. (C J.), Anker-Nilssen, T., Chardine, J.W., 

Furness, R.W., Garthe, S., Hüppop, O., Leopold, M.F., Montevecchi, W.A. 

& Veit, R.R. 2007. Diet studies of seabirds: a review and recommendations. 

ICES J Mar Sci 64: 1675–1691. 

Bibby, C.J., Burgess, N.D., Hill, D.A. & Mustoe, S. 2000. Bird Census Techniques. 

London: Elsevier. 

Bicknell, A.W., Godley, B.J., Sheehan, E.V., Votier, S.C. & Witt, M.J. 2016. 

Camera technology for monitoring marine biodiversity and human impact. 

Frontiers in Ecology and the Environment 14: 424–432. 

Black, C. 2018. Spying on seabirds: a review of time-lapse photography capabilities 

and limitations. Seabird 31:1-14.  

Black, C., Collen, B., Lunn, D., Filby, D., Winnard, S. & Hart, T. 2018. Time-

lapse cameras reveal latitude and season influence breeding phenology durations 

in penguins. Ecology and Evolution 8: 8286–8296. 

Black, C., Rey, A.R. & Hart, T. 2017. Peeking into the bleak midwinter: 

Investigating nonbreeding strategies of Gentoo Penguins using a camera network. 

The Auk 134: 520–529. 



Appendix 

177 
 

Black, C., Southwell, C., Emmerson, L., Lunn, D. & Hart, T. 2018. Time-lapse 

imagery of Adélie penguins reveals differential winter strategies and breeding 

site occupation. PLOS ONE 13: e0193532. 

Bluff, L.A. & Rutz, C. 2008. A quick guide to video-tracking birds. Biol Lett 4: 319–

322. 

Bolton, M., Butcher, N., Sharpe, F., Stevens, D. & Fisher, G. 2007. Remote 

monitoring of nests using digital camera technology. Journal of Field 

Ornithology 78: 213–220. 

Borowicz, A., McDowall, P., Youngflesh, C., Sayre-McCord, T., Clucas, G., 

Herman, R., Forrest, S., Rider, M., Schwaller, M., Hart, T., Jenouvrier, S., 

Polito, M.J., Singh, H. & Lynch, H.J. 2018. Multi-modal survey of Adélie 

penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Scientific 

Reports 8: 1–9. 

Brisson-Curadeau, É., Bird, D., Burke, C., Fifield, D.A., Pace, P., Sherley, R.B. 

& Elliott, K.H. 2017. Seabird species vary in behavioural response to drone 

census. Scientific Reports 7: 1–9. 

Buckland, S.T., Burt, M.L., Rexstad, E.A., Mellor, M., Williams, A.E. & 

Woodward, R. 2012. Aerial surveys of seabirds: the advent of digital methods. 

Journal of Applied Ecology 49: 960–967. 

Camphuysen, K.J., Fox, A.D., Leopold, M.F. & Petersen, I.K. 2004. Towards 

standardised seabirds at sea census techniques in connection with environmental 

impact assessments for offshore wind farms in the UK: a comparison of ship and 

aerial sampling methods for marine birds, and their applicability to offshore 

wind farm assessments. NIOZ Report Commissioned by COWRIE Ltd. Texel, 

Netherlands: NIOZ.  

Chabot, D., Craik, S.R. & Bird, D.M. 2015. Population Census of a Large Common 

Tern Colony with a Small Unmanned Aircraft. PLOS ONE 10: e0122588. 

Collins, P.M., Green, J.A., Dodd, S., Shaw, P.J.A. & Halsey, L.G. 2014. Predation 

of Black-legged Kittiwake Chicks Rissa tridactyla by a Peregrine Falcon Falco 

peregrinus : Insights from Time-lapse Cameras. The Wilson Journal of 

Ornithology 126: 158–161. 

Cook, T.R., Martin, R., Roberts, J., Häkkinen, H., Botha, P., Meyer, C., Sparks, 

E., Underhill, L.G., Ryan, P.G. & Sherley, R.B. 2020. Parenting in a warming 



Appendix 

178 
 

world: thermoregulatory responses to heat stress in an endangered seabird. 

Conservation Physiology 8: coz109. 

Cowardin, L.M. & Ashe, J.E. 1965. An Automatic Camera Device for Measuring 

Waterfowl Use. The Journal of Wildlife Management 29: 636–640. 

Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., 

Symes, A. & Taylor, P. 2012. Seabird conservation status, threats and priority 

actions: a global assessment. Bird Conservation International 22: 1–34. 

Cutler, T.L. & Swann, D.E. 1999. Using Remote Photography in Wildlife Ecology: 

A Review. Wildlife Society Bulletin (1973-2006) 27: 571–581. 

Davies, D., Dilley, B., Bond, A., Cuthbert, R. & Ryan, P. 2015. Trends and tactics 

of mouse predation on Tristan Albatross Diomedea dabbenena chicks at Gough 

Island, South Atlantic Ocean. Avian Conservation and Ecology 10. 

Dodge, W.E. & Snyder, D.P. 1960. An Automatic Camera Device for Recording 

Wildlife Activity. The Journal of Wildlife Management 24: 340–342. 

Dolliver, J.E. 2019. Using Satellite Imagery to Count Nesting Albatross from Space. 

Master’s thesis, Oregon State University, Corvallis, OR.  

Ekanayake, K.B., Sutherland, D.R., Dann, P. & Weston, M.A. 2015. Out of sight 

but not out of mind: corvids prey extensively on eggs of burrow-nesting 

penguins. Wildl. Res. 42: 509–517. 

Evans, P.G.H. 1986. Monitoring Seabirds in the North Atlantic. In: Mediterranean 

Marine Avifauna (X. Monbailliu, ed), pp. 179–206. Springer, Berlin, Heidelberg. 

Field, S.A., Tyre, A.J. & Possingham, H.P. 2005. Optimizing Allocation of 

Monitoring Effort Under Economic and Observational Constraints. The Journal 

of Wildlife Management 69: 473–482. 

Forys, E.A. & Hevesh, A.R. 2017. Investigating Black Skimmer Chick Diets Using 

Citizen Science and Digital Photography. sena 16: 317–325. 

Frederiksen, M., Mosbech, A., Andersson, A.W., Castro, A.C., Egevang, C., Fort, 

J., Grémillet, D., Linnebjerg, J., Lyngs, P., Haaning Nielsen, H. & Rømer, 

J.K. 2019. POPULATION SIZE AND HABITAT USE OF BREEDING 

SEABIRDS IN NORTHEAST GREENLAND. Field studies 2017-2018. Danish 

Centre for Environment and Energy Scientific Report 337. Roskilde, Denmark: 

Aarhus University.  



Appendix 

179 
 

Fretwell, P.T. & Trathan, P.N. 2009. Penguins from space: faecal stains reveal the 

location of emperor penguin colonies. Global Ecology and Biogeography 18: 

543–552. 

Fretwell, P.T., LaRue, M.A., Morin, P., Kooyman, G.L., Wienecke, B., Ratcliffe, 

N., Fox, A.J., Fleming, A.H., Porter, C. & Trathan, P.N. 2012. An Emperor 

Penguin Population Estimate: The First Global, Synoptic Survey of a Species 

from Space. PLoS ONE 7: e33751. 

Fretwell, P.T., Scofield, P. & Phillips, R.A. 2017. Using super-high resolution 

satellite imagery to census threatened albatrosses. Ibis 159: 481–490. 

Fretwell, P.T., Trathan, P.N., Wienecke, B. & Kooyman, G.L. 2014. Emperor 

Penguins Breeding on Iceshelves. PLoS ONE 9: e85285. 

Gaglio, D., Cook, T.R., Connan, M., Ryan, P.G. & Sherley, R.B. 2017. Dietary 

studies in birds: testing a non-invasive method using digital photography in 

seabirds. Methods in Ecology and Evolution 8: 214–222. 

Goebel, M.E., Perryman, W.L., Hinke, J.T., Krause, D.J., Hann, N.A., Gardner, 

S. & LeRoi, D.J. 2015. A small unmanned aerial system for estimating 

abundance and size of Antarctic predators. Polar Biol 38: 619–630. 

Green, G.W. & Anderson, D.C. 1961. A Simple and Inexpensive Apparatus for 

Photographing Events at Pre-set Intervals1. The Canadian Entomologist 93: 741–

745. 

Gregory, R.D., Gibbons, D.W. & Donald, P.F. 2004. Bird census and survey 

techniques. In: Sutherland, W.J., Newton, I. & Rhys, G. 2004. Bird Ecology 

and Conservation: A Handbook of Techniques. New York, USA: Oxford 

University Press. 17-52.  

Grémillet, D., Enstipp, M.R., Boudiffa, M. & Liu, H. 2006. Do cormorants injure 

fish without eating them? An underwater video study. Marine Biology 148: 

1081–1087. 

Grenzdörffer, G.J. 2013. UAS-based automatic bird count of a common gull colony. 

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-1/W2: 169–174. 

Grishagin, I.V. 2015. Automatic cell counting with ImageJ. Analytical Biochemistry 

473: 63–65. 

Guinet, C., Jouventin, P. & Malacamp, J. 1995. Satellite remote sensing in 

monitoring change of seabirds: use of Spot Image in king penguin population 

increase at Ile aux Cochons, Crozet Archipelago. Polar Biol 15: 511–515. 



Appendix 

180 
 

Handley, J.M. & Pistorius, P. 2016. Kleptoparasitism in foraging gentoo penguins 

Pygoscelis papua. Polar Biol 39: 391–395. 

Handley, J.M., Thiebault, A., Stanworth, A., Schutt, D. & Pistorius, P. 2018. 

Behaviourally mediated predation avoidance in penguin prey: in situ evidence 

from animal-borne camera loggers. Royal Society Open Science 5: 171449. 

Harding, A.M.A., Piatt, J.F., Schmutz, J.A., Shultz, M.T., Pelt, T.I.V., Kettle, 

A.B. & Speckman, S.G. 2007. Prey Density and the Behavioral Flexibility of a 

Marine Predator: The Common Murre (Uria aalge). Ecology 88: 2024–2033. 

Harris, M.P. 1982. Promiscuity in the Shag as shown by timelapse photography. Bird 

Study 29: 149–154. 

Hart, L.A., Downs, C.T. & Brown, M. 2016. Sitting in the sun: Nest microhabitat 

affects incubation temperatures in seabirds. Journal of Thermal Biology 60: 149–

154. 

Hays, G.C. 2015. New insights: animal-borne cameras and accelerometers reveal the 

secret lives of cryptic species. Journal of Animal Ecology 84: 587–589. 

Hebblewhite, M. & Haydon, D.T. 2010. Distinguishing technology from biology: a 

critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc 

Lond B Biol Sci 365: 2303–2312. 

Hervías, S., Henriques, A., Oliveira, N., Pipa, T., Cowen, H., Ramos, J.A., 

Nogales, M., Geraldes, P., Silva, C., de Ybáñez, R.R. & Oppel, S. 2013. 

Studying the effects of multiple invasive mammals on Cory’s shearwater nest 

survival. Biol Invasions 15: 143–155. 

Hinke, J.T., Barbosa, A., Emmerson, L.M., Hart, T., Juáres, M.A., Korczak‐

Abshire, M., Milinevsky, G., Santos, M., Trathan, P.N., Watters, G.M. & 

Southwell, C. 2018. Estimating nest-level phenology and reproductive success 

of colonial seabirds using time-lapse cameras. Methods in Ecology and Evolution 

9: 1853–1863. 

Hodgson, J.C., Baylis, S.M., Mott, R., Herrod, A. & Clarke, R.H. 2016. Precision 

wildlife monitoring using unmanned aerial vehicles. Scientific Reports 6: 1–7. 

Hodgson, J.C., Mott, R., Baylis, S.M., Pham, T.T., Wotherspoon, S., Kilpatrick, 

A.D., Segaran, R.R., Reid, I., Terauds, A. & Koh, L.P. 2018. Drones count 

wildlife more accurately and precisely than humans. Methods in Ecology and 

Evolution 9: 1160–1167. 



Appendix 

181 
 

Horswill, C., Jackson, J.A., Medeiros, R., Nowell, R.W., Trathan, P.N. & 

O’Connell, T.C. 2018. Minimising the limitations of using dietary analysis to 

assess foodweb changes by combining multiple techniques. Ecological 

Indicators 94: 218–225. 

Huffeldt, N.P. & Merkel, F.R. 2013. Remote Time-lapse Photography as a 

Monitoring Tool for Colonial Breeding Seabirds: A Case Study Using Thick-

billed Murres (Uria lomvia). Waterbirds: The International Journal of Waterbird 

Biology 36: 330–341. 

Hughes, B.J., Martin, G.R. & Reynolds, S.J. 2011. The use of Google EarthTM 

satellite imagery to detect the nests of masked boobies Sula dactylatra. wbio 17: 

210–216. 

Hurford, C. 2017. Improving the Accuracy of Bird Counts Using Manual and 

Automated Counts in ImageJ: An Open-Source Image Processing Program. In: 

The Roles of Remote Sensing in Nature Conservation: A Practical Guide and 

Case Studies (R. Díaz-Delgado, R. Lucas, & C. Hurford, eds), pp. 249–276. 

Springer International Publishing, Cham. 

Hutchinson, A.E. 1980. Estimating Numbers of Colonial Nesting Seabirds: A 

Comparison of Techniques. Proceedings of the Colonial Waterbird Group 3: 

235–244. 

Irigoin-Lovera, C., Luna, D.M., Acosta, D.A. & Zavalaga, C.B. 2019. Response of 

colonial Peruvian guano birds to flying UAVs: effects and feasibility for 

implementing new population monitoring methods. PeerJ 7: e8129. 

Israel, M. & Reinhard, A. 2017. Detecting nests of lapwing birds with the aid of a 

small unmanned aerial vehicle with thermal camera. In: 2017 International 

Conference on Unmanned Aircraft Systems (ICUAS), pp. 1199–1207. IEEE, 

Miami, FL, USA. 

Joint Nature Conservation Committee. 2010. Seaduck survey data. Available at: 

http://archive.jncc.gov.uk/page-4570 (accessed 21 January 2020) 

Joint Nature Conservation Committee. 2016. Seabirds Count: A census of breeding 

seabirds of Britain and Ireland. Census Instructions and Recording Form. 

Available at: http://archive.jncc.gov.uk/page-7485 (accessed 21 January 2020)  

Jones, F.M., Allen, C., Arteta, C., Arthur, J., Black, C., Emmerson, L.M., 

Freeman, R., Hines, G., Lintott, C.J., Macháčková, Z., Miller, G., Simpson, 

R., Southwell, C., Torsey, H.R., Zisserman, A. & Hart, T. 2018. Time-lapse 



Appendix 

182 
 

imagery and volunteer classifications from the Zooniverse Penguin Watch 

project. Sci Data 5: 180124. 

Jones, F.M., Arteta, C., Zisserman, A., Lempitsky, V., Lintott, C.J. & Hart, T. 

2020. Processing citizen science- and machine-annotated time-lapse imagery for 

biologically meaningful metrics. Scientific Data 7: 1–15. 

Kemper, G., Weidauer, A. & Coppack, T. 2016. MONITORING SEABIRDS AND 

MARINE MAMMALS BY GEOREFERENCED AERIAL PHOTOGRAPHY. 

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B8: 689–694. 

Korczak-Abshire, M., Kidawa, A. & Zmarz, A. 2016. Preliminary study on nesting 

Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Science 23: 

1-16.  

Korczak-Abshire, M., Zmarz, A., Rodzewicz, M., Kycko, M., Karsznia, I. & 

Chwedorzewska, K.J. 2019. Study of fauna population changes on Penguin 

Island and Turret Point Oasis (King George Island, Antarctica) using an 

unmanned aerial vehicle. Polar Biol 42: 217–224. 

Kucera, T.E. & Barrett, R.H. 2011. A History of Camera Trapping. In: Camera 

Traps in Animal Ecology: Methods and Analyses (A. F. O’Connell, J. D. Nichols, 

& K. U. Karanth, eds), pp. 9–26. Springer Japan, Tokyo. 

Lieber, L., Nimmo-Smith, W.A.M., Waggitt, J.J. & Kregting, L. 2019. Localised 

anthropogenic wake generates a predictable foraging hotspot for top predators. 

Commun Biol 2: 123. 

Loarie, S.R., Joppa, L.N. & Pimm, S.L. 2007. Satellites miss environmental 

priorities. Trends in Ecology & Evolution 22: 630–632. 

Lorentzen, E., Steen, H. & Strøm, H. 2010. Estimating chick survival in cliff-nesting 

seabirds – a hazard made easy with monitoring cameras. SEAPOP Short Report 

8. 1-10.  

Luna, N., Varela, A.I., Brokordt, K. & Luna-Jorquera, G. 2018. Assessing 

Potential Predation Risk by Introduced Predators on Unattended Eggs in the Red-

Tailed Tropicbird, Phaethon rubricauda, on Rapa Nui (Easter Island). Tropical 

Conservation Science 11: 1940082918785079. 

Lynch, H.J., Naveen, R., Trathan, P.N. & Fagan, W.F. 2012a. Spatially integrated 

assessment reveals widespread changes in penguin populations on the Antarctic 

Peninsula. Ecology 93: 1367–1377. 



Appendix 

183 
 

Lynch, H.J., White, R., Black, A.D. & Naveen, R. 2012b. Detection, differentiation, 

and abundance estimation of penguin species by high-resolution satellite 

imagery. Polar Biol 35: 963–968. 

Lyons, M., Brandis, K., Wilshire, J., Murray, N., McCann, J., Kingsford, R. & 

Callaghan, C. 2019. A protocol for using drones to assist monitoring of large 

breeding bird colonies. EcoEvoRxiv. 

McCafferty, D.J. 2013. Applications of thermal imaging in avian science. Ibis 155: 

4–15. 

McClelland, G.T., Bond, A.L., Sardana, A. & Glass, T. 2016. Rapid population 

estimate of a surface-nesting seabird on a remote island using a low-cost 

unmanned aerial vehicle. Marine Ornithology 44: 215–220. 

McLeay, L.J., Page, B., Goldsworthy, S.D., Ward, T.M. & Paton, D.C. 2009. Size 

matters: variation in the diet of chick and adult crested terns. Mar Biol 156: 1765–

1780. 

Mellor, M., Craig, T., Baillie, D. & Woolaghan, P. 2007. Trial High Definition 

Video Survey of Seabirds. COWRIE Ltd.  

Mendez, L., Prudor, A. & Weimerskirch, H. 2017. Ontogeny of foraging behaviour 

in juvenile red-footed boobies ( Sula sula ). Scientific Reports 7: 13886. 

Merkel, F.R., Johansen, K.L. & Kristensen, A.J. 2016. Use of time-lapse 

photography and digital image analysis to estimate breeding success of a cliff-

nesting seabird. Journal of Field Ornithology 87: 84–95. 

Mitchell, P.I. & Parsons, M. 2007. Strategic Review of the UK Seabird Monitoring 

Programme. JNCC Unpublished Report.  

Moll, R.J., Millspaugh, J.J., Beringer, J., Sartwell, J. & He, Z. 2007. A new ‘view’ 

of ecology and conservation through animal-borne video systems. Trends in 

Ecology & Evolution 22: 660–668. 

Mosbech, A., Lyngs, P. & Johansen, K.L. 2017. Estimating little auk (Alle alle) 

breeding density and chick-feeding rate using video surveillance. Polar Research 

36: 1374122. 

Mudge, G.P., Aspinall, S.J. & Crooke, C.H. 1987. A photographic study of seabird 

attendance at Moray Firth colonies outside the breeding season. Bird Study 34: 

28–36. 



Appendix 

184 
 

Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J.J. & 

Tablado, Z. 2017. Unmanned aircraft systems as a new source of disturbance for 

wildlife: A systematic review. PLOS ONE 12: e0178448. 

Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M. & Pyšek, P. 2017. 

Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion 

Monitoring. Front. Plant Sci. 8. 

Nowak, M.M., Dziób, K. & Bogawski, P. 2019. Unmanned Aerial Vehicles (UAVs) 

in environmental biology: a review. European Journal of Ecology 4: 56–74. 

Oosthuizen, W.C., Krüger, L., Jouanneau, W. & Lowther, A.D. 2020. Unmanned 

aerial vehicle (UAV) survey of the Antarctic shag (Leucocarbo bransfieldensis) 

breeding colony at Harmony Point, Nelson Island, South Shetland Islands. Polar 

Biol 43: 187–191. 

Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. 2015. Population Trend of 

the World’s Monitored Seabirds, 1950-2010. PLoS One 10. 

Pascalis, F., Collins, P. & Green, J. 2018. Utility of time-lapse photography in 

studies of seabird ecology. PLOS ONE 13: e0208995. 

Perkins, A.J., Bingham, C.J. & Bolton, M. 2018. Testing the use of infra-red video 

cameras to census a nocturnal burrow-nesting seabird, the European Storm Petrel 

Hydrobates pelagicus. Ibis 160: 365–378. 

Petersen, A., Irons, D., Anker-Nilssen, T., Artukhin, Y., Barrett, R., Boertmann, 

D., Egevang, C.,  Gavrilo, M.V., Gilchrist, G., Hario, M., Mallory, M., 

Mosbech, A., Olsen, B., Osterblom, H.,  Robertson, G. &  Strøm, H.. 2008. 

Framework for a Circumpolar Arctic Seabird Monitoring Network. CAFF CBMP 

Report No.15. Akureyri, Iceland: CAFF International Secretariat. 

Pfeifer, C., Barbosa, A., Mustafa, O., Peter, H.-U., Rümmler, M.-C. & Brenning, 

A. 2019. Using Fixed-Wing UAV for Detecting and Mapping the Distribution 

and Abundance of Penguins on the South Shetlands Islands, Antarctica. Drones 

3: 39. 

Ponganis, P.J., Dam, R.P.V., Marshall, G., Knower, T. & Levenson, D.H. 2000. 

Sub-ice foraging behavior of emperor penguins. Journal of Experimental Biology 

203: 3275–3278. 

Radjawali, I., Pye, O. & Flitner, M. 2017. Recognition through reconnaissance? 

Using drones for counter-mapping in Indonesia. The Journal of Peasant Studies 

44: 817–833. 



Appendix 

185 
 

Robinson, R.A. & Ratcliffe, N. 2010. The Feasibility of Integrated Population 

Monitoring of Britain’s Seabirds. BTO Research Report No. 526. Thetford, UK: 

British Trust for Ornithology.  

RSPB. 2020. Puffarazzi. Available at: https://www.rspb.org.uk/reserves-and-

events/events-dates-and-inspiration/puffarazzi/  (accessed 27 January 2020).  

Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U. & Esefeld, J. 2016. 

Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar 

Biol 39: 1329–1334. 

Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U. & Esefeld, J. 2018. 

Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro 

UAV. Polar Biol 41: 2481–2493. 

Rush, G.P., Clarke, L.E., Stone, M. & Wood, M.J. 2018. Can drones count gulls? 

Minimal disturbance and semiautomated image processing with an unmanned 

aerial vehicle for colony-nesting seabirds. Ecology and Evolution 8: 12322–

12334. 

Sakamoto, K.Q., Takahashi, A., Iwata, T. & Trathan, P.N. 2009. From the Eye of 

the Albatrosses: A Bird-Borne Camera Shows an Association between 

Albatrosses and a Killer Whale in the Southern Ocean. PLOS ONE 4: e7322. 

Sardà‐Palomera, F., Bota, G., Viñolo, C., Pallarés, O., Sazatornil, V., Brotons, L., 

Gomáriz, S. & Sardà, F. 2012. Fine-scale bird monitoring from light unmanned 

aircraft systems. Ibis 154: 177–183. 

Schwaller, M.R., Olson, C.E., Ma, Z., Zhu, Z. & Dahmer, P. 1989. A remote 

sensing analysis of Adélie penguin rookeries. Remote Sensing of Environment 

28: 199–206. 

Sinclair, N.C., Harris, M.P., Nager, R.G., Leakey, C.D.B. & Robbins, A.M. 2017. 

Nocturnal colony attendance by common guillemots Uria aalge at colony in 

Shetland during the pre-breeding season. Seabird 30: 51–62. 

Southwell, C. & Emmerson, L. 2015. Remotely-operating camera network expands 

Antarctic seabird observations of key breeding parameters for ecosystem 

monitoring and management. Journal for Nature Conservation 23: 1–8. 

Stolpmann, L.M., Landers, T.J. & Russell, J.C. 2019. Camera trapping of Grey-

faced Petrel ( Pterodroma gouldi ) breeding burrows reveals interactions with 

introduced mammals throughout the breeding season. Emu - Austral Ornithology 

119: 391–396. 



Appendix 

186 
 

Takahashi, A., Sato, K., Naito, Y., Dunn, M.J., Trathan, P.N. & Croxall, J.P. 

2004. Penguin–mounted cameras glimpse underwater group behaviour. Proc. R. 

Soc. Lond. B 271. 

Temple, S.A. 1972. A Portable Time-Lapse Camera for Recording Wildlife Activity. 

The Journal of Wildlife Management 36: 944–947. 

Thaxter, C.B. & Burton, N.H.K. 2009. High Definition Imagery for Surveying 

Seabirds and Marine Mammals: A Review of Recent Trials and Development of 

Protocols. British Trust for Ornithology Report Commissioned by COWRIE Ltd. 

Thetford, UK: British Trust for Ornithology.  

Thiebault, A., Mullers, R.H.E., Pistorius, P.A. & Tremblay, Y. 2014. Local 

enhancement in a seabird: reaction distances and foraging consequence of 

predator aggregations. Behav Ecol 25: 1302–1310. 

Thiebot, J.-B., Barbraud, C., Delord, K., Marteau, C. & Weimerskirch, H. 2014. 

Do Introduced Mammals Chronically Impact the Breeding Success of the 

World’s Rarest Albatross? jorn 13: 41–46. 

Tremblay, Y., Thiebault, A., Mullers, R. & Pistorius, P. 2014. Bird-Borne Video-

Cameras Show That Seabird Movement Patterns Relate to Previously Unrevealed 

Proximate Environment, Not Prey. PLOS ONE 9: e88424. 

Van Berkel, T. 2014. Camera trapping for wildlife conservation: expedition field 

techniques. Geography Outdoors, London. 

Villegas, P., Mena, L., Constantine, A., Villalba, R. & Ochoa, D. 2018. Data 

Imaging Acquisition and Processing as a Methodology for Estimating the 

Population of Frigates Using UAVs. In: 2018 IEEE ANDESCON, pp. 1–4. 

Votier, S.C., Bearhop, S., MacCormick, A., Ratcliffe, N. & Furness, R.W. 2003. 

Assessing the diet of great skuas, Catharacta skua, using five different techniques. 

Polar Biol 26: 20–26. 

Votier, S.C., Bicknell, A., Cox, S.L., Scales, K.L. & Patrick, S.C. 2013. A Bird’s 

Eye View of Discard Reforms: Bird-Borne Cameras Reveal Seabird/Fishery 

Interactions. PLoS One 8. 

Waldron, A., Mooers, A.O., Miller, D.C., Nibbelink, N., Redding, D., Kuhn, T.S., 

Roberts, J.T. & Gittleman, J.L. 2013. Targeting global conservation funding to 

limit immediate biodiversity declines. PNAS 110: 12144–12148. 



Appendix 

187 
 

Walsh, P.M., Halley, D.J., Harris, M.P., Del Nevo, A., Sim, I.M.W. & Tasker, 

M.L. 1995. Seabird monitoring handbook for Britain and Ireland. Peterborough, 

UK: JNCC / RSPB /ITE / Seabird Group.  

Waluda, C.M., Dunn, M.J., Curtis, M.L. & Fretwell, P.T. 2014. Assessing penguin 

colony size and distribution using digital mapping and satellite remote sensing. 

Polar Biol 37: 1849–1855. 

Wang, D., Shao, Q. & Yue, H. 2019. Surveying Wild Animals from Satellites, 

Manned Aircraft and Unmanned Aerial Systems (UASs): A Review. Remote 

Sensing 11: 1308. 

Watanuki, Y., Daunt, F., Takahashi, A., Newell, M., Wanless, S., Sato, K. & 

Miyazaki, N. 2008. Microhabitat use and prey capture of a bottom-feeding top 

predator, the European shag, shown by camera loggers. Marine Ecology Progress 

Series 356: 283–293. 

Weimerskirch, H., Prudor, A. & Schull, Q. 2018. Flights of drones over sub-

Antarctic seabirds show species- and status-specific behavioural and 

physiological responses. Polar Biol 41: 259–266. 

Weller, M.W. & Derksen, D.V. 1972. Use of Time-Lapse photography to Study 

Nesting Activities of Birds. The Auk 89: 196–200. 

Whelan, R., Clarke, C., Almansoori, N., Jaradat, A., Qadi, N.S.A. & Muzaffar, 

S.B. 2018. Demographic consequences of native fox predation on Socotra 

cormorants on Siniya Island, United Arab Emirates. wbio 2018. 1-13.  

Wilhelm, S.I., Mailhiot, J., Arany, J., Chardine, J.W., Robertson, G.J. & Ryan, 

P.C. 2015. Update and trends of three important seabird populations in the 

western North Atlantic using a geographic information system approach. Marine 

Ornithology 43: 211–222. 

Williams, H.M. & DeLeon, R.L. 2020. Deep learning analysis of nest camera video 

recordings reveals temperature-sensitive incubation behavior in the purple martin 

(Progne subis). Behav Ecol Sociobiol 74: 7. 

Yoda, K., Murakoshi, M., Tsutsui, K. & Kohno, H. 2011. Social Interactions of 

Juvenile Brown Boobies at Sea as Observed with Animal-Borne Video Cameras. 

PLoS One 6. 

  



Appendix 

188 
 

Table 1 Advantages and disadvantages of using Unmanned Aerial Vehicles (UAVs) 

to monitor seabirds.  

Advantages Disadvantages 

Cost-effective: short survey time, low 

purchase and operation costs.  
(Bibby et al. 2000, Buckland et al. 2012, Rush 

et al. 2018, Villegas et al. 2018, Nowak et al. 

2019) 

More affordable UAVs take lower resolution 

images.  (Nowak et al. 2019) 

Portability and limited launch requirements 

allow operation in most locations and 

terrains.  
(Goebel et al. 2015) 

National and regional administrative 

regulations can affect possibility of data 

acquisition.  
(Nowak et al. 2019) 

Manoeuvrable, so can operate over small 

areas and monitor small objects.  
(Nowak et al. 2019) 

Reduced use in areas with limited electricity.  
(Radjawali et al. 2017, Nowak et al. 2019) 

Operate at locations and times when 

ground-based field observations would be 

near-impossible.   

For example, remote locations, onshore and 

offshore, difficult terrain, at night.  
(Rush et al. 2018) 

Vulnerable to damage in adverse weather 

conditions.  
(McClelland et al. 2016) 

Greater control over the scale, quality, and 

temporal and spatial resolution of images.  
(Thaxter & Burton 2009, Rush et al. 2018, 

Korczak-Abshire et al. 2019, Nowak et al. 2019) 

Large amount of data to handle and analyse.  
(Rush et al. 2018) 
 

Downward-facing view can observe birds 

in a range of habitats and help reduce 

missed counts. 
(Rush et al. 2018, Villegas et al. 2018) 

Data quality depends on operator skill, 

environment and meteorological conditions 

during flight.  
(Nowak et al. 2019) 

Combine habitat mapping and seabird 

occupancy from images, to investigate how 

habitat features affect populations.  
(Oosthuizen et al. 2020) 

Animals may modify their behaviour in 

response to a flying object, increasing intra-

specific aggression, predation of eggs/chicks 

and nest abandonment.  
(Rush et al. 2018, Nowak et al. 2019) 
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Permanent record viewable any number of 

times and available for independent 

verification.  
(Thaxter & Burton 2009, Buckland et al. 2012, 

Rush et al. 2018) 

 

Reduced nest and site disturbance compared 

to walk-through surveys.  
(Rush et al. 2018) 

 

Reduced disturbance when flown at the 

same height as manned aircraft.  
(Goebel et al. 2015, Korczak-Abshire et al. 

2019)  

 

Removes observer bias from variation in 

surveyor experience and alertness over a 

long period. This is useful when observers 

are swamped with a large number of birds to 

count.  
(Bibby et al. 2000, Rush et al. 2018, Thaxter & 

Burton 2009) 
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Table 2 Advantages and disadvantages of using time-lapse photography to monitor 

seabirds.  

Advantages  Disadvantages 

Cost-effective: saves time and money 

during fieldwork.  

For example, difficult for a single researcher 

to record detailed nest activity across 

multiple nests at a colony.  
(Weller & Derksen 1972, Black 2018, Pascalis 

et al. 2018) 

Mechanical failures.   
(Cutler & Swann 1999, Merkel et al. 2016, Black 

2018) 

Increased spatial and temporal scale of 

monitoring.  
(Southwell & Emmerson 2015, Merkel et al. 

2016) 

Programming errors.  
(Cutler & Swann 1999, Black 2018) 

Operates at locations and times when field 

observation would be near-impossible.  

For example, remote locations, harsh 

weather conditions, at night.  
(Cutler & Swann 1999, Southwell & Emmerson 

2015, Black et al. 2017, Sinclair et al. 2017, 

Black 2018, Black et al. 2018) 

Maintenance required.  

For example, images are vulnerable to 

camera movements caused by harsh weather 

conditions.   
(Merkel et al. 2016, Black 2018) 

Removes observer bias from variation in 

surveyor experience and alertness over a 

long period.  
(Cowardin & Ashe 1965, Weller & Derksen 

1972, Cutler & Swann 1999, Black 2018) 

More affordable cameras take lower 

resolution images.  
(Black 2018) 

More frequent observations than field 

workers allows observation of elusive 

species, obscure behaviours and phenology.  
(Cutler & Swann 1999, Black 2018) 

Large camera networks needed to monitor an 

entire colony, which are expensive to install 

and maintain.  
(Black 2018) 

Permanent record viewable any number of 

times and available for independent 

verification.  
(Cutler & Swann 1999, Merkel et al. 2016; 

Sinclair et al. 2017, Black, 2018) 

Large amount of data to handle and analyse.  
(Merkel et al. 2016, Black 2018) 
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Easier to maintain comparable study effort 

between years.  
(Merkel et al. 2016) 

Cameras rarely possess thermal imaging or 

infra-red sensors, making night monitoring 

difficult.  
(Black et al. 2018) 

Infrequent visitation lowers nest and site 

disturbance.  
(Cutler & Swann 1999) 
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Table 3 Advantages and disadvantages of photo-sampling for obtaining information 

on seabird chick diet.  

Advantages Disadvantages 

Non-invasive, assuming photographers 

remain a safe distance from birds.  
(Gaglio et al. 2017) 

Only suitable for species that carry prey in 

their bills.  
(Gaglio et al. 2017) 

Possible in a range of locations, including 

from land and boat.  
(Gaglio et al. 2017) 

Large amount of data to handle and process.  
(Gaglio et al. 2017) 

Large amounts of data can be collected in a 

short time-period.  

Repeated photography of individuals 

carrying the same prey load.  
(Gaglio et al. 2017) 

Minimal training to use cameras.  
(Gaglio et al. 2017) 

Observer bias.   
(Gaglio et al. 2017) 

Equipment relatively affordable and 

durable.  
 

(Gaglio et al. 2017) 

Chick diet is not always representative of 

adult diet, or diet outside the breeding 

season.  
(McLeay et al. 2009, Gaglio et al. 2017) 

Permanent record of observations available 

for independent verification and re-analysis 

without loss of quality.  

For example, prey samples degrade over 

time. 
(Gaglio et al. 2017) 

Challenging in poor weather conditions.  
(Gaglio et al. 2017) 

Only requires one individual to collect 

photographs.  
(Gaglio et al. 2017) 

Large-scale studies across multiple 

locations/species are time-consuming, 

unless multiple people are deployed.  

More likely to record the entire prey item 

than regurgitations, aiding accurate 

identification.  
(Gaglio et al. 2017, McLeay et al. 2009) 
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Figure 1 Landsat ETM imagery used to identify the Windy Creek Emperor Penguin 

Aptenodytes forsteri colony from faecal stains. a) Data viewed online from the Landsat 

Image Mosaic of Antarctica (LIMA) website showed a potential penguin colony. b) Data 

downloaded from the LIMA website and viewed in GIS clearly showed the brown faecal 

staining of the colony. c) Spectral analysis identified areas where the red band had a higher 

value than the blue band. The resulting positive area, shown in red, located the exact area 

of the colony (Fretwell & Trathan, 2009). Images: MAXAR.  

Figure 2 Aerial photograph of the gannetry on Grassholm Island, UK, 2015. Image: Sarah 

Money.  
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Figure 3 DJI fuspire 1 quadcopter Unmalllled Aerial Vehicle (UA V) fitted with a DJI 

FC350 camera being used to smvey Lesser Black-backed Gull nests on Skokholm Island, 

UK, 2016 (Rush et al. 2018). Image: Matt Wood. 

Figme 4 Time-lapse photograph of nesting Black-legged Kittiwakes at Protheroe 's Dock, 

Skomer Island, UK, 2018. Image: Seabird Watch. 
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Figure 5 Photograph of an Atlantic Puffin carrying prey, submitted to RSPB Project 

Puffin UK. Image: Alice Edney.  

Figure 6 Annotated Seabird Watch image on the Zooniverse platform. Yellow circles 

mark adult Black-legged Kittiwakes and blue circles mark adult guillemots. Image 

annotated by Alice Edney. 




