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Abstract 

Farming faces a wider variety of risks in comparison with other economic sectors, and the systemic 
nature of agricultural risks induce farmers to seek government intervention. In the EU, public 
interventions supporting agricultural risk management are contained in the Risk Management 
Toolkit (RMT) of the Common Agricultural Policy (CAP), which is a voluntary policy adopted by less 
than half of the EU Member States. We focus in particular on Measure 5 on “Restoring agricultural 
production potential damaged by natural disasters and catastrophic events and introduction of 
appropriate prevention actions” and Measure 17 on “Risk management” of the CAP’s Rural 
Development policy. In order to understand the relatively low adoption of the RMT, this paper 
investigates the drivers of EU regions’ expenditure towards the RMT by applying and comparing 
four types of regional-level spatial models, namely a spatial error model, a spatial autoregressive 
model, a spatial lag of X model and a spatial Durbin error model. Results suggest that there is a 
strong spatial dependence in the level of RMT expenditure. Higher expenditure towards RMT 
occurs in regions more exposed to environmental risks, with more land in mountainous and 
disadvantaged areas and with more arable, pasture and forest land. The expenditure on financial 
contributions for investments to restore agricultural production damaged by natural disasters is 
lower in agricultural intensive regions but higher in rich regions where pasture land is 
predominant. The expenditure for supporting insurance premiums and mutual funds is lower 
when the incidence of environmental risks increases and when land use is highly diversified but is 
higher in richer regions. Our results provide relevant insights for policymakers in the process of 
developing the future risk management tools of the new CAP post-2020. 
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1 Introduction 

Farming faces a wider variety of risks in comparison with other businesses, ranging from 
environmental, market, financial, institutional and human or personal risks. Such risks are typically 
dealt with at the individual farm level, with farms adopting different risk management strategies 
such as agricultural insurances, production/marketing contracts and derivatives, and production 
or income diversification (Vigani and Kataghe, 2019). However, the systemic nature of risks makes 
governments responsible for maintaining farmers in agriculture and for ensuring adequate food 
supplies. Moreover, the costs associated with risk management (Vigani and Kataghe, 2019), the 
failures of agricultural insurance markets such as information asymmetries, adverse selection 
(Enjolrasa and Sentis, 2011) and moral hazard (Goodwin, 2001), induce farmers to ask for 
government’s intervention. 

The portfolio of tools that governments can adopt to mitigate the effects of risks on farm 
businesses is varied and include direct payments to stabilize farm income, specific payments for 
disaster assistance, trade policy instruments to stabilize domestic markets and reduce price 
volatility (e.g. tariff and non-tariff barriers, export subsidies, import quotas), support to mutual 
funds, subsidies to agricultural insurance schemes and tax regimes that help farmers to smooth 
the changes in income across good and bad years (Tangermann, 2011). In the European Union 
(EU), public interventions supporting farms are mainly concentrated in the Common Agricultural 
Policy (CAP). The direct payments introduced since the 2003 CAP reform provide farmers with 
overall income support, but specific measures for risk management have been introduced since 
the 2013 CAP reform through articles 36 to 39 of the EU Regulation 1305/2013 on “support for 
rural development by the European Agricultural Fund for Rural Development (EAFRD)”, 
subsequently amended by the EU Regulation 2017/2393 (the Omnibus Regulation). Such articles 
have been transposed into support measures in the Focus Area “supporting farm risk prevention 
and management” (Focus Area 3B) of the Rural Development (RD) Priority on “Food Chain 
Organisation and Risk Management” (Priority 3) by the implementing regulation 807/2014. 

According to the regulations, EU Member States (MS) and regions can voluntarily decide to 
allocate EAFRD funds for the support of agricultural risk management using two measures of the 
RD Programmes, namely, Measure 5 (M5) on “Restoring agricultural production potential 
damaged by natural disasters and catastrophic events and introduction of appropriate prevention 
actions” and Measure 17 (M17) on “Risk management”. More specifically, M5 provides farms with 
financial contributions for investments to restore agricultural production damaged by natural 
disasters and M17 finalized at: i) insurance premiums and mutual funds to cover losses caused by 
climate changes, diseases, pests or environmental incidents; ii) mutual funds to provide 
compensation to farmers facing a severe drop in their income (known also as Income Stabilization 
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Tool). These two measures constitute what is known as the Risk Management Toolkit (RMT) of 
the CAP. Despite farmers long waited and welcomed the support to risk management, only 
fourteen regions in twelve MS decided to adopt the RMT and only with about 1.5% of the total 
RD budget programmed over 2014-2020. 

The aim of this paper is to investigate the drivers of EU regions’ expenditure towards the RMT and 
to identify the potential reasons for the (relative) low voluntary adoption in certain regions and 
the success of the RMT in other regions. In doing so, we refer to a relatively small and recent 
literature studying the drivers of the CAP expenditure. Crescenzi et al. (2015) analysed the 
financial allocations of regional, RD and agricultural policies of the EU in order to assess their 
impact on territorial cohesion. Looking at the 1994–2013 period, they conclude that the territorial 
focus of the CAP conflicts with some of the EU cohesion policies. Zaporozhets et al. (2016) 
examined the determinants of the EU budget allocation in the period 1976 - 2012, identifying two 
alternative explanations of the EU budget distribution across the MS: i) a “needs view” linked to 
the principle of solidarity in which MS, with a relatively large agricultural sector and a relatively 
worse economic situation, are the major recipients of the EU budget; and ii) the budget allocation 
reflects the distribution of the MS’s political power, thus MS with more power in the allocation 
process receive larger shares of the budget. Monsalve et al. (2016) studied the sustainability 
benefits of higher EAFRD spending, finding that MS with higher EAFRD endowments benefits from 
higher economic sustainability. Particularly relevant for our study, both in scope and 
methodology, is the study of Camaioni et al. (2016). For the period 2007-2011, they identify three 
main drivers of RD expenditure. First, country-specific drivers are due to systematic differences in 
rural support across MS. Second, the more a region is rural the more will spend on RD. Lastly, 
authors highlight the importance of a spatial driver in that the influence of bordering regions and 
of their degree of rurality drives regional expenditure on RD. 

Our study contributes to the above-mentioned literature by addressing the particular case of RM 
public expenditure from the RD programs of the CAP. We use regional level data of actual EAFRD 
expenditure on the RMT as a whole and M5 and M17 separately taken from the European 
Commission’s (EC) Clearance Audit Trail System (CATS). To the best of our knowledge, this is the 
first time such data have been used for studying the EU regions’ public expenditure. We 
hypothesize that there are three main regional factors that have a role in national or local 
government decision-making on EAFRD fund allocation to the RMT; namely socio-economic, risk 
and environmental factors. All these factors are analysed by comparing results from four types of 
spatial models: i) spatial error model, ii) spatial autoregressive model, iii) spatial lag of X model, 
and iv) spatial Durbin error model. 
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Overall, results suggest that there is a high spatial dependence in the level of regional expenditure 
for the RMT. More specifically: i) the RMT expenditure in one region is positively dependent on 
the neighbouring regions’ RMT expenditures; ii) there are regional clusters of RMT expenditure 
across the EU; iii) the level of environmental risks and the land use (especially for pasture) of 
neighbouring regions affect RMT expenditure levels. 

More specifically, we found that higher expenditure on RMT is observed in regions more exposed 
to environmental risks, with more land in mountainous and disadvantaged areas and with more 
arable, pasture and forest land. Interestingly, EU regions where the agricultural sector contributes 
more to the regional gross value added (GVA) spend less on the RMT. Expenditure on M17 is lower 
when the incidence of environmental risks increases and when land use is highly diversified but is 
higher in richer regions with high GVA per capita. Finally, expenditure on M5 is lower in 
agricultural intensive regions but higher in rich regions with a predominance of pasture land. 

The reminder of the paper is structured as follows. The next section describes the source of data 
and the selection of variables measuring the drivers of RMT expenditure, and it also tests for 
spatial correlation of the expenditure data. Section 3 explains the methodology, while Section 4 
presents the results. Finally, Section 5 concludes with some policy recommendations. 

 

 

  



 
 
 

 
 

  7 
 

 This Project has received funds from the European Union’s Horizon 2020 research and innovation programme under Grant 
Agreement No. 727520 

Deliverable 2.8 

2 DATA 

The analysis is developed using regional data at the third level of the Nomenclature of Territorial 
Units for Statistics (NUTS3). According to Camaioni et al. (2016), NUTS3 level data have the 
advantage not only to provide a more detailed statistical subdivision with respect the NUTS 2 or 
the country level, but it also allows for reducing the importance of top-down political power as 
driver of expenditure (Zaporozhets et al., 2016) and to account for the actual implementation of 
policies across space and the capacity of territories to attract and use funds. Spatial polygon data 
for NUTS3 regions at 1:1,000,000 scale was downloaded from the Eurostat GISCO geospatial data 
portal.  

We hypothesize that three main regional factors exist and have a role in the national or local 
governments decisions of allocating EU funds for risk management: socio-economic, risk and 
environmental factors. Table 1 describes the variables selected, while Table 2 shows descriptive 
statistics. 

The economic factors indicate the relative capacity of a region to cope against economic losses 
due to risk and disasters and also the dependence of a region’s economic development on the 
agricultural sector. Among the economic variables, the data source for NUTS3 regions expenditure 
on CAP’s direct payments (Pillar 1), RD payments (Pillar 2), M5 and M17 is the Clearance Audit 
Trail System (CATS). These are data collected yearly by the European Commission (EC) of all 
individual payments made to the beneficiaries of CAP’s Pillars I and II for audit, control and 
statistical purposes. While Camaioni et al. (2016) have identified three main drivers for the 
distribution of total RD payments (country-specific, rurality, and spatial effects), here, we are 
interested in comparing what motivate EU regions for allocating part of the total RD payments to 
risk management instead of other RD targets (e.g. job creation, infrastructure, …etc.). Therefore, 
our dependent variables from the CATS are M5 payments, M17 payments, and a composite 
variable from the sum of both M5 and M17 payments (labelled total RM payments). From the 
CATS we also use total RD payments and total CAP subsidies (direct payments plus RD payments).  

Additional social and economic factors for NUTS3 regions are captured by three main variables 
computed from the CATS and EUROSTAT data. These are: 1) GVA per capita: to reflect the level 
of economic development of the region; 2) the share of agriculture in the GVA of the region: to 
reflect the size and importance of the agriculture sector in a region’s economy; and 3) total CAP 
subsidies as percentage of the value added of the agricultural sector: to reflect the level of 
financial support received by the agricultural sector in a region. The population data used to 
calculate per capita values is reported by Eurostat as of 1 January of each year, and the GVA used 
here is at basic prices. Because the land cover data are available only for 2018, we could not 
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develop a panel data analysis and we transformed all the economic data in their four-year 
averages for the period from 2015 to 2018. In this way, we developed a cross-sectional analysis 
exploiting spatial variability instead of time variability. 

As a proxy for environmental risks, we use two variables on soil erosion that are combined 
indicators of a number of potential environmental causes of soil erosion such as heavy rain 
patterns, floods and drought. The higher the soil erosion, the higher is the probability of risk 
exposure. Data on soil erosion for the EU28 was acquired from the EC’s Join Research Centre 
(JRC). Two different spatial data products were downloaded; 1) Soil erosion by water (Revised 
Universal Soil Loss Equation - RUSLE2015) (Panagos et al., 2015); and 2) Soil erosion by wind 
(Revised Wind Erosion Equation – RWEQ) (Borrelli et al., 2017). Both datasets report soil loss per 
raster grid square (100 x 100m for water, 1km x 1km for wind) in tonnes per hectare (T/ha). Soil 
erosion by water is a major challenge for agriculture in the EU, and accounts for a large amount 
of soil loss which has a negative effect on production and agro-ecosystems. Soil erosion by water 
is mainly caused by precipitation, soil type, topography, land use and land management. The 
RUSLE2015 accounts for these factors by calculating annual soil erosion by water using rainfall 
erosivity factor, soil erodibility factor, cover-management factor, slope Length and slope 
steepness factor, and support practices factor (Panagos et al., 2015). Therefore, soil erosion by 
water is a proxy for rain and flood related risks. Soil erosion by wind is also a major challenge for 
EU agriculture in semi-arid regions of the Mediterranean as well as the temperate climate regions 
of the northern EU countries. Wind erosion is caused by several factors that are included in the 
RWEQ using weather factor, wind-erodible fraction of soil and soil crust factor, soil roughness 
factor, and combined vegetation factor (Borrelli et al., 2017). Therefore, soil erosion by wind is a 
proxy for drought related risks. 

Environmental factors influence the agro-ecological condition under which farms operate. 
Different land cover types have different impacts and resilience against environmental risk 
factors, therefore they might require different levels of public support. Regarding land cover, the 
latest CORINE data (“CLC 2018”) was downloaded in vector format from the European 
Environment Agency via the Copernicus data portal. The data comprises over two million spatial 
polygons showing the land cover for Europe across 44 classes, organised into five major land cover 
group types (Level 1 of the CLC): 1) artificial surfaces; 2) agricultural areas; 3) forests and semi-
natural areas; 4) wetlands; 5) water bodies. That data has a minimum mapping unit of 25ha, and 
a reported thematic accuracy of > 85%. Spatial data showing the location of Less Favoured Areas 
(mountainous areas or other areas where the physical landscape results in difficult and more 
expensive agricultural production conditions) across the EU was downloaded from the European 
Environment Agency data portal. These areas, where agricultural production conditions are 
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considered to be difficult, are categorised into four main classes: 1) mountain/hill areas; 2) less-
favoured areas in danger of depopulation; 3) areas with specific handicaps; 4) lakes.  

Table 1. Data description 

Economic variables  

RM expenditure (M17 + M05) 
as % of total RD 

Calculated as the sum of measures 5 and 17 of the RD divided by the total RD expenditure. 
Data obtained from the CATS dataset. 

M17 expenditure as % of 
total RD 

Calculated as measure 17 of the RD divided the total RD expenditure. Data obtained from the 
CATS dataset. 

M05 expenditure as % of 
total RD 

Calculated as measure 5 of the RD divided the total RD expenditure. Data obtained from the 
CATS dataset. 

CAP subsidies (% of 
agriculture VA) 

Calculated as total CAP expenditure divided the GVA of the agricultural sector. Data obtained 
from the CATS dataset and Eurostat [nama_10r_3gva]. 

Agricultural Value Added (% 
of GVA) 

Calculated as the GVA of the agricultural sector divided the region's GVA. Data obtained from 
and Eurostat [nama_10r_3gva]. 

GVA per capita Calculated as the GVA of a region divided by the region's population. Data obtained from and 
Eurostat [nama_10r_3gva] and [demo_r_pjangrp3]. 

Risk variables 

Soil erosion (wind) Average soil erosion by wind in tonnes per ha. Data obtained from JRC. 

Soil erosion (water) Average soil erosion by water in tonnes per ha. Data obtained from JRC. 

Environmental variables 

LFA (% of area) Calculated as less favoured area divided by total area. LFA data is obtained from the European 
Environment Agency, and total area from CORINE land cover data. 

Land diversity index 

For the land diversity index, we only consider the five rural type of land (arable, crops, pastures, 
heterogenous agriculture, and forest). It is calculated as 1 - Simpson's Index of Diversity (𝐷𝐷), 

where 𝐷𝐷 = ∑ �𝑎𝑎𝑖𝑖
𝐴𝐴
�
2

𝑅𝑅
𝑖𝑖 . 𝑅𝑅 is the number of land types (here are 5 types of land as below), 𝑎𝑎𝑖𝑖 is 

the area of each type of land, and  𝐴𝐴 is the total land area.  

The value of the index takes the range between 0 and 1, where the greater the value the more 
diversity is the land, such that 1 is completely diverse land and 0 is completely homogenous 
land. 

Arable land (% of total area) Calculated as total arable land (CORINE codes: 211+212+213) divided total area. 

Permanent crops (% of total 
area) Calculated as total permanent crops land (CORINE codes: 221+222+223) divided total area. 

Pastures (% of total area) Calculated as total pastures land (CORINE codes: 231) divided total area. 

Heterogeneous agriculture 
(% of total area) 

Calculated as total heterogeneous agriculture land (CORINE codes: 241+242+243+244) divided 
total area. 

Forest (% of total area) Calculated as total land for forests (CORINE codes: 311+312+313) divided total area. 

Country dummy A dummy variable that takes the values from 1 to 28 for EU Member States 
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Table 2. Summary statistics 

Variable Obs. Mean Std. Dev. Min Max 
(log) RM expenditure (M17 + M05) as % of total RD 1,265 -0.99 1.92 -13.45 0.90 
(log) M17 expenditure as % of total RD 1,265 -0.80 1.78 -10.56 0.90 
(log) M05 expenditure as % of total RD 1,265 -0.72 1.99 -13.45 0.00 
(log) CAP subsidies (% of agri VA) 1,265 0.19 0.90 -6.88 3.26 
(log) Agricultural Value Added (% of GVA) 1,265 -4.19 1.55 -10.11 -1.45 
(log) LFA (% of area) 1,265 -0.90 1.66 -13.59 0.00 
(log) Soil erosion (wind) 1,265 -2.57 2.72 -21.44 2.34 
(log) Soil erosion (water) 1,265 0.28 1.13 -4.12 3.34 
(log) Land diversity index 1,265 -0.64 0.40 -4.13 -0.26 
(log) Arable land (% of total area) 1,265 -1.75 1.33 -8.52 0.00 
(log) Permanent crops (% of total area) 1,265 -3.11 3.02 -12.06 0.00 
(log) Pastures (% of total area) 1,265 -2.76 1.62 -12.47 0.00 
(log) Heterogeneous agriculture (% of total area) 1,265 -3.29 2.00 -11.20 0.00 
(log) Forest (% of total area) 1,265 -1.75 1.10 -9.46 0.00 
(log) GVA per capita 1,265 -3.87 0.61 -5.89 -1.98 
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3 METHODS 

3.1 Ordinary least squares (OLS) model 

The first model considered for estimating the drivers of RMT expenditure across EU NUTS3 
regions is a simple ordinary least squares (OLS) model. The OLS model takes the form of: 

 

𝒀𝒀 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝜺𝜺 (1) 

 

Where 𝒀𝒀 = 𝑦𝑦𝑖𝑖 , (𝑖𝑖 = 1, … ,𝑁𝑁) is the dependent variable (RMT expenditure) in the form of (𝑁𝑁 × 1) 
vector, and 𝑁𝑁 is the number of NUTS3 regions considered (𝑁𝑁 = 1,265). We use three different 
dependent variables 𝒀𝒀:  

1) Risk management expenditure (measure 17 plus measure 05) as a percentage of total RD 
expenditures (RD payments or pillar 2);  

2) Measure 17 expenditure as a percentage of RD payments; and  
3) Measure 05 expenditure as a percentage of RD payments.  

𝛽𝛽0 is the intercept (constant) term. 𝑿𝑿 is an (𝑁𝑁 × 𝐾𝐾) matrix of exogenous variables representing:  

1) CAP expenditure as a percentage of agricultural value-added; 
2) Agricultural value added as a percentage of GVA; 
3) Soil erosion by wind and water (average tonnes per ha); 
4) Land cover: type of land cover as a percentage of total area (arable, permanent crops, 

pastures, heterogeneous agriculture, and forests); 
5) Land diversity index; 
6) Least Favourite Areas as a percentage of the total area; 
7) GVA per capita; and 
8) Country dummy variable. 

All variables are log transformed, and CAP expenditures, agricultural value added and GVA per 
capita are four-years averages. 

 𝜺𝜺 is the disturbance or error term that is an (𝑁𝑁 × 1) vector which OLS assumes to be independent 
and identically distributed (i.i.d) with an expected value of zero and a constant variance, that is 
𝜀𝜀𝑛𝑛~(0,𝜎𝜎2). Because Breusch–Pagan tests do not support the null hypothesis of constant 
variance, the standard errors of the reported OLS estimations are Huber-White-corrected 
standard errors to control for the presence of heteroskedasticity. 
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Equation (1) ignores the presence of potential endogeneity (correlation between 𝑿𝑿 and 𝜺𝜺) and 
also excludes the presence of spatial correlation across regions assuming that there is no spatial 
dependence. However, even after obtaining Huber-White-corrected standard errors, the White-
Koenker test for heteroskedasticity rejects the null hypothesis of constant variance and that the 
residuals are homoscedastic. In addition, the results of the Moran test for spatial correlation 
among the residuals rejects the assumption that the error is i.i.d, and suggest the presence of 
spatial dependence among the risk management expenditures (Tables 3, 4, and 5). 

  

3.2 Testing spatial autocorrelation and spatial data processing 

Processing, analysis, and visualisation of the spatial data were conducted using the open-source 
software tools QGIS (v.3.14.14), GeoDa (v.1.14.0), and R (v.3.6.1 with RStudio v.1.2.5001). For the 
CORINE data, land cover polygons were ‘intersected’ with the NUTS3 region polygons and QGIS 
and each assigned an ID code of the NUTS3 region in which they were located (land use polygons 
that straddled NUTS3 boundaries were split into smaller polygons). The total land area (km2) of 
each land cover type within each NUTS3 region was then calculated by grouping and summarising 
the attribute table of the intersected layer using R. A similar process was used to calculate the 
land area of the LFA polygons within each NUTS region. For the raster soil erosion data, mean 
T/ha was calculated across each region using the zonal statistics tools in QGIS. Testing for spatial 
autocorrelation 

In order to assess whether a spatial regression modelling approach might be justified, a global 
Moran’s I test (Moran, 1950) was first run (using GeoDa) to determine whether the dependent 
variables were spatially autocorrelated: 

𝑛𝑛
𝑆𝑆0

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − �̄�𝑥)(𝑥𝑥𝑖𝑖 − �̄�𝑥)𝑖𝑖𝑖𝑖

∑ (𝑥𝑥𝑖𝑖 − �̄�𝑥)2𝑖𝑖
 

 

where �̄�𝑥 is the mean of the 𝑥𝑥 variable, 𝑤𝑤𝑖𝑖𝑖𝑖  are the elements of a weights matrix between regions 
i and j, and 𝑆𝑆0 is the sum of the elements of the weights matrix: 𝑆𝑆0 = ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . In this case, as in 
Camaioni et al.’s (2016) study, a first-order queen’s contiguity matrix was adopted for the weights 
matrix, in favour of distance weighted or K-nearest neighbour (KNN) alternatives, due to the size 
heterogeneity of the NUTS3 regions. A Moran’s I statistic reports a value of between -1 (strongly 
negatively autocorrelated – i.e. spatially heterogeneous with no spatial dependency) and +1 
(strongly positively spatially autocorrelated with high spatial dependency).  
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The first-order queen contiguity matrix (𝑾𝑾) is a positive and symmetric (𝑁𝑁 ×  𝑁𝑁) matrix that 
signifies for each observation 𝑖𝑖 its neighboring spatial units (locations). Such that, 𝑤𝑤𝑖𝑖𝑖𝑖 ≠ 0 if 𝑖𝑖 and 
𝑖𝑖 are first-order neighbors, and 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 if 𝑖𝑖 and 𝑖𝑖 are not first-order neighbors. The normalized 
spatial weights matrix is standardized by rows (observations), so that for any observation, the sum 
of its neighbors’ weights are equals 1 (Anselin and Bera, 1998; Darmofal, 2015). 

The resulting Moran’s plot and statistic (Figures 1, 2 and 3) indicated that all dependent variables 
are positively spatially autocorrelated – the null hypothesis of spatial randomness can be rejected, 
providing justification for further analysis using spatial regression modelling.   

 

 

Figure 1. Moran’s I plot for total RD payments in CAP’s Pillar 2 
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Figure 2. Moran’s I plot for M5 of the RMT 

 

 

Figure 3. Moran’s I plot for M17 of the RMT 

 

The global Moran’s I statistic provides useful evidence for rejecting the null hypothesis of 
complete spatial randomness but does not tell us which where any significant clusters or outliers 
are located. To visualise spatial clusters and obtain a local measure of spatial autocorrelation, we 
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computed a local indicator of spatial association (LISA) statistic for the dependent variable 

(Anselin, 1995): 𝐼𝐼𝑖𝑖 = 𝑐𝑐. 𝑧𝑧𝑖𝑖� 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖
𝑖𝑖

 

With LISA, a local Moran statistic is computed for each observation (NUTS3 region) 𝑖𝑖 by comparing 
its value to the spatially lagged mean of its neighbours. Importantly, the significance of the statistic 
for each location is reported as pseudo p-value, calculated using a conditional permutation 
approach (using n number of randomised permutations to compare the results to a reference 
distribution). The results of LISA performed on the dependent variables with the default GeoDa 
settings of 999 permutations and a p-value of 0.05 are shown in the significance maps (Figure 4a, 
5a, 6a) and cluster map (Figure 4b, 5b, 6b). It is worth noting that the spatial autocorrelation 
detected through LISA and Moran statistic may be partially due to how the policy is managed. In 
general, policy decisions on RD programs affect at the same time more than one NUTS3 region. 
For example, in Italy some RD measures are managed at the NUTS2 level, while M17 at the 
national level. 

 

Figure 4a. Local indicators of spatial autocorrelation (LISA) significance map for RMT over Pillar 2 payments (significance of local 
statistic reflected in increasingly darker shades of green) 
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Figure 4b. Local indicators of spatial autocorrelation (LISA) cluster map for RMT over Pillar 2 payments. Map provides an 
indication of the type of spatial association for significant observations, based on their values in relation to neighbouring regions. 

 

Figure 5a. Local indicators of spatial autocorrelation (LISA) significance map for Measure 5 over Pillar 2 payments (significance of 
local statistic reflected in increasingly darker shades of green) 
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Figure 5b. Local indicators of spatial autocorrelation (LISA) cluster map for Measure 5 over Pillar 2 payments. Map provides an 
indication of the type of spatial association for significant observations, based on their values in relation to neighbouring regions. 

 

Figure 6a. Local indicators of spatial autocorrelation (LISA) significance map for Measure 17 over Pillar 2 payments (significance 
of local statistic reflected in increasingly darker shades of green) 
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Figure 6b. Local indicators of spatial autocorrelation (LISA) cluster map for Measure 17 over Pillar 2 payments. The map provides 
an indication of the type of spatial association for significant observations, based on their values in relation to neighbouring 

regions. 

 

3.3 Spatial autoregressive models 

The spatial autocorrelation tests in the previous section confirm that M5 and M17 expenditures 
are spatially dependent, confirming the results of Camaioni et al. (2016) and suggesting the 
adoption of a spatial econometric approach accounting for spatial autocorrelation of the data at 
hand, instead of OLS. 

Anselin and Bera (1998: 241) define spatial autocorrelation as “the coincidence of value similarity 
with locational similarity. In other words, high or low values for a random variable tend to cluster 
in space (positive spatial autocorrelation), or locations tend to be surrounded by neighbours with 
very dissimilar values (negative spatial autocorrelation)”. According to Manski (1993: 532-533) 
and as illustrated by Camaioni et al. (2016: 443-444), there are three different types of spatial 
interactions which can cause spatial effects or spatial autocorrelation, which are:  

1) An endogenous effect, where the observed dependent variable 𝒚𝒚𝒊𝒊 in one spatial unit 
correlates with the dependent variable of other neighbouring spatial units 𝒚𝒚𝒋𝒋;  
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2) An exogenous effect, where the observed dependent variable 𝒚𝒚𝒊𝒊 in one spatial unit 
correlates with the explanatory variables of other neighbouring spatial units 𝑿𝑿𝒋𝒋; and 

3) A correlated effect, where observations of the 𝒊𝒊 and 𝒋𝒋 spatial units are correlated due to 
unobserved characteristics that are represented by the disturbance term, 𝜺𝜺. 

The general model proposed by Manski (1993) to account for the three spatial effects allows for 
spatial dependence in the dependent variable, exogenous independent variables, and spatial 
errors. This model can be referred to as the general nesting spatial (GNS) model and can be 
expressed as: 

𝒀𝒀 = 𝛽𝛽0 + 𝜌𝜌𝑾𝑾𝒀𝒀 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝜃𝜃𝑾𝑾𝑿𝑿 + 𝐮𝐮 

𝐮𝐮 = λ𝑾𝑾𝐮𝐮 + 𝜺𝜺 

(2). 

 

Here, 𝒀𝒀, 𝑿𝑿, 𝛽𝛽0, 𝛽𝛽𝑥𝑥, and 𝜺𝜺 are similar to equation (1), and 𝑾𝑾 is the (𝑁𝑁 ×  𝑁𝑁) normalized spatial 
weight matrix. 𝑾𝑾𝒀𝒀, 𝑾𝑾𝑿𝑿, and 𝑾𝑾𝐮𝐮 are (𝑁𝑁 ×  1) vectors representing the spatial lags for the 
dependent variable 𝒀𝒀, exogenous variables 𝑿𝑿, and error term 𝐮𝐮, and 𝜌𝜌, 𝜃𝜃, and λ are scalar 
parameters for the spatial effects that need to be estimated for the dependent variable, 
exogenous variables, and error term, respectively. Equation (2) is rarely estimated in the 
literature, because not all parameters are well-identified simultaneously, as endogenous and 
exogenous effects are not necessarily distinguished from one another (Manski, 1993; Camaioni et 
al., 2016: 444). 

We can obtain consistent and well-identified estimations for one or two spatial dependence 
effects by using simpler model specifications assuming that one or two of the spatial effect 
parameters 𝜌𝜌, 𝜃𝜃, or λ is equal to zero. 

Therefore, one model that can be estimated is the spatial error model (SEM), which assumes that 
𝜌𝜌 = 𝜃𝜃 = 0, and estimates the spatial effect within the error terms. The SEM can be expressed as: 

𝒀𝒀 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝐮𝐮 

𝐮𝐮 = λ𝑾𝑾𝐮𝐮 + 𝜺𝜺 

(3). 
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The second model that can be estimated is the spatial lag of X variables (SLX) model, which 
assumes that 𝜌𝜌 = λ = 0 and estimates the spatial effect of the neighbouring exogenous variables. 
Such that: 

𝒀𝒀 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑿𝑿+ 𝜃𝜃𝑾𝑾𝑿𝑿 + 𝜺𝜺 (4). 

 

The third model is the spatial autoregressive (SAR) model, which is widely used and assumes 𝜃𝜃 =
λ = 0. The SAR model assumes also that different values of the dependent variable 𝒀𝒀 depends on 
the neighbouring dependent values of 𝒀𝒀. This is similar to the autoregressive models in time-
series regressions, where 𝑦𝑦𝑡𝑡 depends on its temporally lagged value 𝑦𝑦𝑡𝑡−1 (Anselin and Bera, 1998: 
246):  

𝒀𝒀 = 𝛽𝛽0 + 𝜌𝜌𝑾𝑾𝒀𝒀 + 𝛽𝛽𝑥𝑥𝑿𝑿+ 𝜺𝜺 (5). 

 

A combination of the three models (SEM, SLX, and SAR) in equations (2), (3), and (4) allows for the 
estimation of exogenous and endogenous interaction effects simultaneously. This can be done 
with the spatial Durbin model (SDM) which assumes only λ = 0 and estimates the spatial effects 
of the exogenous variables and the dependent variable via the equation: 

𝒀𝒀 = 𝛽𝛽0 + 𝜌𝜌𝑾𝑾𝒀𝒀 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝜃𝜃𝑾𝑾𝑿𝑿 + 𝜺𝜺 (6). 

 

The SDM estimates the global effects of exogenous variables or the total impacts of changes in 
the exogenous variables 𝑿𝑿, which are complex to interpret. In the SDM, the influence of the first-
order exogenous variables is not only expressed by 𝜃𝜃, but it is also reflected in the influence of 
the exogenous variables of the neighbouring spatial unit, that is 𝛽𝛽𝑖𝑖𝑿𝑿𝒋𝒋 on 𝒀𝒀𝒋𝒋, which is transferred 
to the 𝑖𝑖 spatial unit through 𝜌𝜌𝑾𝑾𝒀𝒀. This is referred to as the global multiplier because the spillover 
effect of the spatially lagged dependent variable is determined by both the dependent variable 
itself as well as the spatial lagged exogenous variables. With the global effects, we cannot 
distinguish between the effect of the bordering region (first-order effects) and the effect of all 
other non-bordering regions in the sample, because a change in the exogenous variable of any 
region can potentially influence the dependent variable of all other regions (LeSage and Pace, 
2009: 35).   
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Similarly to the SEM, the spatial Durbin error model (SDEM) assumes only 𝜌𝜌 = 0 but it estimates 
the spatial effects of the exogenous variables and the error term: 

𝒀𝒀 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝜃𝜃𝑾𝑾𝑿𝑿 + 𝐮𝐮 

𝐮𝐮 = λ𝑾𝑾𝐮𝐮 + 𝜺𝜺 

(7). 

 

Although the SDEM does not include a separate effect for the spatial lagged dependent variable 
Y, it estimates the direct effects of the exogenous variables X (represented by the coefficients 𝛽𝛽) 
whereas the indirect effect of the neighbouring regions is represented by 𝜃𝜃. The SDEM shows the 
local multipliers, or the effects of the close neighbouring spatial units (or first-order effects), 
instead of the global multiplier. Thus, the SDEM is more efficient for modelling first-order spatial 
effects, although it can underestimate higher-order (global) indirect effects (LeSage and Pace, 
2009: 42). Because not all the EU MS or regions have allocated funds for the risk management 
tools, and given that the LISA showed clear spatial autoregressive clustering across nearby 
regions, the spatial effects of the drivers of risk management expenditures are essentially 
generated by local neighbour regions influences rather than by higher-order spatial effects 
produced by distant no-bordering regions.  

Finally, the spatial autoregressive combined (SAC) model assumes only 𝜃𝜃 = 0 and estimates the 
spatial effects of the dependent variable and the error term: 

𝒀𝒀 = 𝛽𝛽0 + 𝜌𝜌𝑾𝑾𝒀𝒀 + 𝛽𝛽𝑥𝑥𝑿𝑿 + 𝐮𝐮 

𝐮𝐮 = λ𝑾𝑾𝐮𝐮 + 𝜺𝜺 

(8). 

All the models described above can be estimated either with Generalized Spatial Two Stage Least 
Squares (GS2SLS) or Maximum Likelihood (ML) estimators. Whereas the ML estimator provides 
higher R-squared in our estimates, it is not consistent in presence of heteroscedasticity as the 
GS2SLS. Because we cannot reject the hypothesis of heteroskedasticity of our estimations, and 
because the log-likelihood function can produce inconsistent results as it assumes that the error 
term is i.i.d, 𝜺𝜺𝒏𝒏~(𝟎𝟎,𝝈𝝈𝟐𝟐𝑰𝑰) (Lee, 2004), our favourite estimator is the GS2SLS. ML estimates are 
reported in the annexes (Annex A1, A2, and A3) for comparison purposes. 
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4 RESULTS 

Tables 3, 4, and 5 report the estimates of OLS (equation 1), SEM (equation 3), SLX (equation 4), 
SAR (equation 5), and SDEM (equation 7) for three dependent variables: i) total RM expenditure 
(i.e. M5 + M17) as a percentage of total RD expenditure (Table 3); ii) M17 expenditure as a 
percentage of total RD (Table 4); iii) M5 expenditure as a percentage of total RD (Table 5).  

In our estimates, the coefficients 𝛽𝛽  represent the effect of the exogenous variables 𝐗𝐗 of the 𝑖𝑖 
region on its own dependent variable 𝑦𝑦𝑖𝑖 . The spatial or regional effects are expressed through the 
parameters 𝜌𝜌, 𝜃𝜃, and 𝜆𝜆. In column (2), the spatial effects are expressed by the spatial error term 
𝜆𝜆, which indicates the unknown or unmeasurable spatial dependence that affects the 
expenditures on RM toolkit. Although 𝜆𝜆 does not indicate that the RM expenditure in a given 
region is correlated with a specific exogenous factor in its neighbouring regions, it still shows the 
presence of geographical clustering that affects the RM expenditure (Darmofal, 2015: 4).    

In column (4), the spatial effect is expressed by the spatial lagged exogenous variables 𝜃𝜃, in which 
the dependent variable 𝑦𝑦 of the 𝑖𝑖 region is also affected by the exogenous variables of its 
neighbouring 𝑖𝑖s as well as its own exogenous variables represented by 𝛽𝛽. If the parameters of 𝛽𝛽 
and 𝜃𝜃 have similar signs, then the exogenous variable has similar effects on the RM expenditure 
of the region i and the neighbouring regions j. This can be seen as a local clustering of NUTS3 
regions as neighbouring regions have similar exogenous factors that affect their RM expenditure 
(Camaioni et al., 2016: 447). However, if 𝛽𝛽 and 𝜃𝜃 have different signs, this may mean that 
neighbouring regions are competing for the RM expenditure, such that the increase (decrease) of 
an exogenous factor in a given region has a positive (negative) effect on its RM expenditure but 
an opposite effect on the RM expenditure of its neighbouring regions.  

The spatial effects in column (3) are relatively straightforward, as 𝜌𝜌 indicates the spatial spillovers 
of the RM expenditure of the 𝑖𝑖 region on its neighobouring region 𝑖𝑖. Finally, column (5) reports 
the spatial effects of the exogenous variables, expressed by 𝜃𝜃, and allow for spatially dependent 
errors, expressed by 𝜆𝜆.  

Results are consistent across the models in the different columns, suggesting a robust empirical 
specification and variables choice. 

 

 



 
 
 

 
 

  23 
 

 This Project has received funds from the European Union’s Horizon 2020 research and innovation programme under Grant 
Agreement No. 727520 

Deliverable 2.8 

4.1 Drivers of Risk Management expenditure 

We start our analysis with the spatial lag of the dependent variable 𝜌𝜌 and the spatial lag error 𝜆𝜆. 
In columns 3 of tables 3, 4, and 5 for the three estimations of total RM, M17, and M5 expenditures, 
there are positive and statistically significant spatial lag dependent variable 𝜌𝜌, suggesting the 
presence of spillover effects between NUTS3 regions, and that RM expenditures in one region is 
positively dependent on the neighbouring regions’ RM expenditures. Similarly, columns (2 and 5) 
of the three tables show positive and statistically significant spatial lag error 𝜆𝜆, suggesting the 
existence of regional clusters for the allocation of the risk management expenditures among the 
NUTS3 regions. The positive and statistically significant 𝜌𝜌 and 𝜆𝜆 suggest a high spatial dependence 
in our estimations. 

Our main parameters of interest are the drivers of risk management expenditures, which are 
expressed by the 𝛽𝛽 and 𝜃𝜃 of the exogenous variables, and for this, we concentrate our discussion 
on the results of SDEM in column (5) as it provides results for both the direct and indirect impact 
of the exogenous variables (𝛽𝛽 and 𝜃𝜃 respectively), after controlling for spatial dependence in the 
spatial lagged error. In addition, the SDEM is suitable to estimate the local spatial effects instead 
of the global effects. This is particularly relevant as spatial effects are mainly driven by local 
clustering because only fourteen countries have allocated funds for the RM toolkit and as 
indicated by the positive and significant 𝜆𝜆. 

In column 5 of table 3, the direct effect of the exogenous variables (as indicated by 𝛽𝛽) shows that 
total risk management expenditure is positively and statistically significantly explained by soil 
erosion by wind, a higher percentage of LFA and a higher percentage of arable and forest land on 
total area. On the contrary, a greater agricultural value added on regional GVA has a negative and 
statistically significant correlation with total RM expenditure. 

The coefficients 𝜃𝜃 in column 5 of table 3 indicate the negative and statistically significant indirect 
effect of agricultural value added on GVA. In addition, soil erosion by water and wind has indirect 
positive and statistically significant effects on total RM expenditure. In terms of land cover, the 
negative and significant 𝜃𝜃 of the land diversity index suggests that more diversified land use in 
neighbouring regions is associated with a lower RM expenditure of the underlying region. Finally, 
the percentage of the land cover of pastures and forests in neighbouring regions have a positive 
and statistically significant effect on the total RM expenditure of the underlying region. 
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Table 3. OLS and GS2SLS estimations for drivers of Risk Management expenditure as % of total RD 
expenditure 

  (1) (2) (3) (4) (5) 
  OLS SEM SAR SLX SDEM 

(β) CAP subsidies (% of agriculture 
VA) 

0.0372 -0.0194 0.0248 -0.0573 0.0317 
(0.0633) (0.0612) (0.0501) (0.0741) (0.0634) 

(β) Agricultural Value Added (% of 
GVA) 

-0.236*** -0.0937** -0.0605* -0.136*** -0.125*** 
(0.0394) (0.0406) (0.0356) (0.0493) (0.0462) 

(β) LFA (% of area) 
0.0435 0.0439 0.0408 0.0495 0.0752** 

(0.0364) (0.0312) (0.0308) (0.0351) (0.0329) 

(β) Soil erosion (wind) 
0.0200 0.00471 -0.00482 0.00174 0.0463** 

(0.0212) (0.0221) (0.0178) (0.0247) (0.0221) 

(β) Soil erosion (water) 
-0.170*** -0.221*** -0.104** -0.255** -0.134 
(0.0620) (0.0839) (0.0465) (0.114) (0.0946) 

(β) Land diversity index 
-0.401*** -0.0646 -0.111 -0.0201 -0.139 

(0.147) (0.133) (0.114) (0.163) (0.187) 

(β) Arable land (% of total area) 
0.126** 0.0926** 0.110*** 0.0832 0.135** 
(0.0491) (0.0457) (0.0361) (0.0574) (0.0548) 

(β) Permanent crops (% of total 
area) 

0.00695 0.0122 0.000952 0.00305 0.00145 
(0.0171) (0.0144) (0.0139) (0.0170) (0.0175) 

(β) Pastures (% of total area) 
0.0761* 0.0209 0.0317 0.00650 0.0317 
(0.0397) (0.0334) (0.0298) (0.0414) (0.0401) 

(β) Heterogeneous agriculture (% 
of total area) 

-0.116*** -0.0169 -0.0334 -0.0481 0.0272 

(0.0295) (0.0305) (0.0270) (0.0357) (0.0306) 

(β) Forest (% of total area) 
0.204*** 0.0723 0.107*** 0.0200 0.206*** 
(0.0527) (0.0524) (0.0390) (0.0659) (0.0590) 

(β) GVA per capita 
0.00471 0.256** 0.102 0.0352 0.163 
(0.112) (0.126) (0.0834) (0.141) (0.130) 

(β) Country dummy 
-0.0282*** -0.0153* -0.00568 -0.00172 -0.0181 
(0.00655) (0.00900) (0.00549) (0.0131) (0.0137) 

Cons 
-1.294** 0.256 0.223 -1.158* 0.474 
(0.610) (0.618) (0.507) (0.654) (0.697) 

       

ρ(WY) 
  0.873***   
  (0.0923)   

       

(θ) CAP subsidies (% of agriculture 
VA) 

   0.411*** 0.195 
   (0.153) (0.152) 

(θ) Agricultural Value Added (% of 
GVA) 

   -0.186** -0.336*** 
   (0.0821) (0.100) 
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(θ) LFA (% of area) 
   0.0618 0.136* 
   (0.0674) (0.0774) 

(θ) Soil erosion (wind) 
   0.110** 0.193*** 
   (0.0483) (0.0530) 

(θ) Soil erosion (water) 
   0.254 0.368*** 
   (0.162) (0.130) 

(θ) Land diversity index 
   -1.254*** -1.099* 
   (0.455) (0.596) 

(θ) Arable land (% of total area) 
   0.0371 0.130 
   (0.118) (0.124) 

(θ) Permanent crops (% of total 
area) 

   -0.0455 -0.0669 
   (0.0404) (0.0469) 

(θ) Pastures (% of total area) 
   0.172* 0.283*** 
   (0.0914) (0.107) 

(θ) Heterogeneous agriculture (% 
of total area) 

   -0.131* 0.00192 

   (0.0678) (0.0774) 

(θ) Forest (% of total area) 
   0.451*** 0.475*** 
   (0.134) (0.147) 

(θ) GVA per capita 
   0.0948 -0.0410 
   (0.128) (0.122) 

(θ) Country dummy 
   -0.0335* -0.0320* 
   (0.0190) (0.0165) 

       

λ(Wu) 
 0.857***   0.853*** 
 (0.0466)   (0.0704) 

       

N 1265 1265 1265 1265 1265 
F / Wald chi2 15.68*** 54.61*** 416.42*** 304.54*** 200.68*** 
R2 / Pseudo R2 0.129 0.0998 0.082 0.1658 0.1297 
Wald test of spatial terms (Chi2)  338.34*** 89.27*** 58.49*** 216.99*** 

White/Koenker test for 
heteroskedasticity (p-value) 0.000     

Moran test for spatial 
dependence (p-value) 0.000     

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in 
parentheses. 
˚ Robust standard errors are in parentheses. Huber-White sandwich robust estimator was used to control for the 
presence of heteroscedasticity. 
OLS = ordinary least squares model; SEM = spatial error model; SAR = spatial autoregressive model (spatial lag 
model); SLX= spatial lag of X model; SDEM = spatial Durbin error model 
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Looking more closely to M17 expenditure, in column 5 of table 4 there is a negative and 
statistically significant impact of soil erosion by water. Similarly, for land cover, heterogeneous 
agriculture has a negative and statistically significant impact on M17 expenditure, however, arable 
land again has a positive and statistically significant impact on M17. In addition, there is a positive 
and statistically significant correlation between the level of economic development of a NUTS3 
region (as measure by the GVA per capita) and its allocation of M17. Moreover, the coefficient of 
the 𝜃𝜃 parameter for the total CAP subsidies as a percentage of agricultural value added is positive 
and statistically significant. This indicates that total CAP expenditures in neighbouring regions 
have an indirect and positive effect on the allocation of M17 expenditure in an underlying region. 
Furthermore, the 𝜃𝜃 parameters show again statistically significant and negative indirect effects of 
land cover by heterogeneous agriculture. Similar to the results of total RM expenditure, land 
diversity index of neighbouring regions is statistically significant and negatively correlated with 
measure 17 of the underlying region, whereas the land cover of pastures of neighbouring regions 
has a positive and statistically significant correlation with M17. Finally, heterogeneous agriculture 
land of neighbouring regions has a negative and statistically significant impact on M17 
expenditure of the underlying region. 

Concerning M5 expenditure, column 5 of table 5 indicates that only land diversity has a statistically 
significant and negative effect on M5 expenditure, as expressed by 𝛽𝛽. Whereas, only agricultural 
value added as a percentage of GVA of neighbouring regions has a statistically significant indirect 
effect, which is again negatively correlated with measure 5 expenditure. 
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Table 4. OLS and GS2SLS estimations for drivers of Measure 17 expenditure as % of total RD 
expenditure 

  (1) (2) (3) (4) (5) 
  OLS˚ SEM SAR SLX SDEM 

(β) CAP subsidies (% of agriculture 
VA) 

0.0906 -0.0610 0.0180 -0.0756 -0.0370 
(0.0617) (0.0560) (0.0449) (0.0695) (0.0567) 

(β) Agricultural Value Added (% of 
GVA) 

-0.209*** -0.0280 -0.0198 -0.103** -0.0230 
(0.0333) (0.0322) (0.0261) (0.0418) (0.0330) 

(β) LFA (% of area) 
0.0104 0.0299 0.0235 0.0263 0.0201 

(0.0274) (0.0209) (0.0190) (0.0272) (0.0241) 

(β) Soil erosion (wind) 
0.0122 -0.00288 -0.0129 -0.00706 -0.00532 

(0.0224) (0.0242) (0.0191) (0.0260) (0.0231) 

(β) Soil erosion (water) 
-0.265*** -0.293*** -0.133*** -0.309*** -0.250*** 
(0.0602) (0.0792) (0.0437) (0.105) (0.0795) 

(β) Land diversity index 
-0.423*** 0.0913 -0.0386 0.0353 0.0804 

(0.136) (0.118) (0.102) (0.144) (0.115) 

(β) Arable land (% of total area) 
0.236*** 0.125*** 0.146*** 0.125** 0.127*** 
(0.0496) (0.0451) (0.0356) (0.0571) (0.0448) 

(β) Permanent crops (% of total 
area) 

0.0346*** 0.0156* 0.0103 0.0210 0.0174 
(0.0134) (0.00860) (0.00902) (0.0129) (0.0119) 

(β) Pastures (% of total area) 
0.123*** 0.0294 0.0382 0.0155 0.0231 
(0.0417) (0.0340) (0.0303) (0.0431) (0.0354) 

(β) Heterogeneous agriculture (% 
of total area) 

-0.150*** -0.0428*** -0.0437*** -0.0709*** -0.0491*** 
(0.0179) (0.0118) (0.0128) (0.0167) (0.0133) 

(β) Forest (% of total area) 
0.129*** -0.00288 0.0651** -0.0217 0.0136 
(0.0490) (0.0474) (0.0327) (0.0605) (0.0447) 

(β) GVA per capita 
-0.0706 0.368*** 0.124* 0.0763 0.323*** 
(0.0988) (0.114) (0.0671) (0.130) (0.110) 

(β) Country dummy 
-0.0143*** -0.00725 -0.000830 -0.00621 -0.00422 
(0.00480) (0.00831) (0.00332) (0.0105) (0.00877) 

Cons 
-1.347** 0.978* 0.508 -0.753 0.871 
(0.542) (0.535) (0.401) (0.614) (0.530) 

       

ρ(WY) 
  0.932***   
  (0.0779)   

       

(θ) CAP subsidies (% of agriculture 
VA) 

   0.697*** 0.393** 
   (0.137) (0.191) 
   -0.201*** -0.0245 
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(θ) Agricultural Value Added (% of 
GVA) 

   (0.0642) (0.0752) 

(θ) LFA (% of area) 
   0.0185 -0.0776 
   (0.0551) (0.0644) 

(θ) Soil erosion (wind) 
   0.110** 0.0000493 
   (0.0460) (0.0557) 

(θ) Soil erosion (water) 
   0.204 -0.183 
   (0.137) (0.200) 

(θ) Land diversity index 
   -1.707*** -0.922** 
   (0.338) (0.373) 

(θ) Arable land (% of total area) 
   0.264** 0.0742 
   (0.113) (0.151) 

(θ) Permanent crops (% of total 
area) 

   0.0535* 0.0231 
   (0.0282) (0.0390) 

(θ) Pastures (% of total area) 
   0.257*** 0.186* 
   (0.0874) (0.111) 

(θ) Heterogeneous agriculture (% 
of total area) 

   -0.0820* -0.118*** 
   (0.0441) (0.0438) 

(θ) Forest (% of total area) 
   0.454*** 0.0282 
   (0.109) (0.140) 

(θ) GVA per capita 
   -0.0310 0.221* 
   (0.107) (0.125) 

(θ) Country dummy 
   -0.00476 -0.00869 
   (0.0133) (0.0191) 

       

λ(Wu) 
 1.017***   0.992*** 
 (0.0482)   (0.0466) 

       

N 1265 1265 1265 1265 1265 
F / Wald chi2 19.63*** 62.02*** 576.24*** 358.13*** 80.49*** 
R2 / Pseudo R2 0.203 0.1408 0.1055 0.2594 0.1934 
Wald test of spatial terms (Chi2)  445.89*** 143.17*** 124.86*** 497.62*** 
White/Koenker test for 
heteroskedasticity (p-value) 

0.000     

Moran test for spatial 
dependence (p-value) 0.000     

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in 
parentheses. 
˚ Robust standard errors are in parentheses. Huber-White sandwich robust estimator was used to control for the 
presence of heteroscedasticity. 
OLS = ordinary least squares model; SEM = spatial error model; SAR = spatial autoregressive model (spatial lag 
model); SLX= spatial lag of X model; SDEM = spatial Durbin error model 
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Table 5. OLS and GS2SLS estimations for drivers of Measure 5 expenditure as % of total RD 
expenditure 

  (1) (2) (3) (4) (5) 
  OLS˚ SEM SAR SLX SDEM 

(β) CAP subsidies (% of 
agriculture VA) 

-0.0297 -0.0466 -0.00949 -0.0458 -0.0503 
(0.0605) (0.0629) (0.0532) (0.0716) (0.0650) 

(β) Agricultural Value Added (% 
of GVA) 

-0.100*** -0.0546 -0.0113 -0.00931 -0.0139 
(0.0380) (0.0398) (0.0336) (0.0505) (0.0467) 

(β) LFA (% of area) 
0.0502 0.0561 0.0522 0.0543 0.0558 

(0.0389) (0.0368) (0.0362) (0.0378) (0.0387) 

(β) Soil erosion (wind) 
0.0246 0.00224 -0.00775 -0.000248 -0.00168 

(0.0253) (0.0269) (0.0243) (0.0288) (0.0271) 

(β) Soil erosion (water) 
-0.0809 -0.102 -0.0333 -0.123 -0.105 
(0.0656) (0.0849) (0.0578) (0.119) (0.107) 

(β) Land diversity index 
-0.512*** -0.436*** -0.330*** -0.344** -0.376** 

(0.148) (0.140) (0.127) (0.170) (0.153) 

(β) Arable land (% of total area) 
0.0399 0.0472 0.0692* 0.0416 0.0451 

(0.0461) (0.0456) (0.0397) (0.0528) (0.0450) 

(β) Permanent crops (% of total 
area) 

-0.00337 0.00592 -0.000844 -0.00237 -0.00419 
(0.0169) (0.0153) (0.0149) (0.0165) (0.0162) 

(β) Pastures (% of total area) 
0.142*** 0.0970** 0.0700* 0.0734 0.0561 
(0.0451) (0.0470) (0.0422) (0.0507) (0.0477) 

(β) Heterogeneous agriculture (% 
of total area) 

-0.0407 -0.0154 -0.00272 -0.00842 0.00255 
(0.0294) (0.0300) (0.0262) (0.0348) (0.0308) 

(β) Forest (% of total area) 
0.131*** 0.0480 0.0633 -0.00284 0.0430 
(0.0488) (0.0504) (0.0429) (0.0601) (0.0532) 

(β) GVA per capita 
0.282** 0.267* 0.118 0.293* 0.187 
(0.128) (0.147) (0.112) (0.155) (0.150) 

(β) Country dummy 
-0.0298*** -0.0222** -0.00783 -0.00316 -0.00872 
(0.00672) (0.00862) (0.00616) (0.0149) (0.0133) 

Cons 
0.697 0.620 0.543 0.716 0.446 

(0.636) (0.681) (0.545) (0.699) (0.719) 
       

ρ(WY) 
  0.912***   
  (0.150)   

       

(θ) CAP subsidies (% of 
agriculture VA) 

   0.0888 0.199 
   (0.149) (0.184) 
   -0.224*** -0.211** 
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(θ) Agricultural Value Added (% 
of GVA) 

   (0.0848) (0.0938) 

(θ) LFA (% of area) 
   -0.0162 -0.0261 
   (0.0680) (0.0913) 

(θ) Soil erosion (wind) 
   0.122** 0.0860 
   (0.0567) (0.0719) 

(θ) Soil erosion (water) 
   0.155 0.0840 
   (0.168) (0.191) 

(θ) Land diversity index 
   -0.614 -0.292 
   (0.516) (0.554) 

(θ) Arable land (% of total area) 
   -0.0364 -0.0340 
   (0.119) (0.136) 

(θ) Permanent crops (% of total 
area) 

   -0.0742* -0.0503 
   (0.0414) (0.0485) 

(θ) Pastures (% of total area) 
   0.196* 0.184 
   (0.113) (0.140) 

(θ) Heterogeneous agriculture (% 
of total area) 

   -0.0315 -0.114 
   (0.0681) (0.0726) 

(θ) Forest (% of total area) 
   0.368*** 0.167 
   (0.126) (0.142) 

(θ) GVA per capita 
   0.0277 0.206 
   (0.147) (0.174) 

(θ) Country dummy 
   -0.0361* -0.0205 
   (0.0206) (0.0213) 

       

λ(Wu) 
 0.612***   0.597*** 
 (0.0590)   (0.0600) 

       

N 1265 1265 1265 1265 1265 
F / Wald chi2 7.48*** 45.16*** 150.49*** 126.27*** 62.86*** 
R2 / Pseudo R2 0.081 0.0759 0.0489 0.1028 0.0978 
Wald test of spatial terms (Chi2)  107.37*** 36.94*** 27.66*** 121.51*** 
White/Koenker test for 
heteroskedasticity (p-value) 

0.000     

Moran test for spatial 
dependence (p-value) 0.000     

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in 
parentheses. 
˚ Robust standard errors are in parentheses. Huber-White sandwich robust estimator was used to control for the 
presence of heteroscedasticity. 
OLS = ordinary least squares model; SEM = spatial error model; SAR = spatial autoregressive model (spatial lag 
model); SLX= spatial lag of X model; SDEM = spatial Durbin error model 
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4.2 Direct, indirect and total effect estimates 

Table 6 reports the estimates of the direct, indirect, and total average marginal effects of the 
drivers of RM expenditure (exogenous variables) on the reduced-form mean of the RM 
expenditure (dependent variable). First, the interpretation of the average direct and indirect 
impacts in table 6 are in line with previous results of the parameters β and θ in tables 3 to 5, 
suggesting once again the robustness of the analyses. Thus, here we focus on the average total 
impacts in Table 6. 

In column 3, the average marginal total impacts of the drivers of the total RM expenditure are 
strongly confirmed by statistically significant higher coefficients than the ones expressed by β and 
θ. Specifically, we have a positive and statistically significant total marginal impact for the 
percentage of LFA in total area, soil erosion by wind, and land cover by arable, pastures, and 
forests. Whereas, land diversity and agricultural value added as a percentage of GVA have a 
statistically significant total marginal impact on total RM expenditure. In addition, although there 
is an indirect positive impact of soil erosion by water on total RM expenditure, the net total impact 
is statistically insignificant. 

Moreover, in column 6, there are statistically significant negative total impacts of soil erosion by 
water, land diversity, and land cover by heterogenous agriculture on M17 expenditure. Whereas, 
the positive indirect impact of CAP subsidies as a percentage of agricultural value added did not 
lead to a statistically significant total impact. Finally, in column 9, the indirect impact of agricultural 
value added as a percentage of GVA have resulted in a negative and statistically significant total 
impact on measure 5 expenditure, while the direct impact of land diversity has no statistically 
significant total impact. Interestingly, while land cover by pastures and the level of economic 
development do not appear to have a statistically significant direct or indirect impacts on M5; 
their net total marginal impact is positive and statistically significant on M5 expenditure. 
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Table 6. SDEM direct, indirect and total effect estimates 

  RM (% of RD) M17 (% of RD) M05 (% of RD) 
  Direct Indirect Total Direct Indirect Total Direct Indirect Total 

CAP subsidies (% 
of agri. VA) 

0.032 0.150 0.182 -0.037 0.304** 0.267 -0.050 0.154 0.104 
(0.063) (0.117) (0.135) (0.057) (0.147) (0.168) (0.065) (0.142) (0.142) 

Agricultural VA 
(% of GVA) 

-0.125*** -0.260*** -0.384*** -0.023 -0.019 -0.042 -0.014 -0.163** -0.177** 
(0.046) (0.077) (0.092) (0.033) (0.058) (0.066) (0.047) (0.072) (0.071) 

LFA (% of area) 
0.075** 0.105* 0.180** 0.020 -0.060 -0.040 0.056 -0.020 0.036 
(0.033) (0.060) (0.084) (0.024) (0.050) (0.066) (0.039) (0.071) (0.094) 

Soil erosion 
(wind) 

0.046** 0.149*** 0.196*** -0.005 0.000 -0.005 -0.002 0.066 0.065 
(0.022) (0.041) (0.050) (0.023) (0.043) (0.050) (0.027) (0.056) (0.057) 

Soil erosion 
(water) 

-0.134 0.285*** 0.150 -0.250*** -0.142 -0.391** -0.105 0.065 -0.041 
(0.095) (0.100) (0.108) (0.079) (0.155) (0.163) (0.107) (0.147) (0.122) 

Land diversity 
index 

-0.139 -0.849* -0.988* 0.080 -0.712** -0.631** -0.376** -0.225 -0.601 
(0.187) (0.461) (0.542) (0.115) (0.288) (0.320) (0.153) (0.428) (0.419) 

Arable land (% of 
area) 

0.135** 0.100 0.236** 0.127*** 0.057 0.185 0.045 -0.026 0.019 
(0.055) (0.096) (0.112) (0.045) (0.117) (0.130) (0.045) (0.105) (0.105) 

Permanent 
crops (% of area) 

0.001 -0.052 -0.050 0.017 0.018 0.035 -0.004 -0.039 -0.043 
(0.018) (0.036) (0.048) (0.012) (0.030) (0.040) (0.016) (0.037) (0.045) 

Pastures (% of 
area) 

0.032 0.219*** 0.250** 0.023 0.143* 0.167 0.056 0.142 0.198* 
(0.040) (0.083) (0.099) (0.035) (0.085) (0.105) (0.048) (0.108) (0.112) 

Heterogenous 
agri. (% of area) 

0.027 0.001 0.029 -0.049*** -0.091*** -0.140*** 0.003 -0.088 -0.085 
(0.031) (0.060) (0.077) (0.013) (0.034) (0.043) (0.031) (0.056) (0.061) 

Forest (% of 
area) 

0.206*** 0.367*** 0.573*** 0.014 0.022 0.035 0.043 0.129 0.172 
(0.059) (0.113) (0.133) (0.045) (0.108) (0.121) (0.053) (0.109) (0.111) 

GVA per capita 
0.163 -0.032 0.131 0.323*** 0.170* 0.493*** 0.187 0.159 0.346** 

(0.130) (0.094) (0.148) 0.110) (0.097) (0.154) (0.150) (0.134) (0.175) 

Country dummy 
-0.018 -0.025* -0.043*** -0.004 -0.007 -0.011 -0.009 -0.016 -0.025** 
(0.014) (0.013) (0.013) (0.009) (0.015) (0.014) (0.013) (0.016) (0.012) 

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in parentheses. 
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5 CONCLUSIONS 

This paper analysed the spatial, socio-economic, risk and environmental factors potentially 
affecting the public expenditure on the RMT funded by the EAFRD. Results suggest that there is a 
strong spatial dependence on the level of RMT expenditure. Higher expenditure towards RMT 
occurs in regions more exposed to environmental risks, with more land in mountainous and 
disadvantaged areas and with more arable, pasture and forest land. The expenditure on financial 
contributions for investments to restore agricultural production damaged by natural disasters is 
lower in agricultural intensive regions but higher in rich regions with a predominance of pasture 
land. The expenditure for supporting insurance premiums and mutual funds to cover losses 
caused by climate changes, diseases, pests or environmental incidents and on the IST is lower 
when the incidence of environmental risks increases and when land use is highly diversified but is 
higher in richer regions with high GVA per capita. 

Currently, the EC is developing the future and new CAP that will be in place until 2027. In the new 
CAP proposal, the intention of supporting agricultural risk management has been confirmed and 
relaunched by a more integrated approached aiming at improving the resilience of the agricultural 
sector. This is planned through policy measures that will reinforce and enlarge those implemented 
in the CAP period 2014-2020 such as the RMT, aiming at stabilizing the farm income and mitigating 
the effects of climate change. Our results provide a number of important information for 
policymakers in the process of developing the future risk management tools of the new CAP. 

First of all, the adoption of risk management policies follows a territorial spatial pattern. In other 
words, these policy tools are not adopted by EU regions in isolation, but they are driven by mutual 
influences of the regions nearby. This explains also the relatively low rate of adoption of the RMT. 
Given that the RMT was adopted by contiguous regions grouped in clusters, its adoption is linked 
to spill over effects probably due to sharing positive experiences with the policy and sharing 
similar agro-ecological conditions. Not having examples of neighbouring regions adopting such 
policies might have worked as a disincentive factor or, on the contrary, nearby examples might 
have demonstrated the utility of such policies. Examples and case studies illustrating the 
functionalities of risk management policies might incentivize their adoption also in regions far 
away from these clusters. 

Second, there are a few land use types that driven the adoption of the RMT. This suggests that, 
on the one hand, there are a few agricultural sectors that are in more need of risk management 
policies than others, such as the arable, pasture and agro-forestry sectors; on the other hand, it 
might also suggest that the RMT was designed in such a way that was not effective or attractive 
for many other agricultural sectors, excluding them de facto. Given the highly diversified nature 
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of EU agriculture, the design of risk management policies should consider a wider and more 
flexible range of sectorial needs and specificities. 

Third, regions characterized by agro-ecological diversity have funded less the IST and the support 
to insurance and mutual funds against environmental risks. This might suggest that an agro-
ecologically diversified region is less exposed to economic losses and instability thanks to the 
heterogeneous portfolio of economic activities and ecosystems that act as a buffer mitigating the 
damages of production and environmental risks. 

Fourth, agricultural intensive regions spend less public money on risk management policies. This 
might be since in these regions the agricultural sector receives more support from direct CAP 
payments and other RD measures. These other forms of support also induce farm income stability 
and generate sufficient liquidity to deal with unexpected damages. Therefore, EAFRD funds are 
spent on other RD measures than the RMT. On the contrary, LFA are more likely to need RMT 
support against damages of an emergency nature. 

However, there are still many issues that need to be explored and better understood. For 
example, the fact that the IST is not adopted when the incidence of environmental risks is 
relatively high. Therefore, additional research comparing different policy tools and their potential 
substitution effects are still needed. 
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Appendix 

 
Table A1. ML spatial estimations for drivers of Risk Management expenditure as % of total RD 
expenditure  

  (1) (2) (3) (4) (5) (6) (7) 
  SEM SAR SLX SDM SDEM SAC GNS 
(β) CAP subsidies (% of 
agriculture VA) 

-0.0202 0.0261 -0.0573 -0.0439 -0.0165 -0.0103 -0.0165 
(0.0597) (0.0504) (0.0755) (0.0603) (0.0600) (0.0597) (0.0599) 

(β) Agricultural Value Added 
(% of GVA) 

-0.0883** -0.0792** -0.136*** -0.0998** -0.0870* -0.0903** -0.0859* 
(0.0440) (0.0338) (0.0517) (0.0413) (0.0458) (0.0436) (0.0458) 

(β) LFA (% of area) 0.0438* 0.0411* 0.0495 0.0471* 0.0525* 0.0440* 0.0525* 
(0.0250) (0.0247) (0.0316) (0.0253) (0.0278) (0.0255) (0.0279) 

(β) Soil erosion (wind) 0.00427 -0.00219 0.00174 -0.000306 0.00527 0.00346 0.00530 
(0.0179) (0.0160) (0.0225) (0.0180) (0.0184) (0.0181) (0.0184) 

(β) Soil erosion (water) -0.222*** -0.111*** -0.255** -0.218*** -0.193** -0.207*** -0.193** 
(0.0690) (0.0418) (0.100) (0.0802) (0.0775) (0.0653) (0.0772) 

(β) Land diversity index -0.0528 -0.142 -0.0201 0.0179 -0.0176 -0.0691 -0.0177 
(0.143) (0.124) (0.182) (0.145) (0.143) (0.143) (0.143) 

(β) Arable land (% of total 
area) 

0.0915** 0.112*** 0.0832 0.0981** 0.0918** 0.0993** 0.0902** 
(0.0449) (0.0351) (0.0585) (0.0467) (0.0451) (0.0443) (0.0451) 

(β) Permanent crops (% of 
total area) 

0.0122 0.00159 0.00305 0.00688 0.000607 0.0116 0.000218 
(0.0150) (0.0145) (0.0190) (0.0152) (0.0165) (0.0153) (0.0166) 

(β) Pastures (% of total 
area) 

0.0184 0.0364 0.00650 -0.00176 0.00622 0.0223 0.00691 
(0.0362) (0.0282) (0.0474) (0.0379) (0.0367) (0.0357) (0.0367) 

(β) Heterogeneous 
agriculture (% of total area) 

-0.0131 -0.0421* -0.0481 -0.00951 -0.0243 -0.0204 -0.0256 
(0.0270) (0.0230) (0.0340) (0.0271) (0.0275) (0.0269) (0.0277) 

(β) Forest (% of total area) 0.0693 0.118*** 0.0200 0.0516 0.0818 0.0871 0.0803 
(0.0555) (0.0427) (0.0724) (0.0578) (0.0560) (0.0548) (0.0559) 

(β) GVA per capita 0.262* 0.0917 0.0352 0.102 0.170 0.234* 0.178 
(0.144) (0.0922) (0.156) (0.124) (0.147) (0.138) (0.148) 

(β) Country dummy -0.0147 -0.00808 -0.00172 -0.00925 -0.0118 -0.0149* -0.0118 
(0.00920) (0.00526) (0.0131) (0.0104) (0.00989) (0.00870) (0.00986) 

Cons 0.306 0.0615 -1.158 -0.384 0.00742 0.288 0.0345 
(0.711) (0.499) (0.723) (0.578) (0.734) (0.689) (0.735) 

         

ρ(WY)  0.780***  0.793***  0.207* -0.0448 
 (0.0290)  (0.0293)  (0.112) (0.127) 

         

(θ) CAP subsidies (% of agri 
VA) 

  0.411*** 0.203 0.134  0.126 
  (0.155) (0.124) (0.193)  (0.196) 

(θ) Agricultural Value Added 
(% of GVA) 

  -0.186** 0.0384 -0.0670  -0.0707 
  (0.0835) (0.0670) (0.101)  (0.103) 

(θ) LFA (% of area)   0.0618 -0.00233 0.0356  0.0364 
  (0.0740) (0.0592) (0.0891)  (0.0902) 



 
 
 

 
 

  38 
 

 This Project has received funds from the European Union’s Horizon 2020 research and innovation programme under Grant 
Agreement No. 727520 

Deliverable 2.8 

(θ) Soil erosion (wind)   0.110** 0.0365 0.0365  0.0348 
  (0.0464) (0.0371) (0.0561)  (0.0568) 

(θ) Soil erosion (water)   0.254* 0.247** 0.0449  0.0272 
  (0.146) (0.117) (0.173)  (0.178) 

(θ) Land diversity index   -1.254*** -0.547* -0.720  -0.709 
  (0.409) (0.327) (0.493)  (0.499) 

(θ) Arable land (% of total 
area) 

  0.0371 -0.111 -0.0636  -0.0648 
  (0.115) (0.0923) (0.141)  (0.143) 

(θ) Permanent crops (% of 
total area) 

  -0.0455 -0.0458 -0.0604  -0.0605 
  (0.0436) (0.0348) (0.0528)  (0.0534) 

(θ) Pastures (% of total 
area) 

  0.172* 0.0685 0.172*  0.174* 
  (0.0878) (0.0703) (0.104)  (0.106) 

(θ) Heterogeneous 
agriculture (% of total area) 

  -0.131** -0.0856 -0.236***  -0.243*** 
  (0.0665) (0.0536) (0.0824)  (0.0842) 

(θ) Forest (% of total area)   0.451*** 0.0472 0.0460  0.0330 
  (0.130) (0.105) (0.166)  (0.169) 

(θ) GVA per capita   0.0948 0.00386 0.365**  0.391** 
  (0.137) (0.110) (0.164)  (0.173) 

(θ) Country dummy   -0.0335* 0.00239 -0.00904  -0.00916 
  (0.0177) (0.0142) (0.0217)  (0.0223) 

         

λ(Wu) 0.823***    0.808*** 0.711*** 0.828*** 
(0.0276)    (0.0286) (0.0768) (0.0596) 

/        

var(λ) 1.971*** 2.012*** 3.063*** 1.954*** 1.938*** 2.028*** 1.923*** 
  (0.187) (0.188) (0.215) (0.183) (0.182) (0.197) (0.185) 
/        

N 1265 1265 1265 1265 1265 1265 1265 
Wald chi2 56.3 1058.47 251.35 1224.96 86.86 68.43 84.59 
Pseudo R2 0.0973 0.1058 0.1658 0.1471 0.1339 0.1052 0.1314 
Wald test of spatial terms 
(Chi2) 885.85 722.6 55.88 844.67 832.08 588.7 929.54 

AIC 4624.843 4632.123 5062.121 4627.118 4623.278 4624.509 4625.157 
BIC 4707.128 4714.408 5206.121 4776.26 4772.42 4711.937 4779.442 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in parentheses. 
SEM = spatial error model; SAR = spatial autoregressive model (spatial lag model); SLX= spatial lag of X model; SDEM = spatial 
Durbin error model; GNS = general nesting spatial model; SAC = spatial autoregressive combined model; SDM = spatial Durbin 
model 
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Table A2. ML spatial estimations for drivers of Measure 17 expenditure as % of total RD expenditure 

  (1) (2) (3) (4) (5) (6) (7) 
  SEM SAR SLX SDM SDEM SAC GNS 
(β) CAP subsidies (% of 
agriculture VA) 

-0.0611 0.0223 -0.0756 -0.0879* -0.0366 -0.0463 -0.0489 
(0.0475) (0.0401) (0.0662) (0.0475) (0.0479) (0.0475) (0.0483) 

(β) Agricultural Value Added 
(% of GVA) 

-0.0278 -0.0311 -0.103** -0.0542* -0.0271 -0.0296 -0.0368 
(0.0355) (0.0269) (0.0453) (0.0325) (0.0366) (0.0348) (0.0364) 

(β) LFA (% of area) 0.0299 0.0227 0.0263 0.0315 0.0208 0.0308 0.0269 
(0.0196) (0.0197) (0.0277) (0.0199) (0.0228) (0.0201) (0.0220) 

(β) Soil erosion (wind) -0.00289 -0.0114 -0.00706 -0.00700 -0.00529 -0.00458 -0.00453 
(0.0142) (0.0128) (0.0197) (0.0141) (0.0149) (0.0143) (0.0146) 

(β) Soil erosion (water) -0.293*** -0.141*** -0.309*** -0.269*** -0.248*** -0.268*** -0.240*** 
(0.0575) (0.0337) (0.0880) (0.0631) (0.0609) (0.0540) (0.0620) 

(β) Land diversity index 0.0918 -0.0614 0.0353 0.129 0.0743 0.0773 0.0816 
(0.113) (0.0985) (0.159) (0.114) (0.114) (0.113) (0.115) 

(β) Arable land (% of total 
area) 

0.125*** 0.152*** 0.125** 0.130*** 0.130*** 0.137*** 0.138*** 
(0.0361) (0.0280) (0.0512) (0.0368) (0.0360) (0.0354) (0.0360) 

(β) Permanent crops (% of 
total area) 

0.0156 0.0117 0.0210 0.0145 0.0179 0.0154 0.0179 
(0.0118) (0.0116) (0.0166) (0.0119) (0.0135) (0.0121) (0.0131) 

(β) Pastures (% of total 
area) 

0.0293 0.0432* 0.0155 0.0113 0.0241 0.0329 0.0212 
(0.0291) (0.0225) (0.0415) (0.0298) (0.0293) (0.0286) (0.0294) 

(β) Heterogeneous 
agriculture (% of total area) -0.0427** -

0.0500*** -0.0709** -0.0431** -0.0509** -0.0498** -0.0483** 

(0.0214) (0.0185) (0.0298) (0.0213) (0.0223) (0.0214) (0.0220) 
(β) Forest (% of total area) -0.00293 0.0689** -0.0217 -0.00829 0.0168 0.0196 0.0228 

(0.0446) (0.0339) (0.0634) (0.0455) (0.0445) (0.0440) (0.0447) 
(β) GVA per capita 0.369*** 0.112 0.0763 0.204** 0.310*** 0.315*** 0.268** 

(0.118) (0.0735) (0.136) (0.0979) (0.119) (0.112) (0.117) 
(β) Country dummy -0.00723 -0.00163 -0.00621 -0.00453 -0.00443 -0.00646 -0.00443 

(0.00766) (0.00418) (0.0114) (0.00820) (0.00782) (0.00713) (0.00791) 
Cons 0.980* 0.397 -0.753 0.198 0.814 0.901 0.650 

(0.578) (0.398) (0.633) (0.454) (0.588) (0.556) (0.583) 
         

ρ(WY)  0.876***  0.891***  0.363*** 0.298* 
 (0.0212)  (0.0215)  (0.100) (0.156) 

         

(θ) CAP subsidies (% of agri 
VA) 

  0.697*** 0.326*** 0.405**  0.422*** 
  (0.136) (0.0978) (0.165)  (0.151) 

(θ) Agricultural Value Added 
(% of GVA) 

  -0.201*** 0.0278 -0.0348  -0.0288 
  (0.0731) (0.0526) (0.0876)  (0.0793) 

(θ) LFA (% of area)   0.0185 -0.0304 -0.0761  -0.0611 
  (0.0649) (0.0466) (0.0750)  (0.0695) 

(θ) Soil erosion (wind)   0.110*** 0.0252 0.00159  0.0152 
  (0.0407) (0.0292) (0.0480)  (0.0435) 

(θ) Soil erosion (water)   0.204 0.273*** -0.162  0.00704 
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  (0.128) (0.0922) (0.154)  (0.143) 
(θ) Land diversity index   -1.707*** -0.772*** -0.974**  -1.022*** 

  (0.358) (0.258) (0.417)  (0.386) 
(θ) Arable land (% of total 
area) 

  0.264*** -0.0534 0.0954  0.0894 
  (0.101) (0.0731) (0.122)  (0.112) 

(θ) Permanent crops (% of 
total area) 

  0.0535 -0.00654 0.0248  0.0206 
  (0.0382) (0.0274) (0.0445)  (0.0416) 

(θ) Pastures (% of total 
area) 

  0.257*** 0.0798 0.194**  0.185** 
  (0.0769) (0.0554) (0.0897)  (0.0823) 

(θ) Heterogeneous 
agriculture (% of total area) 

  -0.0820 0.0109 -0.125*  -0.0909 
  (0.0583) (0.0422) (0.0725)  (0.0662) 

(θ) Forest (% of total area)   0.454*** 0.108 0.0629  0.137 
  (0.114) (0.0822) (0.146)  (0.128) 

(θ) GVA per capita   -0.0310 -0.106 0.197  0.0582 
  (0.120) (0.0861) (0.146)  (0.132) 

(θ) Country dummy   -0.00476 0.00274 -0.00952  -0.00549 
  (0.0155) (0.0111) (0.0202)  (0.0166) 

         

λ(Wu) 0.921***    0.907*** 0.768*** 0.773*** 
(0.0191)    (0.0205) (0.0679) (0.0956) 

/        

var(λ) 1.219*** 1.276*** 2.351*** 1.210*** 1.193*** 1.261*** 1.240*** 
  (0.115) (0.121) (0.162) (0.111) (0.108) (0.121) (0.116) 
/        

N 1265 1265 1265 1265 1265 1265 1265 
Wald chi2 110.74 2697.49 443.17 2950 153.64 145.57 193.11 
Pseudo R2 0.1406 0.1332 0.2594 0.2131 0.2037 0.1434 0.2252 
Wald test of spatial terms 
(Chi2) 2331.8 1702.62 96.8 2009.13 1988.08 1006.84 1000.93 

AIC 4073.358 4103.117 4727.518 4070.193 4062.251 4060.198 4059.344 
BIC 4155.643 4185.402 4871.517 4219.335 4211.393 4147.626 4213.629 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in parentheses. 
SEM = spatial error model; SAR = spatial autoregressive model (spatial lag model); SLX= spatial lag of X model; SDEM = spatial 
Durbin error model; GNS = general nesting spatial model; SAC = spatial autoregressive combined model; SDM = spatial Durbin 
model 
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Table A3. ML spatial estimations for drivers of Measure 5 expenditure as % of total RD expenditure 

  (1) (2) (3) (4) (5) (6) (7) 
  SEM SAR SLX SDM SDEM SAC GNS 
(β) CAP subsidies (% of 
agriculture VA) 

-0.0482 -0.0170 -0.0458 -0.0601 -0.0497 0.00363 -0.0273 
(0.0712) (0.0618) (0.0815) (0.0748) (0.0730) (0.0525) (0.0704) 

(β) Agricultural Value Added 
(% of GVA) 

-0.0508 -0.0445 -0.00931 -0.00968 -0.0140 -0.0354 -0.0271 
(0.0505) (0.0413) (0.0558) (0.0511) (0.0547) (0.0346) (0.0537) 

(β) LFA (% of area) 0.0566* 0.0515* 0.0543 0.0580* 0.0559* 0.0447 0.0548* 
(0.0312) (0.0303) (0.0341) (0.0313) (0.0320) (0.0277) (0.0330) 

(β) Soil erosion (wind) 0.000781 0.00438 -0.000248 -0.00814 -0.00202 0.00465 -0.000716 
(0.0218) (0.0196) (0.0243) (0.0223) (0.0218) (0.0170) (0.0218) 

(β) Soil erosion (water) -0.103 -0.0512 -0.123 -0.121 -0.105 -0.0262 -0.0992 
(0.0730) (0.0508) (0.108) (0.0994) (0.0970) (0.0397) (0.0901) 

(β) Land diversity index -0.430** -0.398*** -0.344* -0.356** -0.376** -0.346*** -0.366** 
(0.171) (0.152) (0.196) (0.180) (0.175) (0.131) (0.167) 

(β) Arable land (% of total 
area) 

0.0475 0.0582 0.0416 0.0522 0.0452 0.0575 0.0425 
(0.0520) (0.0430) (0.0631) (0.0579) (0.0557) (0.0360) (0.0529) 

(β) Permanent crops (% of 
total area) 

0.00626 -0.00179 -0.00237 0.000479 -0.00408 -0.00570 -0.00278 
(0.0186) (0.0178) (0.0205) (0.0188) (0.0191) (0.0160) (0.0196) 

(β) Pastures (% of total 
area) 

0.0930** 0.0971*** 0.0734 0.0550 0.0551 0.0852*** 0.0597 
(0.0420) (0.0347) (0.0512) (0.0469) (0.0451) (0.0293) (0.0430) 

(β) Heterogeneous 
agriculture (% of total area) 

-0.0126 -0.0170 -0.00842 0.00537 0.00256 -0.0128 -0.0156 
(0.0322) (0.0281) (0.0367) (0.0336) (0.0330) (0.0246) (0.0325) 

(β) Forest (% of total area) 0.0425 0.0885* -0.00284 0.0107 0.0444 0.0843* 0.0369 
(0.0642) (0.0522) (0.0782) (0.0717) (0.0692) (0.0433) (0.0655) 

(β) GVA per capita 0.263* 0.180 0.293* 0.192 0.184 0.135 0.209 
(0.157) (0.113) (0.168) (0.154) (0.173) (0.0901) (0.173) 

(β) Country dummy -0.0213** -0.0161** -0.00316 -0.00689 -0.00886 -0.0103** -0.00971 
(0.00961) (0.00645) (0.0141) (0.0129) (0.0124) (0.00503) (0.0115) 

Cons 0.604 0.601 0.716 0.409 0.436 0.509 0.427 
(0.793) (0.612) (0.780) (0.716) (0.857) (0.502) (0.864) 

         

ρ(WY)  0.570***  0.558***  0.793*** -0.560*** 
 (0.0405)  (0.0415)  (0.0556) (0.105) 

         

(θ) CAP subsidies (% of 
agriculture VA) 

  0.0888 0.150 0.207  0.249 
  (0.167) (0.153) (0.200)  (0.234) 

(θ) Agricultural Value Added 
(% of GVA) 

  -0.224** -0.117 -0.210**  -0.267** 
  (0.0901) (0.0832) (0.104)  (0.123) 

(θ) LFA (% of area)   -0.0162 -0.0382 -0.0265  -0.00535 
  (0.0799) (0.0733) (0.0942)  (0.107) 

(θ) Soil erosion (wind)   0.122** 0.0787* 0.0836  0.0645 
  (0.0501) (0.0460) (0.0583)  (0.0680) 

(θ) Soil erosion (water)   0.155 0.156 0.0785  -0.0513 
  (0.158) (0.145) (0.175)  (0.214) 
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(θ) Land diversity index   -0.614 -0.113 -0.268  -0.226 
  (0.441) (0.406) (0.520)  (0.596) 

(θ) Arable land (% of total 
area) 

  -0.0364 -0.0601 -0.0323  -0.00615 
  (0.125) (0.114) (0.145)  (0.172) 

(θ) Permanent crops (% of 
total area) 

  -0.0742 -0.0466 -0.0486  -0.0257 
  (0.0471) (0.0432) (0.0558)  (0.0637) 

(θ) Pastures (% of total 
area) 

  0.196** 0.0909 0.183*  0.235* 
  (0.0948) (0.0873) (0.108)  (0.127) 

(θ) Heterogeneous 
agriculture (% of total area) 

  -0.0315 -0.0406 -0.119  -0.221** 
  (0.0718) (0.0660) (0.0841)  (0.101) 

(θ) Forest (% of total area)   0.368*** 0.162 0.151  0.0207 
  (0.141) (0.129) (0.166)  (0.204) 

(θ) GVA per capita   0.0277 0.0180 0.218  0.467** 
  (0.148) (0.136) (0.166)  (0.204) 

(θ) Country dummy   -0.0361* -0.00961 -0.0195  -0.0188 
  (0.0191) (0.0176) (0.0211)  (0.0273) 

         

λ(Wu) 0.582***    0.569*** -0.428*** 0.858*** 
(0.0408)    (0.0413) (0.120) (0.0425) 

/        

var(λ) 3.037*** 3.024*** 3.568*** 3.002*** 2.991*** 2.773*** 2.621*** 
  (0.275) (0.269) (0.288) (0.264) (0.264) (0.259) (0.243) 
/        

N 1265 1265 1265 1265 1265 1265 1265 
Wald chi2 41.19 328.21 144.95 361.59 65.44 547.95 73.42 
Pseudo R2 0.0749 0.0837 0.1028 0.1004 0.0969 0.0755 0.0878 
Wald test of spatial terms 
(Chi2) 203.46 197.67 30.92 216.85 211.83 489.71 805.69 

AIC 5089.074 5081.205 5254.963 5094.98 5092.985 5072.294 5075.939 
BIC 5171.359 5163.49 5398.962 5244.122 5242.127 5159.722 5230.224 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level respectively. Standard errors in parentheses. 
SEM = spatial error model; SAR = spatial autoregressive model (spatial lag model); SLX= spatial lag of X model; SDEM = spatial 
Durbin error model; GNS = general nesting spatial model; SAC = spatial autoregressive combined model; SDM = spatial Durbin 
model 
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