
This is a peer-reviewed, final published version of the following document, © 2020 IEEE. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works. and is 
licensed under Creative Commons: Attribution 4.0 license:

Azasoo, J. Q., Kanakis, T., Agyeman, M. O. and Al-Sherbaz, Ali 
ORCID logoORCID: https://orcid.org/0000-0002-0995-1262 
(2020) Heuristic Optimization for Microload Shedding in 
Generation Constrained Power Systems. IEEE Access, 8. pp. 
13294-13304. doi:10.1109/ACCESS.2020.2965819 

Official URL: https://doi.org/10.1109/ACCESS.2020.2965819
DOI: http://dx.doi.org/10.1109/ACCESS.2020.2965819
EPrint URI: https://eprints.glos.ac.uk/id/eprint/9370

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title in 
the material deposited and as to their right to deposit such material.  

The University of Gloucestershire makes no representation or warranties of commercial utility, 
title, or fitness for a particular purpose or any other warranty, express or implied in respect of 
any material deposited.  

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.  

The University of Gloucestershire accepts no liability for any infringement of intellectual 
property rights in any material deposited but will remove such material from public view 
pending investigation in the event of an allegation of any such infringement. 

PLEASE SCROLL DOWN FOR TEXT.



Received November 25, 2019, accepted December 20, 2019, date of publication January 10, 2020, date of current version January 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965819

Heuristic Optimization for Microload Shedding in
Generation Constrained Power Systems
JULIUS QUARSHIE AZASOO 1,2, (Member, IEEE),
TRIANTAFYLLOS KANAKIS 1, (Member, IEEE), ALI AL-SHERBAZ 1, (Member, IEEE),
AND MICHAEL OPOKU AGYEMAN 1, (Senior Member, IEEE)
1Department of Computing, University of Northampton, Northampton NN1 5PH, U.K.
2School of Technology (SOT), Ghana Institute of Management and Public Administration (GIMPA), Accra, Ghana

Corresponding author: Julius Quarshie Azasoo (julius.azasoo@northampton.ac.uk)

ABSTRACT While the causes of power system outages are often complex and multi-faceted, an apparent
deficit in generation compared to a known demand for electricity could be more alarming. A sudden hike
in demand at any given time may ultimately result in the total failure of an electricity network. In this
paper, algorithms to efficiently allocate the available generation is investigated. Dynamic programming based
algorithms are developed to achieve this constraint by uniquely controlling home appliances to reduce the
overall demands for electricity by the consumers on the grid in context. To achieve this, heuristic optimization
method (HOM) based on the consumers’ comfort and the benefits to the electricity utility is proposed. This
is then validated by simulating microload management in generation constrained power systems. Three
techniques; General Shedding (GS), Priority Based Shedding (PBS) and Excess Reuse Shedding (ERS)
techniques were studied for effecting efficient microload shedding. The research is aimed at reducing the
burden imposed on the consumers in a generation constrained power system by the traditional load shedding
approach. Additionally, the reduction of the excess curtailment is a prime objective in this paper as it helps the
utility companies to reduce wastage and ultimately reduce losses resulting from over shedding. Reducing
the peak-to-average ratios (PAR) on the entire network in context as a critical factor in the determination
of the efficiency of an electricity network is also investigated. In the long run, the PAR affects the price
charged to the final consumer. Simulation results show the associated benefits that include effectiveness,
deployability, and scalability of the proposed HOM to reduce these burdens.

INDEX TERMS Demand-side management (DSM), microload management, smart grid, smart metering,
optimization, peak-to-average ratio (PAR).

I. INTRODUCTION
There are various reasons why both governments and the
electricity utility companies are forced to implement dif-
ferent types of demand-side management (DSM) [1]; three
key factors have been identified to influence this. These
are the reduction in peaking cost with its associated impact
on the environment [2], avoidance of additional expendi-
ture on expansion and providing consumers with options to
reduce their electricity consumption and ultimately saving
them money [3]. Even more critical is the effects of global
warming and the associated climate change threats it poses
[4], [5]. The rate of change in the climate is becoming more
alarming now than ever [6]. In generation constrained power

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiping Li.

systems, where the normal electricity generation cannot even
meet the off-peak demand of the consumers, create a different
dimension to the pollution caused by peaking as the con-
sumers mostly rely on fossil fuel-powered generator set to get
electricity in time of sectional load shedding [7]. For instance,
it is estimated that on the average every base transceiver
station (bts) in most developing countries is equipped with
a diesel-powered generator set [8]. Another way this menace
is being handled is the use of renewable energy sources, but
they are also intermittent in nature which is a challenge for
effective integration [9], [10]. The portion of energy derived
from renewable sources in the United Kingdom, for exam-
ple, have risen significantly from 2009 to 2015 by 6.7%
to 24.6% respectively [11]. Meanwhile, the best integration
methods of renewable sources of electricity are still under
investigation [12], [13].
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Sectional power cuts which are known as load shedding
used to avoid total blackout or overload on the generation
constrained powers systems further create inconveniences
for both the consumers and their providers [14]. However,
this has become a necessary evil as the failure to force-
fully reduce the demand can result in the total collapse
of the entire network. The works by Khalid et al. [15],
Samarakoon et al. [16], and Trovato et al. [17] illuminate
these facts by demonstrating that it would be catastrophic if
measures are not put in place to avoid an overload on the
electricity grid. Smart grid has the potential to ameliorate the
situation with the provision of bidirectional communication
amongst smart meter and the energy providers as well as the
consumers [18].

Among the potentials of the smart grid is the demand-side
Management (DSM). DSM refers to themeasures put in place
by the providers to influence the consumption behaviour
of the end-users [1], [19]. Conventionally, conservation of
energy, the substitution of fuel, energy efficiency and demand
response are the main DSM schemes observed in literature
[20], [21]. DSM in a residential or commercial setting is
aimed at the reduction in the need for expensive peaking
costs and/or the reduction of overload of the network. This
is done through the provision of Time of Use (TOU), Real-
Time Pricing (RTP), Critical Peak Pricing (CPP) and other
incentives-based billing methods. In most cases, the con-
sumer is promised the minimization of their bills, while they
shift or defer the use of their appliances to a cheaper price
period representing a win-win for both the electric utility
companies and the customers [15], [22].

Prevailing attempts in smart grid research have mostly
concentrated on the security and privacy of the smart meter-
ing systems and the associated data [23], optimization tech-
niques modeled to minimize bill payments by the consumer
[24], [25], PAR, peaking [26], maintaining consumer pref-
erences [27], [28] and exploring the causes of these con-
straints [29], [30]. For example, retrofitting existing meters
into smart meters to do real-timemonitoring and evaluation of
the grid was considered in [30]. What is, therefore, noticeable
in almost all the studies reviewed is that they assume that
the cost of peaking is the critical constraint on the overall
network as well as the preservation of consumers’ comfort
of use [31], [32].

Peaking activities on the ozone layer (Carbon Emission)
has also been considered by other studies as in [33], [34].
Additionally, generation side approach that could ultimately
reduce PAR in the long run, was investigated in [35] where an
efficient computational formulation of stochastic scheduling
model that combines the optimization of the energy pro-
duction, optimal scheduling and both under/over frequency
responses based load shedding using mixed-integer linear
programming was also examined. The focus of their work
was to optimized energy production with wind energy gen-
eration as a reserve to optimize both operating reserve and
the frequency response.

Based on the current research activities in smart grid along
with those mentioned above, there is clearly insufficient
incorporation of generation constraint situations where the
electric utility provider cannot meet the off-peak demand of
electricity by the users. Therefore, it is critically important
to consider these situations [36]–[39]. Also, the instances
where consumers are not provided with such pricing schemes
as TOU, CPP, RTP, etc which permits them to alter their
electricity usage patterns for some benefits have not been
reflected as well in the current research space.

This paper is an extended version of [40] and [14].
The work reported in [40] focuses on the optimization of
microload shedding in generation constrained power systems
where a distributed DSM system is modeled to combine both
traditional electricity grid and smart grid. The assumption has
been that the grid is made up of residential loads being served
by a single source of generation. Six (6) priority levels of
controllable loads were considered and evaluated in the work
in [40] where the results showed a significant curtailment of
power in addition to expected values. This excess curtailment
is therefore seen as additional constrained on both the electric
utility providers and their customers.

On the other hand, the second work in [14] further inves-
tigated 2% and 5% microload shedding under the 6 priority
levels in addition to those in [40]. Additionally, the control-
lable loads were increased from six (6) to thirty-five (35)
priority levels to increase the control to observe the shedding
accuracy it presents. The main objective of the proposed
system is to reduce the effect of the traditional methods of
load shedding in the generation constrained power systems on
their consumers. The reduction of PAR was also examined.

However, this paper, in addition to the works reported
in [40] and [14], we investigate a heuristic optimization
method (HOM) based on the consumers’ comfort and its
benefits to the electric utility. Three techniques, namely;
General Shedding (GS), Priority Based Shedding (PBS) and
Excess Reuse Shedding (ERS) were studied for effecting
efficient microload shedding. The PBS for six (6) grouped
(GPL) microloads was investigated in [40] and extended
in [14] to cover the discussions on thirty-five (35) Ungrouped
microload (UPL) shedding and the corresponding priority
optimization and PAR optimization. This extension focuses
on GS of GPL and UPL shedding. Further, the ERS is
performed on the GS as Excess Reuse General Shedding
(ERGS). Also, the PBS is further conducted using the ERS as
Excess Reuse Priority Based Shedding (ERPBS). The results
of the GS, PBS, ERGS and ERPBS were then used to further
examine the effects on the PAR and the priority optimization.

The essential contributions of this paper are as follows:
• HOM: We focus on enhancing the efficiency of the
microload shedding algorithm and evaluate the result
based on minimizing the gap between the intended
amount of electricity shed and the actual values, and
optimizing the priority of the user. We further exam-
ine the impact of each approach on the PAR of the
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grid in context. To achieve this, we develop GS and
PBS algorithms. Furthermore, the concept of ERS was
investigated on the GS and PBS as ERGS and ERPBS
respectively. The effectiveness of the proposed method
is validated by analyzing the performance metrics of
the algorithms, which show high significant reduction in
the additional shedding associated with various intended
sheddings, enhanced user comfort (i.e. maintaining the
preferences of the user) through the priority optimization
and minimum system PAR.

• To ensure the reduction in the excesses in the microload
shedding by GS and PBS we introduce ERS which
shows a significant reduction in the associated excesses.

• We show that total blackout can be avoided through the
granular reduction of consumers’ total energy consump-
tion thereby minimizing the associated inconveniences.

• A novel formulation that considers the demand as an
independent variable from the generation (i.e. Normally,
generation is forced to follow the demand but when the
generation is obviously not enough to meet the demand,
there is a need to come up with innovative ways to solve
this problem. One way of doing this is to define demand
and generation as non-dependent variables. Therefore,
instead of treating the generation as a follower of the
demand we adjust the demand in relation to the gener-
ation) with potential for new perspectives of generation
models.

The rest of the paper is organized as follows; Section II
shows the System Model while in Section III we discuss
the problem formulation. Section VI shows the algorithms
making up the HOM and the optimizations discussed along
with the set of the simulation parameters. Section IV. Results
and discussions are then presented in Section V. We conclude
the paper in Section VI.

II. THE SYSTEM MODEL
The System Model is made up of a typical power sys-
tem structure of generation constrained power system like
that of Nigeria and Ghana comprising four (4) key systems
namely: Generation, Transmission, Distribution and the end-
user. These are categorized into 5 Layers, and the Layer 1
and Layer 2 are considered in this paper. The structure of
the grid is shown in Figure 2 where the smart meters is
represented as SM (i.e. household equipped with controllable
microloads L) as depicted in the Microload Management
Smart Metering Architecture in Figure 1 above where Wide
Area Network (WAN), Neighborhood Area Network (NAN)
and Metering Information System Server (MISS) are clearly
shown. We assumed a traditional electricity grid where elec-
tricity is generated at a single source and distributed among
all consumers. The users consume electricity as at when they
require it.

The Load (microloads) is the last level of control and
accounts for almost all the total electric energy consumed
by the entire Main Power System (MPS) representing the
Demand (D) on the overall Power System (PS). It is assumed

FIGURE 1. Proposed microload management architecture.

FIGURE 2. Single source power system structure.

that there are no internally self generated electricity at
Layer 2. The parameters of each Load are; Rated Cur-
rent (RC), Voltage (V), Load Power (LP), Status (S = ON
or OFF), Priority (Pr), Schedule Status (SS), Load ID (Lid),
Control Type (CT) and could be configured to add more
parameters. All these parameter are attached to a particular
Load.

The Smart Meter (SM) is the main connection to the
Loads (L = L1,L2,L3, . . .Ln) directly connected to it.
The parameters considered for the purpose of the paper are;
Total Consumption (TC = sum of all LPs), Voltage (MV),
Current (MC), Number of Controllable Loads (NCL), Meter
ID (MId). The list of home appliances considered for this sim-
ulation are shown in Table 1 (in Section II) along with their
categorisation for six (6) Priority levels and thirty-five (35)
Priority levels and their current ratings.

III. PROBLEM FORMULATION
The cradle of the above research gaps was initially inves-
tigated by Azasoo and Boateng in [30] where the causes
of such constraints were investigated. Retrofit strategy for
designing the smart meters to reduce the cost of acquisition
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TABLE 1. Current ratings for GPL 1 to 6.

and deployment was then proposed. Therefore, in this paper,
a distributed DSM system that is modeled to assess the possi-
bilities of reducing the discomforts associatedwith traditional
load shedding by proposing various algorithms and optimiza-
tion techniques through HOM.

The assumption is that the grid is made up of residential
loads being served by a single source of generation. Six (6)
controllable loads per household were considered and eval-
uated and then extended to thirty-five (35) microloads. For
the Six (6) controllable loads, it is assumed that a group of
similar or closely related electric devices are lumped together
as a single controllable group to reduce the overall number
of controllers fitted in a house. Four (4) algorithms were
proposed and evaluated under the HOM, namely; GS, PBS,
ERGS, and ERPBS. The objectives of the proposed HOM is
to reduce the impact of the traditional methods of load shed-
dingmechanisms in generation constrained power systems on
their users whilst reducing the PAR within the part of the grid
in context.

Moreover, optimization of the priority of the microloads
is proposed to maximize adherence to consumers’ prior-
ities. Consequently, simulation results from the investiga-
tion reveals that the proposed HOM is effective in reducing
the overall discomfort associated with the traditional load

shedding along with a resultant reduction in PAR and a
significant reduction in the excess microload shedding.

The optimization of the available power is intended to
reduce the peak to average ratio of the overall grid thereby
increasing efficiency of the network and at the same time the
proposed priority optimization will help increase customer
satisfaction by making sure that their salient loads are not
curtailed by the proposed mechanism thereby enhancing cus-
tomer satisfaction. We denote the rated current of appliance
with Priority = p belonging to SM = m ∈M, whereM is the
total number of Smart Meters (SM) in a particular District
Power System (DPS) as shown in Layer 3 in Figure 1 as:

Imp

The Voltage= V of a particular SM=m ∈M with Priorities
= P such that p ∈ P belonging to a particular DPS is also
denoted as:

Vm
P

Also, the known consumption of microload = l ∈ L with
priority = p ∈ (SM = m) is given as:

lmp

Hence, without loss of generality, we compute lmp as shown
in Equation 1.

lmp = Imp V
m (1)

The Total Load of an SM = m ∈ M at any time τ , is then
given as:

Lτm

We compute the Lτm as follows:

Lτm =
n∑

p=1

Lmp Where p 7→ { n ∈ P | p ≤ n } (2)

Therefore, the Total demand TC = D of all SMs (M 3 m) in
a particular DPS is calculated as;

D =
k∑

m∈M

Lτm Where k 7→ { k ∈ K | τ = 1 } (3)

We denote D̂ as the expected demand from a particular
DPS. Therefore, ideally, D = D̂ but that has not always been
the case resulting in heavy financial loss to the electricity
utility companies along with the additional inconvenience it
causes the final consumer. The Total Expected Load of an
SM = m ∈M at any time τ , is then given as:

dτm

We compute the D̂ as follows:

D̂ =
n∑

p=1

dτm (4)
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Our Objective 1 is to distribute the Expected Demand D̂
such that;

Objective 1: D̂ ≈
k∑

m∈M

n∑
p=1

Lmp (5)

The Objective 2 is to Maximise the Priority of the con-
sumer so as to meet essential electricity needs. Let denote the
Group of load that are not affected by the microload shedding
as P̂ and those affected as P̌ so that;

P = P̂+ P̌ (6)

Objective 2 = maximize(P̂) (7)

We denote Pr or Pi as the Priority, being inversely propor-
tional to the Total Priority of the consumer PT . Where the
constant of proportionality is P̂ Therefore,

Pr ∝
1
PT

(8)

Hence,

Pr =
P̂
PT

(9)

The Objective 3 is to Reduce the PAR of the entire Grid in
context thereby enhancing network efficiency.

Objective 3 = minimise(PAR) (10)

The Equation for PAR at time τ (PARτ ) is given as:

PARτ =
Max Peak of D at time τ
Average Max Peaks of D

(11)

Therefore, we compute the PAR at time τ (PARτ ) as:

PARτ =
Max Peak of (

∑k
m∈M

∑n
p=1 L

m
p )τ

Average Max Peaks of (
∑k

m∈M
∑n

p=1 L
m
p )

(12)

IV. THE MICROLOAD SHEDDING ALGORITHMS
A key objective of this paper is to optimise the load shedding
process in generation constrained power systems. We have
identified three key constraints to optimise in order to achieve
this objective such that it benefits both the electric util-
ity company, their consumers and more importantly, the
environment.
• We reduced the impact of the load shedding bymicroload
managing the demand such that the available generation
denoted as D is not exceeded by the demand D̂ from the
consumers.

• We optimized the microload shedding such that the user
set Priorities are adhered to as much as possible by
maximizing the Pr in the PBS

• Attempts in [7], [14], [40] show a significant shed-
ding along with the intended amount of load resulting
in what is popular known as over-generation. Hence,
in this paper we have significantly bridged this gap
existing between the available generation D and the
actual demand D̂ through the proposed HOM approach

• By making available some amount of electricity to
the consumers, we immensely reduced the PAR of the
entire DPS under consideration from an undefined state
(i.e because there is no consumption during the time
of traditional load shedding) to a (PARτ ) as shown in
Equation 11.

Algorithm 1 GS & PBS Server Side

1 Initialization;
2 Get Total GS Demand D;
3 Input Grid Section (GS);
4 Get N i.e. total number of SM in GS;
5 Input Total Expected Demand D̂;
6 Compute Percentage Expected Demand dm% per SM;
7 for Grid = 1 to Gridmax do
8 while m < = N do
9 dm% = D̂

D ∗ 100 ;
10 if m = N then
11 Return False;
12 else

13 end if
14 Perform the SM Side Optimization algorithm in

Algorithm 2;
15 end while
16 Display Current Total Demand D;
17 Update the GS;
18 end for

1) THE GS AND PBS ALGORITHMS
The concept of the GS has to do with the idea that there are
no priorities set for the microloads such that each microload
is handle based solely on their ratings to reduce the overall
demand. On the other hand, the PBS considers the priority of
the microloads in the cutting OFF the loads, this is assumed
to have been set by the end user. We confront the constraints
from two angles; Server Side and the SM side as shown in
Algorithm 1 which represents the algorithm on the server for
both GS and PBS, the Algorithm 2 for the SM side of the
GS and a flowchart of the SM side of the PBS in Figure 3.
Lmp represents the load of the home appliance where m is the
SM number and P is the microload number and at the same
time, Lmp is represented as Lp kW in the flowchart shown
in Figure 3.
Inferring from privacy issues expressed in previous works

with respect to the consumer, we restrict microload consump-
tion information sharing to the utility by sending only the
required amount of load to be shed to the user SMs as a
percentage dm%. The optimization Algorithm 2 is performed
with the aim of efficiently allocating the available generation
at the SM levels. Hence, we compute the Expected Demand
per SM at the Server side as percentage demoted as dm%
so that it can be sent across the network privately. Each
SM is therefore required to compute its dm from the dm%.
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Algorithm 2 GS Smart Meter (SM) Side Algorithm

1 initialization;
2 Set Lm to 0.00 kW;
3 Get dτm;
4 Compute Expected Demand per SM (dm);
5 dm = dm% ∗ dτm;
6 for p = 1 to pmax do
7 Lm = Lm + Lp;
8 if Lm < dm then
9 Turn OFF Lp;
10 end if
11 if Lm >= dm then
12 Lm = Lm − Lp;
13 Update Server with Lm;
14 end if
15 end for

FIGURE 3. PBS smart meter (SM) side algorithm.

Simulation results from these techniques are discussed
in Section IV.

2) THE ERS ALGORITHMS (ERGS AND ERPBS)
After observing the excess sheddings along with the intended
values termed as overshedding as seen in our work in [40]
and [14], ERS is developed to reuse the excess from an initial
SM to the next successive SM. For general shedding, ERGS
is used and ERPBS is used in the case of the priority based
shedding. Algorithms 3 and Algorithm 4 depict the sequence
of these approaches respectively.

Algorithm 3 ERGS Algorithm

1 Initialization;
2 Get Total GS Demand D;
3 Input Grid Sections (GS);
4 Get N i.e. total number of SM in GS;
5 Set ER = 0.00 kW;
6 Input Total Expected Demand D̂;
7 Compute Percentage Expected Demand dm% per SM;

8 dm% = D̂
D * 100;

9 for Grid = 1 to Gridmax do
10 Set Lm = 0.00 kW ;
11 for m = 1 to N do
12 Compute Expected Demand per SM (dm);
13 dm = dm% ∗ dτm;
14 Dm = dm + ER;
15 if ER < 0 then
16 Dm = dm;
17 end if
18 for p = 1 to pmax do
19 Lm = Lm + Lp;
20 if Lm < Dm then
21 Turn OFF Lp;
22 end if
23 if Lm > Dm then
24 Lm = Lm - Lp;
25 ER = Dm - Lm;
26 Update Server with Lm & ER ;
27 end if
28 end for
29 Display Current Total Demand D;
30 Update the GS;
31 end for
32 end for

V. SIMULATION SETUP
The simulation is setup such that a single source of generation
is assumed to be serving the entire grid in context. The grid
is made up of twenty six (26) homes which are equipped
with a maximum of uniquely identifiable thirty-five (35)
microloads. Firstly, we grouped the loads into six (6) priority
groups. It is assumed that the users assign the priorities to
their appliances or the groupings. We refer to this grouped
loads as Grouped Priority Loads (GPL). GS, PBS, ERGS
and ERPBS are performed on the microloads. Secondly,
we identified each microload with unique priorities as
also assumed to be assigned by the consumers themselves.
Collectively, we refer to this load category as Ungrouped
Priority Loads (UPL). We then repeat the simulation for this
set of microloads. The possible combinations of microloads
per a household is shown in Table 1. The total consumption
per microload with priority p on SM m is represented by
Equation 1 as lmp .
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Algorithm 4 ERPBS Algorithm

1 Initialization;
2 Get Total GS Demand D;
3 Input Grid Sections (GS);
4 Get N i.e. total number of SM in GS;
5 Set ER = 0.00 kW;
6 Input Total Expected Demand D̂;
7 Compute Percentage Expected Demand dm% per SM;

8 dm% = D̂
D * 100;

9 for Grid = 1 to Gridmax do
10 Set Lm = 0.00 kW ;
11 Set PT = 0;
12 for m = 1 to N do
13 Compute Expected Demand per SM (dm);
14 dm = dm% ∗ dτm;
15 Dm = dm + ER;
16 if ER < 0 then
17 Dm = dm;
18 end if
19 Sort Priority P per microload i in SM m as (Pi)

in Ascending order;
20 for i = 0 to I - 1 do
21 HoldSub = i;
22 for k = i + 1 to I-1 do
23 if P[k] < P[HoldSub] then
24 HoldSub = k;
25 end if
26 end for
27 HoldTemp = P[i];
28 P[i] = P[HoldSub];
29 P[HoldSub] = HoldTemp;
30 end for
31 for p = 1 to pmax do
32 Lm = Lm + Lp;
33 PT = PT + P[i];
34 if Lm < Dm then
35 Turn OFF Lp;
36 end if
37 if Lm > = Dm then
38 Lm = Lm - Lp;
39 PT = PT - P[i];
40 ER = Dm - Lm;
41 Update Server with Lm, PT and ER;
42 end if
43 end for
44 Display Current Total Demand D;
45 Update the GS;
46 end for
47 end for

VI. RESULTS AND DISCUSSIONS
We present simulation results and evaluate the performance
of the HOM in this section. The works [40] and [14] pre-
sented the results for GPL and UPL using the PBS for

a 20%, 15%, 10%, 5%, and 2% microload shedding. The
subsections below show the results of the GPL microload
shedding and that of the UPL microload shedding and how
the two approaches compare. Furthermore, we show how the
PBS approach affect the Peak Average Ratio (PAR) and the
Priority Optimizations.

A. GROUPED PRIORITY LOADS (GPL)
This section discusses the results obtained from grouping
the microloads into 6 priorities groups. The higher priorities
are assigned high priority numbers (i.e. the higher the pri-
ority the more user prefers the devices in that category to
remain ON during microload shedding periods). 10%, 15%,
and 20% microload shedding requests were conducted in
that order. However, we only discuss the results of 10%
and 20% microload shedding. The GS microload shedding
assumes that the priorities of all the microloads are the same
(i.e. in this case P = 1 for all microloads) and the PBS
assumes uniquely varied priorities per microload as shown
in Table 1. Expected Demand is given as (Dm) where General
Shedding (GS), Priority based shedding (PBS), Excess Reuse
General Shedding (ERGS), and Excess Reuse Priority Based
Shedding (ERPBS) were performed.

FIGURE 4. 10% GPL microload shedding.

The total demand from the 26 SMs was observed to be
674.90kW at the beginning of all simulations. Figure 4 and
Figure 5 show the results of GPL microload sheddings for
10% and 20% requests for microload shedding respectively.
As shown in Figure 4, a 10%microloadmanagement was per-
formed on the same consumption profile of 26 SMs consum-
ing a total of 674.90kW with expected demand of 607.41kW.
However, the effectual total demand recorded for this was
397.50kW, 533.40kW, 539.70kW, and 588.20kW for GS,
PBS, ERGS, and ERPBS techniques respectively. The lowest
excess shedding is observed on ERPBS with total excess
of 19.21kW and the largest excess shedding is seen to be
209.91kW on GS.

The distribution of all the SMs for the various techniques
with 10%microload shedding with GPL is shown in Figure 4.

13300 VOLUME 8, 2020



J. Q. Azasoo et al.: Heuristic Optimization for Microload Shedding in Generation Constrained PSs

FIGURE 5. 20% GPL microload shedding.

GS is observed to have the overall highest excess shedding
as seen on SM6, SM8, SM11, SM16, SM21, SM23, SM24,
and SM25. On the other-hand, the lowest excess shedding
is observed on ERPBS with the highest in it being seen
at SM20 but generally all SMs in the ERPBS experienced
very minimal excess shedding. Some SMs experienced more
demand than the expected demand as in SM2 and many
others. This could be as a result of the reuse of the excess
from the previous SMs resulting in higher capacity for the
current one.

The Figure 5 shows the result of performing various HOM
techniques on the grouped microloads with a 20% request
for shedding. The aim is to reduce the gap between the Dm
and the microload shedding. It is observed that GS performed
the worse compared to PBS. The best PBS results were
observed on SM4, SM5, SM9, SM21, SM23, and SM36.
Even-though the ERGS appears to be quiet closer to the Dm
as compared to the GS and PBS, the ERPBS is observed to
be the closest again and even sometimes better; as seen SM3,
SM7, SM13, SM18, SM21, and SM23. The over performance
of the ERPBS is due to the excess reuse of the curtailed
consumption from previous SMs which enables the SM in
focus to have more available power to be shed amongst its
microloads. This excess could make the available capacity
greater than the expected demand (Dm) thereby resulting
in higher availability for a particular SM and eventually
resulting in the observations from the ERPBS on SM3, SM7,
SM13, SM18, SM21, and SM23.

B. UNGROUPED PRIORITY LOADS (UPL)
This subsection focuses on discussions of the results from
treating individual microloads with their own priorities
to increase the granularity of the microloads with the
priorities assumed to have been assigned by the users
(see Table 1.) Actual microload shedding of 277.40kW,
141.50kW, 135.20kW, and 86.70kW were recorded when
the system was subjected to a 10% microload shedding on
GS, PBS, ERGS, and ERPBS respectively. Actual percentage

FIGURE 6. 10% ungrouped microload shedding.

microload shedding of 31%, 12%, 20%, and 11% was
observed as against the required 10% microload shedding
where the highest over-shedding is observed on the GS.
ERPBS recorded less than 1% excess as shown in Figure 6.
It is observed that increasing granularity lowers the excess
shedding since there are more microloads to handle specific
shedding requests. From the Figure 6, the most efficient shed-
dings are observed when employing the ERPBS and PBS.
The highest over-shedding is seen on the GS and ERGS. The
lower values of recorded for the excess sheddings could be
attributed to the increased granularity of the microloads.

FIGURE 7. 20% ungrouped microload shedding.

The system was then subjected to a 20% microload
shedding with the results shown in Figure 7 where excess
of 69.09kW, 4.25kW, 54.56kW, and 0.63kW for GS, PBS,
ERGS, and ERPBS respectively using the UPL consump-
tion profiles of the 26 homes. The PBS and ERPBS con-
tinued to outperform the GS and the ERGS using the UPL
profiles. GS similar patterns from SM1 until SM18 where
ERGS begins to slightly outperform the GS on SM19,
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FIGURE 8. Overall grouped and ungrouped excess microload sheddings.

SM22 and SM26. A combination of two factors could have
accounted for this; the excess reuse and the increased granu-
larity as discussed in the GPL and the 10% UPL approaches.

The comparison between the Grouped and Ungrouped
microload shedding resulting in 6 and 35 priority levels of
microloads (i.e. GPL andUPL) is shown in the Figure 8. It can
be seen that there is a significant reductions in all the excess
load shedding in the Grouped loads shedding compared to
the Ungrouped microload shedding performed. Whilst the
attempt to microload manage six (6) grouped loads based on
their group priorities resulted in a better availability for the
user based on their own set priorities, it is clear that the excess
load shed along with the desired values could result in huge
financial loss to the electricity utility companies.

Increasing the controllable loads by increasing the granu-
larity of the controllable microloads from six (6) to thirty-five
(35), resulted in a better value of the overall demand on the
network during the constrained generation periods. The gap
between the actual demand and the expected demand has been
significantly reduced as shown in the Figure 8. Overall the
sum of all the excess microload shedding in the GPL and the
UPL respectively was 631.22kW and 313.43kW representing
an improvement of 317.79kW over the grouped microload
management just by increasing the granularity of the loads.

C. THE PEAK-TO-AVERAGE RATIO (PAR) AND
PRIORITY OPTIMISATIONS
The PAR is computed by assuming that from Equation 11,
the Max Peak of D at time τ is assumed to be the max-
imum demand after effecting a microload shedding. Also,
the Average Max Peaks of D is assumed the average
of the total demand before and after microload shedding.
We focused only on the results of employing the PBS tech-
nique on 2%, 5%, 10%, 15%, and 20% using GPL and
UPL consumption profiles of the 26 SMs for both PAR and
the Prority optimisations. The results obtained are shown
in Figure 9.

FIGURE 9. Grouped and ungrouped microload shedding PARs.

It can be observed that the PAR under the traditional
load shedding of completely blocking or turning OFF
Homes (SMs) would have been mathematically impossible
as it would have been undefined as a result of division by
zero (0). However, the researchers were expecting a fur-
ther improvement in PAR as the granularity of microloads
increases from 6 for GPL to 35 for UPL microloads but the
results obtained showed otherwise as depicted in Figure 9.
Also, the best PARs are being recorded when higher percent-
agemicroloads are being shedwhich, shows that the lesser the
amount of load shed the more significant it affects the PAR
of the grid in context.

Base on Equation 8, where Pr is the Priority and is
inversely proportional to the Total Priority of the consumer P.
W ith the constant of proportionality is P̂, we assumed that
when all the microloads are ON in a particular household
it will result in a Unity Pr (Pr = 1). Therefore Unity Pr
is the ideal situation of demand for the network in context.
However, in times of traditional load shedding the Pr is
traditionally 0. The paper aims to make the Pr close to Unity
Pr as much as possible. The Pr distribution of the entire
network under GPL and UPL microload shedding conditions
are shown in Table 2.

TABLE 2. Priorities distributions for GPL and UPL.

The results show that the Pr approaches Unity as the per-
centage microload load shedding reduces from 20% to 2%.
The Pr seen in the GPL microload shedding appears to be
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lower than those recorded under the UPL microload shed-
ding results. It is clear that the higher the number of con-
trollable microloads the better the consumers’ priority are
preserved.

VII. CONCLUSION
In this paper, we examine the most effective ways of reduc-
ing the impact of traditional load shedding of electricity
in generation constrained power systems on the consumers
within the context of the smart grid. Algorithms to efficiently
allocate the available generation are investigated. Dynamic
programming based algorithms are developed to achieve this
constraint by uniquely controlling home appliances to reduce
the overall electricity demands. This was achieved through,
heuristic optimization method (HOM) based on the con-
sumers’ comfort and the resultant benefits to the electricity
utility company. The validation of the proposed HOM is
achieved by implementing microload management with three
techniques; General Shedding (GS), Priority Based Shed-
ding (PBS) and Excess Reuse Shedding (ERS) for effect-
ing efficient microload shedding. A significant reduction in
the excess curtailment was achieved as it helps the utility
companies to reduce wastage and ultimately reduce losses
resulting from over shedding. There was a reduction of the
over-shedding from 69.09kW to 0.63kW after employing var-
ious HOM techniques using the UPL consumption profiles.
Additionally, the actual percentage shedding was also
improved from 31% to 11% when subjected to a 10% shed-
ding using the GPL load profiles.

However, peak-to-average ratios (PAR) on the entire net-
work in context was expected to have a further improvement
as the granularity of microloads increases from 6 for GPL
to 35 for UPL microloads but the results obtained showed
otherwise. Also, in times of traditional load shedding the Pr
is traditionally 0. The paper aims to make the Pr close to
Unity Pr as much as possible. The Pr distribution of the entire
network under GPL and UPL microload shedding conditions
showed that increasing the granularity of the microloads
increases the preservation of the customers’ set priorities.

The efficient allocation of available scares electricity
resources to a household that would have been otherwise
entirely switched OFF, the paper increases the availability of
the electricity, which is a crucial parameter in the determi-
nation of the network efficiency. As a result, the PAR was
moved from an undefined state to an average of 0.84 and
0.89 for GPL and UPL microloads profiles respectively.
By efficiently allocating the available electricity do con-
sumers would reduce the dependence on massive fossil fuel-
based generators sets which could have positive implications
for global warming. The simulation was based on ratings of
selected domestic appliances.

A future directionwould be the development of load profile
dynamically based on various consumption patterns such as
those from the Tropical and Temperate regions of the world
such as West Africa and the United Kingdom consump-
tion patterns. The proposed HOM presented in this paper

even-though focused on electricity, could also be adapted for
other scarce resources such as water and gas.
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