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Abstract 

Previous studies have shown that aging is associated with alterations in muscle architecture and tendon 

properties (Morse CI, Thom JM, Birch KM, Narici MV. Acta Physiol Scand 183: 291–298, 2005; Narici MV, 

Maganaris CN, Reeves ND, Capodaglio P. J Appl Physiol 95: 2229 –2234, 2003; Stenroth L, Peltonen J, 

Cronin NJ, Sipila S, Finni T. J Appl Physiol 113: 1537–1544, 2012). However, the possible influence of 

different types of regular exercise loading on muscle architecture and tendon properties in older adults is 

poorly understood. To address this, triceps surae muscle-tendon properties were examined in older male 

endurance (OE, n = 10, age = 74.0 ± 2.8 yr) and sprint runners (OS, n = 10, age = 74.4 ± 2.8 yr), with an 

average of 42 yr of regular training experience, and compared with age-matched [older control (OC), n = 

33, age = 74.8 ± 3.6 yr] and young untrained controls (YC, n = 18, age = 23.7 ± 2.0 yr). Compared with YC, 

Achilles tendon cross-sectional area (CSA) was 22% (P = 0.022), 45% (P = 0.001), and 71% (P < 0.001) 



larger in OC, OE, and OS, respectively. Among older groups, OS had significantly larger tendon CSA 

compared with OC (P = 0.033). No significant between-group differences were observed in Achilles 

tendon stiffness. In older groups, Young’s modulus was 31-44%, and maximal tendon stress 44 –55% 

lower, than in YC (P ≤ 0.001). OE showed shorter soleus fascicle length than both OC (P < 0.05) and YC (P 

< 0.05). These data suggest that long-term running does not counteract the previously reported age-

related increase in tendon CSA, but, instead, may have an additive effect. The greatest Achilles tendon 

CSA was observed in OS followed by OE and OC, suggesting that adaptation to running exercise is loading 

intensity dependent. Achilles tendon stiffness was maintained in older groups, even though all older 

groups displayed larger tendon CSA and lower tendon Young’s modulus. Shorter soleus muscle fascicles 

in OE runners may be an adaptation to life-long endurance running. 

 

Key words  

Achilles tendon; mechanical properties; muscle architecture; aging; exercise 

 



Loss of muscle function with aging is associated with physical limitations and disability (40). Decline in 

muscle mass is undoubtedly an important contributor to the deterioration in muscle function with aging 

(16). However, longitudinal studies have shown a clear dissociation in loss of muscle function and cross-

sectional area or mass with aging (9, 17), suggesting that other factors may also contribute to the age-

related loss of muscle function. Muscle architecture and tendon mechanical properties greatly affect 

muscle performance (28, 51) and have been found to differ between young and old sedentary adults (36, 

37, 44). Thus age-related alterations in muscle architecture and tendon mechanical properties may 

partially explain the loss of muscle performance with age that occurs at a disproportionally faster rate 

than the decline in muscle mass. 

 

Regular exercise is a key aspect supporting healthy aging. Indeed, it has been suggested that older 

athletes provide a model of exceptionally successful biological aging (46). For example, previous studies 

have shown that aged athletes with systematic exercise training habits exhibit much better 

cardiorespiratory, metabolic, and bone health than their less active counterparts (22, 49). Regular 

exercise training, especially strength and sprint exercise, also helps to maintain muscle mass, function 

(21, 52), and composition (43), thus counteracting the age-related decline in functional performance 

typically observed in normal populations (9, 39). 

 

Despite several known beneficial effects of regular exercise on the musculoskeletal system in old age, 

little is known about the effects of regular participation in planned exercise on muscle architecture and 

tendon properties in older adults. Two previous studies have compared untrained older adults to older 

endurance runners. First, Karamanidis and Arampatzis (19) found that muscle architecture and tendon 

stiffness in medial gastrocnemius and vastus lateralis were largely similar in older endurance runners 

compared with untrained older adults. The only significant difference was greater medial gastrocnemius 

pennation angle in endurance runners. Second, Couppé et al. (7) recently found that older endurance 

runners had a greater patella tendon cross-sectional area but similar tendon stiffness compared with 

untrained peers. These previous studies were conducted on endurance runners, and thus knowledge of 



the long-term effects of different types of exercise loading on muscle architecture and tendon properties 

in older adults is missing. 

 

Therefore, the aim of this study was to examine the association between different types of life-long 

exercise and muscle-tendon properties by comparing muscle architecture and tendon properties in older 

sprint and endurance runners to both age-matched and young untrained adults. Triceps surae muscles 

were studied because of their important role in locomotion and because they exhibit the greatest 

functional limitation of all lower limb muscle groups in older adults during locomotion (24). Endurance 

running provides a model of high-volume and moderate-intensity loading, while sprint running 

represents a model of low-volume but high-intensity loading of triceps surae muscles. The hypothesis 

was that older athletes with a life-long regular running background would exhibit muscle fascicle length, 

pennation angle, muscle size, muscle strength, and tendon mechanical properties in the triceps surae 

muscle group that are more similar to those of young adults than untrained older adults. In addition, 

based on previous cross-sectional studies conducted in young adults (1, 2), it was hypothesized that 

sprint-trained older athletes would be stronger, have stiffer Achilles tendons, lower pennation angle, and 

longer muscle fascicles compared with endurance-trained older athletes. 

 

Materials and methods  

 

Subjects.  

 

Male subjects were recruited in two age categories, one from 18 to 30 yr old [untrained young controls 

(YC), n = 18] and the other from 70 to 80 yr old. The older cohort was recruited in three groups: untrained 

older controls (OC, n = 33), older athletes competing in endurance running events (OE, n = 10) and older 

athletes competing in sprint running events (OS, n = 10). 



 

Untrained YC and OC groups were part of a Europe-wide collaborative study called MyoAge (34) and 

included in the present study to represent general populations of healthy young and older adults. We 

defined untrained as a person who may be recreationally active but is not training for, or participating in, 

competitive sport. YC were recruited from among university students using study advertisements via e-

mail and bulletin boards. We excluded those who studied sport sciences, as well as competitive athletes. 

OC were recruited from the University of the Third Age or from weekly community meetings of retired 

people. The aim was to recruit healthy older people who were socially active and free from comorbidity. 

Using telephone interviews, an equal number of sedentary and physically active (competitive athletes 

excluded) older subjects were recruited to obtain a representative sample of older people with varying 

physical activity levels. Sedentariness was defined as exercising for fitness and health one or fewer times 

per week. Physically active was defined as exercise three or more times per week (30 min or more with 

intensity sufficient to cause sweating or breathlessness). Results (44) and more detailed description of 

the recruitment (34) of YC and OC have been presented earlier. 

 

Older athletes were recruited among the participants of the World Master Athletics Indoor 

Championships held in Jyväskylä, Finland in 2012. Twenty male athletes were recruited based on the 

events in which they participated during the championships. Ten subjects were recruited from sprint 

running events (60 m, 60 m hurdles, 200 m, 400 m) and 10 were recruited from endurance running 

events (3 km, half marathon, and 8 km cross country running). Some subjects in the OS and OE groups 

participated in several sprint or endurance running events, respectively. Mean results of the subjects 

competing in the championships were as follows: 60 m, 9.13 ± 0.48 s (n = 8); 60-m hurdles, 10.15 s (n = 

1); 200 m, 30.64 ± 1.97 s (n = 7); 400 m, 1:13 ± 8 min:s (n = 3); 3,000 m, 13:48 ± 60 min:s (n = 4); half 

marathon, 1:43:37 ± 11:34 h:min:s (n = 5); and 8 km cross country running, 44:19 ± 6:25 min:s (n = 7). 

These results correspond to 8, 1, 11, 16, 22, and 16% slower than the world record times for 75-yr-old 

men in 60 m, 60-m hurdles, 200 m, 400 m, 3,000 m, and half marathon, respectively. Thus the 

participating subjects can be considered to be highly competitive athletes. 



 

Subject exclusion criteria were Achilles tendon pain, history of Achilles tendon rupture or surgery, pain in 

calf muscles during measurements, neurological and progressive severe illnesses, insulin-treated 

diabetes, fracture within the previous year, immobilization for 1 wk during the last 3 mo, daily use of 

painkillers, use of immunosuppressive drugs or anticoagulants, or severe visual or hearing impairment. 

 

The ethics committee of the Central Finland Health Care District approved the study. All participants 

signed an informed consent before participating in the study, and measurements were conducted 

according to the standards set by the latest revision of the Declaration of Helsinki. 

 

Measurements.  

 

Training characteristics of OE and OS groups were assessed with self-reported questionnaire. The athletes 

were asked about their training history (yr), overall training volume (h/wk), and amount of endurance 

(km/wk), sprint (sessions/wk), and strength training (sessions/wk) in their current normal training 

routines. 

 

Laboratory measurements included assessment of triceps surae muscle architecture and size and Achilles 

tendon cross-sectional area and mechanical properties. The measurement procedures have been 

previously described in detail (44), but are briefly described below. 

 

For the measurements of Achilles tendon and both gastrocnemius and soleus muscle architecture and 

size at rest, the subjects were lying prone facing down with ankle angle at 90°. Tendon cross-sectional 

area (mm2) was measured from a B-mode ultrasound image taken 4 cm proximal from the proximal 

border of the calcaneal tubercle where the free Achilles tendon typically reaches its smallest cross-

sectional area (38). Body mass normalized tendon cross-sectional area was calculated by dividing cross-

sectional area by body mass2/3 (20). Muscle architecture from medial gastrocnemius and soleus muscles 



was assessed from ultrasound images taken at 50% of medial gastrocnemius length and mid-muscle belly 

in the medial-lateral direction. Fascicle length (mm), pennation angle (°), and muscle thickness (mm) 

were measured from the images. To take into account between-subject differences in stature, fascicle 

length was normalized to tibia length. The combined anatomical cross-sectional area (cm2) of medial and 

lateral gastrocnemius was measured from a panoramic B-mode ultrasound image taken at 50% of medial 

gastrocnemius length as a measure of the size of the gastrocnemius muscles. All measurements from 

ultrasound images were taken twice using an open-source computer program (ImageJ 1.44b, National 

Institutes of Health), and the mean was used for subsequent data analysis. 

 

For the measurement of Achilles tendon mechanical properties, the subjects were seated in a custom-

built dynamometer with ankle angle at 90° and knee fully extended and hip at 60° of flexion (full 

extension 0°). After a standardized warm-up, three maximal voluntary contractions (MVC) lasting ~3 s 

were performed with strong verbal encouragement to measure plantar flexion strength (Nm). The 

highest value obtained during MVC trials was used for subsequent analysis. Warm-up and plantar flexion 

MVCs served to precondition the tendon before the measurement of tendon mechanical properties (30). 

Achilles tendon mechanical properties were measured from several isometric plantar flexion contractions 

up to a force level of 80% of MVC. Tendon force was calculated by multiplying measured reaction force 

by the ratio between Achilles tendon moment arm length and moment arm of the reaction force. Achilles 

tendon moment arm was defined as the distance from the center of the Achilles tendon to the outermost 

tip of the medial malleolus in the sagittal plane measured using a ruler. The moment arm of the reaction 

force around the ankle joint was defined as the sagittal plane distance between the outermost tip of the 

medial malleolus and the head of the first metatarsal. Achilles tendon elongation (mm) was defined as 

the change in the distance between the proximal border of the calcaneal tubercle and the medial 

gastrocnemius muscle-tendon junction. Changes in the location of the calcaneal tubercle in the 

laboratory coordinate system were measured using a potentiometer that measures heel lift from the 

dynamometer footplate. Medial gastrocnemius muscle-tendon junction location in the laboratory 

coordinate system was measured with a combination of B-mode ultrasonography and motion analysis. 



Ultrasound images of the muscle-tendon junction were collected at 70 Hz, and the location of the muscle 

tendon junction within the image was defined by automatic tracking software (32). The location of the 

muscle-tendon junction was converted to the laboratory coordinate system using video-based motion 

capture of the ultrasound probe. Two parameters that describe tendon mechanical properties were 

calculated, tendon stiffness (N/mm) and Young’s modulus (GPa). Tendon stiffness characterizes 

mechanical properties of the tendon and is defined as the slope of the linear portion of the tendon force-

elongation curve. We calculated tendon stiffness as a linear fit to force-elongation data from 10 to 80% 

MVC force, as the curves were almost perfectly linear in this region (Fig. 1, r2 = 0.999 from linear fits to 

average force-elongation curves). Tendon Young’s modulus is the slope of the linear portion of the 

tendon stress-strain curve and represents tendon stiffness normalized to tendon dimensions. Young’s 

modulus describes the mechanical properties of the material from which a tendon is composed. To 

derive Young’s modulus, Achilles tendon stress (Pa) was calculated by dividing Achilles tendon force (N) 

by tendon cross-sectional area (m2), and strain (%) was calculated by dividing elongation (mm) by initial 

tendon length (mm) multiplied by 100. Young’s modulus was calculated as a linear fit to force-elongation 

data from 10 to 80% MVC force. 



 

FIGURE 1 MEAN ACHILLES TENDON FORCE-ELONGATION (TOP) AND STRESS-STRAIN (BOTTOM) RELATIONSHIPS FOR YOUNG 

CONTROLS (YC), OLDER CONTROLS (OC), OLDER ENDURANCE RUNNERS (OE), AND OLDER SPRINT RUNNERS (OS). LINES ARE 

LINEAR FITS AND REPRESENT ACHILLES TENDON STIFFNESS (TOP) AND YOUNG’S MODULUS (BOTTOM). VALUES ARE 

CALCULATED AT 10% MAXIMAL VOLUNTARY CONTRACTION INCREMENTS FROM 10 TO 80% MAXIMAL VOLUNTARY 

CONTRACTION. SDS ARE OMITTED FOR CLARITY. 

 

Statistical analyses.  

 

Due to inadequate image quality, soleus muscle architecture data were excluded for two subjects from 

the OS group and three from the OC group, whereas medial gastrocnemius muscle architecture data 

were excluded for one subject from OE, and gastrocnemius cross-sectional area data from one subject 

from OC. Data were first checked for normality with the Shapiro-Wilk test and for homogeneity of 

variance with Levene’s test. Differences in muscle and tendon properties between the groups were 

tested using single-factor analysis of variance and Tukey-Kramer post hoc test. Games-Howell post hoc 

test was used when inhomogeneous variances between the groups were observed, and Kruskal-Wallis 

test with Bonferroni correction for nonnormally distributed variables. Differences in training 



characteristics between OE and OS were tested using Mann-Whitney U-test. The level of statistical 

significance was set at α = 0.05 for all tests. Statistical analyses were performed using IBM SPSS Statistics 

(version 20.0.0.2). Standardized mean differences between YC and groups of older adults were calculated 

for main results of the study (see Tables 2 and 3) as a measure of effect sizes using Hedges’ g, including a 

correction for small sample bias (12). 

 

Results  

 

Subject characteristics and training status for the older athletes are reported in Table 1. Older adults in 

the three different groups were matched for age, height, and body mass. YC were significantly taller than 

OC (P < 0.001). OC had significantly greater body mass index compared with YC (P = 0.006) and OE (P = 

0.009). Significantly lower plantar flexion strength was found in OC (34%, P = 0.001) and OE (42%, P < 

0.001) compared with YC, but not in OS compared with YC (P = 0.077). OE and OS groups did not differ in 

years of training, hours of training per week, or number of strength training sessions per week. 

Endurance training measured in distance was eight times greater in OE compared with OS (P < 0.001), 

and OS did three times more sprint training sessions per week than OE (P = 0.006). 

 

TABLE 1 SUBJECT CHARACTERISTICS AND TRAINING STATUS OF OLDER ATHLETES 

 YC OC OE OS 

Subjects, no. 18 33 10 10 

Age, yr 23.7 ± 2.0 74.8 ± 3.6* 74.0 ± 2.8* 74.4 ± 2.8* 

Height, cm 181 ± 6 173 ± 5* 175 ± 7 176 ± 7 

Body mass, kg 75.4 ± 9.0 76.1 ± 7.7 69.9 ± 6.9 74.3 ± 7.1 

BMI, kg/m2 23.1 ± 2.6 25.4 ± 2.4*† 22.7 ± 1.6 24.1 ± 1.9 

Plantar flexion strength, Nm 199 ± 56 132 ± 21* 116 ± 25* 153 ± 39 

Length of training, yr   39.4 ± 20.9 44.7 ± 19.7 

Training per week, h   6.8 ± 3.3 6.2 ± 2.6 

Endurance training per week, km   55.2 ± 8.8 6.5 ± 2.8† 

Sprint training sessions per week, no.   0.8 ± 0.7 2.3 ± 1.2† 

Strength training sessions per week, no.   0.5 ± 0.2 0.9 ± 0.2 
Values are means ± SD. BMI, body mass index; YC, young controls; OC, older controls; OE, older endurance 
runners; OS, older sprint runners. Significantly different from *YC and †OE: P < 0.01. 



 

Achilles tendon cross-sectional area was 22, 45, and 71% larger in OC (P = 0.022), OE (P = 0.001), and OS 

(P < 0.001) compared with YC, respectively (Table 2). Tendon cross-sectional area in OS was significantly 

larger than in OC (P = 0.033). Body mass-normalized tendon cross-sectional area yielded similar results to 

the unnormalized values. No statistically significant differences were observed between the groups in 

Achilles tendon stiffness (Fig. 1), but Young’s modulus was 31, 35, and 44% smaller in OC (P < 0.001), OE 

(P = 0.001), and OS (P < 0.001) compared with YC, respectively. Maximal tendon force during MVC was 

significantly lower in OC (35%, P < 0.001) and OE (38%, P < 0.001), but not in OS (P = 0.156), compared 

with YC. Average tendon stress during MVC was greater in YC than the older groups (P < 0.001). Tendon 

elongation at 80% MVC was significantly greater in YC compared with OC (P = 0.014), but the difference 

did not reach statistical significance in OE (P = 0.114) or OS (P = 0.352). However, effect sizes between YC 

and OE and OS were greater than the effect size between YC and OC. The groups did not differ 

significantly in tendon strain at 80% MVC. 

 

TABLE 2 ACHILLES TENDON CROSS-SECTIONAL AREA AND MECHANICAL PROPERTIES 

 YC OC OE OS 

Cross-sectional area, mm2 56.5 ± 9.6 69.0 ± 12.2 (-1.05)*‡ 82.0 ± 19.8 (-1.69)† 96.5 ± 24.9 (-2.26)† 

Stiffness, N/mm 186 ± 37 164 ± 47 (0.49) 172 ± 39 (0.34) 166 ± 35 (0.51) 

Young’s modulus, GPa 0.86 ± 0.20 0.59 ± 0.17 (1.46)† 0.56 ± 0.22 (1.40)† 0.48 ± 0.19 (1.85)† 

Maximum tendon force, kN 3.4 ± 0.9 2.2 ± 0.6 (1.58)† 2.1 ± 0.4 (1.64)† 2.6 ± 0.8 (0.80) 

Maximum tendon stress, MPa 59.3 ± 14.9 33.1 ± 9.0 (2.22)† 26.5 ± 8.3 (2.36)† 30.1 ± 14.3 (1.86)† 

Elongation at 80% MVC, mm 14.3 ± 2.5 11.9 ± 6.4 (0.42)* 11.2 ± 4.4 (0.88) 11.9 ± 4.2 (0.70) 

Strain at 80% MVC, % 5.6 ± 1.5 4.8 ± 2.2 (0.42) 4.5 ± 1.8 (0.66) 4.7 ± 1.7 (0.56) 
Values are means ± SD (with effect size compared with YC in parentheses). MVC, maximal voluntary 
contraction. Significantly different from YC: *P < 0.05, †P < 0.01. ‡Significantly different from OS, P < 0.05. 

 

Results of soleus and gastrocnemius muscle architecture and size, as well as plantar flexion muscle 

strength, are presented in Table 3. Soleus fascicle length was significantly shorter in OE compared with YC 

(absolute P = 0.014, normalized P = 0.002) and also compared with OC (absolute P = 0.047, normalized P 

< 0.001). No significant differences were found in soleus pennation angle or muscle thickness. Medial 

gastrocnemius fascicle length and pennation angle did not differ between the groups. In OC, medial 



gastrocnemius muscle thickness was significantly smaller in contrast to YC (P = 0.043) and gastrocnemius 

cross-sectional area was significantly smaller in contrast to YC (P = 0.011) and OS (P = 0.011). 

 

TABLE 3 MUSCLE ARCHITECTURE AND SIZE 

 YV OC OE OS 

Soleus fascicle length, mm 40.6 ± 8.8 38.6 ± 7.6 (0.24)c 31.2 ± 3.9 (1.18)a 35.3 ± 8.3 (0.57) 

Normalized solus fascicle length, 
mm/mm 

0.102 ± 0.021 0.100 ± 0.021 (0.11)d 0.073  0.008 (1.55)b 0.083 ± 0.022 (0.83) 

Soleus pennation angle, o 21.0 ± 5.7 21.2 ± 4.0 (-0.05) 23.7 ± 5.3 (-0.46) 21.6 ± 8.3 (-0.08) 

Soleus thickness, mm 14.3 ± 2.6 13.1 ± 2.7 (0.44) 13.4 ± 2.7 (0.33) 12.8 ± 3.7 (0.49) 

MG fascicle length, mm 47.7 ± 6.6 45.0 ± 7.6 (0.35) 45.3 ± 6.5 (0.34) 47.7 ± 7.0 (0.00) 

Normalized MG fascicle length, 
mm/mm 

0.121 ± 0.018 0.117 ± 0.022 (0.17) 0.108 ± 0.015 (0.71) 0.111 ± 0.021 (0.46) 

MG pennation angle, o 24.8 ± 4.0 24.4 ± 4.2 (0.09) 23.3 ± 4.8 (0.34) 24.1 ± 3.5 (0.18) 

MG thickness, mm 20.1 ± 2.5 17.7 ± 3.2 (0.77)a 17.2 ± 3.6 (0.94) 18.6 ± 2.7 (0.55) 

Gastrocnemius cross-sectional 
area, cm2 

24.2 ± 4.5 20.1 ± 4.5 (0.89)a,e 20.9 ± 3.4 (0.73) 25.1 ± 4.4 (-0.19) 

Values are means ± SD (with effect size compared with YC in parentheses). MG, medial gastrocnemius. 
Significantly different from YC: aP < 0.05, bP < 0.01. Significantly different from OE: cP < 0.05, dP < 0.01. 
eSignificantly different from OS: P < 0.05. 

Discussion  

We examined selected triceps surae muscle-tendon properties of two differently trained groups of older 

athletes with an average of 42 yr of regular running training and compared them to untrained age-

matched older and young adults. The main findings of the study were that Achilles tendon cross-sectional 

area was significantly larger in all older adult groups than young adults, and in older sprinters compared 

with age-matched untrained older adults, whereas there were no statistically significant group 

differences in Achilles tendon stiffness. The greater tendon cross-sectional area was also reflected in 

tendon Young’s modulus and tendon average tensile stress during maximal isometric force production, 

both of which were significantly lower in all older groups compared with young untrained adults. Only 

minor differences were observed in triceps surae muscle architecture, the most important being 

significantly shorter fascicle length in soleus muscle in older endurance runners. The present study adds 

new insight into possible effects of exercise loading on muscle and tendon structure and function in older 

age. The novelty of the present study is that measurements of triceps surae muscle architecture and 



Achilles tendon properties were made from top-level older athletes that included both endurance and 

sprint runners. 

 

Achilles tendon properties.  

 

To the best of our knowledge, this is the first study to show greater Achilles tendon cross-sectional area 

in older adults with a regular exercise training background. Contradicting our hypothesis, the results 

suggest that long-term exercise did not counteract the age-related increase in Achilles tendon cross-

sectional area. Previous cross-sectional studies suggest that Achilles tendon cross-sectional area 

increases in response to both long-term exercise loading (20, 33) and normal aging (31, 44). The present 

results suggest that the Achilles tendon responds to regular loading by increasing cross-sectional area in 

an intensity-dependent manner. Moreover, the increase in cross-sectional area appears to be additive to 

the increase due to normal aging. This finding supports recent findings by Couppé et al. (7), who showed 

that regular endurance running was associated with larger patella tendon cross-sectional area in both 

young and older adults. 

 

A possible explanation for aging and exercise training to be associated with larger tendon cross-sectional 

area is that tendon hypertrophy is needed to compensate for an age-related decrease in mechanical 

properties of the tendon collagen structure. Another possible explanation is that greater tendon cross-

sectional area in older adults is observed as a consequence of intratendinous accumulation of lipids or 

water. These two possible mechanisms are not exclusive and could together explain the observed results. 

The following paragraphs introduce these proposed explanations in more detail. 

 

In animal models, aging has been linked with an increase in type V collagen and a greater proportion of 

small collagen fibrils, which probably contribute to concurrently observed reduced ultimate tensile stress 

(10, 48). Greater tendon cross-sectional area in older adults could be due to a necessary adaptation to 

reduce maximal tendon stress to safe levels for older tendons that possibly have reduced ultimate tensile 



stress. To reduce the stress to a safe level, cross-sectional area must be proportional to maximal force 

acting on the tendon, thus explaining the greater cross-sectional area in older sprint runners compared 

with older untrained adults observed in the present study. 

 

Greater tendon cross-sectional area in older adults could also serve to maintain sufficient stiffness, which 

could be important both for protecting the tendon from strain-induced damage and for muscle function. 

A possible age-related reduction in stiffness of tendon collagen structure may be partly compensated by 

an age-related increase in collagen cross-links, especially in advanced glycation end-product cross-links 

(6), which stabilize collagen structure and may increase tendon stiffness. Life-long endurance running has 

been shown to be associated with lower advanced glycation end product cross-link density (7). If older 

athletes in the present study had a lower density of collagen cross-links, this could explain the 

requirement for older athletes to have even greater tendon cross-sectional area compared with 

untrained older adults, to maintain tendon stiffness with aging. 

 

Based on current knowledge of tendon adaptation, loading intensity is the main factor determining 

adaptations in tendon mechanical properties (5). Thus it seems unlikely that sprinttrained older athletes 

would have the lowest Achilles tendon Young’s modulus among the groups in the present study. A 

possible explanation could be that larger tendon cross-sectional area in older adults is not an adaptation 

to lowered tendon Young’s modulus. Instead it could be due to accumulation of tendon subcomponents 

that do not markedly affect tendon mechanical behavior. These could include extracellular lipid deposits 

and proteoglycans and glycosaminoglycans that attract water. Extracellular lipid deposits within tendon 

have been associated with aging (14), and this could be common to all older adults, irrespective of 

exercise training. On the other hand, production of proteoglycans and glycosaminoglycans could be 

increased with exercise training-induced tendon loading (15). This would explain the observed lower 

Young’s modulus and stress of the tendon in older adults in the present study and also explains why 

greater tendon cross-sectional area was not related to greater tendon stiffness. 

 



Within- and between-operator reliability of Achilles tendon cross-sectional area measurement using 

ultrasound imaging has been reported to be good (11, 50). In the present study, duplicate analysis of 

tendon cross-sectional area images produced intraclass correlation 0.989 and typical error 2.1%. 

However, validity of tendon cross-sectional area measurement using ultrasound imaging is not known; 

thus the results should be interpreted with some caution. Future studies should try to replicate the 

findings of the present study, preferably using magnetic resonance imaging, which allows measurements 

of tendon cross-sectional area along the whole tendon. More research examining tendon composition 

and collagen structure in older adults is also warranted to explain the mechanisms behind changes in 

tendon cross-sectional area. 

 

In contrast to our hypothesis that life-long running would mitigate age-related changes in tendon 

mechanical properties, we found that Young’s modulus was significantly lower in older compared with 

young adults, irrespective of training status, with no significant differences between the older groups. 

There were also no significant between-group differences in initial tendon length or tendon stiffness. 

Thus the lower Young’s modulus in older compared with young adults can be attributed mainly to the 

larger tendon cross-sectional area in older adults. 

 

It should be noted that a toe-region with a lower slope of the tendon force-elongation curve at low forces 

or stresses was not observed (Fig. 1). We think that the reason for highly linear force-elongation/stress-

strain curves is initial force acting on the Achilles tendon at a 90° ankle angle, and the fact that we 

calculated the curve starting from 10% MVC force. Lack of toe-region has also been previously observed 

for Achilles tendon in vivo when elongation is measured from the medial gastrocnemius muscle-tendon 

junction (27), as done in the present study. 

 

To summarize the findings regarding tendon mechanical properties, Young’s modulus of the Achilles 

tendon was significantly lower in older compared with young adults, irrespective of training status. 

Despite this, Achilles tendon stiffness was conserved in all groups of older adults. Thus the lower muscle 



strength, greater tendon cross-sectional area, and conserved tendon stiffness resulted in reduced 

maximal tendon stress and strain in older adults. Reduced tendon stress and strain could be a necessary 

mechanism to decrease the probability of tendon injury, as aging may decrease tendon fascicle sliding 

that possibly leads to greater loading of the fascicles themselves (47). A functional consequence of similar 

Achilles tendon stiffness but lower muscle strength in older compared with young adults is a limited 

maximal capacity for elastic energy storage and subsequent utilization during locomotion. This may 

contribute to the reported greater metabolic cost of transport in older compared with young adults (35). 

 

Triceps surae muscle architecture, size, and strength.  

 

The present data also suggest that, in general, muscle architecture is not greatly different in older 

habitual runners in contrast to both untrained older or young adults. Soleus fascicle length was found to 

be significantly shorter in endurance-trained older adults than young and older untrained adults. 

Although somewhat speculative, it may be that shorter fascicles observed in long-term endurance 

runners in the present study are due to adaptation that improves the efficiency of force production in 

locomotion. Soleus has short muscle fascicles compared with tendon length (51). Consequently, soleus 

muscle operates mainly as a force rather than a power producer in locomotion (4). Thus, as this muscle 

does not need to produce large amounts of work, short fascicles may decrease the energy cost of force 

production due to lower activated muscle volume per unit of force output compared with longer fascicles 

(29). We recently observed that shorter fascicle length in soleus and gastrocnemius was associated with 

better mobility in older adults (45), further supporting the suggestion that shorter soleus fascicle length 

in older endurance runners may be an adaptive response to life-long exercise training. 

 

Another finding of the present study is that long-term endurance running was not associated with greater 

strength or size of triceps surae muscles compared with untrained older controls. Plantar flexion strength 

and maximal tendon force in endurance-trained older adults was significantly lower compared with that 

in young adults. Moreover, the effect sizes for the difference in gastrocnemius thickness and cross-



sectional area were comparable to those between young and older controls, which were also statistically 

significant. Taken together, these results suggest that endurance running is not a sufficient stimulus for 

maintenance of muscle mass and size with aging. 

 

In contrast, the present data suggest that high-intensity loading due to sprint training may be an effective 

stimulus to counteract the age-related decline in both muscle mass and strength in triceps surae muscles. 

We observed that gastrocnemius muscle cross-sectional area was significantly larger in sprint-trained 

older adults compared with untrained older controls. In addition, plantar flexion strength and maximal 

tendon force were not significantly different from those of young controls, with about one-half the effect 

size as in endurance-trained older adults compared with young controls. These findings are supported by 

previous studies in young adults in which sprint running but not endurance running was associated with 

greater muscle strength and size in triceps surae muscles (18, 23). It may be that the beneficial effects of 

sprint training preferentially target gastrocnemius muscle, which contains more fast-twitch muscle fibers 

than soleus (13). 

 

Methodological considerations.  

 

The strengths of the present study are that the world-class older athletes measured in the present study 

had a life-long physical activity background and had performed many decades of regular exercise training. 

In addition, both the trained and untrained older adults were over 70 yr old and thus can be assumed to 

be affected by primary biological aging. 

 

Limitations of the present study include the cross-sectional study design, which does not allow 

conclusions about cause-effect relationships that a longitudinal study design may allow. Cross-sectional 

studies can be affected by selection bias. It is possible that subjects with favorable muscle-tendon 

properties for endurance or sprint running were more likely to participate in such activities. However, we 

did not observe differences between older trained and untrained subjects in genetically determined 



variables such as Achilles tendon moment arm, forefoot length, or Achilles tendon length, all of which are 

related to running performance (3, 25, 26, 42). This suggests that selection bias caused by genetic 

predisposition toward favorable musculoskeletal properties for running did not considerably affect our 

data, although the possibility of selection bias cannot be completely excluded. Another limitation of the 

present study is the small sample size. However, it was not possible to obtain a larger sample of older 

athletes from the highest performance level. 

 

Conclusions.  

 

The present findings suggest that triceps surae muscle size, architecture, strength, and tendon stiffness 

are relatively unaffected by long-term running training in older adults. The reason for this finding may be 

that the triceps surae muscle group is highly loaded in daily activities, and thus training produces only a 

small relative overload to this muscle group. Considering the unparalleled physical performance of the 

older athletes in the present study, it appears that the measured triceps surae muscle-tendon properties 

are not the key determining factors in their physical performance. However, relatively high individual 

variation in these properties suggests that a well-functioning muscle-tendon unit may be achieved via 

different combinations of muscle and tendon properties. In addition, it is likely that, in the present study, 

there were differences between the groups in factors that were not measured but that affect physical 

performance. These include muscle fiber type, composition, molecular level modifications in contractile 

proteins, and neural activation (8, 21, 41). To further elucidate the importance of muscle architecture and 

tendon mechanical properties for physical performance, future studies should investigate how aging and 

physical loading affect muscle-tendon interaction during locomotion. 

 

In conclusion, our data suggest that long-term physical loading induced by either endurance or sprint 

running does not have a significant effect on Achilles tendon stiffness in older adults. However, the 

loading patterns associated with sprint and endurance training in older age both appear to increase 

Achilles tendon cross-sectional area in an intensity-dependent manner. Furthermore, the present results 



suggest that sprint running but not endurance running may mitigate age-related loss of muscle mass and 

strength in triceps surae muscles. On the other hand, endurance training in older age may alter muscle 

architecture in a way that is beneficial for movement economy. 
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