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Abstract  
Proximal‐distal differences in muscle activity are rarely considered when defining the activity level of 

hamstring muscles. The aim of this study was to determine the inter‐muscular and proximal‐distal 

electromyography (EMG) activity patterns of hamstring muscles during common hamstring 

exercises. Nineteen amateur athletes without a history of hamstring injury performed 9 exercises, 

while EMG activity was recorded along the biceps femoris long head (BFlh) and semitendinosus (ST) 

muscles using 15‐channel high‐density electromyography (HD‐EMG) electrodes. EMG activity levels 

normalized to those of a maximal voluntary isometric contraction (%MVIC) were determined for the 

eccentric and concentric phase of each exercise and compared between different muscles and 

regions (proximal, middle, distal) within each muscle. Straight‐knee bridge, upright hip extension, 

and leg curls exhibited the highest hamstrings activity in both the eccentric (40%‐54%MVIC) and 

concentric phases (69%‐85%MVIC). Hip extension was the only BF‐dominant exercise (Cohen’s d = 

0.28 (eccentric) and 0.33 (concentric)). Within ST, lower distal than middle/proximal activity was 
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found in the bent‐knee bridge and leg curl exercises (d range = 0.53‐1.20), which was not evident in 

other exercises. BFlh also displayed large regional differences across exercises (d range = 0.00‐1.28). 

This study demonstrates that inter‐muscular and proximal‐distal activity patterns are exercise‐

dependent, and in some exercises are affected by the contraction mode. Knowledge of activity levels 

and relative activity of hamstring muscles in different exercises may assist exercise selection in 

hamstring injury management. 

Keywords: heterogeneous activity, injury reduction, rehabilitation



1 | INTRODUCTION  

Hamstring strain is the most frequent injury in sports involving high‐speed running.1,2 For example in 

football, this type of injury results in a substantial player time loss,1 decreased team performance,3 

and significant financial burdens on teams.4 Re‐injury rate can be as high as 24% and is typical in the 

early stages of return to play,5 suggesting suboptimal loading in the rehabilitation process. 

Some interventions implementing eccentric exercises seem to mitigate hamstring injury 

occurrence.6-10 In addition to low strength and short muscle length,11,12 neural inhibition13 and 

imbalances between the activity level of hamstring muscles14 are also associated with hamstring 

injury. Proper exercise selection potentially allows the clinician to better succeed in (re‐)injury 

prevention, but this is challenging for many reasons. For example, non‐uniform adaptations to 

exercise interventions11,15,16 may be associated with non‐ uniform hamstring activity patterns across 

exercises.11,17-19 Moreover, study results are inconsistent concerning which hamstring muscles are 

activated in different exercises, as well as the extent of activation,20 and it is questionable whether 

these differences are real or at least partly reflect the (in)accuracy with which different methods can 

define muscle activity. 

Electromyography (EMG) is the most commonly used method to examine hamstring muscle 

activity.20 In conventional EMG studies, electrodes are placed over the mid‐belly of hamstring 

muscles, ignoring possible proximal‐distal differences in muscle activity. Studies have shown non‐

uniform proximal‐distal metabolic activity patterns within hamstring muscles.18,19,21 Similarly, during 

two common hamstring exercises, we recently observed large differences in muscle activity within 

the semitendinosus (ST) and biceps femoris long head (BFlh) using high‐density EMG (HD‐EMG).22 

Due to such regional differences, spatially robust methods may improve understanding of 

hamstrings activity patterns. This would potentially allow the clinician to selectively activate specific 

muscles or muscle regions. 

In this study, we aimed to define the excitation level of ST and BFlh muscles in the eccentric and 

concentric phases of 9 typical hamstring exercises. We also tested whether the relative activity of 

these muscles is similar in the eccentric and concentric phases, as well as whether proximal‐distal 

activity patterns are similar across exercises. According to the study aims, exercises were chosen 

that include clear eccentric and concentric phases (ie, at the muscle‐tendon unit level), and which 

are generally used in hamstring injury management. 



2 | MATERIALS AND METHODS  

2.1 | Participants  

Nineteen young male amateur athletes (mean ± standard deviation, age 26.1 ± 3.2 years, body mass 

80.2 ± 14.1 kg, height 178.3 ± 9.3 cm) from high injury‐risk sports (9 soccer, 6 Gaelic football, and 4 

rugby players) and experienced at performing hamstring exercises participated in this study. 

Exclusion criteria were history of hamstring strain, previous anterior cruciate ligament or lower back 

injury, and cardiovascular or musculo‐skeletal disorders. Participants received detailed information 

about the study before they gave written informed consent. Testing procedures were approved by 

the ethics committee of the University of Jyväskylä and performed according to the Declaration of 

Helsinki. 

2.2 | Study protocol  

The study was performed in the mid‐season when the frequency of intense strength training was 

minimized. Participants refrained from additional strengthening exercises during the study to 

minimize training effects. Prior to data collection, 12‐ repetition maximum load (12RM) was defined 

for 9 hamstring exercises across 4‐5 sessions (4‐7 days in‐between). The examined exercises were 

good morning (GM), unilateral Romanian deadlift (RDL), cable pendulum (CP), bent‐knee bridge (BB), 

45° hip extension (45HE), prone leg curl (PLC), slide leg curl (SLC), upright hip extension conic‐pulley 

(UHC), and straight‐ knee bridge (SB) (Figure 1 and Video S1). In each session except the last one, 2‐3 

randomly selected exercises were practiced, and then, 12RM was tested,23 while exercise technique 

was assessed and (if needed) corrected by an experienced practitioner to ensure standard technical 

performance. Unilateral exercises were performed with the dominant (kicking) leg (4 left, 15 right). 

In the last familiarization session, maximal voluntary isometric contractions (MVICs) were practiced. 

 



 

Figure 1 Nine typical rehabilitation exercises examined in this study. GM, good morning; RDL, unilateral Romanian deadlift; 

CP, cable pendulum; BB, bent-knee bridge; 45HE, 45o hip extension; PLC, prone leg curl; SLC, slide leg curl; UHC, upright hip 

extension conic-pulley; SB, straight-knee bridge. 

In the main testing session, after preparation and warm‐ up, participants performed knee flexion 

and hip extension MVICs for the purpose of EMG normalization, followed by 6 repetitions of each 

exercise in a random order. The warm‐up consisted of cycling, dynamic stretching (5 minutes each), 

and then 10 submaximal hip extension and knee flexion contractions performed in a custom‐made 

dynamometer (UniDrive, University of Jyväskylä),24 with the intensity increasing from ~30 to ~90% 

MVIC. In the dynamometer where MVICs were performed, participants lay prone with the trunk and 

hip fixed to the dynamometer bench in neutral position. In the dominant (measured) leg, the knee 

joint was positioned in 20° of flexion while the other leg was extended. For knee flexion MVICs, the 

lever arm of the dynamometer was fixed ~5 cm above the lateral malleolus. For hip extension 

MVICs, the lever arm was strapped just above the knee joint fold, and participants were asked to 

maintain 20° of knee flexion, which was confirmed before each contraction using a goniometer. For 

both hip extension and knee flexion MVICs, two repetitions were performed, followed by a third if 

peak torque differed by >5% between the first two contractions. For each contraction, maximum 

effort was maintained for 2 seconds and 2 minutes rest was applied between contractions. A 



simultaneous performance of knee flexion and hip extension was also performed, wherein the 

participants reached maximum effort in both tasks simultaneously, which was maintained for 2 

seconds. For this task, the dynamometer lever arm was fixed ~5 cm above the lateral malleolus and 

the thigh was tightly fixed to the bench. Thereafter, 6 repetitions of the 9 selected exercises were 

performed in random order, at 12 RM load. For the exercises, hip and knee goniometers were 

aligned with the trochanter major and lateral epicondyle of the femur, respectively. Both the 

eccentric and concentric phases were performed in 2 seconds, controlled with a metronome. Four‐

minute rest was applied between exercises. Hip and knee joint angles were recorded as well as BFlh 

and ST EMG activity. Participants reported no substantial fatigue throughout the testing. 

2.3 | Data collection  

To determine correct HD‐EMG array positioning, B‐mode 2D ultrasonography (Aloka α10, Tokyo, 

Japan) was used to define and mark the borders of the BFlh and ST muscles as well as the location of 

their distal musculo‐tendinous junctions. After skin preparation, a 15‐channel EMG array (10‐mm 

inter‐electrode distance, OT Bioelettronica, Torino, Italy) was secured over each muscle (Figure 2) so 

that the electrodes were as far away from the muscle borders as possible, to minimize cross talk. 

Electrode positioning was standardized so that in BFlh channel 8‐9 from the distal end of the array 

was aligned with the midpoint along the ischial tuberosity‐popliteal fossa distance, while in ST the 

EMG array was placed 1 cm below the tendinous inscription which was located relatively proximally. 

Arrays were fixed over the skin using adhesive foam and tape. EMG arrays were connected to an 

amplifier, and signals were digitized (EMG‐USB 12‐bit A/D converter, OT Bioelettronica) for 

recording in BioLab software (v3.1, OT Bioelettronica). To maintain skin‐electrode contact, electrode 

cavities were filled with 20 µL conductive gel. A reference electrode was placed over the 

contralateral wrist. Signal quality was confirmed during submaximal contractions. EMG data were 

sampled at 2048 Hz and amplified by a factor of 1000. During the measurements, 15 differential 

channels were recorded from each muscle. 



 

Figure 2 High-density electromyography (HD-EMG) arrays (A) were attached and secured (B) over the semitendinosus (ST) 

and the long head of the biceps femoris (BFlh) to comprehensively describe muscle activity levels during each exercise. 

During MVICs, hip extension and knee flexion forces were measured with the dynamometer strain 

gauge at a sampling frequency of 1000 Hz, digitized (EMG‐USB 12‐bit A/D converter, OT 

Bioelettronica) and recorded in BioLab software in synchrony with the EMG signals. Lever arms were 

measured to calculate torque. For hip extension, the lever arm was measured as the distance 

between the trochanter major and the middle of the strain gauge. For knee flexion, the lever arm 

was measured as the distance between the lateral epicondyle of the femur and the middle of the 

strain gauge. During muscle contractions, force‐time curve feedback was provided. 

Hip and knee joint angles were recorded using custom‐made electro‐goniometers (University of 

Jyväskylä, Finland). Angle data were digitized by the A/D converter of the EMG system and recorded 

in BioLab software simultaneously with the EMG data. 



2.4 | Data analysis  

A 10‐500 Hz fourth‐order zero‐phase band‐pass Butterworth filter was used to filter EMG data in 

MATLAB (MathWorks Inc, Natick, MA, USA). For MVICs, root‐mean‐square (RMS) EMG activity was 

calculated from a 1‐second stable force plateau for each EMG channel. From the exercises, RMS 

activity was calculated in the entire eccentric and concentric phase (ie, ~2 seconds for each) for each 

EMG channel based on hip and knee joint angular displacement. RMS values across the eccentric 

and concentric phases of the six repetitions were averaged, respectively, and expressed as a 

percentage of the highest RMS activity of the corresponding EMG channel during any of the MVIC 

tasks (%MVIC). 

Activity for each muscle was determined for the eccentric and concentric phases separately as the 

average RMS activity of all 15 channels along the corresponding muscle, which is hereafter referred 

to as overall activity. To determine the activity level of different muscle regions, average activity was 

calculated for channels 1‐5 (distal region), 6‐10 (middle region), and 11‐15 (proximal region). 

To provide estimates of hip extension and knee flexion strength, maximal torque during the 

isometric contractions was calculated as the maximum instantaneous force multiplied by the 

respective lever arm. The highest torque of all repetitions was used for the hip extension and knee 

flexion tasks. 

2.5 | Statistical analysis  

Normal distributions of studentized residuals were confirmed using Shapiro‐Wilk test and Q‐Q plots. 

For each exercise and contraction mode, the difference between BFlh and ST overall activity was 

tested with paired samples t test in SPSS (IBM, Armonk, NY, USA). Significance level was set at P < 

0.05. Contraction mode*region interaction for each exercise and region*exercise interactions for 

each contraction mode were tested for each muscle with repeated‐measures ANOVA. If Mauchly’s 

test of sphericity was violated (P < 0.05), Greenhouse‐Geisser adjustment was applied. Differences 

were located after Bonferroni correction. Cohen’s d ± 90% confidence intervals (90% CI) were 

calculated to determine the magnitude of differences using a custom spreadsheet.25 Differences 

were considered as trivial (<0.2), small (≥0.2), moderate (≥0.5), or large (≥0.8). Differences where 

90% CIs overlapped both 0.2 and −0.2 were considered unclear.26 

3 | RESULTS  

Maximal hip extension and knee flexion torque during the isometric contractions were 236.5 ± 84.1 

Nm and 153.3 ± 59.2 Nm (mean ± standard deviation), respectively. 



3.1 | Overall activity  

BFlh overall activity level ranged across exercises from an average of 17%‐54% in the eccentric and 

32%‐83% in the concentric phase, relative to MVIC (Figure 3). In ST, activity levels of 19%‐51% in the 

eccentric and 33%‐85% in the concentric phase were observed (Figure 3). 

The only exercise with higher activity in BFlh compared to ST was 45HE: in both the concentric and 

eccentric phases, small differences between muscles were found (d = 0.28 ± 0.28 and 0.33 ± 0.24, 

respectively), which reached statistical significance in the concentric but not the eccentric phase (P = 

0.026 and 0.100, respectively). ST activity was higher than BFlh activity in the eccentric phase of GM 

(d = 0.21 ± 0.19) and concentric phase of PLC, SLC and BB exercises (d = 0.35 ± 0.27, 0.26 ± 0.28, and 

0.24 ± 0.25, respectively), from which only PLC reached statistical significance (P = 0.036, 0.118, and 

0.107, respectively). Between‐ muscle differences are presented in Table 1. 

 

Figure 3 Electromyography (EMG) activity levels in the eccentric (A) and concentric (B) phase of each exercise. Mean and 

standard deviation are presented. Data represent the average of 15 EMG channels along each muscle. Dotted lines 

represent equal activity level between the two muscles when normalized to maximal voluntary isometric activity (MVIC). 



GM, good morning; RDL, unilateral Romanian deadlift; CP, cable pendulum; BB, bent‐knee bridge; 45HE, 45° hip extension; 

PLC, prone leg curl; SLC, slide leg curl; UHC, upright hip extension conic‐pulley; SB, straight‐knee bridge 

3.2 | Regional activity patterns  

Mean and standard deviation of regional activity levels are shown in Figure 4. Different exercises 

showed distinct regional patterns both in ST (P < 0.001 in both eccentric and concentric) and in BFlh 

(eccentric: P = 0.001, concentric: P < 0.001). The contraction mode affected the regional activity 

pattern of ST in BB, HE, PLC, and SLC (P = 0.001, P = 0.040, P < 0.001, and P < 0.001, respectively), 

and the regional activity pattern of BFlh in UHC, PLC, SB, and SLC (P = 0.012, P < 0.001, P = 0.016, and 

P = 0.009, respectively). 

Table 1 Differences (Cohen’s d ± 90% confidence limits) between BFlh and ST muscles in the eccentric and concentric phase 

of hamstring exercises. 

 Eccentric Concentric 

Straight-knee bridge (SB) 0.19 ± 0.37T -0.09 ± 0.36U 

Upright hip extension conic-pulley (UHC) 0.11 ± 0.33U -0.16 ± 0.29T 

Slide leg curl (SLC) 0.12 ± 0.25T -0.26 ± 0.28S 
Prone leg curl (PLC) 0.17 ± 0.20T -0.35 ± 0.27S 

45o hip extension (45HE) 0.28 ± 0.28S 0.33 ± 0.24S 

Bent-knee bridge (BB) -0.17 ± 0.27T -0.24 ± 0.25S 
Cable pendulum (CP) -0.02 ± 0.43U 0.01 ± 0.38U 

Unilateral Romanian deadlift (RDL) -0.19 ± 0.24T -0.11 ± 0.22T 

Good morning (GM) -0.21 ± 0.19S -0.09 ± 0.25T 
Positive values: biceps femoris long head > semitendinosus (BFlh > ST) Negative values: biceps femoris long head < 

semitendinosus (BFlh < ST) T, trivial difference; S, small difference between muscles; U, unclear. P < 0.05. 

 



 

Figure 4 Mean and standard deviation of the normalized activity level (%MVIC, maximal voluntary isometric contraction) in 

the proximal, middle, and distal regions of each muscle during the eccentric and concentric phase of each exercise. GM, 

good morning; RDL, unilateral Romanian deadlift; CP, cable pendulum; BB, bent‐knee bridge; 45HE, 45° hip extension; PLC, 

prone leg curl; SLC, slide leg curl; UHC, upright hip extension conic‐pulley; SB, straight‐knee bridge. 

Lower activity in the distal compared to the middle or proximal regions was found in BB, PLC, and 

SLC (d range = 0.53‐1.20, P < 0.05), in both the eccentric and concentric phases. In all other 

exercises, no or only small differences between distal vs other regions were found (d range = 0.00‐



Table 2 Regional differences in the electromyography activity level of hamstring muscles in the eccentric and concentric phase of hamstring exercises. 

 Eccentric    Concentric 

 Semitendinosus Biceps femoris long head Semitendinosus Biceps femoris long head 
Region middle proximal middle proximal middle proximal middle Proximal 

Straight-knee bridge (SB) 

Distal -0.40 ± 0.42S 0.04 ± 0.67U 0.31 ± 0.24S -0.26 ± 0.32S -0.29 ± 0.39S 0.21 ± 0.79U 0.54 ± 0.31M 0.10 ± 0.44U 

Middle - 0.44 ± 0.43S - -0.58 ± 0.27M - 0.50 ± 0.59M - -0.45 ± 0.33S 

Upright hip extension conic-pulley (UHC) 

Distal -0.06 ± 0.41U -0.17 ± 0.34T 0.22 ± 0.19S -0.19 ± 0.30T 0.01 ± 0.40U 0.02 ± 0.38U 0.40 ± 0.23S 0.25 ± 0.41S 
Middle - -0.12 ± 0.30T - -0.42 ± 0.26S - 0.01 ± 0.33U - -0.15 ± 0.34T 

Slide leg curl (SLC) 

Distal 0.53 ± 0.33M 0.63 ± 0.32M 0.09 ± 0.23T -0.16 ± 0.28T 0.95 ± 0.43L 1.02 ± 0.32L -0.31 ± 0.26S -0.49 ± 0.28S 

Middle - 0.17 ± 0.30T - -0.25 ± 0.25S - 0.07 ± 0.41U  -0.18 ± 0.20T 

Prone leg curl (PLC) 

Distal 0.62 ± 0.29M 0.79 ± 0.31M -0.46 ± 0.28S -0.87 ± 0.30L 1.03 ± 0.28L 1.15 ± 0.30L -0.84 ± 0.32L -1.28 ± 0.30L 
Middle - 0.17 ± 0.30T - -0.41 ± 0.20S - 0.11 ± 0.39U - -0.45 ± 0.24S 

45o hip extension (45HE) 

Distal -0.06 ± 0.22T 0.02 ± 0.23U 0.13 ± 0.18T -0.46 ± 0.28S -0.08 ± 0.24T 0.17 ± 0.26T 0.21 ± 0.17S -0.14 ± 0.24T 

Middle - 0.08 ± 0.18T - -0.59 ± 0.23M - 0.26 ± 0.19S - -0.35 ± 0.23S 

Bent-knee bridge (BB) 

Distal 1.03 ± 0.34L 1.20 ± 0.44L 0.02 ± 0.21T -0.02 ± 0.22U 0.98 ± 0.30L 1.13 ± 0.37L 0.13 ± 0.23T 0.13 ± 0.27T 
Middle - 0.16 ± 0.44U - -0.05 ± 0.26U - 0.14 ± 0.37U - 0.00 ± 0.30U 

Cable pendulum (CP) 

Distal -0.08 ± 0.47U -0.27 ± 0.36S 0.00 ± 0.14T -0.39 ± 0.18S -0.06 ± 0.45U 0.00 ± 0.42U 0.07 ± 0.25T -0.28 ± 0.35S 

Middle - -0.19 ± 0.53U - -0.39 ± 0.15S - 0.06 ± 0.44U - -0.35 ± 0.34S 

Unilateral Romanian deadlift (RDL) 
Distal 0.20 ± 0.36S 0.14 ± 0.30T 0.06 ± 0.13T -0.29 ± 0.17S 0.21 ± 0.32S 0.26 ± 0.32S 0.10 ± 0.14T 0.23 ± 0.19S 

Middle - -0.06 ± 0.24T - -0.35 ± 0.13S - 0.05 ± 0.26U - -0.36 ± 0.18S 

Good morning (GM) 

Distal 0.20 ± 0.42U 0.12 ± 0.33U 0.00 ± 0.13T -0.42 ± 0.18S 0.21 ± 0.42U 0.25 ± 0.48U 0.04 ± 0.14T -0.47 ± 0.17S 

Middle - -0.08 ± 0.25T - -0.42 ± 0.14S - 0.05 ± 0.40U - -0.51 ± 0.20M 
Cohen’s d ± 90% confidence limits. Positive and negative differences correspond to higher activity level in the relatively more proximal and distal regions, respectively. T, trivial difference; S, 

small difference; M, moderate difference; L, large difference between regions; U, unclear. P < 0.05.



0.40, P > 0.05). Similarly in BFlh, a large range in the magnitude of regional differences was observed 

across exercises (difference between regions, d range = 0.02‐1.28), with PLC displaying the largest 

differences between muscle regions (d range = 0.41‐1.28). Differences are detailed in Table 2. 

4 | DISCUSSION  

In the current study, muscle activity patterns were determined in 9 typical hamstring exercises using 

HD‐EMG while taking proximal‐distal differences into account. Small differences between the 

activity levels of BFlh and ST muscles were observed in the concentric phase of 45HE, SLC, PLC, and 

BB, from which the only BFlh‐dominant exercise—45HE— showed a difference in the eccentric 

phase. Proximal‐distal distribution of EMG signals varied substantially across exercises and showed 

different patterns between ST and BFlh muscles. 

In addition to recent studies using muscle functional magnetic resonance imaging (mfMRI)18,19,21 and 

our previous results using HD‐EMG,22 the exercise‐dependent changes in proximal‐distal activity 

patterns observed in this study reinforce the notion that spatially robust methods are needed to 

accurately describe the activity level of ST and BFlh muscles. This is further supported by the 

substantially different proximal‐distal EMG activity patterns between muscles in most of the 

exercises. This was most pronounced in BB, wherein regional differences were moderate‐to‐large in 

ST but trivial in BFlh. This phenomenon likely leads to a non‐systematic error when the activity levels 

of these muscles are compared based on a small region of the muscle. 

Similar to previous studies,17,27 we found high normalized activity levels in SB, SLC, and PLC. 

Additionally, during UHC, which has not been the focus of many experiments, the activity level 

exceeded 80% MVIC in the concentric phase. High activity levels in these exercises may facilitate 

training‐ induced adaptations in the hamstrings, although adaptations in response to these exercises 

are unclear. In accordance with previous literature,28 particularly low overall hamstrings activity was 

observed in GM, which is apparently associated with low hamstring muscle forces in this exercise.29 

Exercises inducing limited hamstrings activity are likely suboptimal to facilitate meaningful muscle 

adaptations. 

The relevance of the relative roles of individual hamstring muscles in hamstring injury is yet to be 

clarified. Training interventions should target the mitigation of injury‐risk factors. An imbalance 

between BFlh and ST muscle activity level seems to be associated with hamstring injuries.14 Thus, 

balanced strengthening of these muscles should be a training goal. Although conventional EMG 

studies are not in agreement, previous mfMRI studies suggest that BFlh is relatively more active in 

hip‐dominant exercises, while ST is relatively more active in knee‐dominant exercises.20 Based on the 



current study, it seems rather challenging to preferentially activate BFlh. Previously, mfMRI showed 

relatively high activity in BFlh compared to ST in 45HE,17 which is confirmed by our results. Other hip‐

dominant exercises did not induce higher activity in BFlh than in ST in this study. 

Contraction mode–dependent between‐muscle activity patterns were observed in some exercises in 

the current study. In the concentric phase, three exercises—SLC, PLC, and UHC—showed higher 

activity in ST compared to BFlh. However, this difference was not evident in the eccentric phase of 

these exercises. This is inconsistent with previous results concerning eccentric PLC (120% concentric 

1RM)18,30 and the mechanically similar high‐load eccentric‐only Nordic hamstring exercise,17,22,31 

which seem to selectively activate ST. This discrepancy may be explained by the substantially lower 

load applied in the current study. Similar to these exercises, no between‐muscle differences were 

found in the eccentric phase of SB, BB, or one‐leg RDL. Based on the current study, these exercises 

should be used when balanced eccentric activation of ST and BFlh muscles is of interest. However, it 

is also likely important to include exercises with a relatively high overall hamstrings activity level to 

better facilitate muscle adaptations. The above observations suggest that ST‐BFlh muscle selectivity 

cannot always be predicted based solely on the hip‐ or knee‐dominant nature of the exercise and 

may be affected by different neural control strategies in the eccentric and concentric phases. 

In BFlh, eccentric stimuli may be of particular importance to elicit fascicle lengthening, which seems 

to reduce the risk for hamstring injury.12 45HE exhibited the largest activity in BFlh relative to ST and 

has already been shown to effectively increase BFlh fascicle length.11 Although activity level was 

higher in SB, UHC, SLC, and PLC in our study, this does not necessarily imply that the eccentric phase 

of these exercises can more effectively elongate BFlh fascicles. Askling et al7,8 demonstrated that 

exercises performed at longer muscle operating lengths are more effective for injury prevention 

than those requiring hamstrings to operate at a shorter length. Muscle length is clearly longer in 

45HE compared to all four of the aforementioned high‐activity exercises. Nonetheless, Nordic 

hamstring exercise also seems to reduce hamstring injuries,6,9,10 even though the operating length is 

likely similar to that in SLC and PLC. Future studies should further clarify which of these exercises are 

the most beneficial to mitigate injury‐risk factors. 

During rehabilitation, it may be of value to know regional activity patterns relative to the injury site 

to enable selective activation of the injured muscle region. In 80% of running‐ type hamstring 

injuries, the BFlh is affected primarily and typically at the proximal site.32 Within the BFlh, the 

proximal region seems to be the most challenging to activate since this region did not show higher 

activity compared to the distal or middle regions in any of the exercises in the current study. On the 

contrary, lunge19 and CP21 have been shown to activate the proximal BFlh in mfMRI studies. In the 



current study, CP showed the lowest activity in the proximal region. In any case, in both lunge33 and 

CP, the overall hamstrings activity level is rather low, likely limiting meaningful adaptations in 

response to these exercises. Manipulating the shin angle during a lunge may expose the hamstrings 

to substantially higher forces,29 likely increasing hamstrings activity. However, it is unclear whether 

this manipulation alters the proximal‐distal activity pattern. Future studies should examine whether 

targeting the injured muscle region during the rehabilitation process accelerates the restoration of 

muscle function after a hamstring injury. 

It should be mentioned that some discrepancies exist when comparing some of our results with 

some previous mfMRI findings. Contrary to our finding that there are only trivial differences 

between ST and BFlh muscle activity levels in RDL, this exercise has been suggested to be a BFlh‐ 

dominant exercise based on mfMRI data.34 However, in that study, the exercise was performed 

bilaterally and included only 6 participants. In any case, in our study, hamstrings activity levels were 

21% and 43% in the eccentric and concentric phases of RDL, the second lowest out of the examined 

exercises, likely minimizing the clinical relevance of this difference. On the contrary, hamstrings 

activity was particularly high in SB. In the current study, we did not detect clear differences between 

muscles in SB, contrary to Bourne et al35 who found higher metabolic activity in ST compared to BFlh, 

although the between‐muscle difference seems to be smaller compared to most of the other 

exercises previously examined with mfMRI.20 These discrepancies may arise from methodological 

issues: both mfMRI and EMG have limitations when comparing the relative contribution of different 

hamstring muscles. Metabolic activity estimated by mfMRI is sensitive to glycolysis,36 vascular 

dynamics,37 and fiber type proportions,38 which may differ between muscles and individuals. With 

respect to EMG, it is not clear whether reference contractions used for normalization activate all 

examined hamstring muscles to a similar extent. Accordingly, to examine the relative contribution of 

different hamstring muscles using these methods, it is likely most appropriate to compare within the 

same individuals and measurement session across exercises. 

As a possible limitation of this study, surface EMG is prone to cross talk. To minimize this effect, we 

used HD‐EMG electrodes with a relatively shallow pick‐up area and 10‐mm inter‐electrode 

distance,39 ensured correct electrode location using ultrasonography, and measured male athletes 

with a relatively thin subcutaneous layer overlying the target muscles. Furthermore, recording from 

15 cm along each muscle likely minimized the effect of muscle movement relative to the skin, which 

is considered an inherent limitation of surface EMG. Additionally, muscle regions were covered to a 

slightly different extent across individuals due to differences in muscle length relative to the length 

of the EMG arrays. As an additional limitation, we measured amateur athletes without a history of 



hamstring injury, so our results may not be directly applicable to other populations, for example, 

injured and/or professional athletes. 

4.1 | Perspectives  

HD‐EMG revealed exercise‐specific inter‐ and intramuscular hamstring activity patterns in 9 typical 

hamstring exercises. This study also revealed that the relative activity of different hamstring muscles 

may differ between the eccentric and concentric phases of an exercise. These findings highlight the 

potential impact of exercise selection procedure on hamstrings strengthening. The clinical 

implications of heterogeneous hamstrings EMG activity should be further examined, as well as the 

mechanisms and functional relevance of heterogeneous activity. 
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