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Abstract—Timely detection of a malicious piece of code accu-
rately, in an enterprise network or in an individual device, before
it propagates and mutate itself, is one of the most challenging
tasks in the domain of cyber security. Millions of variants of each
latest malware are released every day and each of these variants
have a unique static signature. Conventional anti-malware tools
use signatures and static heuristics of malware to segregate them
from legitimate files, which is not an effective technique because
of the number of malware variants released every passing day.
To overcome the fundamental flaw of operational techniques,
we propose a framework that generalizes the static and dynamic
malware features that are used to train multiple machine learning
algorithms. The generalization of clean and malicious features
enables the framework to accurately differentiate between clean
and malicious files.

Index Terms—Malware, ML and Malware Detection, Malware
Analysis, Machine Learning

I. INTRODUCTION

The evolution of malware over the past decade and their

lethal proliferation has conspicuously challenged the effective-

ness of anti-malware packages and other security mechanisms.

Millions of malware variants are released every day that are

modified versions of older malware and a vast majority of

these variants are able to bypass the security mechanisms

quite easily. Malware authors release their code, along with

variant engines, which not only enable anyone, even with less

programming knowledge, to generate their own version of an

older malware. This approach is the reason behind exponential

rise in malware propagation across the internet, it also makes

it significantly harder for the current security mechanisms to

eliminate or even mitigate the damage caused by such attacks.

The lack of novelty, improvisation, and excess amount

of resource consumption are the foundational problems of

current anti-malware packages. The general defence mecha-

nisms faced by modern malware, which have the capability to

dynamically mutate while propagating, is somewhat limited

and predictable. The defence mechanism conventionally used

is based around signature and heuristics detection, raising

flags against defined rules, and traffic monitoring. All of

the characteristics of defence mechanisms, commonly imple-

mented in combination, are quite predictable and malware

with polymorphic and metamorphic capabilities are evolving

at such a pace that it is nearly impossible detect them with

such predictable techniques.

Polymorphic malware continuously change their appearance

while keeping the primary functionality intact. Most of these

malware use encryption to pack the core functionality, which

avoids any reverse engineering or heuristics-based analysis to

be performed on the malicious code. Polymorphic malware

carry a number of mutation engines (MtE), which are not

malware themselves and do not possess any malicious code

that raise any red flags by security mechanisms. The sole

purpose of these MtEs is to change or mutate the encrypted

stub of malware that contains the core functionality. When the

stub is evolved by an MtE the old stub is deleted and the new

one takes charge, this process is performed quite frequently,

which gives very little time to the security mechanisms to

identify and stop the malicious code before it is changed.

This paper presents a dynamic characteristic’ building

framework supported by a unique combination of machine

learning algorithms that are trained and tested against 2 million

malicious files and more than hundred thousand clean files.

This enables the framework to not only identify the variants of

analyzed malware, but also enables the framework to dynami-

cally form characteristics in real-time to differentiate between

clean and malicious files effectively, without consuming a

noticeable amount of system or network resources.

The rest of the paper is structured as follows; section II

presents the critical evaluation of the related research and

their effectiveness while section III discuss the anatomy of be-

havioural characteristics generation. In section IV, we present

our continuous learning framework, which learns from cus-

tomized combination of behavioural characteristics. In section

V, we discuss the experiment setup, training of algorithms

(through customized behavioural characteristics), along with

the critical evaluation of results. Finally paper is concluded in

section VI.

II. EVALUATION OF EXISTING TECHNIQUES

Combination of dynamic malware analysis techniques and

machine learning tools proves to be a power full duo for mal-

ware classification and identification. However, most machine

learning based malware identification methods are excessively

feature dependent. It is very challenging to identify effective
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feature from huge available data sets. To combat this chal-

lenge, deep learning based malware detection systems are

also getting popular. Deep learning performs effective and

automatic feature selection by replacing handcrafted feature

selection. However, deep learning classification systems are

vulnerable to adversarial learning-based attacks. Therefore,

intelligent techniques need to be implemented for adversarial

attacks in dynamic malware analysis. Despite of these chal-

lenges of effective feature selection and adversarial attacks,

in a nutshell machine learning based malware classification

works better than the static counterpart; by performing in

depth scanning and emulating all the files in the anti-malware

engine. Various machine learning algorithms used for dynamic

malware classification, identification and detection is presented

in [1], [2], [3].

Authors in [4], used Naı̈ve Bayes, k nearest neighbor (kNN),

J48 decision trees, sequential minimal optimization (SMO),

and the RBF classifier, to evaluate the accuracy provided by

these classifiers. Combination of malware and non-malwrae

was fed for classification into these classifiers, after feature

vector selection. Their feature vector contained 52,236 fea-

tures, grouped four categories; System Calls, Registry Edits,

File Modifications, and DLLs. kNN was proven to have best

average accuracy with 81 percent correctly classified.

In [5], authors presented a cognitive framework to detect

the presence of polymorphic malware, inside a Microsoft

Windows host. They performed fractal analysis by utilizing

a process tree based temporal directed graph. First fractal

analysis is performed for finding patterns( cognitively distin-

guishable)in the malicious processes followed by formation of

process tree graph to characterize malware.

In [6], authors implement various adversarial

attacks/defenses for deep learning based dynamic malware

analysis classification systems. They used six different

crafting techniques for adversarial malware samples used

for removing malicious features and evaluated the efficacy

of distillation defense and ensemble defense systems for

dynamic analysis-based, deep malware classification; and

demonstrate the superiority of the later.

In [7], a machine learning model is presented to capture

the complex patterns of polymorphic malware and benign

files. This model uses logistic regression with ANOVA F-Test

and snort. Authors used Kali linux as an attacker to generate

polymorphic malware and windows xp system as a vulnerable

one. They used logistic regression with ANOVA F-Test for

classification ans deployment of significant features into snort

IDS, and Polymorphic malware is detected.

Without lost of generality, another types of malware at-

tacks which are significantly damaging enterprise business

are Ransomware, such as WannaCry Ransomware. Authors

in [8] analyzed and presented the implementation of machine

learning algorithms for Ransomware classification based on

malware’s feature behavioural analysis. They extracted be-

haviour attributes from ransomware samples obtained from

behavioral analysis reports ( VirusTotal). These attributes were

further refined for optimal classification, by using iterative

approach. Afterwards they evaluated classification accuracy

of J48 and Decision Tree algorithm ( available in WEKA).

In the same spirit, authors in [9], [10], developed and pre-

sented method for discriminating feature identification of

Ransomware and framework for analysis and detection of

Ransomware using machine learning models and performing

feature extraction, respectively. Most of the work in features

extraction/ classification and reporting of malware detection is

done using these well known ML algorithms such as; SVM,

J48, Random Forest, LASSO and Ridge Regularization, in

[11], [12] respectively. For instance, authors in [13] introduced

a model for detection of polymorphic malware by monitoring

system calls, using SVM algorithm. While authors in [14]

used KNN and SVM for development of a framework for

ML based malware detection in mobile devices. Authors used

app’s manifest and source code for feature extraction and

afterwards performed classification of good ware and malware,

by retrofitting ML algorithms during training and testing.

1) Critical Evaluations and Our Contribution: Most of

the work for malware analysis, either consider static analysis

or dynamic analysis based on some specific feature catego-

rization. Static analysis turns to be in-efficient method for

sophisticated malware analysis due to incomplete behaviour

analysis, while dynamic analysis being highly dependent upon

feature selection can leads to false results. False positive and

false negative results are expected as change in the feature set

will divert the trained algorithm to fall for wrong analysis.

Keeping in view of limitations of existing malware analysis

techniques, we propose a framework comprised of custom

category generation with a combination of benign as well

as malicious features forming a category. Each category is

comprised of a combination of clean and malicious features,

which means that even if there is a change in behavioural

features, the end result will not be altered. This is the unique

feature of our proposed framework and a clear distinction be-

tween our approach and the ones discussed earlier (comprised

of feature-based machine learning algorithms). Previously dis-

cussed techniques, train and test machine learning algorithms

on specific feature retrieved through different means, which

makes it quite reliant those features and changes in those

features can considerably divert the trained algorithms to

generate a significant number of false-positives and false-

negatives in their results.

III. PROPOSED FRAMEWORK MODEL

Our framework is comprised of custom category generation,

based on behavioural features of both benign and malicious

Portable Executable (PE) files. The idea behind this custom

categorization is to combine the behavioural feature set and

generalize them in a category that can be scaled if there are

more relevant features in the dataset.

A. Framework Architecture

The architecture of the proposed framework is divided into

multiple layers as shown in Figure 1. Each layer is dedicated

to produce specific results that are used by the following layer.
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Fig. 1. Architectural Flow

Each layer deals with the data from both clean and malicious

files.

• Layer 1 –Analysis Layer: The Analysis Layer performs a

thorough analysis of clean and malicious files and store

the analysis results in separate repositories, both type of

files are analyzed in the same manner, which means that

the reports generated are in the same format and follow

the same conventions

• Layer 2 –Category Layer: The Category Layer divides

the feature-sets in meaningful categories that are present

in both the file types, along with associating the related

occurrences. The associations are then sent to the third

layer

• Layer 3 –Existence Layer: The Existence Layer sepa-

rates the instances in which each feature occurred in

the behavioural analysis, along with the related sets.

Intersection of both malicious and clean features is taken,

along with the complement of both M & C. It is then sent

to layer 4

• Layer 4 –Machine Learning Layer: The machine learning

layer retrieves the customized dataset and applies ten-fold

cross-validation to remove any bias. It then uses Support

Vector Machine, Decision Tree, and Boosting on Decision

Tree to train and test the framework

1) Categorization Strategy: The illustration of the layered

framework presents a functionality breakdown of each layer

and what they produce, along with their significance. As

highlighted earlier, the first layer, which is the analysis layer,

possess the analysis datasets of clean and malicious files. As

discussed in the previous section, this dataset is generated as

a result of thorough static and behavioural analysis of clean

and malicious files and stored in a standardized JSON file

format. The functionality of second layer is quite pivotal in

this framework, which is the category layer. Each category

layer stores the feature-set in five different features, namely;

Network, CPU Usage, Dropper Files, API; Noti API, Certi

API, Processes; Processes Generated, as shown in Figure 2.

Additionally, API and Processes categories have subcategories;

API Name & Frequency and Processes Deleted and Names,

respectively. All these categories store the respective extracted

features from both clean and malicious files. The primary

reason behind categorizing the features and combining the

extracted features is to generalize different behavioural pat-

terns in clean and malicious files. Along with categorizing

specific behavioural features, this layer links these generalized

categories with two subcategories that are derived from Cat4

API and Cat5 Processes. The subcategories derived from Cat4

and Cat5 are also connected with first three categories; Net-

work, CPU Usage, Dropper Files. The primary reason behind

connecting the subcategories of Cat4 & 5 with other categories

is the relevance of APIs and Processes with Network, CPU

Usage, Dropper Files is quite significant and have a noticeable

impact on these three categories. Category 4.1 holds the

information about a specific API and its frequency. When

Category 4.1 is linked with Cat1, it identifies the frequency

of occurrence of a specific API with respect network traffic.

It is then linked with Cat2 and the frequency of occurrence

of a specific API and its impact on CPU consumption is

monitored. Finally, it is linked with Cat3 and the association of

dropping new files in a networked environment or in a single

computer with the occurrence of a specific API. Moreover,

Category 5.1, which is Processes Deleted and Name, is also

associated with first three categories. The association of Cat1

with Cat5.1 monitors the name of processes deleted in a

networked environment by a specific process. The association

of Cat2 with Cat5.1 monitors the name of a specific process, its

impact on CPU consumption and whether it replaced a specific

process and their previous and current CPU consumption.

Additionally, the association of Cat3 with Cat5.1 monitor the

files dropped or deleted by a specific process, along with their

locations.

2) Existence Identification: Layer 3 is the existence layer,

which integrates the categories, as illustrated in the category

layer and takes intersection and complement to identify and

differentiate the instance of each category for both clean and

malicious feature-set. As mentioned in the previous section,

the association of Cat1 with Cat4.1 and 5.1, for both clean

and malicious feature-set, identify the existence with respect

to Cat1. The later phase takes the intersection of existence

between clean and malicious features from customized cat-

egories, along with a complement of malicious features in

clean feature-set and complement of clean features malicious

feature-set. The contents of final categories 1-5 are based

on the intersection and complement of the aforementioned

feature-set, as illustrated in figure. It is pivotal for the op-

erational efficacy of the framework to include common and

unique behavioural features of clean and malicious files,

which will enable the framework to identify polymorphic

and metamorphic malware. As discussed earlier, these types

of malware dynamically evolve and attach themselves with

legitimate files, as they propagate. Having a generalized com-

bination of behavioural feature of clean and malicious files

not only enables the framework to distinguish between clean

and malicious files, it specifically empowers the framework

against legitimate files that have malicious code embedded in

it.
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Fig. 2. Architecture of Layered Framework

IV. IMPLEMENTATION

In this section we present the implementation details of our

proposed framework. This framework is specifically designed

for Portable Executable (PE) files, also known as .exe files,

which are specific to windows environment. Therefore, all the

files used in this research are windows-based executable, both;

clean and malicious. The operations of every system or its

implementation is based on a set of rules, which define the

conditions of its functionalities and the parameters involved

in their operations. The pseudocode presented in this section

elaborates the condition that make this framework unique and

efficient as compared to the ones discussed earlier.

As presented in the pseudocode, RepoC and RepoM hold

the static and dynamic features of clean and malicious files

respectively, acquired through static and dynamic analysis of

both type of P.E files. This leads to the existence module,

which has three different phases; Categorization, Existence,

and Combination. In the categorization phase, the union of

clean and malicious features comprised of; network behaviour,

CPU usage, dropped files, APIs, processes generated are stored

in Cat1, Cat2, Cat3, Cat4, and Cat5 respectively. The final

version of each category after this step stores the union of

both clean and malicious features of each category mentioned

earlier.

In the existence phase of this module, the virtually con-

nected features, as shown earlier in the figure, are combined

together. The union of Cat4 and Cat5 is combined with

separately with the set of each category; Cat1, 2, 3, 4, 5. This

combines the individual features of each category with the

hierarchical features of Cat4 and 5, which involves both clean

and malicious files. The combination phase of the existence

module is the final phase and the information retrieved from

this phase is used to train and test the machine learning

algorithms in the next phase. In this phase, common features

from both; clean and malicious feature-set are identified and

stored in a separate set. The whole idea behind this step

is to identify the differences a polymorphic malware makes

to a legitimate file. The identification of common features

and features exclusive to clean and malicious files enable

Algorithm 1 Malware Analysis

1: Input: C, M

2: Output: Cat 1, Cat 2, . . ., Cat n
3: C←Set of Clean P.E Files

4: M←Set of Malicious P.E Files

5: while c ∈ C do
6: while m ∈ M do
7: S ← StaticAnalysis(c,m)

8: D ← DynamicAnalysis(c,m)

9: Repo C← Repo C ∪ {Cs ∪ CD}
10: Repo M← Repo M ∪ {Ms ∪MD}
11: Existence Module – Categorization

12: Cat 1 ←Cat 1 ∪ {RepoCNet ∪RepoMNet}
13: Cat 2 ←Cat 2 ∪ {RepoCCPU ∪RepoMCPU}
14: Cat 3 ← Cat 3 ∪ {RepoCfiles ∪RepoMfiles}
15: Cat 4 ← Cat 4 ∪ {RepoCAPI ∪RepoMAPI}
16: Cat 5 ← Cat 5 ∪ {RepoCpros ∪RepoMpros}
17: Existence Module - Existence

18: Cat 1←Cat 1 ∪ {Cat4 ∪ Cat5}
19: Cat 2←Cat 2 ∪ {Cat4 ∪ Cat5}
20: Cat 3←Cat 3 ∪ {Cat4 ∪ Cat5}
21: Cat 4←Cat 4 ∪ {Cat4 ∪ Cat5}
22: Cat 5←Cat 5 ∪ {Cat4 ∪ Cat5}
23: Existence Module - Combination

24: Malfeat ← Set of Malicious Features

25: Cleanfeat ← Set of Clean Features,

26: while Malfeat ∈ (Cat 1,2,3,4,5) do
27: while Cleanfeat ∈ (Cat 1,2,3,4,5) do
28: Cat 1.1 ← Cat1.1∪ {Cat1Malfeat ∩

Cat1Cleanfeat}
29: .

30: .

31: Cat 5.1 ← Cat5.1∪ {Cat1Malfeat ∩
Cat1Cleanfeat}

32: end while
33: end while
34: end while
35: end while

Authorized licensed use limited to: University of Gloucestershire. Downloaded on July 03,2020 at 10:19:35 UTC from IEEE Xplore.  Restrictions apply. 



the algorithm to differentiate even the slightest embedding of

malicious code in a legitimate file. In the proliferation process

in a single machine or in a network, multiple executables are

used as hosts. In such a scenario, every executable even with

a slightest of mutation needs to be identified before it can pass

the mutation to the next executable. This technique will enable

the algorithm to differentiate between clean and malicious files

with significantly high accuracy.

V. RESULTS AND DISCUSSION

As the experiments are windows-based malware, Ubuntu

is chosen as the host environment. The modules containing;

clean and malicious files repositories, customized static anal-

ysis tool, Cuckoo sandboxed environment, repository layer

comprised of clean and malicious files’ analysis reports. The

existence layer is programmed in Python and connected with

the previous two layers. The Python program is comprised

of two modules; the existence layer and the machine learning

layer. The existence layer connects with the file system, which

holds the analysis reports and after performing the operations

as discussed in the implementation section. It passes the

finalized parameters to the next module that holds multiple

machine learning algorithms that are trained and tested using

these parameters.

File Type Quantity
Benign 121523

Malicious 2068796

TABLE I
DISTRIBUTION OF BENIGN AND MALICIOUS FILES IN DATASET

Table I presents the distribution of clean and malicious

files that are used for static and dynamic analysis, along with

populating the feature-set in the existence layer that is later

used for training and testing of algorithms. The large number

of malware used in the experiment ensures that the framework

is highly accurate and eliminate the existence of false-positives

in the results. Also, the majority of the malware present in the

dataset are variants of highly advanced polymorphic malware

that have the ability to forge their presence as clean files, while

propagating. Additionally, the dataset is comprised of different

types of malware families, as shown in Table II This also

enables the framework to be more thorough when it comes

to detection of different types of malware, along with the

malware that share features from other malware families.

Malware Type Percentage
Trojan 65.82%

Adware 22.67%
Worm 8.66%
Virus 1.21%

Downloader 0.56%
Spyware 0.41%
Exploit 0.39%
Dropper 0.28%

TABLE II
MALWARE DISTRIBUTION IN THE REPOSITORY

A. Results

In order to identify the effectiveness of the proposed

framework, the initial experiment was performed on the same

dataset but without the customization and categorization of

the dynamic feature-set of clean and malicious files. In the

first experiment, the same dataset of clean and malicious files

was used. The features were generated using the same static

and dynamic analysis tools and combined together to form

a rich set of features. The primary idea behind the initial

experiment was to identify the effectiveness of the combination

of machine learning algorithms without using the taxonomy-

based detection technique.

The results illustrated in Figure 3, present the comparison

of different machine learning algorithms used in the frame-

work that are trained and tested against the rich feature-set

acquired from clean and malicious files without applying the

categorization techniques. As illustrated in figure, the trained

algorithms were able to detect malware with a decent rate

but the rate still provide malware with an opportunity to

escape detection, especially in real-time situations. SVM and

decision tree were able to provide an accuracy of 0.79 and

0.60 respectively. However, when boosting was applied on the

results of decision tree, the accuracy went up to 0.91, which is

significantly higher than the actual accuracy of decision tree

but still not an optimum solution for polymorphic malware.

The same dataset was then used on the proposed framework,

which has the same set of tools for static and dynamic analysis

for clean and malicious files. However, when the rich feature-

set from the analysis layer is generated, it is then reduced to

a taxonomy discussed in earlier sections and then combined

with relevant features. The experiment performed using the

hypothesis proposed at the start and implementation discussed

in the earlier section, produced the results presented in figure.

The results illustrated in Figure 4, present the outcome of

the evaluation of the proposed framework. Once the afore-

mentioned algorithms were trained against the customised

characteristics, the detection accuracy significantly improved

Fig. 3. AUC for Basic Characteristics
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Fig. 4. Customized Characteristics

as compared to the previous results without custom charac-

teristics. Decision tree and SVM demonstrated an accuracy of

0.95 each. After applying boosting on decision tree’s results,

the outcome was significantly enhanced and the framework

was able to differentiate between clean and malicious files with

absolute accuracy. The most important aspect in this scenario

is the real-time detection based on the dynamic behaviour.

The detection was not just based on static file system, it

was based on the malware executed in a live environment,

which makes the absolute accuracy even more significant. It is

quite important to identify the importance of this evaluation,

performed on the proposed framework. The dataset used in

this evaluation was based on more than 2.1 million files, which

means that any result acquired went through a detailed analysis

of a significantly large number of features that populated

the categorization process. This means the final feature-set

acquired after the categorization process was thoroughly rich

and was comprised of precise characteristics that enhanced the

VI. CONCLUSION AND FUTURE WORK

To cater the problem of rapid malware evolution in modern

malware, which are equipped with dynamic evasion techniques

that enable the malware to continuously keep changing its

appearance, code sequence, and even logic in some scenarios,

there is a significant requirement of detection techniques that

have the similar dynamics embedded in them. The framework

proposed in this paper, not only has the capability to detect

malware, it can has the capability to accurately differentiate

between clean and malicious files. The proposed framework

is primarily designed for polymorphic malware that have self-

mutation properties and can attach themselves dynamically to

multiple legitimate files, which means that the characteristics

of the framework discussed in this paper can accurately

differentiate between the legitimate and malware host files.

The machine learning algorithms used are trained and tested

on specially customised feature-set acquired from a quite large

dataset of clean and malicious files. The end result illustrate

the absolute accuracy of the framework against large set of

accuracy of the overall framework.

polymorphic malware. Even though, the proposed framework

demonstrated accuracy in malware identification, it is required

to scale it to a level where it can cater the needs of a

network. The modern polymorphic malware specifically target

enterprise network, which means that any solution proposed

should cover the domain of an enterprise network. In order

to enhance the effectiveness of this framework, it is crucial to

scale it to the level of an enterprise network and evaluate its

effectiveness.
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