
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, Copyright © 2010, Springer Nature The final publication is available at Springer via 
http://dx.doi.org/10.1007/s42235-020-0049-9 and is licensed under All Rights Reserved license:

Fan, Xumei, Sayers, William ORCID logoORCID: 
https://orcid.org/0000-0003-1677-4409, Zhang, Shujun ORCID 
logoORCID: https://orcid.org/0000-0001-5699-2676, Han, 
Zhiwu, Ren, Luquan and Chizari, Hassan ORCID logoORCID: 
https://orcid.org/0000-0002-6253-1822 (2020) Review and 
Classification of Bio-inspired Algorithms and Their 
Applications. Journal of Bionic Engineering, 17 (3). pp. 611-
631. doi:10.1007/s42235-020-0049-9 

Official URL: http://dx.doi.org/10.1007/s42235-020-0049-9
DOI: http://dx.doi.org/10.1007/s42235-020-0049-9
EPrint URI: https://eprints.glos.ac.uk/id/eprint/8468

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title in 
the material deposited and as to their right to deposit such material.  

The University of Gloucestershire makes no representation or warranties of commercial utility, 
title, or fitness for a particular purpose or any other warranty, express or implied in respect of 
any material deposited.  

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.  

The University of Gloucestershire accepts no liability for any infringement of intellectual 
property rights in any material deposited but will remove such material from public view 
pending investigation in the event of an allegation of any such infringement. 

PLEASE SCROLL DOWN FOR TEXT.



    1  

Review and classification of Bio-inspired Algorithms and their Applications  

Xumei Fan1*, William Sayers2, Shujun Zhang2*, Zhiwu Han3, Luquan Ren3, Hassan Chizari2  

1School of Management, Jilin University, Changchun 132200, China  
2School of Computing and Technology, the University of Gloucestershire, Cheltenham, GL50 2RH, UK  

3Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun 132200, China   

  

Abstract  

 Scientists have long looked to nature and biology in order to understand and model solutions for complex 

real-world problems. The study of bionics bridges the functions, biological structures and functions and 

organizational principles found in nature with our modern technologies, numerous mathematical and 

metaheuristic algorithms have been developed along with the knowledge transferring process from the life 

forms to the human technologies. Output of bionics study includes not only physical products, but also 

various optimization computation methods that can be applied in different areas. Related algorithms can 

broadly be divided into four groups: (1)evolutionary based bio-inspired algorithms, (2) swarm intelligence-

based bioinspired algorithms, (3) ecology-based bio-inspired algorithms and (4) multi-objective 

bioinspired algorithms. Bio-inspired algorithms such as neural network, ant colony algorithms, particle 

swarm optimization and others have been applied in almost every area of science, engineering and business 

management with a dramatic increase of number of relevant publications. This paper provides a systematic, 

pragmatic and comprehensive review of the latest developments in Evolutionary based Bio-Inspired 

Algorithms, Swarm Intelligence based Bio-Inspired Algorithms, Ecology based Bio-Inspired Algorithms 

and Multi-objective Bio-Inspired Algorithms.  
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1    Introduction  

In recent decades, there has been an ever-increasing interest in nature-inspired algorithms[1–3]. The 

popularity increase in machine learning technology, with the development of convolutional neural 

networks and the rise in deep-learning technology as a result[4] have formed part of this. Alongside this has 

been the ever increasing amount of compute power that is readily available to individuals and small to 
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medium sized businesses[5,6].The pervasiveness of computing into everyday life combined with these 

impressive results from one area of bioinspired algorithms, and availability of compute power, have 

combined to drive interest in bioinspired algorithms in general upwards.  

Previous review papers in this area are becoming dated[1,7,8] and new advancements in this field have been 

published[9,10] which may not have been covered by historical reviews. Additionally, previous review 

papers have tended to cover a smaller set of algorithms that are particularly applicable to the papers 

problem-area. Ever increasing core counts in consumer available computer hardware and the increasingly 

common availability of graphics processing units have made the field very fast-moving.  

For all these reasons it is valuable and timely to have a systematic modern review, covering a broad range 

of nature-inspired algorithms.  

Computers are increasingly capable of extreme parallelization, particularly with general purpose graphics 

processing unit programming, and specialized chips developed to undertake tensor and matrix processing. 

This plays very much to the strengths of most nature-inspired algorithms. It is likely that the field will 

experience further attention and the algorithms experience increased successes in coming years, and the 

first steps of this can already be seen to be taking place.  

2   Classification of bio-inspired algorithms  

There are many bio-inspired algorithms proposed, designed and developed based on various  

bio-inspirations. There are limited literatures being focused on the classification. The two most widely 

accepted categories are evolutional based algorithms and swarm based algorithms, inspired by the natural 

evolution and animals’ collective behaviour, respectively. Based on that understanding, Binitha and Sathya 

classified the bio-inspired algorithms into three categories: evolutional-based algorithms, smarm-based 

algorithms and ecology-based algorithms[8]. Though these three categories cover the majority of the 

existing bio-inspired algorithms, there are some new algorithms that cannot be grouped into those three 

categories. So, in this paper, the bioinspired algorithms have been classified into four categories. They are 

evolutionary[11,12], swarm intelligence[13,14], ecologically based[5,16] algorithms and multi-objective[17–19] 
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variants of all these algorithms. Evolutionary algorithms also encompass artificial neural networks as the 

closest related category, despite artificial neural networks differing in some ways[20] from other 

evolutionary algorithms.  

The classification of algorithms in this paper is based upon the source of algorithms biological inspiration. 

This classification method has the benefit that explanations of the functionality of the algorithms remains 

related and broadly consistent in terms of terminology used within a class of algorithms. The classifications 

used can be seen in Figure 1.  

  

Figure 1 - Classification of Algorithms.  
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3  Evolutionary based bio-inspired algorithms  

3.1 Artificial neural network and its application  

3.1.1 Introduction to artificial neural networks  

Artificial Neural Networks are a subset of machine learning, which attempt to model the biological brains 

structure and utilise various different mechanisms for learning, most commonly  

gradient descent based methods such as back-propagation [21,22]. They have the benefit of being  

very widely applicable and being proven as universal approximators [23,24] when structured as feed-forward 

networks. In early artificial neural network research, there was a focus on simple networks with a single 

hidden layer, for more modern applications specialised layers have been developed and increasingly deeper 

networks are being utilised. This is powered by advancements in computer hardware, in particular more 

common usage of graphics processing power for general computations, and the improvements in the 

software tools available, such as the tensor flow framework[25]. It is now common for neural networks to 

have several layers, depending on the intended application, see Figure 2 for an example of a feed forward 

neural network structure.  
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Figure 2 - An example feed forward artificial neural network structure.  

  

3.1.2 Theory of artificial neural networks  

Artificial neural networks or their precursors have been around since the 1940’s when McCulloch and 

Pitts[26]published a paper on a mathematical model intended to emulate the function of a biological neuron. 

This demonstrated for the first time that networks of modelled neurons could perform computation. 
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Research continued, building on these ideas to develop the perceptron model[27] and learning rules to go 

along with this model. The downside of the  

perceptron model and learning rule was a lack of a method to train a layered network[27], meaning that the 

network could not effectively classify non-linear problems. In the 1980’s research in this area increased 

once more, particularly with the development and popularisation of back-propagation[21,22] as a learning 

mechanic for multi-layer networks which could solve non-linear problems.  

More recently, computer hardware has progressed dramatically, allowing specialised deep neural networks 

to be trained in a reasonable amount of time and achieve impressive results  

[4,28].   

3.1.3 Artificial neural network structures  

An artificial neural network is essentially a vectorised information processing algorithm. Due to their 

characteristics, which include good fault tolerance, generalisability and there are many different kinds of 

neural network algorithm[29] which are optimised for different applications.  

Multilayer perceptron (MLP) networks[29–31] are one common approach, where perceptrons are layered 

input, hidden and output layers. The neurons of each layer in a MLP are connected to the neurons of the 

following layer but there is no interconnectivity at each layer. The data passes through the network and is 

processed in an easily visualised linear fashion as a result of this. This structure of network is often trained 

using back-propagation approaches[29,32].  

Another structure is the radial basis function (RBF) network[30] which uses the RBF as its activation 

function. RBF networks are, similarly to MLP networks, structures in terms of input, hidden and output 

layers, where the input layer passes data to the hidden layer, then the hidden to the output. The structure 

differs from MLP networks in that the RBF is used as the activation function on the hidden layer, and the 

output layer node stake a weighted sum of activations from the hidden layer to produce its outputs, which 

(when used for classification) will often represent the likelihood of the data belonging to each category 

represented[29].  
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 For applications where different inputs are not independent, recurrent structures such as the long short-

term memory (LSTM) network are very popular[33,34]. These networks are based on a recurrent structure 

(where data is fed through the network back to previous layers in some form). This recurrent structure 

allows the network to track several steps in a computation, making it possible to classify or predict in cases 

where different samples to the network are not independent (i.e. predicting the next step in a time-series 

model, or the next word in a sentence).  

In the field of image classification and processing[4,28] convolutional neural networks (CNN)[28] have 

become exceptionally powerful at image related tasks[35]. These CNN’s consist of several specialised 

layers, applying convolutions and max-pooling operations to a loaded image, along with layers of more 

usual neurons, in this architecture referred to as “fully-connected layers”. These networks perform at a 

very high level classifying spatially organised data such as images[35].  

3.1.4 Applications of artificial neural networks  

Artificial neural networks are very broadly applicable to a large range of problem domains, seeing  

particular success recently in image recognition and processing [28,35], and time-series analysis[33,34]. 

Impressively Arulkumaran et al.[33] managed to train a neural network based model to play real-time 

strategy games to a level where expert human opponents can be beaten. Neural networks have also seen 

success being used as meta-models within other optimization algorithms[17,36], as well as in the fields of 

natural language processing[37,38] and the construction of 3 dimensional scenes from collections of 

photographs[39,40].  

3.1.5 Problems with artificial neural networks  

Artificial neural networks are seeing a considerable amount of hype recently, and whilst they can solve a 

very wide-range of machine-learning problems, they may not always be the most efficient way to solve a 

given problem. Additionally, artificial neural network outputs are hard to analyse and identify the reason 

for a particular output[10] compared to other machine learning approaches. Finally, artificial neural 
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networks can often take a large amount of data to train well, which often must be cleaned and processed 

beforehand[28].  

3.1.6 Further research  

Recent efforts by various researchers in the field [10,28,33–35] show a very large amount of promise for 

artificial neural networks and their applications within various fields. They are swiftly becoming a major 

focus of research in machine learning techniques, due to their flexibility and the potential for very good 

performance to be achieved.   

3.2 Genetic algorithm (with GP) and its applications  

3.2.1 Introduction to genetic algorithms  

Genetic algorithms are based loosely upon natural selection. The  basis is that eventually organisms with 

useful traits will either supplant or exist alongside pre-existing organisms. These useful elements are 

initially produced by a mutation of existing elements, before being passed down parent to child. Genetic 

algorithms model this, usually by treating solutions to the problem as a “genome” which can then be 

mutated and recombined. Genetic algorithms are immensely popular optimization algorithms due to their 

suitability for non-linear, non-convex, multi-modal and discrete problems with which traditional gradient 

descent derived algorithms may perform poorly in comparison[12].  

3.2.2 Theory of genetic algorithms and genetic programming  

Genetic algorithms began to gain popularity as an effective and efficient optimization method in 1975. 

This was due to both the publication of “Adaptation in Natural and Artificial Systems”[41] and the thesis 

entitled “An analysis of the behaviour of a class of genetic adaptive  

systems” [42].Holland[41]  presented the concept of adaptive algorithms utilising the concepts of  

mutation, selection and crossover, and De Jong[42]  showed that genetic algorithms could perform 

exceptionally well on discontinuous and noisy data that is challenging for many other optimization 

techniques.   
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The process of a genetic algorithm can be separated into four distinct sub-processes: generation, selection, 

crossover and mutation. Generation involves building an initial population of potential solutions either by 

random creation or some other method. Selection is where the population is evaluated, and then a subset 

of that population is selected by one of many possible selection algorithms for the generation of a child 

population via the next stages of crossover and mutation. Crossover is the process of generating new 

chromosomes by combining aspects from previous solutions chosen by the selection algorithm via one of 

several possible crossover algorithms (single-point, multi-point, uniform, partially mapped crossover, etc.) 

in the hope of producing a “child” chromosome more fit than either of its “parent” chromosomes. Mutation 

involves introducing a chance of making random changes to the chromosomes, which helps to prevent 

premature convergence and allow a fuller exploration of the search space by including genes that were not 

present in the initial random population.   

Genetic programming is strongly related to genetic algorithms and is the process of applying similar 

principles to program generation[43] with programs represented as a tree of operators and operands which 

can be recombined and mutated in order to optimise.   

3.2.3 Genetic algorithms  

Single-objective genetic algorithms all follow a similar broad approach but differ in terms of the approach 

to the individual steps of generation, selection, crossover, and mutation.  

Generation is often entirely random, but can be either directed, or initialised by a previous run of the 

algorithm. This could allow for either a continuation of a previous optimization run, or for a partial 

optimization on a more general approach to be used to seed a new optimization with  

potentially good solutions[44]. This could also bias the algorithm towards local optima by not allowing a 

broader search of the problem-space. It is also possible to partially seed the initial population, to try to 

avoid this potential issue[44].  
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Selection is the process of identifying which solutions (genomes) will be used to generate new solutions 

for the next generation. Therefore, the method by which this is done has a significant impact on the 

convergence of the algorithm and how fast or slow this is. Most modern  

implementations use either truncation or tournament selection[12]  as these are scaling invariant and 

inherently elitist, which has been shown[11] to enhance the effectiveness of the genetic algorithm.  

3.2.4 Applications of genetic algorithms  

Genetic algorithms have been applied to a huge number of real world and research problems, across a 

broad range of areas including engineering problems[10,12], classic optimization problems 44, and protein 

folding[45]. Due to their parallel nature, they offer a large variety of options for acceleration across multiple 

cores or machines and can take advantage of large amounts of compute power where it is available, as has 

been shown in recent research papers published[46,47]. Additionally, genetic algorithms can to some extent 

take advantage of the parallelisation capabilities of graphics processing units[47].  

3.2.5 Problems with genetic algorithms  

Genetic algorithms have no guarantee of finding the global optima with any combination of hyper-

parameters. They can take a long time to converge when run with insufficient computing power as it is 

often necessary to have a good sized population and a large number of generations to achieve a good 

result[44]. The development of the fitness function for a genetic algorithm is also crucial as this guides the 

entire optimization process and if done without care, the algorithm could generate inefficient or 

infeasible solutions[10] .  

3.2.6 Further research  

Some of the most promising research within the field of genetic algorithms involves their application to 

multi-objective problems, and the use of heuristic meta-models within the genetic algorithm as a means to 

increase speed of convergence without affecting the accuracy and the usefulness of the final solution[10].  
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3.3 Evolution strategies (ES) and its application  

3.3.1 Introduction to ES  

Evolution strategies come from the more general field of “Evolutionary Algorithms” which also 

encompasses Genetic Algorithms and Genetic Programming. Evolution strategies use mutation, 

recombination, and selection operators applied to a population of individuals. Each individual represents 

a single point in the search space being explored. The key distinction between genetic algorithms and 

evolutionary strategies is that evolutionary strategies evolve both characteristics and parameters[48]. 

3.3.2 Theory of ES  

The theory of evolution strategies dates back to the 1960’s at the Technical University of Berlin, where 

Rechenberg and Schwefel performed the initial research into this area[49-52]. At that time, the proposed 

application was to the automatic design and analysis of engineering experiments[48], rather than 

optimization of variables against objective functions. Flexible objects and systems were adjusted into their 

optimal states in noisy environments (i.e. wind tunnels). They were effective at this task, and were 

subsequently tested against various other similar tasks[53,54].  

These experiments were undertaken using two main rules: firstly, all variables were randomly changed at 

a time and to a small degree; secondly if the new variable values did not reduce the optimality of the altered 

device, keep them, otherwise revert.  

These rules can be recognised as an evolutionary algorithm, with a population of one original solution, and 

one child solution created by mutation, and an elitism mechanism in place so that the better of the two is 

retained and a new child generated from it.   

3.3.3 Evolutionary strategy algorithms  

The previously described approach is sometimes referred to as a two-membered or 1+1 evolutionary 

strategy (es)[8,55].   

To help avoid local optima Rechenberg49 proposed a multi-membered(µ+1) version of the  
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algorithm where multiple parents can participate in the generation of a child[55,56]. These were later 

developed into algorithms known as (µ+λ)-ES, as ‘µ’ parents produce ‘λ’ children[56]. The selection 

operator operates on the combined set of parents/children and the λ worst population members will be 

discarded at each iteration, so parents will survive in the population until they are superseded by superior 

children.  

In order to avoid a number of issues inherent in the (µ+λ)-ES approach[56], Schwefel[57,58]  investigated a 

variant of the (µ+λ)-ES where only the off-spring would under-go selection for parenthood and the parents 

would be therefore discarded from the population, known as (µ,λ)ES. Because of the limited life-span, 

inappropriate internal parameters can be forgotten. This can result in phases of recession but does avoid 

long stagnation due to less optimal parameters. This approach relies on a birth surplus ( > ) in order to keep 

the population size steady[48].  

3.3.4 Applications of evolutionary strategies  

Although they have not quite seen the explosive popularity of genetic algorithms, evolutionary strategies 

have seen many and varied applications from their initial application to  

hot water flashing nozzle optimization[53,54]. Throughout the 1970’s and 80’s they continue to be  

applied to similar continuous engineering problems[56-58].  

ES continue to be used on optimization problems to this day, such as training artificial neural networks to 

predict host CPU utilization in cloud infrastructure[5],optimization of engineering and construction related 

problems[59], and process modelling and optimization[60].  

3.3.5 Problems with evolutionary strategies  

Evolutionary strategies have not seen the uptake that some other fields of optimization algorithm have 

done and are thus less well researched than some alternatives. Whilst they are generally found to be 

robust where they have been applied[5,57,58] it is likely that for a lot of problems researchers will be dealing 

with issues of application to their particular problem as well as investigating the performance of the 

optimization.  
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3.3.6 Further research  

There are many interesting areas where evolutionary strategies could be potentially improved, largely 

drawing from other evolutionary algorithms and how they have been improved. Microsoft Research[61] has 

demonstrated a novel iterative procedure to optimise a surrogate objective function, which allows sample 

data to be reused over multiple epochs. They have demonstrated this approach produces better performance 

than standard ES in various test environments. In Salimans et al.[62]the authors investigate the use of an 

evolutionary strategy for the training of reinforcement learning algorithms. In this study the inherent 

parallelism of evolutionary strategies allows it to achieve competitive results with stochastic gradient 

descent and back-propagation methods more commonly used in this field. Both are promising areas which 

would warrant further investigation.  

3.4 Other evolutionary based bio-inspired algorithms  

 There are many other evolutionary based bio-inspired algorithms. Due to the limitation of the paper length, 

some of the main algorithms are listed in Table 1.  

Table 1 - Further evolutionary inspired algorithms.  

Name of Algorithms  Explanation and references  

Differential Evolution (DE)  A further evolutionary inspired algorithm, similar in principle to 

genetic algorithms and evolutionary strategies[106,107].  

Paddy Field Algorithm (PFA)  The paddy field algorithm is inspired by the spread of rice in paddy 

fields[108].  

  

4   Swarm intelligence based bio-inspired algorithms    

4.1   Ant colony optimization (ACO) and its applications  

4.1.1   Introduction to ACO  

Ant colony optimization algorithms are based on the way an ant colony will send out workers to hunt 

randomly for food, who leave pheromone trails behind them. Where worker ants find food, they will then 

proceed back to the nest reinforcing their pheromone trail. If there are two paths to the food, initially ants 

will randomly pick a path, but over time the shorter path will be more often reinforced. Other ants will be 

attracted to follow stronger pheromone trail paths, and by this method the colony will swiftly find food 

sources, and get a large number of workers to them by the most efficient paths[63].  
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4.1.2   Theory of ACO  

Ant colony optimization as an algorithm generally works via several artificial ants who will at each 

iteration plot a path through a problem space, composed of nodes (solutions) and edges between nodes, 

towards the objective. The artificial ants cannot revisit nodes they have previously visited, and each step 

of this path is selected via a stochastic mechanism that is biased by a “pheromone” variable associated with 

each edge that the artificial ants can read[63-65]. Several successfully applied ant colony optimization 

algorithms have been developed based on this general approach. Compared to many of the other bio-

inspired algorithms covered within this review, ant-colony optimization approaches are a recent 

development in the field, the first having been created in the early nineteen nineties[66]. The general 

approach was then developed into a full meta-heuristic and progressed throughout the nineties and into the 

present decade  

[63,65–67].  

4.1.3 ACO algorithms  

There are many ant-colony optimization algorithms based around the previously described principles, such 

as best-worst ant system (BWAS)[64]. In the best-worst ant colony optimization algorithm the best and 

worst performing solutions are both considered in order to reinforce edges contained in good solutions, 

and penalise edges contained in poor solutions, thus driving convergence. Additionally, this approach 

includes a restart mechanism for if the optimization gets stuck, and a mutation system which diversifies 

the solutions generated by adding randomness in such a way that different paths are encouraged at the later 

stages of the search process[64]. There are too many variants of ant colony optimization for everyone to be 

covered in this paper, but good overviews of existing algorithms can be found in review papers specific to 

ant colony optimization[63,68]. The nature of ant colony optimization means that it can potentially be used 

with many other search algorithms, which are appropriate to the problem it is being applied to, as well as 

having many ways in which its hyper-parameters can be managed as the algorithm iterates.  
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4.1.4    Applications of ACO  

As ant colony optimization is employed as a meta-heuristic Ant colony optimization has been applied in 

several important areas. The first problem the algorithm was tested upon was the travelling salesman 

problem, which is known to be NP-hard and extremely challenging depending on the number of cities 

included[63,66]. Ant colony optimization has since then been applied to engineering problems[10,63], vehicle 

routing problems, machine learning related optimization, and bioinformatics problems, amongst others63. 

It has proven to be an effective and interesting meta-heuristic algorithm.  

4.1.5 Problems with ACO  

Ant colony optimization suffers from many of the same issues as genetic algorithms. Its effectiveness is 

there, when enough computing power or time is available to be utilised in solving a given problem. A 

sufficient number of iterations need to be completed to achieve convergence and the algorithm can be 

extremely complex to execute, especially when the underlying search strategy is a more complex one[63].  

4.1.6 Further research  

Ant colony optimization is very promising when applied to single objective optimization although it has 

been somewhat overtaken in application by more common genetic algorithms or simpler search strategies 

where compute power or time is limited. There have been some efforts to modify ant colony optimization 

to multi-objective paradigm and this is an interesting avenue that is perhaps deserving of further study[69].  

4.2 Artificial bee colony (ABC)algorithm and its application  

4.2.5 Introduction to ABC   

The artificial bee colony algorithm is based loosely on the behaviour of bees in a hive hunting for food 

sources and communicating together. In the model, artificial bees are grouped into three categories, 

employed, onlookers, and scouts. Potential solutions to the optimization problem are “food sources” with 

the fitness of the solution modelled as “nectar quantity”. Scouts identify new food sources. Employed bees 

evaluate the quality of existing food sources, and onlookers get the information from employed bees about 
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food source quality of the source the employed bee checked. Onlookers then evaluate the food source 

against neighbours so that solutions can be discarded and replaced with scouted solutions[2,13]. 

 

4.2.6 Theory of ABC  

The algorithm works broadly as follows, initially a food source (solution) is identified for each employed 

bee randomly. Each employed bee evaluates this food source and modifies it. If their new food source is 

more optimal than the previous, they forget the previous and remember the new. They then communicate 

this information to onlooker bees. Onlooker bees then choose a food source depending on fitness 

communicated by all employed bees and produce a modification. Again, if the modification is better, this 

replaces the original food source.  

Abandoned sources are replaced by new sources by scouts[2,13].  

4.2.7 ABC algorithms  

As well as the initial artificial bee colony algorithm, several algorithms have been developed based around 

the same concepts, inspired by honey-bee foraging behaviour. For example the bees algorithm[70,71] has 

been developed which follows a very similar flow, but utilises a different mechanism for neighbourhood 

search, and a different simulation approach for inter-bee communication within the algorithm[71]. More 

recently, Khan &Maiti[72] proposed a version of the artificial bee colony algorithm modified to use swap-

sequences in order to perform well on travelling salesman type problems, demonstrating performance that 

is roughly on-par with other approaches to solving problems in this domain.  

4.2.8 Applications of ABC  

Artificial bee colony algorithm has been shown[13,71] to perform on artificial test-cases with comparable 

performance to other state-of-the-art algorithms. On the travelling salesman benchmark problem it has 

been shown that with modification it can perform well[72]. Algorithms based on the artificial bee colony 

approach have also been applied with promising results to the problem of route optimization for network 

communications[73] as well as to colour image segmentation[74].  
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4.2.9 Problems with ABC  

One of the major issues with the artificial bee colony algorithm is the lack of real-world test-cases where 

it has been applied and can demonstrate promising results or improvements in  

performance over alternative algorithms. Although it has been applied in a few areas[13,73,74] it does not 

have the same breadth of application as some other algorithms in this field. This means that researchers 

may spend some time dealing with issues of application to their specific problem, however it could also 

mean that the chance of getting novel results is heightened if this algorithm has not been applied to that 

problem before. Additionally, and in common with many swarm intelligence algorithms, computational 

time can be a limiting factor on its application.  

4.2.10 Further research  

Artificial bee colony algorithms are a promising area of research that has surfaced relatively recently in 

terms of swarm intelligence-based algorithms. Because of this there is considerable scope further research 

in various applications of these algorithms. One interesting field of application is in using artificial bee 

colony algorithms, with modification, for the purposes of data clustering[75,76], where they show promising 

abilities.  

4.3 Fish swarm algorithm (FSA)and its application  

4.3.9 Introduction to FSA  

The artificial fish swarm algorithm is a swarm intelligence algorithm inspired by the way that fish will 

swarm together towards food sources. Each fish individually searches for the most food rich areas to move 

towards. Whilst doing this they also want to avoid overcrowded areas because the competition for food is 

too high. They also want to follow groupings which are not overcrowded, as these fish may have found a 

food-rich area they are grouping in. The combination of these factors results in a swarming behaviour 

which converges on the most food rich areas whilst also exploring around for other food rich areas[77].  

4.3.10 Theory of FSA  

The artificial fish swarm algorithm is based on having a number of artificial fish. These artificial fish are 

distributed throughout the problem-space, initially randomly. They then follow a number of specific 
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behaviours, “following”, “preying”, “swarming”, and “moving”. The fish will iterate through these 

behaviours starting with “following”, and proceeding in order towards “moving” every time an improved 

position is not found. At each behaviour, if that behaviour produces an improvement in position, that 

improvement is taken. If that behaviour does not produce an improvement in position after a given number 

of attempts, then the “movement” behaviour will be executed[14,78]. 

Whilst in the “following” behaviour, the fish will check its range of vision for the other fish with the best 

food availability (objective function evaluation). When it finds that fish, if it has a higher food availability 

than the current fish, and a smaller proportion of the total number of fish nearby to it, the current fish will 

move towards that fish. Otherwise, the current fish will transition into the “searching” behaviour[14,78].  

The “preying” behaviour involves a fish identifying the centre position of nearby companion fish within 

its visual range. Once it has found that point, if it has a higher food availability than the current fish and 

that point is not overcrowded, the fish will move towards this point[14,78]. 

Whilst engaged in the “searching” behaviour, the fish will select a prospective new state within its range 

of vision, evaluate it, and then if it is better move towards that state. If it reaches a limit on number of 

evaluations to make, it will just move randomly[14,78].  

 In the “movement” behaviour, the fish will just select a random direction and move in this direction[14,78]. 

4.3.3 FSA algorithms  

Following the same basic approach, there are a large number of artificial fish swarm algorithms[78,79]. 

These modifications of the original algorithm, which performs well as standard[79], come generally with 

trade-offs to be considered. For example, the “preying” behaviour can be modified to guide the fish towards 

the nearest well-performing position and the global best performing so far position[79] at the expense of 

added complexity to (and therefore increasing the computational load of) the algorithm. Other attempts 

look at building a form of gradient descent into the swarming behaviour, introducing crossover into the 

algorithm or introducing random restarts (with “leaping” behaviours) amongst other approaches[79].  
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4.3.4 Applications of FSA  

Artificial fish swarm algorithm has been broadly applied across many fields. In structural damage 

detection[78] a modification of the artificial fish swarm algorithm has been shown to be able to locate 

structural damage effectively as well as identify the severity of the damage. Another modification of the 

fish swarm algorithm has been applied to reliability redundancy problems showing performance which is 

good in terms of computational accuracy and efficiency, demonstrating the ability to find solutions that 

are of a quality on-par with other heuristic algorithms[80]. Generally speaking artificial fish swarm 

algorithm derivatives show performance on-par with or improved upon industry standard optimization 

approaches, and computational impact similarly improved or comparable[14,78,79]. 

4.3.5 Problems with FSA  

Similarly with other bio-inspired algorithms, the largest issue with application tends to come in terms of 

the computational time and effort required to produce high-quality solutions[10,79]. This is improved over 

an exhaustive search but remains an issue for adoption and thus a key competitive element when one 

algorithm in this field is evaluated against another.   

4.3.6 Further research  

A significant amount of research effort is being invested in artificial fish swarm algorithms recently. The 

algorithm performs well or on par compared to industry standard algorithms and fish behaviours can be 

swapped in and out or added to add complexity to the algorithm[78,80]. In common with other bio-inspired 

algorithms, the possibility of meta-heuristics in combination with optimization objective functions could 

allow for improved performance 10. The addition of meta-heuristic objective functions needs to be 

undertaken carefully in order to avoid any loss of accuracy in the final solutions that could preclude the 

developed algorithm from, i.e. engineering applications where accuracy is crucial.  
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4.4 Others warm intelligence based bio-inspired algorithms    

Some other notable swarm intelligence algorithms are listed in  Table 2.  

Table 2– Further swarm intelligence algorithms.  

Name of Algorithms  Explanation and references  

Flocking and Schooling in Birds and 

Its Application  
Algorithms inspired by the flocking behaviour of birds on 

migratory flights, hunting for food, nesting areas or mates such as 

the bird mating optimizer[109].  

Bacterial Foraging Optimization  
Algorithm  (BFOA)  and  Its  
Application  

An algorithm inspired by the foraging behaviours of bacteria 3.  

Intelligent Water Drops Algorithm 

(IWD) and Its Application  

An algorithm inspired by the manner in which water moves in seas, 

rivers and lakes, affected by the ease of the path offered to it[110,111].  

Firefly Algorithm (FA) and Its 

Application  
Algorithms based on the swarming behaviour of fireflies[112,113].  

Artificial Immune System Algorithm 

(AISA) and Its  
application  

Algorithms based on the manner in which immune systems respond 

to perceived threats to the system[114,115].  

Group Search Optimizer (GSO)  
and Its Application  

Group search optimizer is based on the searching behaviour of 

animals[116,117].  

Shuffled Frog Leaping Algorithm 

(SFLA) and Its Application  
Shuffled frog leaping algorithm is inspired by cultural transfer 

within a population, in this case of artificial frogs[118,119].  

Particle  Swarm  Optimization  
(PSO) and Its Application  

Particle swarm optimisation builds on a similar approach to genetic 

algorithms, although rather than moving individuals within the 

problem space, swarms are moved[120,121].  

  

5 Ecology based bio-inspired algorithms  

5.2  Invasive weed optimization (IWO) and its application  

5.1.1    Introduction to IWO  

IWO is based on the behaviour in nature of weeds spreading across a terrain or area. A number of weeds 

(problem solutions) are spread over the search area, much like weeds in nature spreading seeds and the 

offspring thriving or dying where they fall depending on the suitability of that area[15].  

5.1.2 Theory of IWO  

In IWO each weed represents a solution to the problem being optimised, and a population of weeds refers 

to the set of all weeds. The algorithm follows a series of steps iteratively. Initially, the population needs to 

be initialised, and weeds will be initialised within the search space with normally distributed random 

numbers with a mean of zero. Next, the higher a weeds fitness, the more seeds it will produce. This is 

governed by an equation[15] which takes into account current weed fitness, maximum and minimum fitness 
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in the current population, and a minimum and maximum number of weeds to be generated. The generated 

seeds will be normally distributed over the search space remaining close to the parent weed. When the 

number of weeds reaches a pre-set maximum number, weed production occurs as normal, but all weeds 

within the population are then ranked and weaker performing population members culled from the  

population[15].    

5.1.3 IWO algorithms  

Basak et al.[81]developed a differential invasive weed optimization algorithm (DIWO) which they applied 

to benchmark problems. This involved combining the difference vector-based mutation scheme of 

differential evolution with the invasive weed optimization algorithm. Comparing this combined algorithm 

to benchmark industry standard algorithms, demonstrated very strong performance of the algorithm, 

improving on both standard invasive weed optimization algorithm and the differential evolution algorithm 

for this specific problem. Rani et al.[82] developed a multi-objective specialisation of invasive weed 

optimization in order to apply their problem to optimal network reconfiguration. This involved using a 

non-domination sorting approach to model Pareto optimality between four objectives. A large number of 

other interesting customisations of IWO are present within literature[83-85].  

5.1.4 Applications of IWO  

Zhou et al.[15] applied the invasive weed optimization algorithm to attempt to solve the no-idle flow shop 

scheduling problem, showing a marked improvement over other industry standard algorithms against 

which it was benchmarked. Zhao et al.[85] have applied invasive weed optimization algorithm to the 

capacitated vehicle routing problem, with an addition of mutation and crossover to the algorithm to 

increase diversity in the population generated. Compared to other benchmark results the developed 

algorithm performs well for this problem. Invasive weed optimization algorithm and variations of it have 

also been applied to optimising heterogeneous wireless network issues[86] and economic dispatch of power 

systems[83]amongst others, demonstrating strong performances throughout.  
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5.1.5 Problems with IWO  

IWO is a widely applicable and powerful meta-heuristic algorithm, which has been customised 

successfully for many different problem spaces[15,83-86]. The algorithm requires that hyper- parameters 

are initialised to appropriate values before the iterative process begins, and if they are not it is possible 

that the algorithm will converge to a local minimum or a never converge. Additionally, meta-heuristic 

algorithms such as IWO generally suffer from issues with the number of objective function calls taking 

place due to the intractable nature of the problem spaces to which these algorithms are generally applied, 

and IWO is no exception.  

5.1.6 Further research  

Multi-objective IWO is a promising space and the simplicity of the algorithm means that modifying the 

algorithm to work on optimising for Pareto optimality should result in simpler algorithms for this kind of 

optimization. Diversity could be preserved in these algorithms by adopting an approach similar to that used 

in NSGA-II[19]or other industry standard multi objective algorithms. The addition of meta-models could 

ease issues with objective function cost and further research into incorporating these within invasive weed 

optimization would be valuable.  

5.2 Biogeography-based optimization (BBO) and its application  

5.2.2 Introduction to BBO  

Biogeography based optimization is inspired by the distribution of living things within a geographical area. 

Living things migrate between areas, new species arise to fill niches and habitats where resources are 

available but unexploited, and species become extinct when another species arises that can out-compete 

them in their habitat. The most optimal habitats have the largest range of species living within them. The 

mathematics that describe this process can be used as a basis for an optimization algorithm, which shares 

many features with other bio-inspired algorithms, and is applicable to many similar problems[16].  

5.2.3 Theory of BBO  

Biogeography based optimization begins with the initialisation of a population of solutions which are 

allowed and possible within the problem space. A number of hyperparameters are also defined at this stage 
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16. In BBO a “habitat” represents a solution to the problem being optimised. A number of these habitats 

are then initialised. For each habitat, the fitness (habitat suitability index) is calculated, and from that the 

number of species, immigration rate, and emigration rate are calculated. Immigration, emigration and 

mutation rates are then used to probabilistically modify each habitat. If an element of elitism is included 

in the implementation, then elite habitats will be exempt from modification. The algorithm then cycles 

back to calculating the fitness for each habitat and continues the cycle[16].  

5.2.4 BBO Algorithms  

Biogeography based algorithms have been customised to specifically work with many different problems. 

Goudos et al.[87]have adopted BBO algorithms and modified for a multi objective optimization approach 

for indoor wireless network planning. In order to accomplish this, they have formulated the indoor wireless 

network planning as a multi-objective optimization problem, i.e. to explore and find the Pareto front of the 

problem space. Lin[88]has combined biogeography based algorithms with heuristic approaches to construct 

hybrid algorithms for solving the job-shop scheduling problem. These promising approaches are only  

two of many[89-91] interesting modifications and customisations of BBO.  

5.2.5 Applications of BBO  

BBO has been applied to many problems, including outdoor wireless planning[87], scheduling  

problems[88], parameter estimation for solar and fuel cells[92], parameter estimation more generally for  

chaotic systems[91], emissions dispatch from fossil fuel power generation[90] and cloud 

computing[89].Generally, the algorithm is effective wherever applied and has been customisable to the 

necessary extent for broad application. It is a relatively recent algorithm and therefore the broadness of 

application is not quite as much as for mature algorithms in the field such as genetic algorithms, but it is 

impressive given its current lifespan.  

5.2.6 Problems with BBO  

Biogeography based algorithms suffer as all newer algorithms do from less depth of literature available in 

the field and less ready-made software packages to aid in the application of the algorithm. In general, with 
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population-based bio-inspired algorithms more generally, it can suffer from the requirement for a large 

number of evaluations of the objective functions[16]. BBO has several hyper-parameters which need tuning, 

which is a common trait in bio-inspired algorithms but does add complexity to the application of the 

algorithms.  

5.2.7 Further research  

Some of the issues listed above are already being looked into, the number of objective function evaluations 

could potentially be addressed by optimising the algorithm (to reduce the number of evaluations 

necessary),meta-modelling the objectives (to speed up some of the evaluations) or optimising the objective 

functions to increase performance of all of these. In practice, two or more of these are usually employed 

together by attempting to generate efficient  

objective functions and tweaking hyper-parameters[87-90,92]. More applications of the algorithm generally 

would also be good to see, as this will inevitably lead to specific problems being encountered and hopefully 

overcome.  

5.2.8 Further ecology based bio-inspired algorithms  

             Further ecology based bio-inspired algorithms can be found in Table 3.  

Table 3 - Further ecology based bio-inspired algorithms.  

Name of Algorithms   Explanation and references  

Multi-species 

optimisation (PS2O)  
coevolution  Algorithm based upon multi-species co-evolution within an 

environment represented by the problem-space[122].  

 

 

6 Multi-objective bio-inspired algorithms  

6.1  Non-dominated sorting genetic algorithm II (NGSA-II)  

6.1.2 Introduction to NSGA-II  

NSGA-I[19] is a multi-objective optimization algorithm[18] which generates an approximated Pareto-front 

based on a population of possible solutions to the optimization problem evaluated against a number of 

objectives in the range 1 to ‘n’ which are normally marked for maximisation or minimisation. The Pareto 
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front is a set of solutions where for each solution, the performance can only be improved in one of the 

objectives by reducing it in another objective. The Pareto front therefore dominates the hyper-volume of 

all other possible solutions within the solution space.  

6.1.3 Theory of NSGA-II  

NSGA-II achieves the development of an approximate Pareto front via an iterative  

approach[19]. First a population of a given size n is created, either randomly, or via some method for pre-

seeding with good candidates. Then for each solution p, two values are calculated. The first is the 

domination count, which is the number of solutions which dominate p. The second is the set of all solutions 

that p dominates. All the solutions in the first non-dominated rank will therefore have a domination count 

of zero. For each of these solutions, each member of the dominated set is visited, and its dominating count 

reduced by one. If the dominating count of those sets is thus reduced to zero, it is added to the second non-

dominated rank. This process continues until all solutions have been assigned to a rank.  

Each solution is then assigned a fitness value equal to its rank (with 1 being the best and so on, assuming 

minimisation). Tournament selection, crossover and mutation operators can then be used to create a child 

population of size n. This created child population is then merged with the initially created parent 

population, to form a population of size 2n. This population can then be assigned non-dominating ranks in 

the same manner as previously described and ordered by these ranks.  

 Each solution will also have a “crowding distance” calculated[19], via a function which takes into account 

how close the nearest other solutions within the same rank are. For this measure, larger is better (more 

varied from other solutions within the same rank) and the outlier solutions are always assigned a “crowding 

distance” of infinity. Within their ranks, the individuals are then sorted by this crowding distance also, in 

reverse order.  

The first ‘n’ individuals in this sorted population are then selected to form a new population of size ‘n’ 

consisting of the best ranks with a total membership <n, plus the most varied members of a final rank in 

order to make up a size of exactly n.  
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Once this is complete, binary tournament selection is again used, this time using the crowding comparison 

operator which takes into account both rank, and crowding distance. This allows the selection of parents 

of a new population of size n, at which point we will continue to iterate through combining the populations, 

ranking and scoring, then reducing to size n and cycling again, until a stopping condition is met.  

6.1.3 NSGA-II algorithms  

A number of algorithms have used NSGA-II as a base to build upon, including MOGAANN[36], 

LEMMO[93] and LEMMO-ANN[10,17]. Many customisations of NSGA-II based algorithms are based 

around meta-heuristics, niching, or other approaches to reduce the number of objective function 

evaluations[10,17,36,93,94]. Due to the nature of the algorithm, an extremely high number of objective function 

evaluations is often required, and the algorithm is often applied to complex real-world problems with 

objective functions that can involve extremely long run-times[10,17,36,93]. 

In keeping with other genetic algorithm approaches, NSGA-II is potentially very parallelisable and another 

approach that has been investigated is parallel running of objective function evaluations across multiple 

machines[95,96].  

6.1.4 Applications of NSGA-II  

NSGA-II has been applied extensively throughout industry, particularly in the engineering 

sector[10,17,36,95,96] where intractable multi-objective problems to which the algorithm is applicable abound. 

In the LEMMO algorithm a decision tree classifier is used within the NSGA-II algorithm as a feature 

identifier for characteristics of solutions which perform well or poorly.  

At a high level the LEMMO application of NSGA-II works by performing a variable number of iterations 

of a standard NSGA-II[19] algorithm and storing data on which of the generated solutions are “good” 

solutions and which are “poor” solutions. It then uses this data to train a machine-learning algorithm to 

distinguish between good and bad functions and uses the outcome of this training in some fashion to 

generate new solutions, which, according to the trained machine-learning model, are “good” solutions. 

These are then integrated with the main population and the algorithm continues with further iterations 
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based on pure NSGA-II and further iterations of machine learning. The exact machine learning algorithm 

can be varied and the LEMMO approach has been shown to work well both with decision tree type 

algorithms [93,94,97] or with artificial neural networks[10,17]. Some further modifications are necessary to 

allow for artificial neural network training and a suitable method for generation of new solutions[10,17].  

These algorithms using an NSGA-II based approached, combined with meta-heuristics in a LEMMO 

approach, have been applied to flood risk optimization[10], water distribution network  

optimization[17,93,94].  

Other meta-heuristic based approaches have involved identifying the optimal placement for pressure 

sensors in a water distribution system, using a modified NSGA-II[19] approach and using artificial neural 

networks to estimate the model results[36], rather than classifying a solution as good or bad.  

Outside of meta-heuristics, other approaches have involved parallelising the work-load for each iterations 

evaluation of objective functions, this approach has been applied with some success to real-options 

optimization for flood defence[95,96,98] but is reliant on having computing power available, or the ability to 

access cloud resources.  

6.1.5 Problems with NSGA-II  

A number of problems exist with NSGA-II, although they are generally common across most optimization 

algorithms within this multi-objective space. The first and most obvious is the potential runtime due to the 

number of objective function evaluations[10], this is the downside that the meta-heuristic modifications of 

the algorithm are intended to alleviate. A second downside is that with further insights into the data and 

the problem space, a more directed mutation approach could yield a significantly increased speed in 

convergence. Of course, this would also risk losing the benefit that the algorithm may identify solutions 

that would be nonclear to an analysis. The LEMMO approach is partly trying to alleviate this downside, 

by directing the generation of new solutions, using machine-learning approaches. A third downside is that 

an NSGA-II algorithm produces a Pareto[99] front, which is a range of solutions with varying scores in 

different objectives, that dominate all other solutions. A final solution needs to be selected from this front, 
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in order to be utilised, which can add complexity to the algorithm although it does allow for prioritisation 

of objectives, with the knowledge of what the trade-offs will be.  

6.1.6 Further research  

Research is already taking place, as mentioned above, into solving many of the problems associated with 

the NSGA-II algorithm by extending it or modifying the way individual steps are handled. A subsequent 

algorithm NSGA-III has been developed[100] but is largely focused at different types of problems, rather 

than being a direct replacement for/improvement on NSGA-II. Some of the more promising research is 

around meta-heuristics and parallelisation, as touched on in this paper, there is still considerable scope for 

further research here. Different machine learning techniques are suited for different kinds of problems, so 

implementing further modifications of LEMMO that use different machine learning approaches seems to 

have value. This isn’t as simple as plugging in the new algorithms and testing, there is considerable extra 

work in integrating a new machine-learning technique.  

6.2      Population-based ant-colony optimization  

6.2.1    Introduction to population-based ant-colony optimization  

Ant-colony optimization is a successful and useful single-objective bio-inspired algorithm 63–67. It has 

therefore been widely modified to support multiple objectives and a pareto optimal approach. The primary 

method of applying ant-colony optimization to multi-objective optimization problems is referred to as P-

ACO[101]and involves building upon the standard ACO process. It does this utilising matrices of 

pheromones, random weights, a concept of “lifespan” and a pheromone decoding scheme.   

6.2.2    Theory of population-based ant-colony optimization  

The process of ant colony optimization is split into two stages, construction and evaluation. These phases 

are managed by two data structures, a pheromone matrix and a solution archive. Initially, the solution 

archive will be empty, and initialised to minimum levels. After each iteration, a solution can be added to 

the solution archive. The pheromone matrix will then be updated to reflect this new solution, biased by 

specified values[101,102]. After a number of iterations, the maximum number of possible solutions will be 
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reached, at which stage every new solution replaces an existing solution, which then has its influence on 

the pheromone matrix removed. A number of strategies can be used to decide how to add and remove 

solutions from the solution archive[102,103]. The three main ones are as follows. An age-based strategy, 

where at each iteration the best solution found enters the solution archive, if the archive is full the new 

solution replaces the oldest solution within the archive. A quality-based strategy where solutions may only 

enter the solution archive if they are superior to all other solutions within the archive at the time. Finally, 

an elitist strategy which tracks the best solutions found within a run. Every time a solution is discovered 

that improves on the current best solution, the weights are updated based on this new solution[103].  

6.2.3    Population-based ant-colony optimization algorithms  

In population-based ant-colony optimization several different approaches are mentioned above, which can 

customise the algorithm to fit specific approaches. Additionally, the algorithm has been tweaked in many 

ways to fit specific problems. The optimization of research project portfolio’s was one of the first 

applications of this algorithm[101] and involved an algorithm where feasibility and efficiency formed the 

objectives of the algorithm. Building on these early successes and more recently, attempts have been made 

to improve the application of P-ACO to multi-objective optimization[102].This is in an effort to apply these 

algorithms to civil-engineering based problems which are inherently multi-objective, and develop their 

applicability to such problems[102].  

6.2.4    Applications of population-based ant-colony optimization algorithms  

P-ACO has been applied across many domains. In the civil-engineering sector where large intractable 

problems are very common[102] such as the optimization of plane bar truss structure the algorithm saw 

promising results with some modification. In the original application of optimising research portfolio’s, 

the algorithm out-performed alternative heuristic methods. The algorithm has been applied to single-

objective problems such as the travelling salesman problem and the quadratic assignment problem with 

success also. In keeping with most other multi-objective optimization algorithms, it is possible to apply 

the technique to single objectives, it is just not often worth the additional complication of the algorithm.  

6.2.5    Problems with population-based ant-colony optimization  
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Ant-colony optimization suffers from the complexity of the algorithm, which is a common theme of multi-

objective optimization algorithms. This complexity means that simpler approaches are often preferred even 

when less accurate because they cost less in development time. Additionally, the algorithm is not as widely 

research as other multi-objective approaches, particularly genetic algorithm based multi-objective 

optimization approaches. This can add a further cost of research and development as there is less likely to 

be mostly developed solution you can tweak.  

6.2.6    Further research  

Further research in the area is currently largely around the improvement of the application of the algorithm 

to multi-objective optimization[102]. There is some interesting research taking place into optimising ant-

colony optimization for running on massively parallel systems such as Apache Spark[104,105] which may 

also be applicable to multi-objective ant-colony optimization.  

6.2  Further multi-objective bio-inspired algorithms   

 Further multi-objective Bio-inspired algorithms are shown in 

Table 4.  

 

Table 4 - Further multi-objective bio-inspired algorithms 

Name of Algorithms Explanation and references 

Strength-pareto  evolutionary 

algorithm 2 (SPEA2) 

This algorithm is based on the same non-domination pareto 

principle as NSGA-II using an evolutionary process. The fitness is 

calculated as a combination of the summed scores of the 
objectives (fitness), and the number of solutions dominated 

(strength)[123,124]. 

 

7     Conclusion  

In conclusion ten bio-inspired algorithms have been reviewed in this paper. The first of these was artificial 

neural networks which attempt to mimic the learning mechanisms of the brain itself. Next genetic 

algorithms and genetic programming were discussed, as they are an extremely popular and well-known 

algorithm. Evolutionary strategies were then covered, particularly on the clear points where despite being 

an alternative evolutionary strategy they differ widely from genetic algorithms. Moving into swarm-

intelligence based algorithms, ant colony optimization as a well-known and popular swarm intelligence 
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algorithm was described and the ingenious method of its functioning examined. The artificial bee colony 

with artificial bees communicating the location of optimal points in search space was then discussed, along 

with the fish swarm algorithm which models fish schools hunting food. Under ecology-based bio-inspired 

algorithms invasive weed optimization has been described with its effective approach to solution finding 

and biogeography-based optimization with the model of living creatures migrating between habitats of 

varying optimality. Finally, multi-objective optimization algorithms were explored, covering particularly 

NSGA-II with its non-dominated sorting approach to optimising to a Pareto front, and P-ACO and its 

specialisation of ant-colony optimization in a manner that allows for multi-objective optimization. In 

addition to these algorithms covered, a further thirteen algorithms have been briefly mentioned within the 

appropriate sections in order to direct readers towards literature covering these related algorithms. 

Hybridisation of nature inspired algorithms together in a similar way to that in which many algorithms 

combine solutions, appears to be a clear direction for iterative improvement of these algorithms and has 

been for some time. Additionally, utilising machine-learning models such as artificial neural networks to 

reduce objective function overhead whilst maintaining accuracy seems promising, although such solutions 

may well need to be bespoke for each kind of application problem.  
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