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ABSTRACT This study examined the effects of an 8-week uphill-downhill sprint training programme 

on the force generation capacity of leg muscles. Twenty-four university students were randomly 

allocated to one of two training groups (combined uphill–downhill and horizontal) and a control 

group. The combined training method produced significant improvements in maximal isometric 

force (7.1%) and rate of force production (≈ 25%) of the knee flexor muscles (p<0.05). The combined 

training was also significantly more effective in improving the maximum sprinting speed (5.9%, 

p<0.05) and associated kinematic variables. In particular, the propulsive phase of contact decreased 

significantly by 17% (p<0.05) indicating a link between the improved rate of force production during 

the isometric test and the rate of production of propulsive forces during sprinting. The increased 

capacity of the leg flexor muscles to generate force appears to contribute to the improvement of 

sprinting speed perhaps due to a more efficient muscle function during the support phase of the 

stride. 

Key words: Lower-Limb Kinematics, Rate of Force Production, Running on Sloping Surface, Sprint 

Training Program  

INTRODUCTION  

Running on sloping surfaces is widely used in training for sprint running as a way to create additional 

stimuli for speed improvement. Regarding acute neuromechanical effects of running on slopes, 

some previous studies [1, 2] have demonstrated enhanced mechanical loading applied to the hip, 

knee and ankle extensors during uphill running (lower speed ~4.5 m·s-1), whereas Slawinski [3] 

showed a decreased activation of the hamstrings muscles during contact phase (running at           

6.28 m·s-1) on a ~3° uphill slope. The same was observed for the vastus lateralis, but only for the 

concentric phase of the ground contact, whereas no differences occurred during the eccentric 

phase. Conversely, Gottschall and Kram [4] showed an increase in the concentric impulse and a 

decrease in eccentric impulse during similar uphill running conditions, while during downhill running 

the pattern was reversed with high braking impulses accompanied by large vertical impact forces. 

Nevertheless, the acute changes in external forces, muscle activation and loading during uphill and 

downhill sprinting need further investigation - by employing higher running speeds that correspond 

to maximum running speed (MRS) values - to clarify consistent patterns of contribution for each 

joint during the ground braking and propulsive phases, but also during the flight part of the stride. 
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Regarding acute performance effects, sprinting maximally on a 3° downhill slope has been shown to 

produce 8.4% faster MRS (p<0.05), whereas sprinting on a 3o uphill slope produced 2.9% slower 

MRS (p<0.05) when compared to horizontal sprinting [5]. Longer term observations have shown that 

training on downhill slopes (3˚) for 6 weeks produced significant improvements in MRS and step rate 

of 1.1% and 2.3% respectively (p<0.05) whereas under similar training conditions (duration, volume, 

intensity) sprinting on a 3° uphill slope did not produce any significant changes [6]. However, training 

for 6 or 8 weeks on combined uphill-downhill sloping surfaces (3˚) produced better improvements 

(p<0.05) for both MRS (3.5% and 4.3% respectively) and step rate (3.4% and 4.3% respectively) than 

any other training on sloping surfaces [6, 7]. These changes were mainly due to shorter contact time 

(-5.1%, p<0.05), which in turn was due to a shorter propulsive phase of stance (-11.5%, p<0.05). This 

was arguably the most important adaptation to training and effectively could be interpreted as an 

improvement in muscle power since the higher speed was achieved by the shortening of the contact 

time while keeping the step length unchanged. The authors [6, 7] suggested a possible link between 

the force generation capacity of leg muscles and the production of shorter contact time as the 

underlying mechanism responsible for the production of greater MRS values. However, this 

suggestion was theoretical, as no measurements of leg strength/power were conducted before and 

after the training to substantiate such claim. 

The aim of this study was to evaluate the effects of an 8-week combined uphill-downhill (3˚) training 

programme, compared to the responses of training on the horizontal and a control condition, on the 

force generation capacity and power characteristics of leg muscles. In addition, as in our previous 

uphill-downhill studies, kinematic measurements will be employed so any changes in leg strength 

can be interpreted alongside changes in key kinematic variables. Therefore, the current study, by 

examining the mechanical responses of key leg muscle groups to uphill-downhill training, will 

provide an insight into the theoretical link between the increased force generation capacity of the 

leg muscles and both sprinting speed and kinematics. The detection of such a link will contribute to 

the understanding of the internal training adaptations which solely determine the changes in 

kinematic and performance variables observed at the end of the training period. 

METHODS  

SUBJECTS  
Twenty-four sport and physical education students participated in this study (age 24.5 ± 2.0 years, 

mass 75.0 ± 9.9 kg, height 1.8 ± 0.08 m and MRS 8.15 ± 0.68 m·s-1). Written informed consent was 

obtained from each participant before data collection, and the study received ethical approval from 

the appropriate Faculty research ethics committee of Leeds Metropolitan University.  

TRAINING A wooden uphill-downhill platform was used which was covered with synthetic track 

surface. The width of the track surface was 1.20 m and the total distance covered was 80 m: 10m 

horizontal, 20 m uphill at 3° slope, 10 m horizontal, 20 m downhill at 3° slope and 20m horizontal 

(Figure 1). The participants were randomly assigned to three groups:  

• Uphill-downhill (U+D) was trained on the uphill-downhill platform (n = 8)  

• Horizontal (H) was trained on the horizontal (n = 8)  

• Control (C) was the control group and did not train (n = 8).  
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The training groups performed 6 × 80 m sprints at maximal intensity per session, three times a week 

for eight weeks, where the time between repetitions (10 min) was deemed to be sufficient for the 

participants to recover fully. This training programme continued until the fourth week after which 

one repetition was added for both training groups, for each of the remaining weeks. 

 

 

Figure 1 The uphill-downhill platform (from [6]). 

35m SPRINT TESTING  
Pre- and post-training tests were employed to evaluate the effects of training on the kinematic 

characteristics of sprint running. The participants performed three sprint runs over a 35m distance 

using a standing start with a 10min recovery period between repetitions in an indoor runway 

covered with a synthetic track surface (tartan). The best of the three trials (based on MRS values) 

was selected for further analysis. A Kodak EktaPro 1000 high speed video camera, sampling at 250 

Hz, was used to collect recordings of the sagittal plane of a full stride (two consecutive steps). 

Filming was performed with the camera placed at the end of the 35 m runway and 10 m from the 

performance plane such that its optical axis was approximately horizontal, forming an angle of 90° 

with the horizontal plane of running. Running speed should be near to its maximum at 35 m after 

start, as evidence from the literature has showed that MRS for non-elite sprinters is achieved 

between 30-40 m [8]. For the digitisation process, a metal calibration frame (2 x 2 m) was filmed 

such that the x-axis was parallel to the horizontal and the y-axis was perpendicular to the horizontal. 

ANALYSIS OF THE VIDEO DATA  
The digitising system comprised of a video projector Imager LCD 15E (by General Electronic, USA), a 

TDS Graphic tablet and controller (x,y resolution, 0.025 mm; active area 1.20 x 0.90 m), interfaced to 

an IBM computer which ran the digitising programme DIGIT (Leeds Metropolitan University, UK). A 

standard 17-point, 14-segment model of the human performer based on the data of Dempster [9] 

was used to represent the human performer and to calculate the position of the centre of mass. 

Reliability of the digitising process was established in a previous study [5] by repeated digitising of 

one sprinting sequence at the same sampling frequency with an intervening period of 48 h. Contact 

time (CT), flight time (FT), step time (ST), step length (SL), step rate (SR) and MRS were calculated 

according to methods reported previously [5]. The contact phase was also divided into the braking 

(BP) and propulsive (PP) phases according to the vertical movements of the centre of mass, the 

knee, and the ankle angles during foot contact. Additionally the touchdown and take-off angles of 

the knee, hip, thigh, shank and trunk to running surface and that between the two thighs were 

calculated according to the methods reported previously [5]. Finally, the distances between the 

centre of mass and the foot’s contact points at touchdown (DCM TD) and at take-off (DCM TO) were 

also calculated as previously described [5]. 
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MAXIMAL ISOMETRIC FORCE - LEG EXTENSORS  
Three maximum voluntary contractions (MVC) were performed by each participant where the best 

trial (based on peak force values) was selected for further analysis. Specifically, the participants were 

seated on a Universal leg extension machine and they were stabilised at the pelvis by a belt to 

isolate the movements to the lower extremity and avoid any assistance from the trunk muscles (hip 

angle = 110o, knee angle = 107o) [10]. The leg extension machine was connected to a force plate 

(Kistler 928B), by means of an adjustable chain. The participants were instructed to react to an 

auditory signal by attempting to extend their lower limbs as forcefully as possible and to maintain 

the maximal force for 2.5 s and after that to relax their muscles as fast as possible when the signal 

ceased. The force platform measured the vertical and the anterior-posterior force production and 

consequently the maximal isometric force (MIF) for the leg extensors was defined as the highest 

value of the resultant force (Fy + Fz) recorded during the MVC. The isometric contractions were also 

analysed for their force-time (f-t) curve characteristics [11] using the f-t from the level of 100 N of 

the MIF, up to 500 N, 1000 N, 1500 N, 2000 N and 2500 N (absolute scale) and the f-t from the level 

of 10% of the MIF up to 30%, 60% and 90% of the MIF (relative scale). 

MAXIMAL ISOMETRIC FORCE - LEG FLEXORS  
For the measurement of the MIF of the leg flexors, the participants lay prone on the leg extension 

machine and were stabilised at the pelvis and ipsilateral thigh (hip angle = 180o, knee angle = 140o) 

[12] to prevent excessive movements to the lower extremity and avoid any assistance from the back 

muscles. Following the same procedures as those described above, the MIF, the f-t 30%, 60%, 90%, 

and the f-t 250 N, 500 N, 750 N, 1000 N for the leg flexors were measured. 

STATISTICAL ANALYSIS  
A two-way ANOVA with repeated measures (RANOVA) was used to establish if there were any 

significant differences between the pre- and post-tests, the training groups and any interaction 

effects for each variable. For all the RANOVAs, the assumption of sphericity was tested. Given that 

this assumption was not violated, no adjustments were required. In the event of significant main 

effects, Tukey post-hoc tests were used to identify the differences. To assess the nature and strength 

of correlations between kinematic and kinetic variables, the Pearson’s product moment correlation 

coefficient (r) was calculated. The significance level for all tests was set at p < 0.05. 

RESULTS  
The RANOVA showed no significant differences between the groups for all the pre-training tests. 

This suggests the randomisation process produced groups that are similar and therefore provides a 

basis for comparing uphill – downhill training against horizontal training and a control condition. 

EFFECTS OF DIFFERENT TRAINING METHODS - KINEMATIC CHARACTERISTICS  
The RANOVA revealed a significant interaction between groups and pre – post tests for MRS (F = 

10.4; p<0.05). Post-hoc analysis showed that MRS increased significantly after 8 weeks of training for 

the U+D group by 5.9% (p<0.05) with all participants producing increases in their MRS (range = 0.11 - 

0.88 m s-1). Similarly, the RANOVA showed a significant interaction between groups and pre – post 

tests for step rate (F = 14.9; p<0.05). Post-hoc analysis revealed that step rate increased significantly 

for the U+D (7.4%, p<0.05) where all participants increased their step rate (range = 0.12 - 0.61 Hz). 

The RANOVA also showed significant interaction between groups and pre – post tests for contact 
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time (F = 11.9; p<0.05) with the post-hoc analysis revealing that contact time decreased significantly 

only for U+D group (-9.5%, p<0.05) after the 8 weeks of training with all participants reducing their 

contact times (range = 4 - 20 ms). Similarly, the RANOVA showed a significant interaction between 

groups and pre – post tests for step time (F = 16.4; p<0.05). Post-hoc analysis revealed that step time 

decreased significantly for the U+D group (-7.9%, p<0.05), where all participants but one shortened 

their step time (range = 2 - 36 ms). Finally, the flight time showed a trend towards a decrease by an 

average of -6.2% (but this was not statistically significant) for the U+D group, whereas step length 

remained unaltered; all analysed variables did not change significantly for H and C groups (Table 1). 

PROPULSIVE AND BRAKING PHASES OF CONTACT  
The RANOVA showed a significant interaction effect between groups and pre – post tests for PP (F = 

8.9; p<0.05). Post-hoc analysis revealed that PP decreased significantly by 17.0%, (p<0.05) for the 

U+D group after the 8 weeks of training (range = 3 – 20 ms), whereas for the H and C groups it did 

not change significantly (Table 1). There were no significant changes in the BP for all groups after the 

8 weeks of training. 

POSTURAL CHARACTERISTICS  
There was generally a small effect on the postural characteristics for touchdown and take-off after 

the 8 weeks of training. The RANOVA showed a significant interaction between groups and pre – 

post tests for knee angle at touchdown (F = 8.9; p<0.05). Post-hoc analysis revealed that the U+D 

group showed a significant increase in the touchdown knee angle (3˚, p<0.05). Similarly, the 

RANOVA showed a significant interaction between groups and pre – post tests for and the hip angle 

for take-off (F = 5.6; p<0.05). Post-hoc analysis revealed that that the U+D group showed a 

significant reduction in the hip angle (3˚, p<0.05) for take-off after 8 weeks of training, whereas the 

H and C groups did not show significant changes (Table 2). 

ISOMETRIC FORCE PRODUCTION CHARACTERISTICS  
The RANOVA showed no significant main effects or interaction for any of the force characteristics for 

leg extensor muscles after 8 weeks of training for all groups (Table 3). However, it showed significant 

interactions between groups and pre – post tests for MIF, f-t 30%, f-t 60% and f-t 750N for leg flexors 

(F = 3.7, 5.2, 3.6 and 3.9, respectively; p<0.05). The post-hoc analysis revealed that only the U+D 

group (p<0.05) showed significant changes for MIF (7.1%; all participants produced increases, range 

= 20.0 – 622.4 N), f-t 30% (23.9%; all participants produced improvements, range = 2 – 24 ms), f-t 

60% (25.1%; all participants produced improvements, range = 2 – 91 ms) and finally, f-t 750N (25.0%; 

seven participants produced improvements, range = 5 – 80 ms). The rest of the force characteristics 

of leg flexors of the U+D did not change significantly with training, whereas no changes in any of the 

examined variables for leg flexors were observed for the H and C groups (Table 4). The changes in f-t 

60% correlated significantly with the changes in contact time (r = 0.56, p<0.05) and with the changes 

in the propulsive phase of contact time (r = 0.52, p<0.05), whereas the changes of f-t 750 N were 

significantly correlated with the changes in MRS (r = -0.54, p<0.05) and with the changes in the SR (r 

= -0.51, p<0.05). 
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Table 1 Mean ± s and % differences (post - pre training values) of the kinematic characteristics of all groups 

 U&D H C 

 Pre Post ∆% Pre Post ∆% Pre Post ∆% 

MRS (m∙s-1) 8.26 ± 0.61 8.78 ± 0.53* 5.9 8.13 ± 0.42 8.29 ± 0.35 2.0 8.05 ± 0.99 8.02 ± 0.97 -0.3 

ST (Hz) 3.99 ± 0.38 4.31 ± 0.45* 7.4 3.96 ± 0.13 4.00 ± 0.18 0.9 4.10 ± 0.20 4.09 ± 0.20 -0.2 

SL (m) 2.08 ± 0.13 2.05 ± 0.15 -1.5 2.05 ± 0.07 2.08 ± 0.05 1.1 1.96 ± 0.18 1.96 ± 0.17 -0.1 

CT (ms) 132 ± 16 121 ± 16* -9.5 126 ± 11 124 ± 12 -1.6 124 ± 6 125 ± 6 0.6 

FT (ms) 121 ± 16 114 ± 11 -6.2 127 ± 11 127 ± 11 0.0 121 ± 10 121 ± 12 -0.2 

ST (ms) 253 ± 23 234 ± 22* -7.9 253 ± 8 251 ± 11 -0.8 245 ± 12 245 ± 13 0.2 

BP (ms) 54 ± 8 53 ± 9 -0.2 56 ± 7 55 ± 6 -1.6 57 ± 8 56 ± 9 -2.2 

PP (ms) 79 ± 19 67 ± 17* -17.0 70 ± 12 69 ± 14 -1.6 67 ± 10 69 ± 10 3.0 

*Significantly different from pre-training (p < 0.05) as determined by repeated-measures analysis of variance 

and post-hoc Tukey tests. Abbreviations: U+D = combined uphill and downhill training group, H = horizontal 

training group, C = control group, ∆ % = percentage difference between pre and post training values, MRS = 

maximum running speed, SR = step rate, SL = step length, CT = contact time, FT = flight time, ST = step time, BP 

= braking phase of contact time, PP = propulsive phase of contact time. 

 

Table 2 Mean ± s and % differences (post – pre training values) of the posture characteristics at contact and take=off 

  U+D H C 

  Pre Post ∆% Pre Post ∆% Pre Post ∆% 

Knee (o) Contact 149 ± 7.2 152 ± 7.3* 2.1 151 ± 6.3 149 ± 5.2 -1.4 146 ± 2.0 147 ± 3.1 0.6 

 Take-off 165 ± 8.6 164 ± 9.9 -0.8 164 ± 5.5 163 ± 7.1 -0.8 164 ± 4.2 164 ± 5.3 0.5 

0.5Hip (o) Contact 134 ± 7.3 133 ± 6.1 -0.8 134 ± 5.9 138 ± 4.2 2.5 133 ± 3.7 134 ± 4.0 0.5 

 Take-off 204 ± 6.9 201 ± 5.4* -1.7 203 ± 5.2 205 ± 3.0 0.9 204 ± 4.3 204 ± 3.4 -0.2 

Shank (o) Contact 95 ± 4.5 97 ± 3.3 2.7 92 ± 4.0 92 ± 4.6 0.7 92 ± 3.5 93 ± 4.0 1.0 

 Take-off 44 ± 3.8 44 ± 4.5 0.1 43 ± 3.2 43 ± 3.3 -0.2 42 ± 1.2 42 ± 1.2 1.6 

Trunk (o) Contact 80 ± 4.8 79 ± 4.0 -1.2 78 ± 3.5 78 ± 3.9 0.7 77 ± 2.8 78 ± 3.7 0.8 

 Take-off 82 ± 4.1 81 ± 3.6 -1.5 84 ± 2.0 84 ± 2.2 0.1 83 ± 1.0 83 ± 1.7 -0.4 

DCM (m) Contact 0.32 ± 0.06 0.33 ± 0.03 3.0 0.30 ± 0.03 0.29 ± 0.02 -0.4 0.30 ± 0.03 0.30 ± 0.04 -0.8 

 Take-off 0.57 ± 0.05 0.58 ± 0.05 2.2 0.61 ± 0.04 0.60 ± 0.04 -1.4 0.60 ± 0.05 0.59 ± 0.04 -1.7 

*Significantly different from pre-training (p < 0.05) as determined by repeated-measures analysis of variance 

and post-hoc Tukey tests. Abbreviations: U+D = combined uphill and downhill training group, H = horizontal 

training group, C = control group, ∆ % = percentage difference between pre and post training values, DCM = 

the distance parallel to the running surface between a line perpendicular to the running surface which passes 

through the centre of mass and the contact point. 
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Table 3 Mean ± s and % differences (post – pre training values) of the maximum isometric force and force-time 

characteristics expressed in relative values and absolute values of the isometric force for the leg extensor muscles of all 

groups 

 U+D H C 

 Pre Post ∆% Pre Post ∆% Pre Post ∆% 

MIF (N) 3246.8 ± 971.3 3320.6 ± 903.6 2.2 3109.9 ± 723.1 3155.0 ± 722.2  1.5 2910.6 ± 684.6 2904.4 ± 628.6 -0.2 

f-t 30% (ms) 40 ± 15 42 ± 16 3.9 45 ± 15 48 ± 21 8.7 41 ± 14 44 ± 12 6.1 

f-t 60% (ms) 79 ± 40 83 ± 42 5.0 75 ± 19 74 ± 20 -1.3 71 ± 20 73 ± 14 3.2 

f-t 90% (ms) 237 ± 151 254 ± 138 6.7 154 ± 52 155 ± 45 0.2 143 ± 67 146 ± 63 1.7 

f-t 500N (ms) 31 ± 14 34 ± 15 8.4 37 ± 14 39 ± 11 4.4 32 ± 9 34 ± 8 6.2 

f-t 1000N (ms) 48 ± 21 53 ± 24 8.3 62 ± 25 64 ± 24 3.2 50 ± 13 54 ± 10 7.4 

f-t 1500N (ms) 70 ± 40 76 ± 38 8.5 86 ± 41 91 ± 44 5.5 72 ± 20 75 ± 19 4.7 

f-t 2000N (ms) 96 ± 67 104 ± 68 7.5 115 ± 66 118 ± 63 2.3 98 ± 31 103 ± 29 4.2 

f-t 2500N (ms) 161 ± 160 165 ± 136 2.5 158 ± 107 162 ± 100 2.5 122 ± 36 139 ± 40 14.2 

Abbreviations: U+D = combined uphill and downhill training group, H = horizontal training group, C = control 

group, ∆ % = percentage difference between pre and post training values, MIF = maximum isometric force, f-t 

30%, 60%, 90%, 500N, 1000N, 1500N, 2000N, 2500N = the time of force production from the level of 10% of 

the maximal isometric force up to 30%, 60%, 90%, 500N 1000N, 1500N, 2000N, 2500N, respectively. 

 

Table 4 Mean ± s and % differences (post – pre training values) of the maximum isometric force and force-time 

characteristics expressed in relative values and absolute values of the isometric force for the leg flexor muscles of all groups 

 U+D H C 

 Pre Post ∆% Pre Post ∆% Pre Post ∆% 

MIF (N) 1319.6 ± 

322.0 

1420.6 ± 254.5* 7.1 1220.1 ± 

316.6 

1234.4 ± 

319.0 

1.2 1111.7 ± 

377.6 

1119.3 ± 

360.7 

0.7 

f-t 30% (ms) 60 ± 31 48 ± 26* -23.9 52 ± 25 46 ± 18 -12.0 51 ± 18 48 ± 16 -5.4 

f-t 60% (ms) 101 ± 43 81 ± 34* -25.1 94 ± 42 89 ± 41 -5.2 72 ± 35 75 ± 22 4.7 

f-t 90% (ms) 237 ± 133 208 ± 84 -14.2 171 ± 63 165 ± 69 -3.6 160 ± 29 153 ± 27 -4.3 

f-t 250N (ms) 37 ± 14 32 ± 9 -15.4 40 ± 17 39 ± 10 -3.5 33 ± 14 33 ± 10 -0.8 

f-t 500N (ms) 65 ± 29 56 ± 16 -16.2 70 ± 34 73 ± 30 3.4 66 ± 30 59 ± 11 -11.2 

f-t 750N (ms) 126 ± 61 101 ± 51* -25.0 125 ± 49 119 ± 44 -4.9 85 ± 36 89 ± 35 4.1 

f-t 1000N (ms) 182 ± 91 142 ± 60 -28.1 149 ± 56 153 ± 56 2.2 111 ± 36 113 ± 35 1.4 

*Significantly different from pre-training (P < 0.05) as determined by repeated-measures analysis of variance 

and post-hoc Tukey tests. Abbreviations: U+D = combined uphill and downhill training group, H = horizontal 

training group, C = control group, ∆ % = percentage difference between pre and post training values, MIF = 

maximum isometric force, f-t 30%, 60%, 90%, 250N, 500N, 750N, 1000N = the time of force production from 

the level of 10% of the maximal isometric force up to 30%, 60%, 90%, 250N 500N, 750N, 1000N, respectively. 

 

DISCUSSION  

EFFECTS OF DIFFERENT TRAINING METHODS  

Control Group  
In the present study there were no significant differences between the pre- and post-training tests 

for all the analysed variables in the C group, which is consistent with previous uphill-downhill studies 

[6, 7]. Given the consistent findings for the control group, it can be concluded that the current 

results were not influenced by a learning effect, which means that the familiarisation of the 
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participants before the pre-training test was sufficient. Thus, it can be argued that any pre- to post-

training changes can be attributed to the effects of the training. 

Horizontal Training Group  
The horizontal training method did not produce any significant increases in the analysed variables 

even though there were some trends of improvement in MRS (2.0%) and contact time (1.6%). Similar 

relative improvements for horizontal training groups were recorded in our previous uphill-downhill 

studies [6, 7], but on both occasions the changes were significantly lower than the ones observed for 

the combined training groups. In general, there is scarcity of experimental studies in the scientific 

literature which have employed biomechanical measurement techniques to evaluate the 

effectiveness of horizontal sprint training and therefore there is no opportunity to compare the 

current changes for the horizontal group against populations who adopted similar training 

programmes in the past. The limited number of scientific experimental studies is endemic to the 

sprint running training literature where the vast majority of the published material is rather of a 

coaching nature and therefore any generalizations regarding training adaptations should be treated 

with caution. The current study showed that traditional horizontal training tended to produce 

improvements in the analyzed biomechanical variables and consequently performance, but these 

improvements were not statistically significant. Obviously the success of the current horizontal 

sprint training was limited by the programme design (6 × 80m × 3 weekly sessions), yet the same 

volume was adopted for the uphill-downhill training programme and it produced positive 

performance changes. Finally, regarding the effects of the H training programme on leg strength, no 

significant changes were observed. 

COMBINED UPHILL-DOWNHILL TRAINING GROUP  

Kinematic Changes  
The U+D training produced increases in MRS and step rate by 5.9% and 7.4%, respectively, whereas 

no changes were noted for step length. The improvement in step rate was mostly due to a reduction 

in step time (7.9%), which in turn is explained by the shorter contact time (9.5%). The propulsive 

phase was reduced (17.0%) after training, whereas the braking phase did not change significantly. 

The above findings may suggest an increased capacity of the leg muscles to generate force at a 

higher rate during the propulsive contact phase of the stride. Despite the significant changes that 

occurred in almost all the kinematic variables after the training period, U+D training did not 

generally alter the postural characteristics. The only exception was an increase in knee angle (3˚) at 

contact and a decrease in hip angle at takeoff by 3˚, both of which can be explained by the decrease 

of the propulsive phase. It can therefore be concluded that the U+D training method did not 

significantly alter the participants’ running posture. The current findings are comparable with those 

previously published [6, 7], even though the changes that observed for the U+D groups in the 

previous studies were slightly lower (MRS improved by 3.5% and 4.3%, step rate by 3.4% and 4.3%, 

contact time by 3.3% and 5.1% respectively). It is possible that the greater magnitude of change in 

the present study might be partly due to the longer training period (8 weeks versus 6 weeks in one 

of the previous studies [6]) and/or due to the approach adopted for the data analysis (the present 

study analysed the best trial out of the three rather than an average of the three trials). However, 

further work is required to substantiate the role of the training period in the magnitude of training 

response for the U+D method compared with horizontal sprint training. Nevertheless, it was clear 

from the results that U+D training produced significantly greater positive changes than H training. 
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Coaches believe that continuous sprint training on a horizontal surface can introduce a plateau in 

the maximum speed of the athlete due to the repetitive stimulus experienced during the training 

sessions. Therefore, maximum running sessions should incorporate a combination between resisted, 

assisted and horizontal runs [13]. This combination will enable athletes to run maximally under 

different conditions, which will result in the development of specific strength/speed parameters and 

also the transfer of qualities achieved during submaximal and supramaximal efforts to normal sprint 

running. These suggestions are supported by the findings of the present study, which showed that 

the combined method of training on the uphill, horizontal and downhill produced significant 

improvements in almost all the kinematic variable analysed. 

Isometric Force Production  
As proposed before, the shortened propulsive phase of the contact time could be interpreted as 

evidence of improved leg muscle power and may account for the improvement in running speed. In 

order to identify a possible cause which could account for some of the kinematic changes, the 

effects of training on the isometric force characteristics of the knee joint muscles were analysed. The 

U+D group showed significant improvements in MIF (7.1%), f-t30% (23.9%), f-t60% (25.1%) and f-

t750N (25.0%) of the leg flexor muscles. The fact that the statistical analysis did not reveal significant 

changes for all the f-t values of the leg flexors, even though all subjects produced a consistent 

pattern of changes, was due to the inter-subject variation. It is clear from the data that the U+D 

method was beneficial for the leg flexor muscles after the eight weeks of training, whereas the 

horizontal method and the control condition did not lead to any significant changes. However, the 

U+D group showed no significant changes in the MIF and the other variables of the leg extensor 

muscles after the eight-week period. 

Support for these findings comes from several studies; in particular, Wiemann and Tidow [14] report 

that during contact time in sprinting hamstring muscles supply the energy needed for the forward 

propulsion and, along with the gluteus maximus and adductor magnus, provide high back-swing 

velocity of the support leg. These suggestions are in agreement with those of Hannon et al. [15], and 

Wood [16] who emphasised the role of the hamstring muscle group in the sprint action and 

concluded that hamstring’s strength is the limiting factor in sprinting. Overall, the hamstrings play a 

crucial role in maximal sprinting as both leg flexors and hip extensors contribute not only to leg 

angular motion and energy absorbance during initial and late recovery respectively, but also as 

generators of forward acceleration during contact, perhaps due to the elastic energy stored in the 

muscles during late recovery [17, 18]. The data from the present study provided evidence of positive 

effects of U+D training not only on the MIF for leg flexors, which is a direct indicator of maximum leg 

strength, but also on the rate of force production as this was expressed by the various f-t 

characteristics. Furthermore, the improvements in the f-t characteristics correlated with the changes 

in the MRS, step rate and contact time (p<0.05). These correlations confirmed the proposed 

association between the force generation properties of the leg flexor muscles and the production of 

shorter contact time. As suggested previously, the shorter CT which was achieved while the stride 

length remained unchanged can be explained by an increased muscle power. The post-training 

capacity of the muscles to produce the same or greater force in a shorter period of time can 

influence positively the ability of the runner to generate sufficient propulsive forces at a very fast 

rate during the propulsive phase. This can have as a direct result an increased running speed due to 

an increased stride rate. The results of this study have provided support to this hypothesis. 
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Improvements in the rate of force production by muscles are extremely important in athletic events 

such sprinting where only a fraction of a second is available to develop the greatest possible force. 

The fact that the strength measurements were performed under isometric conditions could be 

considered as a limitation since the testing setting did not resemble the movement pattern of sprint 

running although the sequence of intra-muscle activation would have been similar if the 

measurements were performed under dynamic conditions [19]. However, the above methodological 

limitation actually provides further support to the findings as previous research has shown that 

increases in strength measured under conditions other than those adopted during training 

underestimate the magnitude of true strength changes measured under specific to training 

conditions [20]. 

The lack of significant U+D group changes for the knee extensors’ isometric force variables is quite 

surprising given that the role of quadriceps is also important in sprinting, especially during the late 

leg recovery and the initial parts of contact phase [14, 21]. In addition, it has been strongly 

suggested that the mechanical behaviour of the vastus lateralis muscle-tendon unit during the 

braking phase of ground contact in sprinting can increase energy storage and return during the 

subsequent propulsive phase [22]. Therefore, the role of the knee extensors in the adaptations 

related to the uphill-downhill sprint training perhaps needs re-examination in a future study. 

UNDERLYING MECHANISMS AFFECTING KINEMATIC AND STRENGTH CHANGES  
The positive changes in the kinematic variables together with the improvements in the isometric 

force variables for the leg flexors could be initially attributed to either or both hypertrophic and 

neural factors. A small contribution from non-hypertrophic muscular changes (e.g., changes in 

specific tension) cannot be ruled out as a secondary mechanism responsible for the training 

adaptations, but this remains only speculation since there are no data to support it [23, 24]. 

However, the length (8 weeks) in combination with the nature (high velocity – low resistance) of the 

training programme rather excludes any significant changes in muscle size as the main factor 

responsible for the training changes [1]. Typically, hypertrophic changes gradually dominate the 

spectrum of adaptations after 6-8 weeks of high resistance – low velocity training programmes [24, 

25, 26]; a condition which was not employed in the current study. In addition, the two key kinematic 

variables showing improvements in the present study (MRS and SR) have been found to be linked 

directly with non-hypertrophic factors. Specifically, strong correlations have been observed between 

the above two kinematic variables, sprinting performance and muscle fibre distribution (% type II 

fibres) in elite and less skilled sprinters [27, 28]. 

Likewise, the significant improvements in the force-time data for the leg flexors offer support to the 

suggestion that the underlying mechanisms responsible for the training changes are non-

hypertrophic. It is well accepted that the examination of the early parts of the force-time curve 

during MVCs provides an indication about the presence of training induced neural adaptations with 

respect to the speed of development of force levels [20, 29, 30]. Also, strong correlations have been 

reported previously between rate of force development values of the f-t curve and variables such as 

muscle fibre distribution and integrated electromyography [30-32]. More importantly Mero et al. 

[12] reported a positive correlation between the proportion of type II fibres and the average net 

ground reaction force during the propulsion phase of contact. The latter provides additional support 

to the suggested link between improved rate of force development during the leg flexion MVC test 

and the changes in the concentric contact phase observed in the present study for the U+D group. 
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Based on the arguments presented above, the most reasonable explanation for the kinematic and 

isometric force production changes for the U+D group is the involvement of training stimuli which 

over the period of 8 weeks created the necessary conditions for beneficial neural adaptations to 

occur. These neural adaptations could have mainly included an increased neural drive to the muscle 

and changes in the muscular coordination [20, 23, 33, 34]. 

The increased neural input can be the result of distinct adaptations within the nervous system or a 

combination of related adaptations such as the increase in the number of motor units recruited 

during contractions and/or an increase in the “firing” (excitation) rate of the motor units of the 

trained muscles [20]. Muscular coordination, which can result in changes in management between 

motor units of the same muscle, or a group of synergist muscles, is another key neural mechanism 

responsible for training specific changes. Many studies, that emphasised the principle of training 

specificity, demonstrated that training with high velocity movements increases high-velocity 

strength relatively more than low-velocity strength and vice versa [24, 35, 36]. In addition it has 

been shown that training at relatively high isokinetic or anisometric speeds also produces 

performance improvements at lower, than the training, speeds [35, 37]. This provides support to the 

concept that part of the positive post-training kinematic changes for the U+D group in the current 

study (measured during a horizontal sprint test) were associated with velocity-specific adaptations 

gained throughout training while sprinting downhill. It can then be argued that facilitated training, 

such as downhill sprinting, may instigate beneficial adaptations in the nervous system which will 

result in performance improvements during unaided horizontal sprinting [38]. 

However, uphill-downhill sprinting is not a pure facilitated training method since it incorporates 

additional essential stimuli. During sprinting on the platform, participants - apart from the facilitative 

(downhill) and normal (horizontal) stimuli - also experience a resistive stimulus (uphill) which 

overloads the neuromuscular system due to the extra gravitational resistance (5% of the body 

weight because of the 3° slope) [5]. The results of all uphill-downhill studies to date strongly suggest 

that the immediate transition from the overload status (uphill) to the facilitated status (downhill) 

yields a combined stimulus that, by repetitive application, prompts positive neuromuscular 

adaptations which in turn lead to improvements in the sprinting kinematics. 

In terms of the location of the neuromuscular adaptations to the U+D training, it could be 

hypothesised that these predominantly occur in the type II motor units given that previous research 

has revealed strong relationships between type II fibres and sprinting performance characteristics 

[28, 31]. However, the possibility of this adaptation in the current uphill – downhill training study 

was not tested and therefore is not known. 

CONCLUSION  
Given the application of the randomised controlled trial, the results of the present study support the 

conclusion that the significant greater improvement in knee flexors’ strength, as it was expressed by 

the measurement of maximal isometric force and rate of force production, can be attributed to the 

novel U+D training method. Consistent with our previous studies, the combined uphill-downhill 

training was also significantly more effective in improving the maximum sprinting speed and the 

associated kinematic variables than an equivalent horizontal training method. 
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This study therefore provides original evidence regarding the internal adaptations to uphill-downhill 

training which consequently govern the kinematic and performance variables. The training–induced 

increased force generation capacity of the leg flexor muscles appears to contribute to the 

improvement of sprinting speed perhaps due to a more efficient muscle function during the leg-

support phase of the stride. Further research is required to understand better the role of leg 

extensors as well as the exact nature (e.g., neural) and location of the internal adaptations, yet the 

current findings carry significant implications for understanding and designing sprint training 

programmes. 
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