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Using machine learning to improve our understanding of injury risk and prediction in elite 

male youth football players  

Abstract  

Objectives: The purpose of this study was to examine whether the use of machine learning improved 

the ability of a neuromuscular screen to identify injury risk factors in elite male youth football players. 

Methods: 355 elite youth football players aged 10 to 18 years old completed a prospective pre-season 

neuromuscular screen that included anthropometric measures of size, as well as single leg 

countermovement jump (SLCMJ), single leg hop for distance (SLHD), 75% hop distance and stick 

(75%Hop), Y-balance anterior reach and tuck jump assessment. Injury incidence was monitored over 

one competitive season. Risk profiling was assessed using traditional regression analyses and 

compared to supervised machine learning algorithms constructed using decision trees.  

Results: Using continuous data, multivariate logistic analysis identified SLCMJ asymmetry as the 14 

sole significant predictor of injury (OR 0.94, 0.92-0.97, p<0.001 with a specificity of 97.7% and 

sensitivity of 15.2% giving an AUC of 0.661. The best performing decision tree model provided a 

specificity of 74.2% and sensitivity of 55.6% with an AUC of 0.663. All variables contributed to the 

final machine model, with asymmetry in the SLCMJ, 75%Hop and Y-balance, plus tuck jump knee 

valgus and anthropometrics being the most frequent contributors.  

Conclusions: Although both statistical methods reported similar accuracy, logistic regression 

provided very low sensitivity and only identified a single neuromuscular injury risk factor. The 

machine learning model provided much improved sensitivity to predict injury and identified 

interactions of asymmetry, knee valgus angle and body size as contributing factors to an injurious 

profile in youth football players. 

 

Keywords Neuromuscular, screen, prospective, binary logistic regression  



1. INTRODUCTION 

Injury rates in elite male youth football can be considered to be high, with recent evidence suggesting 

that injury rates in this population have increased substantially over the past 15 years due to increased 

exposure and earlier specialisation.1,2 Prospective studies have indicated that neuromuscular screening 

is associated with increased injury risk in professional female and male football players,3,4 in addition 

to being associated with anterior cruciate ligament (ACL) and lower extremity injury in elite youth 

football players.5,6 Given that neuromuscular control is modifiable,7 development of a sensitive 

neuromuscular screen to profile injury risk would be a useful tool to help inform intervention by 

practitioners. 

 

The ability of a screen to identify injury risk factors and predict injury is often examined using logistic 

regression. Logistic regression does not manage imbalanced data sets well and tends to only consider 

the ability of one or a few variables to predict injury, yet it is acknowledged that injury is multifaceted 

and there will be interactions between and even within risks.3,8 For example, body size, maturity and 

neuromuscular control may all interact to influence injury risk in young populations. Consequently, it 

has been argued that the complexity of injury means a broader statistical approach than logistic 

regression is needed to better understand relationships between risk factors and predictors of injury.9 

 

Machine learning offers a contemporary statistical approach where algorithms have been specifically 

designed to deal with imbalanced data sets and enable the modelling of interactions between a large 

number of variables.3 Contemporary empirical evidence has shown machine learning to provide 

promising results in the prediction of injury in adult football and handball players,3,10,11 and high 

levels of sensitivity in predicting injury in elite youth soccer players from measures of anthropometry 

and motor performance.8 To the authors’ knowledge, no previous research has provided a direct 

comparison of the sensitivity and specificity of different statistical approaches in their ability to detect 

injury risk in athletic populations, with only one existing study employing machine learning to predict 

injury risk in elite male youth football players.8 Therefore, the aim of this study was to examine 

whether the use of machine learning could improve the ability of a neuromuscular screen to predict 

injury and identify associations between injury risk factors in elite male youth football players. 

 

 

2. MATERIALS AND METHODS 

Six professional English Premier League and Championship football clubs volunteered to take part. 

The clubs initially provided access to n = 400 players, of which n = 355 were tested and prospectively 

followed for one season, with n = 80 players in the U11s and U12s, n = 114 in the U13s and U14s, n = 

117 in the U15s and U16s and n = 44 in the U18s. Participants were included in the study if they were 

free from illness and injury at the time of testing and regularly involved in training and competitions. 

Ethical approval was granted by the institutional ethics committee in accordance with the declaration 

of Helsinki. Parental consent to participate in the study was obtained together with assent from 

participants. 

 

A prospective cohort study design was used. Following a familiarization session, players were 

required to attend their respective club’s training ground during the pre-season period (July) to 

undertake a field-based screening battery. Players were then tracked for a period of 10 months 

(August to June) during the 2014-2015 season to prospectively record all injuries sustained in training 

and competition. The ability of test variables to identify risk factors and predict injury was compared 



using two different statistical methods; univariate and multivariate binary logistic regression analyses 

versus a selection of popular machine learning methods. 

 

Descriptive variables of chronological age, body mass, stature, leg length, BMI and estimated somatic 

maturity offset12 were included along with a battery of neuromuscular control tests; single leg 

countermovement jump (SLCMJ), single leg hop for distance (SLHD), 75% hop and stick (75%Hop), 

y-balance anterior reach distance and knee valgus during the tuck jump assessment. Protocols and 

reliability for all tests have been described elsewhere.13-16 The SLCMJ and 75%Hop were performed 

on a force plate (Pasco, Roseville, California, USA) and peak vertical ground reaction force were 

measured, with all variables reported relative to body weight.15,17 All tests were performed unilaterally 

with an asymmetry index calculated for SLCMJ, SLHD, 75%Hop and y-balance.6 

 

The procedures for reporting injury occurrence have previously been described elsewhere.6 Injuries 

were recorded by medical staff at each football club in accordance with the Premier League’s Elite 

Player Performance Plan. Only non-contact lower-limb injuries were considered for the present study. 

Injuries were recorded where they resulted from football-related activities and resulted in a player 

being unable to participate in training or competition for at least 48 hours post incident, not including 

the day of injury. An injury was classified as non-contact where no clear contact or collision with 

another player, object or ball occurred. Due to the confounding effects of previous injuries,18,19 only 

the first incident experienced by each player during the season was used in the analyses.4 

 

Following a traditional statistical approach, a univariate binary logistic regression for each variable 

was employed. Neuromuscular and anthropometric risk factors that displayed a p value < 0.1 were 

considered for further analysis in a multivariate binary logistic regression. Prior to the multivariate 

analysis the absence of multicollinearity between variables was confirmed using linear regression, 

with a voluntary inflation factor of <10 indicating independence between variables. The odds ratio 

(OR) for each risk factor in the univariate and multivariate analyses were calculated to show the odds 

of increased injury per unit increase in the independent variable, along with 95% confidence intervals 

(CI), together with the area under the curve (AUC) with 95% CIs, sensitivity and specificity. This 

process was repeated for the univariate and multivariate analysis with all variables first analysed as 

continuous data and secondly as categorical data based on the discretization process described below. 

 

In the contemporary modelling approach, supervised machine learning was employed. Prior to 

analysis, continuous data were discretized as this can improve the performance of decision trees.20 

Discretization categories for each variable are shown in Table 1. Participants were split into four age 

groups as per previous research.6 A single cut-off was applied to asymmetry measures to indicate 

participants more at risk of injury. Cut-off values for increased injury risk were based on values 

proposed in previous research; y-balance ≥ 4 cm,16,21 SLCMJ, SLHD and 75%Hop asymmetry all ≥ 

10%.22 The maturity offset was used to categorise participants as pre (>-1 y), circa (-1 to +1 y) and 

post (>+1 y) peak height velocity. Knee valgus was categorised as being either absent (≤0ᵒ), minor (1-

9ᵒ), moderate (10-20ᵒ) or severe (>20ᵒ).23 Following the procedures of Lopez-Valenciano et al.,3 the 

remaining variables were discretized into four intervals using the unsupervised discretization 

algorithm available in Weka (Waikato Environment Knowledge Analysis). 

 

Table 1 Discretization intervals for all variables as applied in the univariate and multivariate binary logistic analysis of 

categorical data (values for the first group in each variable were used as the reference data for calculation of OR) and applied 

in all machine learning analyses 



Variable Labels 

Age Group U11-U12, U13-U14, U15-U16 or U18 
Body mass (kg) <43.4, 43.4-53.285, >53.285-65.05 or >65.05 

Stature (cm) <154.025, 154.025-165.55, >165.55-175.85 or >175.85 
BMI (kg/m2) <18.145, 18.145-19.565, >19.565-21.545 or >21.545 

Maturation offset (y) >-1, -1 to +1, >+1 
Leg length (cm) <80.55, 80.55-87.25, >87.25-92.08 or >92.08 

75%Hop (BW) Left <2.805, 2.805-3.265, >3.265-3.775 or >3.775 
75%Hop (BW) Right <2.805, 2.805-3.315, >3.315-3.87 or >3.87 

75%Hop PVGRF Asym (%) ≤90, >90 
SLCMJ (BW) Left <2.63, 2.63-3.065, >3.065-3.5 or >3.5 

SLCMJ (BW) Right <2.635, 2.635-2.96, >2.96-3.36 or >3.36 
SLCMJ PVGRF Asym (%) ≤90, >90 

SLHD (leg lengths) Left <1.525, 1.525-1.675, >1,675-1.825 or >1.825 
SLHD (leg lengths) Right <1.535, 1.535-1.685, >1.685-1.865 or >1.865 

SLHD Asym (%) ≤90, >90 
TJ Knee Valgus (ᵒ) Left ≤0 (none), 1-9 (minor), 10-20 (moderate), >20 (severe) 

TJ Knee Valgus (ᵒ) Right ≤0 (none), 1-9 (minor), 10-20 (moderate), >20 (severe) 
Y-Balance (% leg length) Left <61.705, 61.705-68.305, >68.305-79.865 or >79.865 

Y-Balance (% leg length) Right <62.375, 62.375-70.675, >70.675-81.31 or >81.31 
Y-Balance Asym (cm) <4, ≥4 

Asym = asymmetries; BMI = body mass index; BW = Bodyweights; PVGRF = Peak vertical ground reaction force; SLCMJ 

= Single leg countermovement jump; SLHD =Single leg hop for distance; TJ = tuck jump;  

 

Three widely used classic decision tree algorithms were chosen as base classifiers; J48 consolidated 

123 (J48con), an alternating decision tree (ADT) and a reduces error pruning tree (REPTree), with 

further 124 algorithms then applied to reduce class imbalance. To address the issue of imbalance and 

skewed 125 distributions, four resampling, three classic ensemble, three bagging ensemble, three 

boosting 126 ensemble and five cost-sensitive algorithms were applied to the data. A brief description 

of each of 127 the techniques employed is provided in supplementary Table S1 and further 

descriptions of the 128 techniques used are provided by Lopez-Valenciano et al.3 With all algorithms 

applied to all base 129 classifiers, a total of 57 models were generated. To allow comparison of the 

constructed models to a 130 baseline model a ZeroR classifier was also used. 

 

The number of internal classifiers was set at 10 for all ensemble techniques. Thus, each model built by 

each ensemble technique contained 10 classifying decision trees, each contributed a vote of “yes” or 

“no” as to whether a participant will get injured. With non-boosting techniques the number of yes/no 

votes was used to obtain the final prediction, with ≥5 “yes” votes classifying a participant as injured. 

With boosting techniques each vote was weighted and all votes summed to provide the final 

prediction, with a summed value >0 classifying a participant as injured. In order to evaluate the 

performance of the models the data was split into five sets and the five-fold stratified cross validation 

technique used. For each set, the algorithm was trained with the examples contained in the remaining 

four sets and then tested with the current set. The AUC was used to evaluate overall accuracy together 

with the specificity and sensitivity of each model. Cross-validation was used to choose the best 

performing machine model based on achieving high sensitivity and accuracy. 

 

 

3. RESULTS 

Participants had a mean age of 14.3 ± 2.1 y, mass of 54.3 ± 13.5 kg, stature of 162.4 ± 14.3 cm, leg 

length of 86.6 ± 8.2 cm and maturity offset of 0.11 ± 1.93 y. A total of n = 99 players suffered a first 

non-contact lower extremity injury during the competitive season. Over three quarters of injuries were 

classified as either moderate or severe (82%), with the remainder minor or slight. There were a high 

proportion of strain type injuries (35%), with ligament (17%) and growth/overuse (14%) the most 

prevalent thereafter. 



 

Results of the univariate analysis for continuous data are presented in Table 2, showing that age, 

SLCMJ peak force on the right leg, SLCMJ asymmetry and 75%Hop asymmetry were all 

significantly associated with injury. SLCMJ asymmetry provided an AUC of 0.645 (0.577-0.712) 

with a sensitivity of 11.1% and specificity of 97.7%. For all other variables, the AUC was ≤ 0.58 

(95%CIs 0.433-0.645) with a sensitivity of 0% and specificity of 100%. No multicollinearity was 

present and the multivariate analysis included four variables, providing an AUC of 0.661 (0.596- 

0.725) with a specificity of 97.7% and sensitivity of 15.2%. In that model only SLCMJ asymmetry 

provided a significant contribution (p < 0.001, OR = 0.94, 0.92-0.94), with non-significant 

contributions from 75% Hop asymmetry (p = 0.10, OR = 0.98, 0.95-1.00), SLCMJ relative peak force 

on the right leg (p = 0.13,OR = 0.72, 0.48-1.10) and age (p = 0.36, OR = 1.06, 0.94-1.20). 

 

Table 2 Descriptive statistics and univariate odds ratios from continuous data for all injured and non-injured players 

 
Neuromuscular Risk Factors 

Injured 
Players 

Non-injured 
Players 

Odds Ratio (95% 
CI) 

 
p Value 

 
AUC 

Age (y) 14.7 ± 2.1 14.2 ± 2.0 1.12 (1.00 - 1.26) 0.05* 0.560 
Height (cm) 165.5 ± 14.1 163.3 ± 13.6 1.01 (0.99 - 1.03) 0.18 0.542 
Mass (kg) 55.7 ± 14.2 53.7 ± 13.3 1.01 (0.99 - 1.02) 0.23 0.550 
BMI (kg/m2) 19.9 ± 2.4 19.8 ± 2.4 1.02 (0.92 - 1.12) 0.63 0.515 
Leg Length (cm) 86.9 ± 7.6 85.9 ± 8.4 1.02 (0.99 - 1.05) 0.25 0.534 
Maturity-Offset 0.3 ± 1.9 0.1 ± 1.9 0.95 (0.84 - 1.07) 0.37 0.531 
75%Hop L PVGRF (BW) 3.37 ± 0.65 3.25 ± 0.69 1.31 (0.93 - 1.83) 0.12 0.554 
75%Hop R PVGRF (BW) 3.43 ± 0.82 3.34 ± 0.74 1.16 (0.86 - 1.58) 0.32 0.520 
75%Hop Asym (%) 86.2 ± 9.3 88.2 ± 8.1 0.97 (0.95 - 1.00) 0.05* 0.557 
SLCMJ L PVGRF (BW) 3.07 ± 0.65 3.11 ± 0.64 0.91 (0.63 - 1.32) 0.64 0.502 
SLCMJ R PVGRF (BW) 2.96 ± 0.61 3.10 ± 0.60 0.66 (0.44 - 0.99) 0.05* 0.577 
SLCMJ PVGRF Asym (%) 82.9 ± 9.7 87.6 ± 7.8 0.94 (0.91 - 0.97) <0.001** 0.645 
SLHD L (% leg length) 1.72 ± 0.3 1.69 ± 0.3 1.37 (0.63 - 2.99) 0.42 0.521 
 SLHD R (% leg length) 1.74 ± 0.3 1.71 ± 0.3 1.34 (0.62 - 2.90) 0.45 0.523 
SLHD Asym (%) 93.1 ± 5.7 94.0 ± 5.0 0.97 (0.93 - 1.01) 0.19 0.544 
TJ Knee Valgus L 1.07 ± 0.9 1.19 ± 0.9 0.85 (0.66 - 1.12) 0.26 0.545 
TJ Knee Valgus R 1.43 ± 0.9 1.34 ± 0.9 1.12 (0.86 - 1.46) 0.39 0.523 
Y-B (% leg length) L 70.6 ± 13.3 71.1 ± 14.5 0.99 (0.98 - 1.01) 0.79 0.505 
Y-B (% leg length) R 73.2 ± 13.7 71.9 ± 15.0 1.00 (0.99 - 1.02) 0.47 0.534 
Y-B Asym (%) 94.0 ± 4.8 94.0 ± 5.0 1.00 (0.96 - 1.05) 0.92 0.500 

* Significant at the level of p <.05  **Significant at the level of p <.001 

BMI = Body mass index; Asym = asymmetry; BW = body weight; SLCMJ = single leg countermovement jump; SLHD = 

single leg hop for distance; TJ = Tuck Jump; PVGRF = peak vertical ground reaction force; Y-B = y-balance; 75%Hop = 

75% horizontal hop and stick; R = right; L = left 

 

Predictive ability was similar when logistic regression was performed on categorical data; in the 

univariate analysis all variables reported an AUC ≤ 0.57 (95% CIs 0.435-0.641) with a sensitivity of 

0% and specificity of 100%. With the absence of collinearity, a multivariate analysis including height, 

75%Hop asymmetry, SLCMJ on the right leg and asymmetry, Y-balance on both the left and right leg 

and tuck jump knee valgus on the left leg provided a prediction with a specificity of 94.5% and 

sensitivity of 11.1% and an AUC of 0.687 (0.627-0.747). The multivariate analysis is available in 

Supplementary Table S2 and shows SLCMJ PVRGF on the right leg as the only significant predictor 

across groups (all OR 0.49, 0.25 – 0.98). 

 

With machine learning, the baseline ZeroR classifier achieved an AUC of 0.494, specificity of 100% 

and sensitivity of 0%. Supplementary Tables S3, S4 and S5 show the performance of the different 

decision trees for the resampling, ensemble and cost-sensitive machine learning techniques 

respectively, nearly all of which have greater accuracy and sensitivity than the baseline model. The 

bagging ensemble method with a J48con decision tree as a base classifier and a 1:1 cost sensitive 



learning matrix was chosen as the best performing decision tree model. Cross-validation showed an 

AUC of 0.663 (0.550-0.776) with the model correctly classifying 74.2% of non-injured and 55.6% of 

injured players. All classifiers from the final model are available in supplementary Figures S1-S10, 

with Figure S1 showing a decision pathway for an example player. Table 3 shows the frequency with 

which each of the 20 risk factors appeared across the 10 classifiers in the final model. SLCMJ 

asymmetry appeared in all classifiers, with SLHD asymmetry, hop and stick (75%Hop) asymmetry 

and knee valgus on the left leg identified as other frequently included neuromuscular risks (≥7/10). A 

number of descriptive measures also appeared frequently in the final model, including age, body 

mass, stature and leg length. 

 

Table 3 Number of classifiers (out of 10) in which each risk factor featured in the final machine learning model 

Risk Factor No of 
Classifiers 

SLCMJ PVGRF Asym 10 
Body mass 8 
Leg length 8 
Stature 8 
Age group 7 
75%Hop PVGRF Asym 7 
SLHD Asym 7 
TJ Knee Valgus Left 7 
SLHD Left 6 
SLCMJ PVGRF Left 5 
SLCMJ PVGRF Right 5 
75%Hop Left 4 
Maturation offset 4 
SLHD Right 4 
Y-Balance Asym 4 
Y-Balance Left 4 
BMI 3 
75%Hop Right 3 
TJ Knee Valgus Right 3 
Y-Balance Right 2 

Asym = asymmetry; BMI = body mass index; PVGRF = peak vertical ground reaction force SLCMJ = single leg 

countermovement jump; SLHD = single leg hop for distance; TJ = tuck jump 

 

4. DISCUSSION 

The aim of the present study was to examine whether the use of machine learning improved the ability 

to identify injury risk factors and predict injury in a cohort of elite male youth football players. 

Machine learning did not improve the overall accuracy of injury prediction. However, logistic 

regression was heavily biased towards the majority class of non-injured players and provided poor 

sensitivity, whereas machine learning provided a more balanced predictive model with sensitivity to 

predict injury improving more than 3.5 -fold. Whether using continuous or categorical data, 

multivariate logistic regression only identified a single significant predictor of injury and improved 

sensitivity in the machine learning model may reflect a better ability of that model to consider 

interactions between risk factors. All variables appeared multiple times in the final machine learning 

model, suggesting the importance of interactions between asymmetry, movement control and body 

size as injury risk factors in elite youth football. 

 

It has been suggested that using logistic regression does not control well for imbalanced data sets 

when predicting injury.3 This seems to be the case in the present study with all univariate analyses 

showing perfect to near perfect specificity but low to zero sensitivity, indicating a good ability to 

identify individuals who did not get injured but not those who did get injured. Similarly, multivariate 

logistic regression using both continuous data and categorical data achieved low levels of sensitivity 



(≤15.2%) with both approaches only identifying one significant predictor of injury. The absence of 

other significant contributing variables suggests that multivariate logistic regression may not be 

proficient at quantifying interactions between risk factors. 

 

The identification of relatively few significant predictor variables with logistic regression may be 

partly due to pooling of data for elite youth players across a broad range of age groups comprising 

different stages of maturation. In U14 to U16 age groups younger players experience more overuse 

injuries,24 while in U11 to U14 late maturing players experience more overuse injuries.25 Using a 

similar screen to the present study, Read et al.6 recently reported that maturity offset was the only 

variable significantly associated with injury in U13-U14 y old players (OR = 0.58), while heightened 

SLCMJ asymmetry (OR = 0.90) and lower relative SLCMJ peak force (OR = 0.36) were significantly 

associated with injury in the U11-12 and U15-16 age categories respectively. Given the complex 

interaction of growth, maturity timing and tempo, and injury the pooling of data across players of 

varying age and maturity in the present study may have reduced the ability of logistic regression to 

successfully identify participants who experienced an injury. 

 

The AUC indicated that machine learning models also had poor overall accuracy to detect injury. This 

is similar to a previous study examining hamstring strain in elite Australian footballers, which 

reported that both logistic regression and machine learning achieved low overall accuracy (AUC < 

0.60).26 A recent review of clinical diagnostic tools also reported no advantage of machine learning 

over logistic regression on overall accuracy.27 However, researchers should not focus solely on the 

AUC, but also consider the need for higher sensitivity,28 as identifying players with an increased risk 

of injury should be a priority. With the imbalanced data set used in the current study, it appears 

relatively easy to construct models with high specificity but more difficult to create models with high 

sensitivity. With the chosen machine learning model, the sensitivity was improved over 3.5 fold, with 

the model identifying all variables as contributing to injury risk. 

 

Similar to the recent work of Rommers et al.8 but with lower sensitivity, our machine learning model 

identified measures of size as important predictors of injury in youth soccer, although our model also 

noted asymmetry and valgus often contribute to an injurious profile. This may be important as young 

football players are known to exhibit lower limb asymmetries and reduced frontal plane knee 

control23,29 and these are likely to be modifiable risk factors. Our modelling process used information 

entropy to identify attributes that provided the greatest normalized gain in predicting injury, with 

subsequent pruning of the decision tree to reduce complexity and over-fitting, remove noisy data and 

improve predictions. This means that classifiers from the model are relatively straight forward to 

follow. For our sample population results would suggest that interventions that consider size, 

maturity, asymmetry and movement control may be useful to reduce injury. Where an individual 

player is identified at risk of injury practitioners should further explore test results to identify which 

decision tree classifiers and features contributed to that outcome, which neuromuscular risk factors 

within those classifiers could be modified to reduce risk and which non-modifiable factors may need 

to be managed (e.g. by reducing exposure). 

 

In the logistic regression analysis data imbalance was not adjusted and results were validated in the 

population with which the predictive equations were generated, which will create a bias and inflate 

the overall accuracy. The machine learning adopted a more robust stratified cross-validation 

approach, making accuracy more difficult to achieve. The statistical approaches used were purposely 

chosen to reflect the manner in which they are typically applied to injury profiling and prediction. To 

maintain sample size and reduce overfitting, the present study examined all non-contact lower limb 



injuries and did not focus on a particular injury type or severity classification. A focus on a single 

injury type (e.g. ACL) or classification (e.g. muscle injury) has been shown to provide better accuracy 

in previous research using logistic regression5 and machine learning,3,10 but this approach would have 

led to data reduction and greater data imbalance. 

 

5. CONCLUSION 

The ability to predict injury and our understanding of the factors that contribute to injury risk are 

influenced by the statistical approaches used to analyse prospective data, which may then influence 

practice. Most likely due to the complex nature of injury occurrence and prediction, achieving a high 

level of overall accuracy may be difficult with both logistic regression (whether using continuous or 

categorical data) and machine learning approaches. If more importance is placed on sensitivity (rather 

than specificity) then machine learning may offer a promising method to predict injury, while also 

providing a deeper understanding of the interaction between variables that contribute to injury risk. In 

the cohort examined, machine learning suggested that asymmetry, knee valgus angle, age and size all 

contribute to injury risk in elite male youth football players. Given that movement mechanics and 

asymmetry are modifiable qualities, these findings may help guide injury prevention practice and 

future research. 

 

6. PRACTICAL APPLICATIONS 

• Machine learning improved the sensitivity of injury prediction more than 3.5-fold compared 

to multivariate logistic regression analyses.  

• Asymmetry, movement control, maturity and size all interact to influence injury risk in elite 

male youth football players, supporting the need to screen for a variety of risk factors and 

consider results collectively. 

• Given that movement control (e.g. knee valgus) and asymmetry are modifiable neuromuscular 

risk factors, at risk players may benefit from interventions that target deficits in these 

qualities. 
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Supplementary Tables 

Table S1 Brief descriptions of the resampling, ensemble and cost-sensitive algorithms applied to the 

base classifier decision trees 

Algorithm Description 

Resampling 

Smote I Synthetic minority oversampling technique is an oversampling method, 

whose main idea is to create new minority class examples by 

interpolating several minority class instances that lie together. SMOTE 

creates instances by randomly selecting one (or more de- pending on the 

oversampling ratio) of the k nearest neighbors (kNN) of a minority class 

instance and the generation of the new instance values from a random 

interpolation of both instances. In this study, each decision tree applied 

on data set previously pre-processed with Smote. 

They were considered using the k-3 and k-5 nearest neighbour of 

minority class instances using the Euclidean distance 

Smote II 

Random Oversampling 

(ROS) 

Each decision tree applied on the data set previously pre-processed 

with random over sampling technique, a filter that duplicates some 

random minority instances until the total amount of minority instances 

reaches the percentage given. 

Random Undersampling 

(RUS) 

Each decision tree applied on the data set previously pre-processed with 

random under sampling technique, a filter that eliminates some random 

majority instances until the total amount of majority instances reaches 

the percentage given 

Ensemble 

Adaboost 

Classic AdaBoost, without using confidences. 

AdaBoost uses the whole data-set to train each classifier serially, but 

after each round, it gives more focus to difficult instances, with the goal 

of correctly classifying examples in the next iteration that were 

incorrectly classified during the current iteration. Hence, it gives more 

focus to examples that are harder to classify, the quantity of focus is 

measured by a weight, which initially is equal for all instances. After 

each iteration, the weights of misclassified instances are increased while 

the weights of correctly classified instances are decreased. Furthermore, 

another weight is assigned to each individual classifier depending on its 

overall accuracy which is then used in the test phase; more confidence 

is given to more accurate classifiers. Finally, when a new instance is 



submitted, each classifier gives a weighted vote, and the class label is 

selected by majority.  

Adaboost – M1 Multi-class AdaBoost, slightly different weight update. 

Bagging 

Classic Bagging, resampling with replacement, bag size equal to original 

data set size.  

It consists in training different classifiers with bootstrapped replicas of 

the original training dataset. That is, a new data-set is formed to train 

each classifier by randomly drawing (with replacement) instances from 

the original data-set (usually, maintaining the original data-set size). 

Hence, diversity is obtained with the resampling procedure by the usage 

of different data subsets. Finally, when an unknown instance is presented 

to each individual classifier, a majority or weighted vote is used to infer 

the class.  

Smoteboost 

AdaBoost.M2 with Smote in each iteration. 

The weights of the new instances are proportional to the total number of 

instances in the new data-set. Hence, their weights are always the same 

(in all iterations and for all new instances), whereas original data-set’s 

instances weights are normalized in such a way that they form a 

distribution with the new instances. After training a classifier, the 

weights of the original data-set instances are updated; then another 

sampling phase is applied (again, modifying the weight distribution). 

The repetition of this process also brings along more diversity in the 

training data, which generally benefits the ensemble learning. 

RUSboost 

AdaBoost.M2 with random undersampling in each iteration. 

RUSboost performs similarly to SmoteBoost, but it removes instances 

from the majority class by random undersampling the dataset in each 

iteration. It is not necessary to assign new weights to the instances. It is 

enough with simply normalizing the weights of the remaining instances 

in the new dataset with respect to their total sum of weights. 

ROSboost 

AdaBoost.M2 with random oversampling in each iteration. 

Similar to RUSboost, but it creates instances from the minority class by 

random oversampling the dataset in each iteration.   

Overbagging 

Bagging with oversampling of the minority class. 

Instead of performing a random sampling of the whole dataset, an 

oversampling process can be carried out before training each classifier. 

Underbagging Bagging with undersampling of the majority class. 



On the contrary to Overbagging, Underbagging procedure uses 

undersampling instead of oversampling. 

Smotebagging Bagging where each bag´s Smote quantity varies 

Cost-sensitive (CS) 

Meta-Cost Both consider the variable cost of a misclassification with respect to the 

different classes. The final cost matrix set-up was based on the best 

performance reported after testing all the possibilities. 
CS-classifier 

CS-Adaboost-M1 
Adaboost – M1 with an asymmetric classification cost matrix in the base 

classifier 

CS-Adaboost Adaboost with an asymmetric classification cost matrix in the base classifier 

CS-Bagging Bagging with an asymmetric classification cost matrix in the base classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table S2 Multivariate analysis with odds ratios from categorical data. Groups 

were ordered in size from smallest to largest where there were four groups (see 

Table 1) with group 1 acting as the reference group. For asymmetry the group 

with no asymmetry acted as the reference. 

Neuromuscular Risk 

Factor 

Beta p Value OR (95% CI) 

Constant -0.37   

Height    

Group 1  Reference 1 

Group 2 0.50 0.18 1.64 (0.79 – 3.41) 

Group 3 -0.15 0.71 0.86 (0.40 – 1.85) 

Group 4 0.21 0.56 1.24 (0.59 – 2.56) 

Y-Balance Right    

Group 1  Reference 1 

Group 2 0.34 0.60 1.41 (0.40 – 4.95) 

Group 3 0.44 0.38 1.55 (0.58 – 4.13) 

Group 4 0.25 0.56 1.29 (0.56 – 2.97) 

SLCMJ Right    

Group 1  Reference 1 

Group 2 -0.71 0.04* 0.49 (0.25 – 0.97) 

Group 3 -0.71 0.04* 0.49 (0.25 – 0.98) 

Group 4 -0.71 0.04* 0.49 (0.25 – 0.98) 

TJ Valgus Left    

Group 1  Reference 1 

Group 2 0.48 0.36 1.62 (0.58 – 4.56) 

Group 3 -0.68 0.05 0.51 (0.26 – 1.01) 

Group 4 -0.14 0.65 0.87 (0.48 – 1.58) 

Y-Balance Left    

Group 1  Reference 1 

Group 2 -0.44 0.49 064 (0.18 – 2.26) 

Group 3 0.31 0.52 1.37 (0.52 – 3.58) 

Group 4 -0.18 0.68 0.84 (0.36 – 1.93) 

75%Hop Asymmetry    

Group 1  Reference 1 

Group 2 -0.15 0.55 0.86 (0.52 – 1.42) 

SLCMJ Asymmetry    

Group 1  Reference 1 

Group 2 -0.23 0.39 0.80 (0.48 – 1.33) 

*Significantly different to group 1 (p < 0.05) 

75%Hop = 75% Hop and stick; SLCMJ = single leg countermovement jump; 

TJ = tuck jump  

 

 



Table S3 Average AUC, sensitivity and specificity for all 

decision trees in isolation and after resampling. 

 Technique AUC Sensitivity 

(%) 

Specificity 

(%) 

B
a
se

 

C
la

ss
if

ie
r
s ADTree 0.613 30.3 84.4 

J48CON 0.626 66.7 54.7 

REPTree 0.494 7.1 90.2 

O
v
e
r
sa

m
p

li
n

g
 t

e
c
h

n
iq

u
e
s 

Smote I (k = 3) 

ADTree 0.604 45.5 75.4 

J48CON 0.571 37.4 68.4 

REPTree 0.547 43.4 69.5 

Smote II (k = 5) 

ADTree 0.601 40.8 80.1 

J48CON 0.583 42.4 62.9 

REPTree 0.573 40.4 77 

Random Oversampling 

ADTree 0.623 36.4 77.7 

J48CON 0.584 49.5 69.1 

REPTree 0.608 38.4 78.5 

U
n

d
e
r
sa

m
p

li
n

g
  

te
c
h

n
iq

u
e
s 

Random Undersampling 

ADTree 0.635 41.4 77 

J48CON 0.616 63.6 52.3 

REPTree 0.61 40.4 77 

 

 

 

 

 

 

 

 

 

  



Table S4 Average AUC, sensitivity and specificity for the 

machine learning ensembles techniques 

 Technique AUC Sensitivity 

(%) 

Specificity 

(%) 

C
la

ss
ic

 E
n

se
m

b
le

 

Adaboost 

ADTree 0.547 23.2 84.8 

J48CON 0.574 31.3 78.5 

REPTree 0.564 29.3 76.6 

Adaboost-M1 

ADTree 0.592 32.3 82.8 

J48CON 0.552 36.4 71.5 

REPTree 0.589 29.3 78.5 

Bagging 

ADTree 0.633 27.3 91.4 

J48CON 0.630 46.5 73.4 

REPTree 0.559 9.1 94.1 

B
o
o
st

in
g
 E

n
se

m
b

le
s 

SmoteBoost 

ADTree* 0.621 43.4 72.3 

J48CON
* 0.583 34.3 76.2 

REPTree*  0.586 37.4 74.6 

ROSBoost 

ADTree 0.603 27.3 83.6 

J48CON 0.593 32.3 77 

REPTree 0.598 32.3 75 

RUSBoost 

ADTree 0.637 48.5 76.2 

J48CON 0.644 40.4 77 

REPTree 0.583 10.1 95.7 

B
a

g
g
in

g
 E

se
m

b
le

s 

OverBagging 

ADTree 0.657 35.4 85.2 

J48CON 0.665 43.4 80.1 

REPTree 0.636 24.2 86.7 

UnderBagging 

ADTree 0.663 42.4 80.9 

J48CON 0.651 52.5 73 

REPTree 0.629 30.3 82.8 

SmoteBagging 



ADTree* 0.630 42.4 80.5 

J48CON
Τ 0.657 39.4 84.4 

REPTree Τ 0.609 29.3 87.1 

*: Smote with k = 3 nearest neighbours of minority class 

instances; Τ: Smote with k = 5 nearest neighbours of 

minority class instances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table S5 Average AUC, sensitivity and specificity for the cost-

sensitive learning and class-balanced ensembles with a cost-sensitive 

classifier techniques (grey shaded area shows the selected best-

performing model) 

 Technique AUC Sensitivity 

(%) 

Specificity 

(%) 

Cost 

matrix 

C
o
st

- 
S

e
n

si
ti

v
e
 C

la
ss

if
ie

r
s 

MetaCost 

ADTree 0.635 59.6 65.2 {
0
1 |

2
0} 

J48CON 0.635 57.6 71.9 {
0
1 |

1
0} 

REPTree 0.569 60.6 60.9 
{
0
1 |

3
0} 

CS-Classifier 

ADTree 0.609 46.5 72.7 
{
0
1 |

2
0} 

J48CON 0.626 66.7 54.7 
{
0
1 |

1
0} 

REPTree 0.521 34.3 71.5 
{
0
1
|
2
0
} 

C
la

ss
ic

 e
n

se
m

b
le

s 
w

it
h

 a
 c

o
st

-s
e
n

si
ti

v
e
 c

la
ss

if
ie

r 

CS-Adaboost-M1 

ADTree 0.610 37.4 76.7 
{
0
2 |

3
0} 

J48CON 0.608 43.4 73.4 
{
0
1 |

2
0} 

REPTree 0.591 30.3 80.1 
{
0
2 |

3
0} 

CS-Adaboost 

ADTree 0.635 30.3 85.9 {
0
1 |

1
0} 

J48CON 0.623 29.3 81.3 {
0
1 |

1
0} 

REPTree 0.486 31.3 71.1 {
0
1 |

1
0} 

CS-Bagging 

ADTree 0.638 50.5 75.8 {
0
1 |

2
0} 

J48CON 0.663 55.6 74.2 {
𝟎
𝟏 |

𝟏
𝟎} 

REPTree 0.653 36.4 78.9 {
0
1 |

3
0} 

 



Supplementary Figures 

All ten internal classifiers of the best performing decision tree model. Example data is shown for one participant on the first internal classifier 

(Figure S1) with arrows showing the pathway through the classifier for that participant. 

 

Figure S 1 
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Figure S 3 

 



Figure S 4 

 

 

 



Figure S 5 

 

 

 

 



Figure S 6 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S 7 



 

 

Figure S 8 



 

Figure S 9 



 

Figure S 10 
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