A Systematic Literature Review on Outlier Detection in Wireless Sensor Networks

Safaei, Mahmood, Asadi, Shahla, Driss, Maha, Boulila, Wadii, Alsaeedi, Abdullah, Chizari, Hassan ORCID: 0000-0002-6253-1822, Abdullah, Rusli and Safaei, Mitra (2020) A Systematic Literature Review on Outlier Detection in Wireless Sensor Networks. Symmetry, 13 (3). pp. 1-41. ISSN 2073-8994

[img]
Preview
Text (Peer Reviewed Version)
8197-Chizari-(2020)-A-Systematic-Literature-Review-on-Outlier-Detection.pdf - Accepted Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview

Abstract

A wireless sensor network (WSN) is defined as a set of spatially distributed and interconnected sensor nodes. WSNs allow one to monitor and recognize environmental phenomena such as soil moisture, air pollution, and health data. Because of the very limited resources available in sensors, the collected data from WSNs are often characterized as unreliable or uncertain. However, applications using WSNs demand precise readings, and uncertainty in data reading can cause serious damage (e.g., health monitoring data). Therefore, an efficient local/distributed data processing algorithm is needed to ensure: (1) the extraction of precise and reliable values from noisy readings; (2) the detection of anomalies from data reported by sensors; and (3) the identification of outlier sensors in a WSN. Several works have been conducted to achieve these objectives using several techniques such as machine learning algorithms, mathematical modeling, and clustering. The purpose of this paper is to conduct a systematic literature review to report the available works on outlier and anomaly detection in WSNs. The paper highlights works conducted from January 2004 to October 2018. A total of 3520 papers are reviewed in the initial search process. Later, these papers are filtered by title, abstract, and contents, and a total of 117 papers are selected. These papers are examined to answer the defined research questions. The current paper presents an improved taxonomy of outlier detection techniques. This will help researchers and practitioners to find the most relevant and recent studies related to outlier detection in WSNs. Finally, the paper identifies existing gaps that future studies can fill.

Item Type: Article
Article Type: Article
Uncontrolled Keywords: Systematic Literature Review; Outlier Detection: Wireless Sensor Networks
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Schools and Research Institutes > School of Business and Technology > Technical & Applied Computing
Research Priority Areas: Applied Business & Technology
Depositing User: Kate Greenaway
Date Deposited: 03 Mar 2020 10:46
Last Modified: 27 Mar 2020 16:02
URI: http://eprints.glos.ac.uk/id/eprint/8197

University Staff: Request a correction | Repository Editors: Update this record

University Of Gloucestershire

Bookmark and Share

Find Us On Social Media:

Social Media Icons Facebook Twitter Google+ YouTube Pinterest Linkedin

Other University Web Sites

University of Gloucestershire, The Park, Cheltenham, Gloucestershire, GL50 2RH. Telephone +44 (0)844 8010001.