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ABSTRACT 

Race walking is an event where the knee must be straightened from first contact with 

the ground until midstance. The aim of this study was to compare knee angle 

measurements between 2D videography and 3D optoelectronic systems. Passive 

retroreflective markers were placed on the right leg of 12 race walkers and 3D 

marker coordinate data captured (250 Hz), with 2D video data (100 Hz) recorded 

simultaneously. Knee angle data were first derived based on the markers’ 

coordinates, and separately by using a 3D model that also incorporated thigh and 

shank clusters; the video data were analysed using both automatic tracking and 

manual digitising, creating four conditions overall. Differences were calculated 

between conditions for stance (using root mean square values), and at discrete 

events. There were few differences between systems, although the 3D model 

produced larger angles at midstance than using automatic tracking and marker 

coordinates (by 3 – 6°, P < 0.05). These differences might have occurred because of 

how the 3D model locates the hip joint, and because of the addition of marker 

clusters. 2D videography gave similar results to the 3D model when using manual 

digitising, as it allowed for errors caused by skin movement to be corrected. 
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INTRODUCTION 

Race walking is an Olympic event dictated by International Association of Athletics 

Federations (IAAF) Rule 230.2 that no visible loss of contact with the ground should 

occur and that “the advancing leg must be straightened (i.e., not bent at the knee) 

from the moment of first contact with the ground until the vertical upright position” 

(IAAF, 2015, p. 253). This strictly-enforced rule affects the gait mechanics of the 

whole body (Hanley & Bissas, 2016; Pavei, Cazzola, La Torre, & Minetti, 2014) and 

the knee is therefore the most important joint to assess with regard to legal race 

walking technique. However, judging of the knee’s straightness in competition is to 

the human eye only and therefore entirely subjective; as a result, the definition of 

Rule 230.2 and its implementation are not without controversy (Osterhoudt, 2000). 

This is partly because of the complexity of the knee joint’s movements in dynamic 

gait (Lafortune, Cavanagh, Sommer, & Kalenak, 1992), but also because there is no 

specific definition of what constitutes a ‘straightened’ knee (e.g., regarding joint 

angle magnitude). It is therefore important that the knee angle is measured correctly 

in race walking so that its movements are understood and can be used as part of 

judge education. 

 

The measurement of knee angular kinematics is important in many assessments of 

human gait, and typically occurs under laboratory conditions. Knee angles can be 

measured using, for instance, visible light systems (cinematography / videography), 

optoelectronic systems or electrogoniometers. For the most part, two-dimensional 

(2D) sagittal plane analyses using a single video camera have been conducted in race 

walking (Hanley & Bissas, 2017; Hoga, Ae, Enomoto, & Fujii, 2003; Padulo et al., 

2013; White & Winter, 1985) but three-dimensional (3D) analysis offers the 
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potential to more accurately measure this joint’s motion (e.g., during the combination 

of extension with internal rotation of the tibia). Although Alkjaer, Simonsen, & 

Dyhre-Poulsen (2001) found that using a 2D model of joint moments was 

appropriate for human gait analysis because of how similar the results produced were 

to a 3D model, 3D motion analysis using optoelectronic systems has become more 

prominent within race walking research (Cazzola, Pavei, & Preatoni, 2016; Donà, 

Preatoni, Cobelli, Rodano & Harrison 2009; Pavei & La Torre, 2016; Preatoni, 

Ferrario, Donà, Hamill, & Rodano, 2010). These optoelectronic systems tend to have 

the advantage that quick, precise and accurate 3D data analysis is possible, but the 

need for skin marker attachment means visual light systems (usually camcorders) are 

required if analysing competitive performances instead. 3D measurements of the 

knee angle during world-class race walking competitions have indeed been 

conducted using videography (e.g., Hanley, Bissas, & Drake, 2011), but most race 

walking studies have relied on video-based 2D analyses. It will therefore be useful to 

ascertain differences between 2D and 3D motion analysis systems when calculating 

the knee joint angle in race walking. 

 

Under laboratory conditions, skin markers can be attached to the participant to aid 

identification of joint centres and improve digitiser reliability when using visual light 

systems (Bartlett, Bussey, & Flyger, 2006), and are essential when using 

optoelectronic systems. Different methodologies have been adopted in gait research 

to identify body segment movements, including using single or paired markers at 

joint centres (Cazzola et al., 2016; Pavei & La Torre, 2016) or a combination of 

single markers and clusters (Sinclair, Richards, Taylor, Edmundson, Brooks, & 

Hobbs, 2013). Regardless of the motion analysis system used, a potential source of 
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error is the overlying skin movement over bone that occurs to facilitate joint motion. 

Similar research on the elbow angle in cricket bowling (which, like race walking, has 

a specific rule about joint movement) suggested that soft tissue movement 

contributed to greater differences between video and a triad (cluster) marker system 

than between video and pairs of markers placed at relevant bony landmarks (Yeadon 

& King, 2015). Knee sagittal movements are not as affected by soft tissue movement 

as movements in other planes (Reinschmidt, van den Bogert, Nigg, Lundberg, & 

Murphy, 1997), but even small errors could be important in race walking because of 

its role in legal technique. Visual, markerless systems have the advantage of being 

usable in competitive situations, but tracking is subjective and is therefore highly 

dependent on the skill of the operator (Payton, 2008). The straightened knee part of 

IAAF Rule 230.2 means that accurate measurements of the knee are important and it 

will be useful to identify the differences that occur between methodologies when 

supporting and assessing race walkers in the biomechanics laboratory, and in terms 

of those systems that can be used in competition. The aim of this study was to 

compare the measurement of knee angles between 2D video and 3D optoelectronic 

systems in race walking. 

 

METHODS 

Participants 

The study was approved by the School Research Ethics Committee and 12 race 

walkers of seven different nationalities gave written informed consent. Seven male 

race walkers (28 ± 6 years, 1.77 ± 0.03 m, 65.7 ± 6.2 kg) and five female race 

walkers (30 ± 2 years, 1.65 ± 0.08 m, 58.1 ± 10.1 kg) took part; in total, eight 

competed at the 2016 Olympic Games, and two others had achieved the required 



6 
 

standard. The mean personal best time (h:min:s) for the seven men over 20 km was 

1:24:13 (± 2:49), whereas for the five women it was 1:32:32 (± 2:14). 

 

Data collection 

Passive retroreflective markers (12.5 mm) were placed on 13 anatomical landmarks 

of the pelvis and right leg: the left and right anterior superior iliac spines (ASIS), left 

and right posterior superior iliac spines (PSIS), greater trochanter, lateral and medial 

femoral condyles, lateral and medial malleoli, calcaneus, heads of the first and fifth 

metatarsals, and the distal end of the second toe. The foot markers were attached to 

the athletes’ training shoes, and in some cases the greater trochanter marker was 

attached onto tightly fitting shorts, rather than directly onto skin. In addition, rigid 

clusters comprising four non-collinear markers were attached to the thigh and shank 

body segments. To reduce measurement error from inconsistent placement of 

markers, these were positioned by a single experienced researcher. 

 

Before the dynamic (race walking) trials, each participant carried out a standing 

calibration trial to create anatomical reference frames for each segment. After this 

trial, the markers on the medial femoral condyle and medial malleolus were 

removed. Each athlete then race walked along a 45 m indoor track at a speed 

equivalent to their season’s best time for 20 km, calculated using timing gates placed 

4 m apart in the data capture area (which was in the centre of the track). Athletes 

completed at least 10 trials each and the five closest to the target time were analysed 

(provided they were within 3% of the target time). 
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A 12-camera Oqus 7 3D optoelectronic motion capture system (Qualisys, 

Gothenburg, Sweden) operating at 250 Hz captured 3D marker coordinate data of the 

leg markers. The optoelectronic system was calibrated using a 601.9 mm calibration 

wand and L-frame reference object to define the laboratory origin and global 

coordinate system. The calibration results indicated a mean residual marker position 

error of less than 1.5 mm on each testing occasion. 

 

2D video data were collected simultaneously at 100 Hz using a high-speed camera 

(Fastec TS3, San Diego, CA). A 25 mm lens was used whose centre was 1.10 m 

above the track’s surface. The shutter speed was 1/500 s, the f-stop was 2.0, and there 

was no gain. The camera was placed approximately 10 m from and perpendicular to 

the line of race walking. The resolution of the camera was 1280 x 1024 pixels. Four 

3 m high reference poles were placed in the centre of the camera’s field of view in 

the centre of the running track in the sagittal plane. The reference poles provided a 

total of 12 reference points (up to a height of 2 m) that were later used for calibration 

(scaling). The data analysed from the optoelectronic and videography systems were 

of the same strides for each athlete. 

 

Data analysis 

The coordinate data from the optoelectronic system were labelled through Qualisys 

Track Manager 2.14 (QTM). Data from QTM were treated in two separate ways; 

first, the three joint markers (greater trochanter, lateral femoral condyle and lateral 

malleolus) were used to calculate knee joint angle based on their coordinates (the 

‘marker’ condition); and second, raw kinematic data were exported to Visual3D 

5.02.27 (C-Motion Inc., USA) for knee angle calculation using a 3D model that also 
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incorporated the clusters (i.e., thigh and shank orientation) (the ‘3D model’ 

condition). The knee angles produced by the 3D model data were considered the 

criterion values. Both sets of knee angle data from the optoelectronic methodologies 

were filtered using a recursive second-order, low-pass Butterworth digital filter (zero 

phase-lag) with cut-off frequencies ranging from 6.1 to 10.4 Hz (found using residual 

analysis (Winter, 2005)). A four-segment rigid model of the right leg was 

constructed for each participant where movement in six degrees of freedom was 

determined for the local coordinate systems of all segments (pelvis, thigh, shank and 

foot). Each segment was given a local coordinate system and angular displacement at 

the knee joint was defined as rotations of the coordinate axes of the shank (distal) 

segment relative to the axes of the thigh (proximal) segment. The pelvis segment was 

derived from the location of the ASIS and PSIS markers, and the hip joint centre was 

calculated according to the procedures described by Bell, Pedersen, & Brand (1990). 

The frontal plane for the thigh was defined by the hip joint centre at the proximal 

endpoint and the lateral and medial femoral condyle markers at the distal end. The 

frontal plane for the shank was defined by the thigh distal endpoint (proximal end) 

and the two malleolus markers (distal end). The frontal plane of the foot was defined 

by the two malleolus markers (proximal end) and the projection on the floor of the 

two malleolus markers (distal end). 

 

The video files were digitised in two ways: first, through manually digitising (SIMI 

Motion 9.0.3, Munich) by a single experienced operator (the ‘manual’ condition); 

and second, using SIMI Motion’s automatic tracking function to track the three 

retroreflective markers (greater trochanter, lateral femoral condyle and lateral 

malleolus) (the ‘tracking’ condition). Manual digitising and tracking were both 
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started at least 10 frames before the beginning of the stride and completed at least 10 

frames after to provide padding during filtering (Smith, 1989). For the manual 

condition, each video was first digitised frame by frame and adjustments made as 

necessary using the points over frame method (Bahamonde & Stevens, 2006). The 

manually digitised points were not necessarily on the markers themselves but chosen 

based on visual inspection. On a small number of occasions during automatic 

tracking, marker dropout occurred (e.g., because the hand obscured the greater 

trochanter marker) and corrections were made manually; this process of manual 

corrections was also made during the reliability tests that are described below. The 

segment endpoints used to calculate the knee joint were the hip joint, knee joint, and 

ankle joint. A recursive second-order, low-pass Butterworth digital filter (zero phase-

lag) was used to filter the raw knee angle data. The cut-off frequencies were 

calculated using residual analysis (Winter, 2005) and ranged between 7.9 and 10.6 

Hz (manual) and between 8.1 and 10.3 Hz (tracking). 

 

To ensure reliability of both the manual and tracking digitising processes, each 

process was repeated for one sequence with an intervening period of 48 hours for 

both methodologies. Three statistical methods for assessing reliability were used: 

95% Limits of Agreement (LOA), Coefficient of Variation (CV) and Intraclass 

Correlation Coefficient (ICC). The LOA (bias ± random error), CV and ICC values 

for automatic tracking were 0.2 ± 0.6°, ± 0.13%, and 1.00, respectively, and for 

manual digitising 0.7 ± 1.6°, ± 0.43%, and 1.00, respectively. Sensitivity analyses 

were conducted to assess the effect of manually altering the right hip joint centre 

marker, the right knee joint centre marker, and the right ankle joint marker by one 

pixel posteriorly in one file for one participant, both separately and together. The root 
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mean square (RMS) difference between the original and altered files for one 

complete stride was 0.14° for the hip marker, 0.29° for the knee marker and 0.30° for 

the ankle marker. The RMS difference between the original and altered files when all 

three markers were moved one pixel posteriorly was 0.17°. 

 

The knee angle was calculated as the sagittal plane angle between the thigh and 

lower leg segments, and rounded to the nearest integer (except when reporting the 

very small reliability values found above). Knee angles were considered to be 180° 

in the anatomical standing position, and angles beyond this as hyperextension. The 

knee angle has been presented in this study at specific events of the gait cycle as 

defined below: 

 Initial contact – for the video system, this was the first visible point during stance 

where the athlete’s foot clearly contacts the ground (heel strike). For the 

optoelectronic system, heel strike was considered to occur when the vertical 

acceleration of the heel marker reached its minimum magnitude during the 

downwards movement of the foot. 

 Midstance – for the video system, this was a visually chosen position where the 

athlete’s foot was directly below the hip, used to determine the ‘vertical upright 

position’ (IAAF, 2015). For the optoelectronic system, midstance was considered 

to occur when the hip joint centre was positioned directly above the foot centre of 

mass (found using the model created using Visual3D). 

 

Statistical analysis 

All sets of knee angle data were interpolated to 101 points using a cubic spline. The 

RMS difference between conditions was calculated for each individual, averaged 
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across their five trials, and then averaged across all participants. One-way analysis of 

variance (ANOVA) was conducted with post-hoc Tukey tests to establish significant 

differences between conditions (Field, 2009). An alpha level of 5% was set for these 

tests. Where differences between pairs of methodologies were found, effect sizes 

(ES) were calculated using Cohen’s d (Cohen, 1988) and considered to be either 

trivial (ES ≤ 0.20), small (0.21 – 0.60), moderate (0.61 – 1.20), large (1.21 – 2.00), or 

very large (2.01 – 4.00) (Hopkins, Marshall, Batterham, & Hanin, 2009). Differences 

and 95% confidence intervals (95% CI) have been reported only when the ES was 

moderate or larger. 

 

RESULTS 

The mean race walking speed for all athletes during testing was 13.62 km·h-1 (± 

0.73). The knee angle curves during a complete gait cycle for each condition are 

shown in Figure 1. The mean RMS differences between conditions for the stance 

phase for each individual athlete and for the whole group are shown in Table 1. 

 

The mean angle at initial contact was 180° (± 2) using manual digitising, 180° (± 4) 

using tracking, 180° (± 4) using markers, and 183° (± 5) using the 3D model; there 

were no differences found between conditions. The mean angle during midstance 

was 184° (± 5) using manual digitising, 181° (± 6) using tracking, 181° (± 6) using 

markers and 187° (± 5) using the 3D model. The angle found using the 3D model 

was larger than that found using tracking (P = 0.048, ES = 1.04, 95% CI = 0.04 to 

12.22) and markers (P = 0.034, ES = 1.13, 95% CI = 0.36 to 12.53). 

 

**** Figure 1 near here **** 
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**** Table 1 near here **** 

 

DISCUSSION 

The aim of this study was to compare the measurement of knee angles between 2D 

video and 3D optoelectronic systems in race walking. Overall, there was little 

difference between most motion analysis systems, although the gold-standard 3D 

model differed from the tracking and marker conditions when calculating midstance 

angles, and highlighted the limitation of modelling knee joint angular motion using 

three joint centre markers only. The 3D model also had the greatest RMS differences 

in comparisons with the other methodologies during stance. These differences might 

have occurred because the deep-lying hip joint centre was located using several 

markers in the 3D model rather than just the greater trochanter marker in the tracking 

and marker conditions, notwithstanding that the knee and ankle joints were also 

located slightly differently in the 3D model. It was unsurprising that the tracking 

function in SIMI Motion and markers in QTM produced similar knee angles given 

their values were based on the same three joint markers; the difference of 6° at 

midstance for both conditions from what was found using the 3D model showed that 

the clusters and extra single markers used in the 3D model were invaluable in 

achieving more precise, accurate angles, and should be used whenever possible if 

optoelectronic systems are being used. 

 

A rationale for comparing 2D manual digitising with the other methodologies is that 

it is the most practical system to use in competition. For example, biomechanists 

might use a camcorder and subsequent manual digitising to analyse race walkers 
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with regard to compliance with Rule 230.2 in providing scientific support to coaches 

or judges (or when analysing other important spatiotemporal variables). The use of 

markers when using visual light systems has been recommended because of 

improved reliability (e.g., Bartlett et al., 2006); however, the soft tissue movements 

that occur during sporting activities are the dominant source of error in such analyses 

(Cutti, Cappello, & Davalli, 2006), and can lead to decreased validity. Accordingly, 

Yeadon & King (2015) used video estimates as criterion values (during dynamic 

movements) to compare with optoelectronic values because the video estimates were 

unlikely to be affected by skin and soft tissue movement. In this study, and in 

contrast to what was found for the automatic tracking and QTM marker conditions 

(that relied entirely on the location of three markers), there were no differences 

between the 3D model and manual digitising. This was possibly because the manual 

condition was not affected by a strict adherence to joint marker locations, instead 

allowing for educated estimations of joint centre locations. Manual digitising can 

therefore be valid for accurately analysing knee angles in race walking because it can 

avoid the misleading effects of skin (or clothing) marker movement; however, before 

adopting this approach certain conditions must be considered such as the experience 

and knowledge of the operator, the camera resolution, and an appropriate shutter 

speed (Payton, 2008). In particular, the operator has to ensure the camera is 

perpendicular to the direction of movement, which is not always straightforward in 

outdoor settings, and the race walker needs to move perpendicular to the camera with 

no visible obstructions (and not too far from it). It should be noted too that manual 

tracking is entirely subjective and its quality can depend on how well joint centres or 

anatomical landmarks can be located by the operator, which adds to the typically 

lengthy time required (Payton, 2008). Regarding individual athletes, the RMS 
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differences between manual digitising and the 3D model ranged from 1° to 8°, and 

thus it should be noted that greater errors can occur with either system on some 

occasions. Even during automatic tracking, manual corrections were made when 

marker dropout occurred (mostly when the hand or arm obscured the view of the 

greater trochanter marker) and this process helped improve the reliability found for 

automatic tracking. It is therefore important for those researchers who capture data in 

competition to become skilled at manual digitising, through considerable prior 

practice and excellent anatomical knowledge. 

 

The stance phase is the most important to analyse in race walking because technical 

legality is assessed between initial contact and midstance only. Race walkers 

typically adopt a narrow stride width (Hanley & Bissas, 2016; Pavei & La Torre, 

2016) that results from hip adduction; the present study has shown that this frontal 

plane movement of the athletes’ lower limbs might have been what caused greater 

differences between systems at midstance than at initial contact, and shows the 

importance of using clusters of markers where possible. Regarding other movements, 

transverse plane movements of the knee are restricted during stance in race walking 

because of its extended (or hyperextended) position, and although Graci & Salsich 

(2016) found transverse plane differences between a 3D model that included a 

greater trochanter marker and one without it, differences were small for knee sagittal 

plane movements, and the authors concluded that models with or without the greater 

trochanter could therefore be used interchangeably. Although the constraints on the 

knee’s movement during stance in race walking (in all planes) mean that skin 

movement is reduced, the same will not necessarily apply to other forms of dynamic 
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gait such as running where the knee flexes and extends considerably during the 

contact phase, and thus more caution might be warranted if analysing such activities. 

 

IAAF Rule 230.2 does not define a straightened leg other than to state that is should 

not be “bent at the knee”; the results of this study showed that the mean knee angle at 

initial contact was at least 180° (there was no difference between methodologies), 

and given that this mean value is similar to that found in world-class competition 

(Hanley et al., 2011), in laboratory settings using high-speed cameras (Padulo et al., 

2013), and using markers (Pavei & La Torre, 2016), it seems reasonable to adopt this 

value as a robust guide for knee ‘straightness’ in race walking. As the race walkers in 

this study were elite-standard athletes, a geometrically straight angle of 180° might 

not be appropriate for measuring full extension in normal or pathological knee 

assessments, however. The values for knee angle at midstance using the 3D model 

were the most similar to the values found using 3D videography in world-class 20 

km (men: 189 ± 4°; women: 190 ± 3°) and 50 km competitions (men: 190 ± 4°) 

(Hanley et al., 2011; Hanley, Bissas, & Drake, 2013), and so it is likely the gold 

standard 3D model results were the most representative of the true knee angle. 

Although the participants in this study were not the same as those analysed in 

competition, no differences have been found between athletes of different standards 

(Cazzola et al. 2016; Pavei & La Torre, 2016) either, and thus these midstance angles 

are typical of race walking. It was not possible to include a 3D manual digitising 

condition within this study, which could be important given the increased accuracy 

found using the 3D model, and because prior studies that have used 3D manual 

digitising in competition (Hanley et al., 2011; Hanley et al., 2013) were restricted to 

a lower sampling rate and resolution than the present study. Hence, incorporating a 
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manual 3D digitising condition in future studies could be beneficial in further 

evaluating differences between visual and optoelectronic motion analysis systems. In 

addition, there is no research to date on what magnitude of knee angles appear 

“straightened” (or not) to race walk judges, although research on race walkers in 

competition (who were not disqualified) found initial contact angles ranged between 

174° and 183° (20 km women), 177° and 184° (20 km men), and 175° and 186° (50 

km men) (Hanley et al., 2011; Hanley et al., 2013). Future studies that assess this 

could be useful not only with regard to improved judging, but also in terms of 

calculating the size of the smallest worthwhile difference (Hopkins, Hawley, & 

Burke, 1999) between analysis systems. 

 

CONCLUSIONS 

This was the first study to compare how the knee angle is measured by different 

motion analysis systems in elite-standard race walking. In practical terms, using a 

markerless, 2D video system gave similar results to using a 3D model (from an 

optoelectronic system), although individual RMS differences ranged from 1° to 8°, 

which could be important given how small errors could lead to misidentification of 

non-legal technique. Tracking single joint markers on the hip, knee and ankle 

produced knee angles 6° different from the 3D model at midstance, and thus the 

usage of clusters (for optoelectronic systems) or manual corrections for skin 

movement (video systems) are therefore advised. Taking this into account, the ability 

to record outdoors means that factors that can give research its ecological validity 

(e.g., athlete fatigue, competitive conditions and naïve participants) can be present 

without compromising internal validity, provided appropriate protocols are 

undertaken when manually digitising. 
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Table 1. RMS differences in knee angle for the four conditions during stance for the 

12 race walkers. 

Athlete 

Tracking vs 

Manual (°) 

Tracking vs 

Markers (°) 

Tracking vs 

3D model 

(°) 

Manual vs 

Markers (°) 

Manual vs 

3D model 

(°) 

Markers vs 

3D model 

(°) 

1 3 1 3 3 2 2 

2 8 1 9 8 2 9 

3 2 1 9 2 7 9 

4 1 2 4 2 4 4 

5 2 1 10 3 8 11 

6 1 2 2 1 1 2 

7 5 3 8 8 4 11 

8 6 1 2 6 4 2 

9 1 1 8 2 7 8 

10 2 1 5 2 6 4 

11 2 1 1 2 3 2 

12 1 1 2 1 2 2 

Mean 3 ± 2 1 ± 1 5 ± 3 3 ± 3 4 ± 2 5 ± 4 
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Figure 1. Mean sagittal angle (°) of the knee during the stance phase of a race 

walking stride as calculated using automatic tracking, manual tracking, single 

retroreflective markers and a 3D model (using optoelectronics). Greater knee angles 

at midstance were found using the 3D model compared with the marker and tracked 

conditions. 

 


