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Sprint mechanical differences at maximal running speed: effects of 

performance level 

Abstract 

As the effect of performance level on sprinting mechanics has not been fully studied, we 

examined mechanical differences at maximal running speed (MRS) over a straight-line 

35 m sprint amongst sprinters of different performance levels. Fifty male track and field 

sprinters, divided in Slow, Medium and Fast groups (MRS: 7.67 ± 0.27 m∙s-1, 8.44 ± 0.22 

m∙s-1, and 9.37 ± 0.41 m∙s-1 respectively) were tested. A high-speed camera (250 Hz) 

recorded a full stride in the sagittal plane at 30-35 m. MRS was higher (p  0.05) in Fast 

vs. Medium (+11.0%) and Slow (+22.1%) as well as in Medium vs. Slow (+10.0%). 

Twelve, eight and seven out of twenty one variables significantly distinguished Fast from 

Slow, Fast from Medium and Medium from Slow sprinters, respectively. Propulsive 

phase was significantly shorter in Fast vs. Medium (-17.5%) and Slow (-29.4%) as well 

as in Medium vs. Slow (-14.4%). Fast sprinters had significantly higher vertical and leg 

stiffness values than Medium (+44.1% and +18.1% respectively) and Slow (+25.4% and 

+22.0% respectively). MRS at 30-35 m increased with performance level during a 35-m

sprint and was achieved through shorter contact time, longer step length, faster step rate, 

and higher vertical and leg stiffness.  



Introduction 

The ability to achieve maximum running speed (MRS) is essential to success in many sports 

and is crucial in track-and-field events such as the 100-200 m sprint races 

(Brüggemann, Koszewski, & Müller, 1999). Sprinting speed is the product of step length 

(SL) and step rate (SR) and an increase in one of these two variables, or both, will 

consequently result in the attainment of faster sprinting speed as long as the other one does 

not undergo a proportionately similar or larger decrease (Hunter, Marshall, & McNair, 

2004). There are inconsistencies in the literature regarding the relative importance of 

developing longer SL (Gajer, Thepaut-Mathieu, & Lehenaff, 1999; Hunter et al., 2004; 

Maćkała & Mero, 2013; Mero & Komi, 1985) over higher SR (Bezodis, Kerwin, & Salo, 

2008; Mero, Komi, & Gregor, 1992) to reach top speeds. In order to improve MRS through 

specifically designed training protocols (e.g. resisted, assisted, and supramaximal sprints 

(Mero & Komi, 1985; Paradisis & Cooke, 2006), it is first vital to identify the most decisive 

mechanical differences, associated with the attained MRS during a straight line sprint, 

among athletes of different performance levels. 

To date, there is a paucity of studies examining potential mechanical differences among 

sprinters of various performance levels. In one study, elite sprinters  produced greater MRS, 

SR and SL (9.3%, 3.0% and 2.3%, respectively) compared with sub-elite sprinters (e.g. 100 

m best time 9.95-10.29 s vs. 10.40-10.60 s) over a 40-m sprint run

(Rabita et al 2015); however, only four elite and five sub-elite sprinters have been included 

in this analysis.  Also, faster sprinters (e.g. 100 m: 11.6 s vs. 12.3 s) have been found to 

produce +2.8% faster MRS and +2.1% greater SR over an 80 m sprint run 

(Monte, Muollo, Nardello, & Zamparo, 2017). Finally, elite sprinters have been found to 



produce greater net rates of force development compared to slower sprinters (e.g. 100 m 

= 10.27 s vs. 11.31 s) during the starting block phase and the two subsequent steps

(Slawinski et al., 2010). However, surprisingly no other studies have examined 

mechanical differences among sprinters of various performance levels. 

In terms of ground contact characteristics in sprinting, it is known that higher 

running speeds are achieved through reduced contact times (Morin, Tomazin, Samozino, 

Edouard, & Millet, 2012; Paradisis & Cooke, 2006; Weyand, Sandell, Prime, & Bundle, 

2010; Weyand, Sternlight, Bellizzi, & Wright, 2000) and by producing greater amounts 

of horizontal net force at each step, in particular during the early acceleration phase 

(Morin et al., 2012; Rabita et al., 2015). Reportedly, exerting a large propulsive force 

during the entire acceleration phase, suppressing braking force when approaching 

maximal speed, and producing a large vertical force during the maximal speed phase are 

essential for achieving greater acceleration and maintaining higher maximal speed (Morin 

et al., 2015; Nagahara, Mizutani, & Matsuo, 2018; Nagahara, Mizutani, Matsuo, 

Kanehisa, & Fukunaga, 2018). It is also known that sprinting performance determinants 

of acceleration shift from higher concentric propulsion to lower eccentric braking forces 

as velocity increases (Colyer, Nagahara, & Salo, 2018). 

The “spring-mass model” (SMM), which represents a runner as a point mass 

supported by a single linear leg spring, has been proposed to model the biomechanics of 

running (Alexander, 1995; Blickhan, 1989; Farley & Gonzalez, 1996; Morin, Dalleau, 

Kyröläinen, Jeannin, & Belli, 2005). During running, leg stiffness (Kleg) is defined as the 

ratio of the peak vertical GRF to the peak displacement of initial leg length during contact 

phase (Morin et al., 2005), while effective vertical (Kvert) is defined as the ratio of the 



peak vertical GRF to the vertical displacement of the center of the mass (CM) during the 

same phase (Farley & Gonzalez, 1996; McMahon & Cheng, 1990). In the running 

literature, Kvert and Kleg are increasingly used to represent the mechanical function of the 

lower limbs as these parameters have demonstrated relationships with both performance 

and injury risk (Brughelli & Cronin, 2008; Butler, Crowell, & Davis, 2003).  It has been 

suggested that high levels of stiffness could be beneficial to maximum speed running 

(Bret, Rahmani, Dufour, Messonnier, & Lacour, 2002), and training-induced 

improvements in Kvert (+56.4%) and MRS (+5.7%) have been observed in sprinters 

(Nagahara & Zushi, 2017). Additionally, it has been shown that Kvert or Kleg moderately 

correlate significantly with 100 m performance (Bret et al., 2002; Chelly & Denis, 2001), 

even though this is not an universal finding (Morin, Jeannin, Chevallier, & Belli, 2006). 

Furthermore, it has been demonstrated that Kvert increases with running speed but this 

observation is limited in so far to the 2 – 6.5 m.s-1 speed range (Arampatzis, Brüggemann, 

& Metzler, 1999; Cavagna, 2005; Kuitunen, Ogiso, & Komi, 2011; Morin et al., 2006). 

All the above studies however, have not categorically established a robust relationship 

between mechanical stiffness and sprinting as stiffness behaviour has been either 

determined during a hoping test (Bret et al., 2002; Chelly & Denis, 2001) or in a cohort 

of non-specialized sprint runners (i.e., with no direct comparison with sprinters of higher 

performance) (Morin et al., 2006). 

A level of indirect support to the hypothesis that MRS is accompanied by high 

stiffness values, however, comes from our study (Girard, Brocherie, Tomazin, Farooq, & 

Morin, 2016) showing that reduced running speed in the last 50 m distance interval of a 

100 m run was accompanied by reductions in both SR (-5.8%) and Kvert (-12.3%). Other 



studies have also discovered significant relationship between decrements in both SR and 

Kvert and a progressive slowing in running speed after the repetition of four 100-m sprints 

on a track (Morin et al., 2006), three sets of five 5-s sprints on a sprint treadmill (Girard 

et al., 2017), and six 35-m sprints (Brocherie, Millet, & Girard, 2015) on artificial turf. 

Participants recruited in those studies, however, were not sprint running specialists but 

physical education students or team sports players who possibly possess different 

technical sprint ability compared to ‘true’ sprinters (Wild, Bezodis, North, & Bezodis, 

2018). In team sports, for instance, achieving faster acceleration (first few steps) rather 

than faster top speeds is probably more important. To the authors’ knowledge, no 

previous study has assessed the nature of the relationship between mechanical stiffness 

and MRS in sprinters of various performance levels. 

Our intention was therefore to identify how performance level affects several key 

running mechanical factors (i.e., spatiotemporal characteristics, body angles, Kvert and 

Kleg) during the MRS phase of a short (35 m), straight-line overground sprint. A second 

aim was to investigate the association of the main mechanical variables with MRS in 

order to discuss recent suggestions about key mechanical determinants of sprint 

performance. It was hypothesized that faster sprinters would display more favorable 

mechanical characteristics – reinforcing the importance of Kvert and SR in particular - 

compared tο their slower counterparts at MRS. 



Methods 

Participants 

Fifty male track and field sprinters, from club to sub-elite level, participated in the study 

(mean ± SD age 24.3 ± 2.5 years, training year experience 5.6 ± 1.2 years, mass 77.9 ± 

8.4 kg, height 1.79 ± 0.05 m, MRS 8.53 ± 0.72 m.s-1. Their 100-m competition or training 

time at the time of testing was 12.39 ± 0.71 s. Ethical approval was gained from the 

Institutional Research Ethics Committee, and each participant provided written informed 

consent before commencement of the study. 

Experimental design 

Video recordings were collected during a 35-m straight-line track running sprint, between 

30-35 m (MRS phase) to determine how performance level affects key running

mechanical factors. Participants were classified a priori as Slow (13.24 ± 0.26 s, ranged 

from 13.78 to 13.05 s, N = 13), Medium (12.48 ± 0.22 s, ranged from 12.87 to 12.03 s, N 

= 21) and Fast (11.57 ± 0.40 s, ranged from 11.92 to 10.60 s, N = 16) based on their 

competition or training time in 100-m (above 13 s, between 13 and 12 s and below 12 s). 

Data collection took place on an indoor synthetic track surface (60-m long and 

2.5-m wide) at an ambient temperature of 25o C. All data collection procedures took place 

in the autumn and during the athletes’ usual practice time of day, which was between 4.00 

and 7.00 pm. After completion of a standardized 20-min warm-up (8-min jogging, 6-min 

stretching exercises, and 4-6 sprints at gradually increased intensity), the participants 

performed 3 maximal straight-line 35-m sprint runs (10 min recovery between efforts). 

Participants used a standing start and started sprinting upon hearing an audible signal. For 

subsequent analysis, we selected the best of the three trials in terms of achieving 

maximum running speed (MRS). Participants were asked to wear the same 



shoes and clothing during all trials, and to consume only a light meal at least 4 hours 

before testing. The participants were asked not to undertake any other sport activity 

during the last two days leading up to the data collection day. 

Data collection 

A Kodak EktaPro 1000 high-speed video camera (Kodak, Hamburg, Germany) sampling 

at 250 Hz was used (Paradisis, Bissas, & Cooke, 2009, 2015; Paradisis & Cooke, 2001). 

The camera was fixed on a tripod at a distance of 10 m from the runway with its optical 

axis perpendicular to the plane of motion. The field of view of the camera zoomed so as 

to record the final two consecutive steps (i.e. one full stride) of each run, however, 

participants were required to continue sprinting after the finish line for 5 m in order to 

avoid abrupt slowing down or an unconventional running technique with trunk tilting 

actions on the finish line. Calibration for the 2D-DLT kinematic and kinetic analysis was 

conducted by placing a 6 m x 2.5 m frame with 16 control markers perpendicular to the 

camera axis. The X-axis represented the direction of the runway. Y-axis was vertical and 

perpendicular to the X-axis (Paradisis & Cooke, 2001). 

Data analysis 

Seventeen segment endpoints were manually digitized using SIMI Motion 9.2 (Munich, 

Germany). A 14-segment body parameter model (De Leva, 1996) was used to obtain data 

for the whole-body centre of mass (CM) and limb segments. Surface markers were 

identified in the digitization process and the magnification factor was utilised (≤400%) to 

assist with the identification of markers. When the markers were not clearly visible, the 



identification of the points for digitization was based on superficial anatomical landmarks 

and an understanding of axes of rotation at the joints (Challis, Bartlett, & Yeadon, 1997). 

For each running sequence, digitizing started 3 frames before the touchdown of the one 

foot and ended 3 frames after the touchdown of the opposite foot. The video recordings 

were smoothed using a cross-validated quintic spline (Giakas & Baltzopoulos, 1997). 

In order to ensure reliability of the digitizing process, repeated digitizing (two 

trials) of one running sequence was performed with an intervening period of 48 hours. 

Three statistical methods for assessing reliability were used: 95% limits of agreement, 

coefficient of variation and intraclass correlation coefficient. The data for each tested 

variable were assessed for heteroscedasticity by plotting the standard deviations against 

the individual means of the two trials. If the data exhibited heteroscedasticity a 

logarithmic transformation of the data (loge) was performed prior to the calculation of 

absolute reliability measures (Bland & Altman, 1986). Therefore, depending on the 

presence of heteroscedasticity the coefficient of variation and limits of agreement values 

were expressed in either original or ratio scale. The results showed minimal systematic 

and random errors and therefore confirmed the high reliability of the digitizing process 

with regard to the overall group of participants. 

Spatio-temporal characteristics 

The step cycle had as a starting point the touchdown of the ipsilateral foot, it continued 

through the flight phase, and terminated at touchdown of the contralateral foot. 

Touchdown was defined as the instant at which the foot of the participant made contact 

with the ground and takeoff as the instant at which the participants’ foot left the ground. 



The appropriate frames defining touchdown and take-off were identified through visual 

inspection by the researcher who digitized all the trials (Paradisis & Cooke, 2001). The 

following variables were calculated: Step time: from touchdown of the ipsilateral foot to 

the touchdown of the contralateral foot. Contact time (CT): the time that the foot is in 

contact with the ground. Braking phase (BP): the time period of the downward movement 

of the CM with a decreasing knee and ankle angle. Propulsive phase (PP): the time period 

of the upward movement of the CM with an increasing knee and ankle angle.  Flight time 

(FT): time from take-off of the ipsilateral foot to touchdown of the contralateral foot. 

Stride time (SDT): time between consecutive touchdowns of the same foot. Swing time 

(SWT): time that foot was not in contact with the ground during a stride, and was 

determined by subtracting the contact time from stride time. Step length (SL): horizontal 

distance traveled by the CM during a step. Flight length (FL): horizontal distance traveled 

by the CM from the take-off of the ipsilateral foot to the touchdown of the contralateral 

foot. Contact length (CL): horizontal distance traveled by the CM during the contact time. 

Step rate (SR): the number of steps per second. MRS was calculated according to the 

formula: 

 
SLMRS

CT FT



(1) 

Angles

At touchdown and take-off, the following angles were measured: knee joint angle (α, the 

angle between the thigh and the lower leg), hip joint angle (β, the angle between the trunk 

and the thigh), shank to running surface (γ, The angle of the lower leg relative to the 

running surface), trunk to running surface angle determined by the line between the hip 



and glenohumeral joints of the right side of the body (δ) (Figure 1); additionally the 

distance parallel to the running surface between a line perpendicular to the running 

surface which passes through the CM and the contact point at touchdown and take-off 

were measured (DCM, Figure 1). 

*** FIGURE 1 NEAR HERE *** 

Spring-mass model parameters 

The average CT and FT values of the left and right foot were used for the estimation of 

Kvert and Kleg, according to the “sine-wave” method (Morin et al., 2005). This method 

allows estimating Kvert and Kleg during running based on a few simple variables (body 

mass, forward speed, leg length, FT and CT). This method is not without limitations 

(Coleman, Cannavan, Horne, & Blazevich, 2012) and relies on several assumptions; i.e.,

CM vertical displacement values i) reach a maximum at the middle of the stance phase 

and ii) are of equivalent magnitude before and after mid-stance. However, this simple 

method remains a reliable and acceptable descriptor of stance-limb mechanics for the 

range of running velocities achieved in this study (Clark, Ryan, & Weyand, 2014; Girard 

et al., 2017; Pappas, Paradisis, Tsolakis, Smirniotou, & Morin, 2014). Moreover, the 

estimations of Kvert and Kleg obtained during treadmill running (for a range of speeds 4.4 - 

6.7 m.s-1) have been reported as highly reliable for both intra-session and inter-session 

designs (ICCs: 0.87 – 0.99) (Girard, Brocherie, Morin, & Millet, 2016; Pappas, Dallas, & 

Paradisis, 2017; Pappas et al., 2014). The estimation of Kvert and Kleg was made according 

to the following formulae (Morin et al., 2005): 



𝐾𝑣𝑒𝑟𝑡 =
𝐹𝑚𝑎𝑥

𝛥𝑦
(2) 

𝐹𝑚𝑎𝑥 = 𝑚𝑔
𝜋

2
(

𝑡𝑓

𝑡𝑐
+ 1) (3) 

𝛥𝑦 = −
𝐹𝑚𝑎𝑥𝑡𝑐

2

𝑚𝜋2 + 𝑔
𝑡𝑐

2

8
(4) 

𝐾𝑙𝑒𝑔 =
𝐹𝑚𝑎𝑥

𝛥𝐿
(5) 

𝛥𝐿 = 𝐿 − √𝐿2 − (
𝑣𝑡𝑐

2
)

2

+ 𝛥𝑦 (6) 

where g = acceleration of gravity (9.81 m.s-2), π constant (3.14159), Fmax is the maximal

ground reaction force during contact, Δy is the vertical displacement of the COM, m is the

participant’s body mass (in kg), ΔL is the leg length variation, and L is the resting leg

length and is modeled from each athlete’s stature according to Winter, (1979) L = 0.53 x 

participants’ height (in m). Prior to further analysis the Kleg and Kvert values were 

corrected with the correction factor (1.0496 K), which was suggested to improve the 

accuracy of the method (Coleman et al., 2012). 

Τhe force applied perpendicular to the running surface (PF) and the effective 

force (EF) were calculated according to(Weyand et al., 2000): 

𝑃𝐹 = 𝐹𝑂𝐺 + 𝐸𝐹 (7) 

𝐹𝑂𝐺 =
𝑆𝑇

𝐶𝑇
(8) 

𝐸𝐹 = 𝐹𝑂𝐺 − 1 (9) 

𝐸𝐼 = 𝐸𝐹 ∙ 𝐶𝑇 (10) 

where FOG is the average mass-specific force applied to oppose gravity during foot-

ground contact and EI is the effective impulse. 



Statistical analysis 

A one-way analysis of variance (ANOVA) was used to establish if there was any 

significant difference among the three subgroups. For ANOVA, the assumption of 

sphericity was examined using Mauchly’s test. In the event of significant overall group 

differences, Bonferroni post hoc tests were used to identify the specific group differences. 

Effect sizes, using the Cohen’s criterion (d) (Cohen, 1988) were defined as “small, d = 

0.2,” “Medium, d = 0.5,” and “large, d = 0.8”. Additionally, all kinematic and kinetic 

variables were analyzed by simple linear regression. The relative importance of all 

variables to MRS was assessed by the factorial change in each variable provided by the 

respective regression equation for all participants tested as well as across each of the 

three sub-categories. SPSS software (SPSS Inc., version 22, Chicago, IL) was used for all 

statistical analyses. The significance level for all the tests was set at p  0.05 with all data 

reported as mean ± SD. 

Results 

Spatiotemporal parameters 

In our cohort of 50 participants, MRS was on average 8.53 ± 0.72 m.s-1 and ranged from 

7.12 to 10.35 m∙s-1 (Slow: 7.12 to 7.99 m.s-1, Medium: 8.05 to 8.94 m.s-1, and Fast: 9.01 

to 10.35 m.s-1, Table 1). MRS values were significantly (F =104.5, p  0.05) higher in 

Fast vs. Medium (+11.0%) and Slow (+22.1%) as well as in Medium vs. Slow (+10.0%)

(Tables 1 and 4). Compared to Slow, SR values were significantly higher (F =13.56, p  



0.05) in Fast (+13.1%) and Medium (+8.1%) (Tables 1 and 4). SL and FL values were 

significantly (F =7.24 and 17.59, respectively, p  0.05) higher in Fast than in Slow 

(+8.2% and +19.6%, respectively) and Medium (+6.0% and +16.7%, respectively) 

(Tables 1 and 4). Compared to Slow, SDT, ST, and SWT values were significantly lower 

(F = 14.72, 14.22 and 7.47, respectively, p < 0.05) in Fast (-11.3%, -11.4% and -8.2%, 

respectively) and Medium (-7.5%, -7.3% and -7.4%, respectively) (Tables 1 and 4). CT 

and PP values were significantly lower (F = 29.08 and 14.93, respectively) in Fast vs.

Medium (-13.5% and -17.5% respectively) and Slow (-20.2% and -29.4% respectively) as 

well as in Medium vs. Slow (-7.8% and -14.4% respectively) (Tables 1 and 4). CL, FT,

and BP values did not differ between groups (Tables 1 and 4). Finally, none of the joint 

angle values differed between groups (p>0.05, Table 2). 

*** TABLES 1 & 2 NEAR HERE *** 

Kinetic and spring-mass model parameters 

Fast had significantly higher Kvert, Kleg, and FOG values (F = 22.21, 6.50, and 18.53, 

respectively) than Medium (+44.1%, +18.1%, and +10.8%, respectively) and Slow 

(+25.4%, +22.0%, and +10.4%, respectively) (Tables 3-4). 

*** TABLES 3 & 4 NEAR HERE *** 

Regression analysis 



Regression analysis revealed significant association of MRS with most of the analyzed 

variables (r ranging 0.46 to 0.80, p< 0.05), with highest correlation coefficients measured 

for CT (r = -0.80), PP (r = -0.70), Kvert (r = 0.74), and Kleg (r = 0.77) (Figures 2 and 3, 

Table 5). For each group separately, regression analysis revealed significant (p< 0.05) 

associations with MRS only for CT (r = -0.58) in Slow and for CT (-0.53), PP (-0.51), 

Kvert (r = 0.54) and Kleg (r = 0.57) in Fast (Table 5). 

*** FIGURES 2 & 3 AND TABLE 5 NEAR HERE *** 

Discussion 

The aim of this study was to identify how performance level affects several key running 

mechanical factors during the MRS phase of a 35 m straight-line overground sprint. Our 

a priori categorisation into Fast, Medium and Slow sprinters indicates that twelve, eight

and seven out of twenty one variables significantly distinguished Fast from Slow, Fast 

from Medium and Medium from Slow sprinters, respectively. Also, Medium sprinters 

displayed significantly different mechanical charactersitics in 7 variables compared to 

Slow sprinters. Our first hypothesis, stating that faster compared tο slower sprinters at 

MRS would produce favorable mechanical characteristics, is therefore verified. 

Additionally, high associations of MRS with both Kvert and Kleg (both for the whole 

sample and the Fast group) would support our second hypothesis that these mechanical 

features are key to generate faster top speed during a short sprint. 

The present results indicated significant differences for MRS values among Slow, 

Medium and Fast performance groups (7.67±0.27, 8.44±0.22 and 9.37±0.41 m.s-1, 

respectively). Overall, the range of values corresponded to those attained by physically-



active students (7.40 – 8.1 m.s-1) (Paradisis et al., 2015; Paradisis & Cooke, 2001, 2006),

sprinters with average performance level (8.37 – 9.08 m.s-1) (Paradisis et al., 2015), and 

sprinters with higher performance level (9.38 – 10.37 m.s-1) (Bezodis et al., 2008; 

Paradisis et al., 2015; Rabita et al., 2015), respectively. The importance of achieving high 

MRS values for achieving best sprint race performance is supported by high correlation 

coefficients (0.91 – 0.96) reported elsewhere between MRS and 100-m performance 

(Brüggemann et al., 1999). In particular, the speed which was achieved at the 30-40 m 

distance interval during the 2017 World Athletics Championship 100 m men’s final was 

significantly correlated (0.98) with the final race time, which also corresponded to 96 ± 

2% of the maximum speed (Bissas et al 2018). As expected, MRS is a variable that 

clearly discriminates sprinters between different performance levels. 

Attainment of distinct MRS values among the three performance level groups was 

accompanied by key differences in most of spatiotemporal characteristics.  In particular, 

SL was greater in Fast than in Slow and Medium (+8.2% and +6.0%, respectively), but 

not between Slow and Medium. This indicates that the fastest sprinters compared to their 

counterparts of lower performance level adopted a longer step pattern strategy in order to 

produce faster running speeds near the 30-35-m distance mark. Additionally, SR was 

greater in Fast and Medium than in Slow (+13.1% and +8.1%, respectively). Whilst 

sprinters of lower performance level are not capable of producing high SR values at peak 

speeds, a lack of difference for SR between Fast and Medium sprinters reinforces that SL 

is probably more important in this particular context to explain difference in MRS 

between these two groups. Furthermore, our results indicated that CT is a temporal 

characteristic that differed among all three performance level groups (Table 4). Hence, 



faster sprinters spent less time in contact with the ground compared to sprinters of lower 

performance level, whereas FT was comparable between groups. Our findings therefore 

strengthen the suggestion that higher running speeds are achieved through reduced 

contact times, as opposed to shorter flight times (Morin et al., 2012; Paradisis & Cooke, 

2006; Weyand et al., 2010; Weyand et al., 2000). Using group level comparisons, our 

unique data set indicate that SR could explain MRS differences between Slow and Fast-

Medium sprinters, while longer SL values differentiated Fast from Medium and Slow 

sprinters. However, CT, but not FT, helps differentiating performance among all three 

groups. Practically, progressing from one performance level to the next one (from Slow 

to Medium and from Medium to Fast) can occur through either different distinct 

pathways (i.e. improve only one of the key parameters) or a combination of 

improvements. However, as all three factors (SR, SL, CT) are mechanically interrelated 

((Paradisis & Cooke, 2001) it would not be wise to target only one of them through 

specific training whilst removing the focus from the others. In theory, one could employ 

resistance and flexibility drills to improve SL but this on its own, without reducing the 

CT and therefore increasing SR, could lead to suboptimal increases in MRS. A crucial 

aspect is therefore to generate large impulses onto the ground, something that governs 

both SL and SR and subsequently MRS (Weyand et al., 2000). 

Our analysis of the relationships between selected mechanical variables and MRS 

for all participants regardless of performance group indicated a moderate contribution of 

SR to the achieved MRS at 30-35 m during a 35 m sprint, as it only accounted for 43% of 

MRS variance. The contribution of SL (26%) was even smaller. Different views exist in 

the literature regarding the relative importance of developing longer SL (Gajer et al., 



1999; Hunter et al., 2004; Maćkała & Mero, 2013; Mero & Komi, 1985) over higher SR 

(Bezodis et al., 2008; Mero et al., 1992) to reach top speeds. While individual strategies 

to reach MRS were also evident in our tested sample, it has previously been demonstrated 

that there is a large variation in running speed patterns among elite sprinters since SR and 

SL are highly individual qualities (Salo, Bezodis, Batterham, & Kerwin, 2011). Our 

observation of a moderate contribution of SR to the achieved MRS at 30-35 m during a 

35 m sprint, partially support conclusions of previous studies (Bezodis et al., 2008; Mero 

et al., 1992), which suggest that SR is the main limiting factor at maximal speed. 

However, as SR will not compensate for insufficient stride lengths, its limiting role 

becomes apparent only once mechanically adequate SL values have been achieved. The 

definition of “adequate” will differ between individuals and groups of sprinters due to a 

range of differences including those in segment lengths. Our findings that the Fast group 

exhibited longer SL values than the other two highlight the prerequisite role of SL in the 

speed advantages gained through high SR values. 

A unique observation was also that the PP became shorter as performance level 

increased, with significant differences observed among the three groups. In contrast, the 

duration of BP was similar. It appears that PP is the discriminative variable of 

performance level when the foot is in contact with the ground.  Indirect support for this 

interpretation comes from studies showing that 6 – 8 weeks of specific sprint training 

improved MRS by decreasing propulsive phase duration (Paradisis, Bissas, & Cooke, 

2013; Paradisis et al., 2015). Our novel findings indicate that shorter CT could explain 

64% of the variance in MRS and was mainly due to shorter PP since braking phase 

duration was similar between the three groups. The combination of shorter PP with 



longer SL in the Fast group seems to be the result of more powerful actions of lower

limbs when pushing-off against the ground in sprinters of higher performance level. The 

attainment of shorter CT in Fast sprinters, while SL remains optimal, could theoretically 

be explained by the capacity of better performers to generate large propulsive impulses 

driven by the production of large horizontal forces (Weyand et al., 2000; Weyand, et al., 

2010) in limited time periods. In support, the faster runners in our study also produced 

greater forces to oppose gravity (FOG) compared to their slower counterparts indicating 

that faster sprinters can reach greater MRS by applying greater support forces to the 

ground; similar results have been reported previously (Weyand et al., 2000; Weyand et 

al., 2010). The relative smaller contribution of FOG to the development of higher running 

speed (it represented 39% of the MRS variance) leads us to suggest that the ground force-

step rate combination that maximizes forward speed is set largely by contacting the 

ground faster (short CT) with greater peak vertical force. 

Despite the fact that significant differences occurred in the spatio-temporal 

characteristics among the three groups, the angles of the body segments (i.e., similar 

ankle, knee and hip joints) during contact and take off phases were similar. This would 

indicate that more experienced sprinters achieve faster MRS without the necessity to 

adopt a different body positioning of their lower extremities, but through the generation 

of greater propulsive impulses. In line with this, previous research indicated that specific 

sprint training improved MRS and the related spatio-temporal characteristics, without 

altering the body segment angles in a population cohort ranging from physical education 

students to experienced sprinters (Paradisis et al., 2009, 2013, 2015; Paradisis & Cooke, 

2006). This supports the suggestion that the faster sprinters in our study had improved 



neural and/or the contractile characteristics, probably due to years of training. This 

assumption remains speculative since our study did not include any specific 

neuromuscular function profiling of tested athletes. 

Our spring-mass modelling indicates that both Kvert and Kleg values were greater 

in Fast than in Slow (+44.1% and +18.1% respectively) and Medium (+25.4% and 

+22.0% respectively) sprinters. These differences are remarkable and underpin the notion

that high stiffness values are needed for higher MRS. Besides, previous studies have 

shown that Kvert values typically increase with running speed (Arampatzis et al., 1999). 

Past research on world class sprinters (100 m time = 9.58 - 9.84 s) has calculated Kvert 

values in the region of 355.8 - 541.8 kN∙m-1 (Taylor & Beneke, 2012), so the Kvert values 

(118.42 kN∙m-1) for the fastest sprinter of this study (100 m = 10.60 s) are in a realistic 

zone within the stiffness continuum. 

Another unique observation was that Kvert and Kleg explained 55% and 59% of the 

variance in MRS (N = 50), respectively. It has been argued that mechanical stiffness 

regulation is a vital component for setting SR (Farley & Gonzalez, 1996). The strong 

correlation observed between changes in Kvert and SR with fatigue induced by repetition 

of “all-out” running efforts (Girard et al., 2017; Morin et al., 2006) and in maximal 

treadmill sprints of different distances (Girard et al., 2016; Hobara et al., 2010) indicates 

that a decreased Kvert leads to lower SRs. In our study, an increase in Kvert in the Fast 

group would enable the spring-mass system of quicker sprinters to recoil in a shorter time 

(Farley & Gonzalez, 1996), something essential for quicker absorption and generation of 

power and kinetic energy during ground contact (Hobara et al., 2010). In line with 

previous results (Arampatzis et al., 1999; Farley, Glasheen, & McMahon, 1993; Kuitunen 



et al., 2011), the current study demonstrated a clear association of mechanical stiffness 

with running speed, indicating that producing elevated Kvert and Kleg values are associated 

with increased MRS (especially for Fast sprinters), higher SR and lower CT. 

Therefore producing larger stiffness values would in turn participate to improve MRS. 

This is reinforced by observation of shorter CT and larger impulses when stiffness values 

are also higher. However, due to the multifactorial nature of the process modulating 

stiffness it is challenging to break down accurately training elements purely responsible 

for stiffness conditioning. Nevertheless, as some of the stiffness determinants are known, 

there are already training methods available aiming to manipulate those factors. For 

instance, training involving high stretching velocities (e.g. plyometrics, downhill 

sprinting, loaded sprints, bounding) could provide sufficient stimuli to reinforce several 

stiffness regulating mechanisms (e.g. muscle preactivation, tendon-aponeurosis behavior, 

Golgi tendon organs and muscle spindles) (Kubo et al., 2007; Kubo, Ishigaki, & 

Ikebukuro, 2017; Muñiz, Virgen-Ortiz, Huerta, Trujillo, & Marin, 2008). 

Limitations and additional considerations 

The present study has some limitations. First, the data collected were specifically 

focusing on the 30-35 m distance interval in order to emphasize the few steps when 

running speed is peaking. As such, our results must remain specific to the 30–35-m 

distance interval of a 35-m sprint and should not be extrapolated to other phases of the 

sprint (i.e. early acceleration or/and deceleration) or shorter/longer sprint durations. For 

future research the comparison of different distance intervals and the determination of 

possible even larger differences across different performance level groups would be 



novel. Second, as the present results were obtained in male adult athletes with a sprint-

training background, the conclusions should not be extrapolated to other age groups, 

genders, or populations, Indeed, age-related differences in spatio-temporal parameters 

and ground reaction forces during sprinting have been observed in 99 boys aged 6.5 - 

15.4 years (Nagahara, Takai, et al., 2018). Third, the stiffness estimations are based on a 

number of assumptions associated with the spring-mass model (Blickhan, 1989; 

McMahon & Cheng, 1990). However, these mechanical simplifications are necessary as 

the complexity of the human body mechanics during running makes any totally accurate 

macroscopic approach impossible. These are also surpassed by useful information 

derived from the analysis using the spring mass model, which successfully describe the 

general characteristics of locomotion (Blickhan, 1989). 

Conclusions 

Our findings based on a large sample and distinct subpopulations of sprinters demonstrate 

that maximal running speed at 30-35 m increased with sprinting performance level and 

was achieved through shorter contact time and propulsive phase, longer step length, faster 

step rate, and higher vertical and leg stiffness. Therefore, the attainment of maximal 

running speed during a 35-m straight-line sprint is influenced by key mechanical 

charactersitics which clearly differ amongst sprinters of various abilities. Knowledge of 

how performance level, reached through a combination of trainable and non-trainable 

factors, influences the production of effective running mechanics and the nature of the 

association between these variables with running velocity may provide a basis for 

coaches when developing individualised sprint training protocols. 
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Figure 1. Location of the body landmarks and visualization of the angles: knee (α), hip 

(β), shank to running surface (υ), trunk to running surface (δ), thigh to running surface 

(ε), the angle between the two thighs (ζ) DCM = distance from the center of mass. 

Figure 2. Swing time (A), propulsive phase (B), contact time (C), step time (D), flight 

length (E), step length (F), and step rate (G) as a function of maximum running speed for 

all participants (N-50). 

Figure 3. Leg stiffness (A), vertical stiffness (B) and FOG = average mass-specific force 

applied to oppose gravity during contact (C) as a function of maximum running speed for 

all participants (N-50). 



Table 1. Spatiotemporal characteristics of the three groups. 

Slow 

(N = 13) 

Medium 

(N = 21) 

Fast 

(N = 16) 

Maximum running speed (m∙s-1) 

Step length (m) 

Step rate (Hz) 

Contact length (m) 

Flight length (m) 

Contact time (ms) 

Braking phase (ms) 

Propulsive phase (ms) 

Flight time (ms) 

Step time (ms) 

Swing time (ms) 

Stride time (ms) 

7.67±0.27 

2.00±0.10 

3.83±0.18 

1.03±0.07 

0.97±0.09 

134±12 

55±6 

79±14 

127±10 

261±13 

390±16 

525±22 

8.44±0.22* 

2.04±0.12 

4.14±0.28* 

1.05±0.08 

1.00±0.10 

124±11* 

56±8 

68±11* 

118±12 

242±17* 

361±29* 

485±34* 

9.37±0.41*# 

2.17±0.15*# 

4.34±0.29* 

1.00±0.07 

1.16±0.11*# 

107±8*# 

51±8 

56±9*# 

124±11 

232±16* 

358±25* 

466±31* 

* Significantly different from Slow and # significant different from Medium (p < 0.05)



Table 2. Postural characteristics of the three groups. 

Slow 

(N = 13) 

Medium 

(N = 21) 

Fast 

(N = 16) 

Contact instant 

Knee (°) 

Shank (°) 

Hip (°) 

Trunk (°) 

DCM (cm) 

Take off instant 

Knee (°) 

Shank (°) 

Hip (°) 

Trunk (°) 

DCM (cm) 

145±7 

91±4 

134±6 

80±5 

30.4±41 

161±7 

42±3 

203±8 

83±5 

58.8±47 

147±6 

92±4 

133±6 

79±4 

31.0±40 

162±7 

42±3 

202±7 

83±4 

59.2±40 

145±7 

91±5 

135±5 

81±4 

28.8±43 

161±7 

41±4 

204±8 

84±4 

58.8±56 

Knee=knee joint angle; Hip= hip joint angle; Shank= shank to running surface; Trunk= trunk to 

running surface angle (determined by the line between the hip and glenohumeral joints of the right 

side of the body) (δ); DCM= distance from the center of mass. 



Table 3. Spring mass model characteristics of the three groups. 

Slow 

(N = 13) 

Medium 

(N = 21) 

Fast 

(N = 16) 

FOG (Wb) 

Effective impulse (Wb∙s) 

Vertical stiffness (kN∙m-1) 

Leg Stiffness (kN∙m-1) 

1.952±0.123 

0.127±0.010 

73.8±9.7 

13.1±2.3 

1.959±0.108 

0.118±0.012 

83.8±11.7 

12.7±2.3 

2.163±0.108*# 

0.124±0.011 

105.1±16.8*# 

15.5±2.7*# 

* Significantly different from Slow and # significant different from Medium (p < 0.05). FOG=

average mass-specific force applied to oppose gravity during contact. 



Table 4. Comparison matrix of all examined variables with % differences and effect sizes among the 

three groups and the fold changes with the changes of maximum running speed.  

Fast-Slow 

(%, d) 

Fast-Medium 

(%, d) 

Medium-Slow 

(%, d) 

Fold change 

with 1.45 

change of MRS 

MRS 22.1%, 4.95* 11.0%, 2.84* 10.0%, 3.15* - 

Step rate 13.1%, 2.09* 4.7%, 0.63 8.1%, 1.32* 1.25 

Step length 8.2%, 1.34* 6.0%, 0.93* 2.0%, 0.30 1.16 

Contact length -2.6%, 0.37 -4.1%, 0.59 1.5%, 0.21 - 

Flight length 19.6%, 1.92* 16.7%, 1.63* 2.5%, 0.26 1.42 

Stride time -11.3%, 0.74* -4.1%, 0.60 -7.5%, 0.57* -1.25

Step time -11.4%, 1.99* -4.4%, 0.63 -7.3%, 1.30* -1.26

Flight time -2.0%, 0.29 5.1%, 0.52 -6.7%, 0.81 -

Contact time -20.2%, 2.65* -13.5%, 1.77* -7.8%, 0.87* -1.55

Braking phase -7.1%, 0.57 -8.7%, 0.63 1.8%, 0.14 -

PP -29.4%, 1.95* -17.5%, 1.19* -14.4%, 0.87* -2.06

Swing time -8.2%, 1.52* -0.9%, 0.11 -7.4%, 1.24* -1.17

Vertical stiffness 44.1%, 2.28* 25.4%, 1.47* 14.9%, 1.01 1.93

Leg stiffness 18.1%, 0.95* 22.0%, 1.11* -3.2%, 0.18 2.41

FOG 10.8%, 1.83* 10.4%, 1.90* 0.4%, 0.815 1.22

EI -2.0%, 1.83 5.1%, 1.90 -6.7%, 0.06 - 

* Significantly different between the groups (p < 0.05), MRS = maximum running speed, PP =

propulsive phase of contact time, FOG = average mass-specific force applied to oppose gravity 

during contact, EI = effective impulse. 



 of maximum running speed with all the 

analyzed variables for all the participants and for each group separately. 

All participants 

(N = 50) 

Slow 

(N = 13) 

Medium 

(N = 21) 

Fast 

(N = 16) 

Step rate 0.66* 0.38 0.41 0.32 

Step length 0.51* 0.36 0.08 0.30 

Contact length -0.15 -0.19 0.05 0.03 

Flight length 0.65* 0.53 0.07 0.39 

Stride time -0.65* -0.33 -0.40 -0.29

Step time -0.66* -0.38 -0.39 -0.34

Flight time -0.08 0.53 0.07 -0.09

Contact time -0.80* -0.58* -0.34 -0.53*

Braking phase -0.19 0.15 -0.03 0.02

PP -0.70* -0.54 -0.27 -0.51*

Swing time -0.46* -0.03 -0.35 -0.18

Vertical stiffness 0.74* 0.24 0.17 0.54* 

Leg stiffness 0.77* 0.26 0.15 0.57* 

FOG 0.62* 0.45 0.03 0.38 

EI -0.08 0.19 -0.24 -0.09

* = p < 0.05, PP = propulsive phase of contact time, FOG = average mass-specific force applied to

oppose gravity during contact, EI = effective impulse. 

Table 5. Association (Pearson’s correlation coefficient)
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