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Abstract— Support Vector Machine (SVM) is a learning-based algorithm, which is widely used for 
classification in many applications. Despite its advantages, its application to large scale datasets is limited 
due to its use of large number of support vectors and dependency of its performance on its kernel parameter. 
This paper presents a Sliding Mode Control based Support Vector Machine Radial Basis Function’s kernel 
parameter optimization (SMC-SVM-RBF) method, inspired by sliding mode closed loop control theory, 
which has demonstrated significantly higher performance to that of the standard closed loop control 
technique. The proposed method first defines an error equation and a sliding surface and then iteratively 
updates the RBF’s kernel parameter based on the sliding mode control theory, forcing SVM training error 
to converge below a predefined threshold value. The closed loop nature of the proposed algorithm increases 
the robustness of the technique to uncertainty and improves its convergence speed. Experimental results 
were generated using nine standard benchmark datasets covering wide range of applications. Results show 
the proposed SMC-SVM-RBF method is significantly faster than those of classical SVM based techniques. 
Moreover, it generates more accurate results than most of the state of the art SVM based methods. 

 
Keywords—support vector machine, sliding mode control, radial basis function, classification, classification 

speed. 
 
 

I. INTRODUCTION 
Support Vector Machine (SVM) is a machine learning algorithm that widely used for classification. SVM is one 

of the robust and efficient classification methods amongst the well know classification algorithms such as nearest 
neighbor, boosted decision trees, regularized logistic regression, neural networks, and random forests [1], [2], [3]. 
When dealing with non-linearly separable data, SVM maps the data into higher dimensional space using kernels prior 
to performing the classification [4]. SVM formulates a quadratic programming (QP) problem to find a separating 
hyperplane, which maximizes the margin between two classes of the data [3], [5], [6]. Since SVM achieves a unique 
solution and learns from dimensionality of feature space, it is more robust than other techniques to over fitting [4], 
[6], [7]. Despite all the advantages and applications of the SVM [8], [9], its classification speed is deteriorated when 
dealing with large scale problems as it uses large number of support vectors. In addition, its training computationally 
expensive and timely [10], [11]. Over the last two decades, many techniques have been proposed to speed up the test 
and training time of the SVM [5], [10], [11], [12], [13], [14],  [15],   [16],   [17],   [18]   which   have   been   resulted 
in techniques that reduce the number of SVs. However, there are demands for more powerful techniques. In some 
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branches of control such as nonlinear [19], [20] and optimal control [21] SVM has been used due to its capabilities. 
However, the application of the Sliding Mode Control (SMC) to speed up the training period of the SVM and 
improving its performance has not been reported in the literature. 

This paper presents a closed loop method based on Sliding Mode Control (SMC) to find optimum value for 
RBF kernel parameter of the SVM. Application of the slide mode control significantly improves the learning speed 
of the SVM and improves the performance of the resulting classifier in term of accuracy and matching computation 
cost. The proposed method uses a first order equation solution to solve an n-order problem for non-linear systems 
with some level of uncertainty. The proposed method first defines an error equation and the sliding surface and then 
uses the closed loop SMC algorithm to find an optimum value for RBF kernel parameter, γ, of the SVM. This 
significantly reduces the SVM training time. Experimental results on nine benchmark datasets show that the 
proposed method significantly outperforms the anchor SVM in terms of accuracy at lower number of Support 
Vectors (SV). This implies that the proposed method is faster than the anchor  SVM. Experimental results also show 
that the proposed method 

achieves superior or very competitive performance in term of accuracy to those of the state-of-the-art techniques. 
Results also shows that the propose method is faster than the state-of-the-art techniques in term of classification time, 
as it generates smaller number of SV. The rest of this paper is organized as follows. Sections II and III give an overview 
on Support Vector Machine (SVM) and the Sliding Mode Control (SMC) technique, respectively. The proposed method 
is introduced in Section IV. Section V presents the experimental results and finally paper is concluded in Section VI.  
 
 
 
II. SUPPORT VECTOR MACHINE 
Support Vector Machine (SVM) is a linear classifier, which is widely used to split a linearly separable dataset into its 
two classes. It determines an optimum hyperplane to classify the input dataset that maximizes its distance and margin 
from the data of the both classes. Hard margin SVM is usually used to classify data within a linearly separable dataset. 
Assume that there are n data points with labels either 1 or -1 are in the input dataset. SVM takes the following steps to 
find the initial margin and then optimize it. Assume that  wTx + b = 0 is the hyperplane equation, where 𝑤𝑤 is an 
orthogonal vector to the hyperplane and b is its bias, then the distance of a point to the hyperplane can be determined 
using (1):   
 

 
 
where xi  is a data point and di (x) is xi’s signed distance from the hyperplane, the sign of the di (x)  is xi’s label and 

shown by yi. The margin is the defined by    To make the distance of all points to the hyperplane 
greater than 1, w and b can be rescaled as follows: 
 

 
 
Therefore, the SVM algorithm searches for the maximum margin. Based on (2), this can be formulated as a Quadratic 
Problem (QP) as shown in equation 3: 
 
 

 
 
The resulting QP is a convex problem, which results in a global minimum or maximum solution. Consequently, the 
hyperplane w is calculated by solving this QP. Classifying a nonlinear dataset using a linear algorithm such as SVM 
can be achieved by reshaping and increasing the dimension of the data. However, this results in the curse of 



 ©2019 IEEE 
 
 
dimensionality. To overcome this issue, SVM uses the concept of the kernel, which is known as soft margin SVM. In 
this case, the decision boundary is non-linear, and the data is not linearly separable. Hence, some points within the 
dataset may cross the margin or not correctly classified. Therefore, the hard margin SVM’s constrain is not valid 
anymore. The constrain can be modified to include the nonlinear cases as well, as shown in (4), [22]: 
 
 

 
 
In equation 4, ξi is added to the constrain for the points, which violate the constrain. But by changing the constraint in 
this way, all points within the dataset can violate the constraint. Therefore, the number of points, which can violate the 
margin are restricted by adding a penalty or regularization parameter, C. One can solve the dual formula (4) as [23], 
[24], [25]: 
 
 

 
 
Where αi is a dual variable, which is obtained via the QP. The points with αi greater than zero are support vectors and 
the points with αi equal to C are the ones that violate the constrain of the hard margin SVM. Finally, the class of each 
input data point by using RBF kernel can be determined as follows: 𝑦𝑦 =  
where n is the number of training data, αi is the dual variable, xi is the training data, x is the input data point, yi is the 
corresponding label of  xi and γ is RBF kernel parameter.   
 
 
 
III. SLIDING MODE CONTROL 
Sliding Mode Control (SMC) is a powerful technique for controlling a non-linear system, particularly when there is 
not a precise mathematical model for the system or the model does not represent all system’s parameters [26], [27], 
[28]. SMC assumes that controlling a first order system is much easier than controlling an nth-order system. This allows 
an nth-order problem to be replaced by its equivalent first order problem. For the transformed problem, perfect 
performance can be achieved in principle despite the presence of inaccuracy of arbitrary parameters [26].  This creates 
a sliding surface and drives the state of the system toward the surface in its state space. Once the state of the system 
reached the sliding surface, SMC keeps the state of the system in a close neighborhood of the sliding surface [28]. SMC 
consists of two parts: the sliding surface and the off-surface dynamics. For a single input dynamic system of form x =  
f(x) + b(x)u ,where 𝑥𝑥 is the scaler output, 𝑢𝑢 is the scaler input, 𝒙𝒙 is the state vector, f(x) and b(x) are system model, 
which are not exactly known and have uncertainties. The track error can be written as: 
 

 
 
where 𝑥𝑥 and 𝑥𝑥d are the output and desired output respectively. A time varying surface S(t) in the state space 𝑅𝑅 can be 
defined by the scaler space s(x; t)=0, where: 
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Where 𝜆𝜆 is a strictly positive constant and for n =2, (7) can be written as: 𝑠𝑠 = �̇�𝑒 + 𝜆𝜆𝑒𝑒 . The problem of tracking 𝑥𝑥 ≡ 𝑥𝑥d 
is equivalent to that of remaining on the surface S(t) for all 𝑡𝑡 > 0 ; indeed 𝑠𝑠(𝑥𝑥, 𝑡𝑡) ≡ 0 represents a linear differential 
equation whose unique solution is 𝑒𝑒 ≡ 0 , given its initial condition. Thus, the problem of tracking the n-dimensional 
vector 𝑥𝑥d can be reduced to that of keeping the scalar quantity 𝑠𝑠  at zero. 
 

 
 
When the surface is driven to zero, the error drives to zero too, for 𝑡𝑡 → ∞ [26]. To show that, we work backwards by 
postulating the off-surface dynamics that must be of the form: 
 

 
 
where f(S) could be any non-decreasing odd function. This shows that the change in S and the 'distance' of the current 
state of the sliding surface, it is always opposite the sign of S. The control input should force the states to approach it. 
So, �̇�𝑆 must be a function of the input, u. �̇�𝑆  must be a function of the second derivative of the error to just be a function 
of the input. This implies that S should only be a function of error and its first derivative. The simplest form of such 
function, which guarantees e→0 as t→∞ is given in equation 8 [28]. Consequently, as S approaches zero, so does the 
tracking error. For equation 8, the sliding surface is a line with the slope of −𝜆𝜆 in phase plane. Starting with any initial 
condition, the state trajectory drives to the sliding surface and then slides along the surface exponentially towards the 
desired value, 𝑥𝑥d , with the time constant of    , as This illustrated in Fig. 1 [26].  
 
 
SVM has widely used to classify non-linear separable data where there is always some uncertainty in selection of its 
parameters such as regularization and kernel. This has inspired the author to use the concept of sliding mode control to 
improve the performance of the SVM algorithm. 

 

 
 

 
IV. PROPOSED METHOD 
Fig. 2 shows a block diagram of the proposed Sliding Mode Control based Support Vector Machine Radial Basis 
Function’s kernel parameter optimization (SMC-SVM-RBF) method. The proposed method split the dataset into three 
parts named raining, validation and test-subsets. The Trian SVM block takes the training subset and initial parameters 
including parameter ynew regularization parameters, C,  𝜆𝜆, d, VE, which represent the state of the training error and train 
the SVM generating Support Vectors (SVs) and their numbers, NSVs. The Classification block takes the SVs, NSVs 
and the train subset, and classifies the train subset data into two classes. The classified train data are then assessed by 
the Assess classified data. If the Training Error (TE) equals to zero, it implies that the value of the RBF kernel parameter 
is not appropriate, and the optimization algorithm has arrived into a local minimum. Therefore, the value of the RBF 
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kernel parameter is perturbed and backs to Training SVM block. This procedure is repeated until TE reaches a non-
zero value. Classification and assessing the train and validation data generate the following information: the number of 
misclassified training data (MC), the labels of the misclassified training data (MC-lbs), the training error (TE) of the 
classified training data and the validation error (VE) of the classified validation data. MC and MC-lbs are used to update 
the RBF kernel parameter, TE is used to define the when  it is necessary to perturb the RBF kernel parameter and VE 
is used as a measure to terminate the training procedure. For perturbing value of 𝛾𝛾 the algorithm checks, if TE is zero, 
𝛾𝛾old will be perturbed until a non-zero TE is achieved. To perturb the value of the RBF kernel parameter, the value of 
the RBF kernel parameter is assessed when TE is zero; if its value is smaller than a threshold, it will be perturbed by a 
small value, otherwise it will be perturbed by a bigger value. The perturbing procedure can both increase or decrease 
the RBF kernel parameter. Experimental results presented in this paper are generated using small initial value for the 
RBF kernel parameter. When TE reaches a non-zero value, the training procedure starts as follows. First, three counters 
and three thresholds are initialized as follows: r1,  r2, and r3 are set to one, thr1, thr2 and Maximum Number of iterations 
that are acceptable for enhancement in Validation Error (MNVE) are set to the Number of Mis-Classified train data 
(NMC), Number of Training Data (NTD), and a constant value, respectively. Then the algorithm goes through each 
element of Mis-Classified training data using its label, MC-lbs[r1], calculating its respected p and Q. If MC- lbs[r1] = 
-1, q will be calculated using 𝑞𝑞 =    

After that he algorithm goes through elements of q using counter r2 and for each positive element of q is 

calculated, when all elements of  are calculated, it computes but if MC-lbs[r1] in not equal to -
1, it assigns 𝛾𝛾new to  𝛾𝛾1 . The algorithm then assigns 𝛾𝛾1 and 0 to 𝛾𝛾’ and 𝛾𝛾1 , respectively and increment r1 to point to the 
next mis-classified train data. This procedure is repeated for all mis-classified train data (NMC). When 𝛾𝛾’ is calculated 
for all misclassified train data, the algorithm will check  r3, to see if r3 has reached its  Maximum Number of iterations 
that are acceptable for enhancement in Validation Error (MNVE) threshold value. If not, a new value for 𝛾𝛾 is calculated 

as  and it backs to Train SVM block and the procedure is repeated until MNVE reaches its predefined 
threshold, otherwise the training is completed and 𝛾𝛾new  is taken  𝛾𝛾 and used to calculate the SVs. The resulting SVs are 
used to classify the test subset. The proposed Sliding Mode Control based Support Vector Machine Radial Basis 
Function’s kernel parameter optimization (SMC-SVM-RBF) method has been mathematically proved but the proof has 
not been included in this manuscript.    
 
 
 
V. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed SMC-SVM-RBF method, experimental results were generated using nine 
datasets from UCI machine learning repository [29] called: Letter Recognition (LR) (letters ‘A’ and ‘N’ are used for 
this experiment), Wisconsin Breast Cancer (WBC), Liver Disorder (LD), Heberman, Diabetes, Heart Disease, 
Ionosphere and Sonar datasets. The number of instances and dimension of the datasets used in this experiment, are 
tabulated in Table I.  
To generate experimental results, all the datasets are normalized and then each dataset is randomly divided into three 
subsets called: train, test and validation subsets of size 70, 20 and 10 percent, respectively. The following setting are 
used to generate results:  f(S) = 50 ∗ arctan (S/10) , λ = 0.3 and regularization parameter, C = 100.1. The results are 
presented in two sections. In section 1, the number of resulting numbers of Support Vectors (SVs), achieved accuracy 
for the train and test data of the proposed technique are compared to those of anchor SVM and tabulated in Table II. 
From Table II, the proposed technique generates significantly higher performance in term of accuracy and number of 
SVs than that of anchor SVM. In section 2, the performance of the proposed methods is compared to those of Zhang’s 
and Zhiliang Liu’s methods [16], [12], using four datasets and the results are tabulated in Table III. From Table III, it 
can be seen that the propose method gives either superior or very competitive results to those of Zhang’s and Zhiliang 
Liu’s methods. 
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VI. CONCLUSIONS 
In this paper the concept of Support Vector Machines (SVM) and Sliding Mode Control (SMC) technique was first 
reviewed and then a Sliding Mode Control based Support Vector Machine Radial Basis Function’s kernel parameter 
optimization (SMC-SVM-RBF) method was presented. The proposed method generates significantly higher 
performance to that of anchor SVM in terms of accuracy and number of support vectors, which implies lower 
computational complexity. Moreover, the proposed method gives either higher or very competitive performance to the 
state of the art SVM based techniques such as Zhang’s and Zhiliang Liu’s methods. 
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