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Abstract 

This study examined the effects of ego depletion on challenge and threat states and cerebral 

haemodynamic responses to a pressurized muscular endurance task requiring self-control. 

Following ethical approval, 58 participants (39 males, 19 females; Mage = 28 years, SD = 12) 

were randomly assigned to either an experimental or control group. Participants then completed 

self-report measures of trait anxiety and self-control. Next, the experimental group performed 

a written transcription task requiring self-control, while the control group transcribed the text 

normally. Finally, before the pressurized muscular endurance task, challenge and threat states 

were assessed using demand and resource evaluations and cardiovascular reactivity; while 

cerebral perfusion in Fp1 and Fp2 was assessed using near-infrared spectroscopy. The results 

supported the effectiveness of the self-control manipulation, with the experimental group 

transcribing fewer words, making more errors, and regulating their writing habits more than 

the control group. Although there were no differences between the groups in terms of muscular 

endurance performance or challenge and threat states, there was a significant interaction of 

time (pre vs. post) x group (experimental vs. control) in cerebral perfusion. These findings 

suggest that ego depletion might not influence challenge and threat states, but may lead to 

reduced cerebral perfusion. As such, cerebral perfusion may be a novel marker which could be 

used to assess ego depletion.  

Keywords: self-control, stress, cognitive appraisal, cerebral perfusion, challenge and threat 

states, self-regulation  
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Optimising performance under pressure is vital for success in various domains (e.g., 

sport, education, business, military, and aviation). The biopsychosocial model (BPSM) of 

challenge and threat states provides a theoretical framework that attempts to explain why 

individuals might perform differently under pressure (Blascovich, 2008). Specifically, when 

entering a pressurized situation, the BPSM suggests that an individual evaluates how 

demanding the situation is, and whether they possess the resources required to cope with those 

demands (Blascovich, 2008). A challenge state is experienced when coping resources are 

evaluated as sufficient to meet or exceed situational demands. In contrast, a threat state is 

experienced when coping resources are evaluated as insufficient to meet situational demands 

(Blascovich, 2008). It is important to note that challenge and threat are typically considered as 

anchors of a single bipolar continuum rather than two discrete states, leading researchers to 

often examine relative rather than absolute differences in challenge and threat (i.e., greater 

versus lesser challenge or threat; Seery, 2013). Furthermore, challenge and threat states are 

conceptualised as relatively dynamic, and are proposed to occur at a more subconscious (or 

automatic) than conscious level (Seery, 2013). 

The aforementioned demand resource evaluation process is thought to trigger distinct 

neuroendocrine and cardiovascular responses (Seery, 2013). Thus, challenge and threat states 

can be measured via subjective self-report items and objective physiological markers 

(Blascovich, 2008). Specifically, due to an increase in sympathetic-adrenomedullary activity 

and the release of catecholamines (e.g., adrenaline), a challenge state is proposed to result in 

increases in cardiac output (CO) and decreases in total peripheral resistance (TPR; Seery, 

2013). The increased CO, combined with the decreased TPR, is thought to provide more 

efficient oxygenated blood flow to the brain and muscles (Seery, 2013). In contrast, due to 

increases in both sympathetic-adrenomedullary and pituitary adreno-cortical (or hypothalamic 



pituitary adrenal axis)  activity, and the resulting release of cortisol, a threat state is proposed 

to lead to little change or a decrease in CO and little change or an increase in TPR (Seery, 

2013). Previous research has validated these cardiovascular markers which are thought to 

reflect subconscious (or underlying) demand and resource evaluations (Blascovich, 2008), and 

has shown that task engagement, a prerequisite for challenge and threat states to occur, is 

indexed by increases in heart rate (HR; Seery, 2013).  

In line with the predictions of the BPSM (Blascovich, 2008), previous research has 

demonstrated that individuals in a challenge state tend to outperform individuals in a threat 

state during both cognitive (e.g., modified Stroop; Turner, Jones, Sheffield, & Cross, 2012) 

and sporting (e.g., golf putting; Moore, Vine, Wilson, & Freeman, 2012) tasks. Due to the small 

but relatively robust effect of challenge and threat states on the performance of pressurized 

tasks (Behnke & Kaczmarek, 2018; Hase, O’Brien, Moore, & Freeman, 2018), more research 

is needed to identify the factors that influence these states, so that interventions that promote a 

challenge state, or prevent a threat state, can be developed. Indeed, while limited, the research 

conducted to date has shown that personality traits can influence challenge and threat states, 

including underlying demand and resource evaluations (e.g., emotional intelligence; Kilby, 

Sherman, & Wuthrich, 2018), and accompanying cardiovascular responses (e.g., 

conscientiousness; Allen, Frings, & Hunter, 2012). Furthermore, research has shown that 

situational factors can influence challenge and threat states, including underlying evaluations 

(e.g., task difficulty; Moore, Vine, Wilson, & Freeman, 2014), and associated cardiovascular 

responses (e.g., social comparison; Mendes, Blascovich, Major, & Seery, 2001). One possible 

factor that remains to be investigated is self-control. This is surprising given that the ability to 

resist immediate and automatic impulses in specific situations is key to many aspects of 

performance, and the inability to resist these impulses is thought to problematic under 

pressurised conditions (Englert & Bertrams, 2012).  



The strength model of self-control has been used as a framework for exploring self-

control processes within sports psychology (Englert, 2016). This model suggests that self-

control is a limited resource that can be depleted (Baumeister & Heatherton, 1996). It is 

hypothesized that the exertion of self-control during an initial task (e.g., the control of dominant 

responses such as emotions, behavioural impulses, and habits; Friese, Gieseler, Loschelder, 

Frankenbach, & Inzlicht, 2018), can have detrimental effects on the performance of subsequent 

self-control tasks (Hagger, Wood, Stiff, & Chatzisarantis, 2010). The depletion of this limited 

resource is often termed ‘ego depletion’ (Baumeister & Heatherton, 1996). The negative effects 

of ego depletion have been seen across sporting tasks requiring both perceptual-motor skill 

(e.g., dart-throwing; McEwan, Ginis, & Bray, 2013), and physical endurance (Giboin & Wolff, 

2019).  

However, recently the validity of the strength model has come under scrutiny, 

questioning its empirical (Carter, Kofler, Forster, & McCullough, 2015; Hagger et al., 2016), 

and mechanistic credibility (Beedie & Lane, 2012). Hagger and colleagues (2010) originally 

reported a medium to large effect size of ego depletion, however, after re-analysis the original 

effect size was thought to be overestimated due to publication bias (Hagger et al, 2016). This 

assumption has been further supported by a recent survey among ego depletion research 

(Wolff, Baumann & Englert, 2018).  The inconsistent findings surrounding the ego depletion 

effect lead Hagger and colleagues (2016) to conduct a Registered Replication Report. This 

report failed to find a significant ego depletion effect, however, Hagger et al (2016) emphasised 

that further investigation is necessary to ascertain the causes for these null findings, rather than 

implying that the ego depletion effect doesn’t exist.  

In contrast to the strength model, research has suggested that self-control is more of a 

conscious process, with the allocation of self-control reflecting a value-based decision. 

(Botvinick & Braver, 2015; Westbrook & Braver, 2015). Indeed, Job and colleagues (2010) 



offered an alternative to the resource theory, suggesting that self-regulatory failure following 

exertion of self-control or willpower results from people’s belief about their availability of self-

control resources rather than a true lack of resources (Job, Dweck & Walton, 2010). Essentially, 

it is suggested that depletion will only occur in individuals who believe that their self-control 

can be depleted (Job et al., 2010). Thus, there appears to be some debate in the literature about 

whether self-control, and its depletion/availability is due to an individual’s belief of self-control 

or is detected at a more subconscious level. The BPSM could help shed some light on this issue. 

Indeed, if self-control is affected by conscious thoughts and beliefs, then those who view their 

self-control availability as reduced, should evaluate the subsequent task as more of a threat 

(i.e., insufficient resources to cope with task demands), thus resulting in more threat-like 

cardiovascular responses (i.e., little change or decreases in CO and little change or increases in 

TPR; Seery, 2013). However, if not open to consciousness, a reduction in self-control 

availability should not impact self-reported demand and resource evaluations, but may still 

result in more threat-like cardiovascular reactivity (i.e., relatively lower CO and higher TPR 

reactivity; Seery, 2013).   

Another difficulty that has been discussed in relation to the ego depletion phenomenon 

is the inability for researchers to stipulate a plausible and tangible physiological mechanism 

that is either ‘reduced’ or associated with the availability of self-control (Elkins-Brown, 

Berkman, & Inzlicht, 2016). Indeed, the presence of ego depletion has mostly been measured 

based on a deterioration in the performance of a second self-control task, following an initial 

self-control task, using the sequential task paradigm (Hagger et al., 2010). However, recent 

research suggests that there may be a disconnect between perceived fatigue and performance, 

due to there being no gold standard to measure mental fatigue across domains (Pattyn, Cutsem, 

Dessy & Mairesse, 2018) Therefore, the notion of ‘depletion’ of self-control from observable 

performance and/or the conceptual description of fatigue may not be accurate (Pattyn et al, 



2018). Research from cognitive neuroscience offers a potential physiological measurement, 

with a large body of research having investigated the neural correlates of self-control 

(Botvinick & Braver, 2015; Shenhav et al., 2017; Cohen & Lieberman, 2010), with research 

pointing to the central role of the prefrontal cortex (PFC). As a marker of PFC activation, 

previous studies have used the change in tHb, a marker of cerebral perfusion (Faulkner et al., 

2017). Changes in cerebral perfusion in the PFC has been shown to be able to distinguish 

between declines (Hillis et al., 2002) and improvements (Hillis et al., 2002) in cognitive 

performance, as well as changes in posture during exercise (Faulkner et al., 2017). Given that 

self-control is suggested to activate the PFC (Friese, Binder, Luechinger, Boesiger, & Rasch, 

2013; Cohen & Lieberman, 2010), it seems logical that cerebral perfusion may change in 

response to an ego-depletion task. 

The PFC is proposed to be involved in emotion regulation, decision making, and 

habitual responses (Friese et al., 2013), whilst also being strongly connected to sensory and 

motor system structures which are relevant for voluntary behavioural control (Miller & Cohen, 

2001). Previous research suggests that the level of self-control allocation is associated with 

varying levels of brain activity, particularly in the PFC (Friese et al., 2013), again highlighting 

it as a key structure in the exertion of self-control (Cohen & Lieberman, 2010). 

The theory of expected value of control (EVC; Shenhav, Botvinivk,& Cohen, 2013) 

aims to explain the differing levels of activation within the PFC. In simple terms, EVC 

represents the net cost value associated with allocating control to a given task. EVC theory 

assumes such costs are ‘effortful’ (Shenhav et al., 2017). Therefore, the allocation of control is 

the sum of the estimated reward outcome and the effort cost (for a comprehensive mechanistic 

review of EVC see; Shenhav et al., 2017; Shenhav et al., 2013). The degree to which self-

control is allocated may be reflected in differing prefrontal activations and subsequently, 



differing cardiovascular responses under pressure (and subsequently performance) due to the 

PFC also being involved in stress regulation.  

In particular, the PFC regulates the hypothalamic pituitary adrenal axis (Smith & Vale, 

2006). This axis is a crucial component of the cardiovascular responses accompanying a threat 

state (Blascovich, 2008; Smith & Vale, 2006). Self-control performance has been shown to be 

affected under highly pressurized conditions (Englert & Bertrams, 2015). It is therefore 

possible that the allocation of self-control could influence challenge and threat states. For 

example, too little allocation could lead to the PFC activating the hypothalamic pituitary 

adrenal axis (associated with a threat state), whereas a greater allocation of self-control could 

result in only activating the sympathetic-adrenomedullary axis (associated with a challenge 

state). As self-control is a cognitive faculty, the central nervous system and cardiovascular 

markers of challenge and threat states, may therefore be particularly effective mechanisms to 

explore a construct as complex as self-control, and the ego depletion phenomenon.  

The aim of this study was to investigate the potential impact of ego depletion on 

challenge and threat states and cerebral haemodynamic responses during a pressurized 

muscular endurance task requiring self-control. First, the ego depletion group were expected 

to perform worse in the pressurized muscular endurance task than the control group. Second, 

assuming that the reduction in actual or perceived self-control resources would be consciously 

perceptible, the ego depletion group were expected to evaluate the pressurized task as more of 

a threat (i.e., insufficient resources to cope with task demands), and display a cardiovascular 

response more akin to a threat state (i.e., lower CO and/or higher TPR reactivity) than the 

control group. If not open to conscious awareness, the reduction in actual or perceived self-

control resources was only expected to result in the ego depletion group exhibiting a more 

threat-like cardiovascular response than the control group, with no differences between the 

groups in self-reported demand and resource evaluations. Finally, due to the reduction in actual 



or perceived self-control resources, the ego depletion group were expected to exhibit reduced 

cerebral perfusion than the control group.    

Method 

Participants 

 Following institutional ethical approval, 60 university undergraduate and postgraduate 

students were recruited. However, two participants were excluded from the final data analysis 

due to having more than one missing data point. As such, 58 participants (39 males, 19 females; 

Mage = 28 years, SD = 12) were included in all analyses. All participants read an information 

sheet and provided written informed consent prior to all testing. Moreover, all participants 

reported being free from illness or infection, and having no known family history of 

cardiovascular or respiratory disease. Furthermore, all participants were instructed not to 

perform vigorous exercise or ingest alcohol for 24 hours before testing, and to not consume 

food for 4 hours and caffeine for 12 hours before testing. Finally, all participants reported they 

were recreationally active but not handgrip trained such as in tennis, climbing, or lifting, etc. 

Recreationally active was defined as a minimum of 1 hours structured exercise for a minimum 

of 3 days a week (in accordance with the American College of Sports Medicine guidelines).  

Measures 

Trait measures 

Sport anxiety scale (SAS-2). Individual differences in trait anxiety were measured 

using the 12-item SAS-2 (Smith, Smoll, Cumming, & Grossbard, 2006). The SAS-2 is 

comprised of three sub scales: (1) worry (e.g., “I worry I will let others down”), (2) somatic 

anxiety (e.g., “I feel tense in my stomach”), and (3) concentration disruption (e.g., “I cannot 

think clearly during the game”). Each subscale contained 4-items. Items were rated using a 4-

point Likert scale anchored between not at all (1) and very much (4). Items were summed for 



each subscale, with higher scores indicative of greater worry, somatic anxiety, and 

concentration disruption. This measure has been used in previous ego depletion research (e.g., 

Englert & Bertrams, 2014), and has been shown to be valid and reliable (Smith et al., 2006). 

Cronbach alpha (α) = 0.91). For the current study α = 0.92.  

Brief self-control scale. Individual differences in trait self-control were assessed using 

the 13-item brief self-control scale (Tangney, Baumeister, & Boone, 2004). Participants 

indicated the degree to which they agreed with each item on a 5-point Likert scale anchored 

between not at all (1) and very much (5). The scores from all items were summed, with a higher 

score indicating greater trait self-control. This scale has been used in previous ego depletion 

research (e.g., McEwan et al., 2013), and has been shown to be valid and reliable (Tangey et 

al., 2004; α = 0.92). For the current study α = 0.7. 

Self-control manipulation and manipulation checks 

Self-control was experimentally manipulated using a written transcription task (as 

Bertrams, Englert, & Dickhauser, 2010). Importantly, this task has been repeatedly shown to 

deplete self-control resources in previous research (e.g., Englert, Zwemmer, Bertrams, & 

Oudejans, 2015; Englert & Bertrams, 2014). Specifically, during the task, participants were 

instructed to transcribe a neutral text by hand for 6 minutes. In the ego depletion group, 

participants were asked to omit the letters “e” and “n”, an act that required self-control due to 

the suppression of typical writing habits. In contrast, the control group were told to transcribe 

the text conventionally in full, requiring little or no self-control.     

Performance during the written transcription task was measured using the number of 

words transcribed and the number of errors per group (as Englert & Bertrams, 2014). Errors 

constituted grammatical mistakes (i.e., spelling, lack of capital letters, etc.), missing words or 

sentences, and failing to miss out the letters “e” and “n” (for the ego depletion group only). 



Furthermore, following the written transcription task, participants were asked “How strongly 

did you have to regulate your writing habits?” participants responded on a 4-point Likert scale 

anchored between not at all (1) and very much (4) (as Englert & Bertrams, 2014; Furley, 

Bertrams, Englert, & Delphia, 2013). In addition, participants were asked “How effortful did 

you find the writing task?” which was assessed using the rating scale of mental effort (Zijlstra, 

1985). Participants responded on a vertical 9 item scale anchored between absolutely no effort 

(0) and extreme effort (150) 

Muscular endurance performance 

Consistent with previous research (e.g., Fryer et al., 2015), participants were presented 

with a fingerboard apparatus with five vertical lights, with each light representing a different 

level of applied strength pressure. Specifically, when completing the task, participants were 

asked to rest the elbow of their non-dominant arm on the apparatus, with only their fingertips 

positioned over an indoor artificial rock climbing hold, and pull down on the hold to generate 

force. Peak handgrip strength was determined using three individual two-second maximum 

voluntary contraction (MVC) trials, each trail separated by one minute of rest. Following this, 

participants were asked to sustain 40% of their peak MVC for as long as possible, and time 

was recorded in seconds. Visually, on the apparatus, 40% of their MVC was represented by a 

central green light. In order to regulate the 40% MVC, two amber lights above and below the 

green light were used to inform the participant whether they were contracting too much or too 

little, respectively. The amber lights represented 5% deviation from the target 40% MVC 

required; deviating outside of this 5% window for more than two seconds terminated the test. 

This ensured that a consistent force was applied to assess actual time to failure. Participants 

performed this hand grip endurance task twice (i.e., trial 1 and trial 2), with each trial separated 

by the self-control manipulation (i.e., written transcription task). The first trial represented a 

baseline measurement, while the second trial was performed under elevated pressure (see 



procedure below for more details). Task performance was calculated in terms of the difference 

in time (s) between the first and second trials (i.e., trial two minus trial one), with a positive 

score indicating better performance, and a negative score reflecting a poorer performance, 

during the second pressurized trial of the muscular endurance task. 

Challenge and threat states 

Demand and resource evaluations. Two items from the cognitive appraisal ratio were 

used to assess evaluations of task demands and personal coping resources (Tomaka, 

Blascovich, Kelsey, & Leitten, 1993). Task demands were assessed by asking “How 

demanding do you expect the upcoming task to be?”, while personal coping resources were 

measured by asking “How able are you to cope with the demands of the upcoming task?” Both 

items were rated on a 6-point Likert scale anchored between not at all (1) and extremely (6). A 

demand resource evaluation score (DRES) was then calculated by subtracting evaluated 

demands from resources (range = -5 to +5), with zero or a positive score reflecting an 

evaluation more reflective of a challenge state (i.e., coping resources match or exceed task 

demands), and a negative score reflecting an evaluation more consistent with a threat state (i.e., 

task demands exceed coping resources). Previous research has used this measure to assess 

challenge and threat states (e.g., Moore, Wilson, Vine, Coussens, & Freeman, 2013). 

Cardiovascular reactivity. A continuous non-invasive ambulatory blood pressure 

monitoring system (Portapres-2, Finapres Medical Systems, Amsterdam, The Netherlands) was 

used to estimate HR, CO, and TPR. A finger cuff was attached to the middle finger on each 

participants’ non-dominant hand and inflated to continuously estimate cardiovascular data. 

Previous research has shown the Portapres-2 to be both valid and reliable (Zanstra, Johnston & 

Rasbash, 2010; Hirschl, Woisetschlager, Waldenhofer, Herkner & Bur, 1999). HR, CO, and 

TPR were estimated during baseline (i.e., 15 minutes upright rest), and post-pressure 



instruction (i.e., 1-minute upright rest while reflecting on the pressure manipulation 

instructions and upcoming task), time periods. In line with previous research (e.g., Moore, 

Vine, Wilson & Freeman, 2015), cardiovascular reactivity, or the difference between the final 

minute of baseline and the minute after pressure instructions, was used in all analyses. 

Specifically, HR reactivity was used to determine whether participants were actively engaged 

in the task (a prerequisite of challenge and threat states, with larger increases in HR reflecting 

greater task engagement), and CO and TPR reactivity were used to determine whether 

cardiovascular responses were more indicative of a challenge or threat state (with a challenge 

state marked by relatively higher CO and/or lower TPR reactivity; Seery, 2013). 

  

Near-infrared spectroscopy 

Near-infrared spectroscopy (NIRS) is a non-invasive technique that allows for 

monitoring of regional cerebral haemodynamics. Specifically, it can measure changes in the 

concentration of oxy-haemoglobin (O2Hb) and deoxy-haemoglobin (HHb), the combination of 

which is tHb, a marker of cerebral perfusion (Faulkner et al., 2017). NIRS has been shown to 

be both precise and accurate (Ferrai, Mottola, & Quanesima, 2004). NIRS relies on the different 

absorption properties of haemoglobin in the near-infrared wavelength range from 700 to 

1000nm (Obrig et al., 1996). By measuring the returned scattered light at a specific wavelength, 

the relative absorption of HbO2 and HHb within the tissue can be determined (Ferrai et al., 

2004). Evidence suggests that there is a linear relationship between neural activity and 

hemodynamics within the brain (Gratton, Goodman-Wood, & Fabiani, 2001). Individual nerve 

cells produce electrical signals when a specific area of the brain becomes metabolically active. 

Each of these signals causes an increase in oxygen and glucose consumption, and therefore an 

increase in cerebral blood flow and cerebral blood volume (Shibasaki, 2008). Research has 



shown that NIRS produces results consistent with other brain imaging techniques (e.g., 

electroencephalography and functional magnetic resonance imaging; Strangman, Culver, 

Thompson & Boas, 2002; Zama & Shimada, 2015), and provides a reliable measure of PFC 

activation (Shibasaki, 2008). 

The current study used a continuous-wave NIRS (cw-NIRS) device (PortaLite, Artinis 

Medical Systems BV, the Netherlands) which is comprised of a single wireless optode 

consisting of three light-emitting diodes, positioned 30mm, 35mm, and 40mm from a single 

receiver. This cw-NIRS device has been shown to be both reliable and valid against the 

criterion, frequency-domain NIRS (Stone, Fryer, Ryan & Stoner, 2016). The cw-NIRS device 

employs spatially-resolved spectroscopy in order to determine absolute haemoglobin 

concentrations. The spatial profile of the intensity of backscattered light is measured as a 

function of the distance from the light transmitter, with the shape of this function being related 

to the absorption coefficient, from which absolute haemoglobin concentrations can be 

calculated (Patterson, Chance & Wilson, 1989; Suzuki, Takasaki, Ozaki & Kobayashi, 1999). 

As cw-NIRS cannot measure the scattering of light in tissue, a reasonable and constant light 

scattering coefficient (μs) must be assumed (Jue & Masuda, 2013; Scholkmann et al., 2014). 

Furthermore, cw-NIRS relies on the modified Lambert-Beer law (Delpy et al., 1988) to obtain 

values of concentration change between oxygenated and deoxygenated haemoglobin. When 

the law is applied to biological tissue a differential path-length factor (DPF) is incorporated to 

account for the increase of the optical pathlength due to the scattering in the tissue.   

For the current study, the cw-NIRS device measured PFC perfusion by assessing the 

emitting and receiving wavelengths at 760 and 850 nm to detect relative changes in 

concentrations of oxygenated haemoglobin (O2Hb) and deoxygenated haemoglobin (HHb), 

which, in combination, make up the variable of interest, total haemoglobin (tHb).The sampling 

rate was set at 10 Hz, and in accordance with manufacturing guidelines a DPF of 6.0 was used. 



This DPF has previously been used to determine tHb in the PFC (Faulkner et al., 2017). NIRS 

signals were assessed during 15 minutes at rest, and for 60 seconds after the pressure 

manipulation instructions, which is consistent with the time periods used to calculate reactivity 

for the cardiovascular markers of challenge and threat (Moore et al., 2014). Thus, we calculated 

the relative concentration change of tHb by subtracting the level obtained at baseline (last 

minute) from the minute following the pressure manipulation instructions, when participants 

were sat quietly reflecting on the upcoming muscular endurance task.  

Prior to the assessment, the participants’ forehead was cleaned using alcohol wipes, and 

the cw-NIRS optode was fixed to the skin with bi-adhesive tape and covered with an opaque 

cloth to prevent signal contamination by ambient light (in accordance with Stone et al., 2016). 

The optope was placed at Fp1 and Fp2, landmarks of the international EEG 10-20 electrode 

placement system (Jasper, 1957), which in brief, consists of locating the nasion and inion, 

measuring the distance between the two sites, then finding 10% up from the nasion. Then, from 

this 10% location, measure 5% to the left (Fp1) and right (Fp2). The mid-point on the cw-NIRS 

probes were placed over F1 and Fp2, with the light emitters being closet to the nasion, and the 

light receiver being furthest away. Fp1 and Fp2 are located within the prefrontal cortex, Fp1 is 

said to be associated with logical attention (e.g., decision making, task completion), and Fp2 is 

associated with emotional attention (e.g., sense of self, restraint of impulses; Cerqueira, 

Osbourne, Almeida, & Sousa, 2008). Both Fp1 and Fp2 are involved in self-regulation and 

self-control (Friese et al., 2013).  

Procedure  

First, participants were randomly assigned to either an ego depletion or control group. 

Participants then completed the trait anxiety and self-control measures. Next, participants 

completed three 2-second MVC trials using the muscular endurance handgrip dynamometer. 



Following this, participants completed trial one of the muscular endurance task, which required 

participants to hold 40% of their MVC for as long as possible (as Bray, Ginis, Hicks, & 

Woodgate, 2008). Next, participants were fitted with the Portapres-2 and the NIRS devices. 

Baseline data was then collected for 15 minutes while participants were in a seated position 

and quietly resting. Following the recording of baseline data, participants completed the self-

control manipulation (or written transcription task). Next, participants received instructions 

about the upcoming muscular endurance task (trial 2), which were designed to elevate pressure. 

Specifically, based on the instructions used in previous research (e.g., Moore et al., 2015), 

participants were informed that top performers would be awarded prizes, while poor performers 

would be interviewed at length about their poor performance. Participants were also informed 

that their performance would be published on a leader board, and that video footage of their 

performance would be taken and may be used in future presentations to their peers. Participants 

then reflected on these instructions and the upcoming task for one minute while cardiovascular 

and NIRS data was recorded, before then completing the two items assessing demand and 

resource evaluations. Finally, both groups completed trial two of the muscular endurance task, 

again holding 40% of their MVC for as long as possible (as Bray et al., 2008). Finally, 

participants were thanked and debriefed about the study aims.  

Statistical analyses 

 Unfortunately, due to signal problems, cerebral NIRS data and CV reactivity data was 

not recorded for two participants, as such these participants were removed from the final 

analysis. To assess task engagement, a dependent t test was conducted on the HR reactivity 

data to establish that, in the sample as a whole, HR increased significantly from baseline (i.e., 

HR reactivity greater than zero). Furthermore, to differentiate challenge and threat states, each 

participant’s CO and TPR reactivity scores were converted into z-scores and then summed to 

create a challenge and threat index (CTI; as Moore et al., 2013). In line with previous research 



(e.g., Moore et al., 2013), CO was assigned a weight of +1 and TPR a weight of −1, such that 

a larger CTI value corresponded with a cardiovascular response more akin to a challenge state 

(i.e., relatively higher CO and/or lower TPR reactivity; Seery, 2013). 

To ensure all data was normally distributed, outlier analyses were performed. 

Consistent with previous research (Moore et al., 2013), data with z-scores greater than two 

were excluded from further analyses. This resulted in two values being removed for DRES, 

and four values being removed for CTI. Following this outlier analysis, all data was normally 

distributed as skewness and kurtosis z-scores did not exceed 1.96. Independent t-tests were 

then performed on the self-control scale and the anxiety scale, as well as self-control 

manipulation scale, CTI and DRES. A mixed model repeated measures ANOVA with post hoc 

pre and post t-tests was used to assess potential group and time differences in hemodynamic 

and endurance variables. For all t-tests, the degrees of freedom, t statistic, and p-value were 

corrected for homogeneity of variance assumption violations using the Levene’s test for 

equality of variances. Effect sizes were calculated using Cohen’s d, where 0.2, 0.5, and 0.8 

represented small, medium, and large effect sizes or Eta squared, where 0.01, 0.06, and 0.14 

represented small, medium, and large effect sizes, respectively (Fleiss, 2011). 

Results 

Trait measures 

The results revealed no significant differences between the groups in terms of trait 

anxiety, and specifically somatic anxiety (t(54) = -1.31, p = .194, d = 0.35), worry (t(56) = -0.11, 

p = .907, d = 0.03), or concentration disruption (t(53) = 0.22, p = .820, d = 0.06). Furthermore, 

the results revealed no significant differences between the groups in terms of trait self-control 

(t(56) = 0.72, p = .475, d = -0.18). The trait self-report data is presented in Table 1. 

 



Table 1. Means and standard deviations (SD) for all trait self-report measures. 

 

Self-control manipulation checks 

Compared to the control group, the ego depletion group transcribed significantly fewer 

words (t(54) = -7.50, p < .001, d = 2.00), whilst making more errors (t(46) = 6.79, p < .001, d = 

1.80), and they reported having to regulate their writing habits more (t(56) = 5.37, p < .001, d = 

1.40), and noting that the task required more effort (t(56) = 2.07, p = .042, d = 0.54). In 

accordance with previous research, our experimental manipulation of self-control strength is 

seen as successful due to the difference in task difficulty and effort (Bertrams et al., 2010; 

Englert et al., 2015). The self-control manipulation check data is presented in Table 2.  

Table 2. Means and standard deviations (SD) for all self-control manipulation check data. 

Note: significantly different from the ego depletion group, ***p < .001  

  Ego Depletion Control 

Trait Measures Sub-scale Mean SD Mean SD 

Sport Anxiety Somatic 7.96 2.21 8.86 2.83 

 Worry 10.96 4.33 11.10 4.48 

 Concentration 6.69 1.91 6.58 1.52 

Trait Self-control  41.53 8.80 39.96 7.78 

 
 Ego Depletion Control 

Depletion 
Manipulation Checks Mean SD Mean SD 

Number of words 73.92 19.86 110.78*** 16.74 

Number of errors 10.42 4.12 4.13*** 2.69 

Regulation of writing habits 3.17 0.72 2.20*** 0.66 

Effort 66.60 26.07 52.66*** 25.04 



 

Challenge and threat states 

The HR reactivity results revealed that in the entire sample, HR did not significantly or 

meaningfully increase from baseline (M = 74.05 bpm; SD = 8.86) to the 1-minute reflection 

point (M = 74.92 bpm; SD = 9.29), (t(44) = -0.12, p = .904, d = -0.03). Furthermore, the results 

revealed no significant differences between the ego depletion and control groups in either 

DRES (t(53) = 1.29, p = .201, d = 0.35),  or CTI (t(44) = 1.15, p = .256, d = 0.34). The challenge 

and threat data is presented in Table 3.  

Muscular endurance performance 

 For the dependent variable, muscular endurance performance, a two way mixed model 

repeated measures ANOVA found no significant or meaningful differences for the main effects 

of group (F(1,48) = 0.04, p = .847, ηp
2 = .001), or time (F(1,48) = 0.54, p = .470, ηp

2 = .01), and 

the interaction of time*group (F(1,48) = 0.21, p = .648, ηp
2 = .00). 

 

Table 3. Means and standard deviations (SD) for the DRES, CTI, and muscular endurance 

performance data. 

 

 
 Ego Depletion Control 

Challenge and threat 
 Mean SD Mean SD 

DRES  0.34   0.93  0.00   1.03 

CTI -0.04   0.99 -0.38   0.96 

Endurance performance  4.21 92.62 16.35 64.00 



Cerebral perfusion  

For the dependent variable, THb Fp1, a two way mixed model repeated measures 

ANOVA found no significant or meaningful differences for the main effects of group (F(1,52) = 

0.40, p = .529, ηp
2 = .01), or time (F(1,52) = 0.01, p = .934, ηp

2 < .001). However, there was a 

significant interaction of time*group (F(1,52) = 5.02, p = .029, ηp
2 = .09). Post-hoc paired 

samples t-tests found no significant within-group differences pre and post for the groups control 

(t(26) = -.571, p = 0.085, d (repeated measures) = 0.34) and ego (t(26) = 1.454, p = .158, d = 0.28).  

For the dependent variable, THb Fp2, a two-way mixed model repeated measures 

ANOVA found no significant or meaningful differences for the main effects of group (F(1,52) = 

0.01, p = .906, ηp
2 < .001), or time (F(1,52) = 0.54, p = .466, ηp

2 = .01). However, there was a 

significant interaction of time*group (F(1,52) = 4.86, p = .032, ηp
2 = .09). Post-hoc paired 

samples t-tests found no significant within group differences pre and post for the groups control 

(t(26) = -1.254, p = 0.221, d (repeated measures)  = 0.24) and ego (t(26) = 1.814, p = 0.081, d 

(repeated measures)  = 0.35). 

Table 4. Mean and standard deviation (SD) for the cerebral perfusion data. 

  
Ego Control 

Cerebral perfusion 
(µmol) Time Mean SD Mean SD 

tHb FP1 Pre -13.1 15.57 -12.22 17.58 

 Post -15.1 15.69 -11.15 17.06 

tHb FP2 Pre -17.67 21.7 -20.06 23.89 

 Post -19.42 22.47 -18.96 23.45 



Discussion 

Although limited, previous research has shown that personality traits and situational 

factors can influence challenge and threat states (Kilby et al., 2018; Moore et al., 2014). Due 

to small but relatively robust effect of challenge and threat states on the performance of 

pressurized tasks (Behnke & Kaczmarek, 2018; Hase et al., 2018), more research is needed to 

identify the factors that influence these states. Thus, this study examined one potential 

antecedent; reduced self-control, using a novel technique such as NIRS to assess cerebral 

perfusion. The aim of the current study was to investigate the impact of ego depletion on 

challenge and threat states and cerebral hemodynamic responses during a pressurised sporting 

task. 

Consistent with previous research (e.g., Englert & Bertrams, 2014; McEwan et al., 

2013), the ego depletion group transcribed fewer words and made more errors than the control 

group. Furthermore, the ego depletion group indicated that the written transcription task that 

they performed required more effort, and greater regulation of writing habits, than the written 

transcription task completed by the control group. In accordance with previous research (e.g., 

Englert & Bertrams, 2012), these results imply a potential reduction in self-control availability 

for subsequent tasks, thought to be due to greater mental fatigue effort. However, in contrast 

to previous ego depletion research, this reduction in self-control availability had no effect on 

the performance of the subsequent pressurized muscular endurance task, which also required 

self-control. Although this finding is inconsistent with earlier research (Bray et al, 2008), 

research has shown that performance and the perception of cognitive fatigue has repeatedly 

failed to correlate (Wolff, Sieber, Bieleke, & Englert, 2019). This may be due to cognitively 

orientated activities being more multifaceted than physical fatigue and therefore they are more 

difficult to specify (Burke et al., 2018). Although cognitive fatigue and self-control should not 

be confused, the validity of performance-based measures of cognitive fatigue within self-



control research should be questioned because they may fail to accurately capture fatigued 

resources (Wolff et al., 2019).   

Despite the manipulation checks supporting the effectiveness of the written 

transcription task in reducing self-control resources, there was no significant difference 

between the ego depletion and control group in either measure of challenge and threat states. 

Specifically, ego depletion had no effect on self-reported evaluations of task demands and/or 

personal coping resources (i.e., DRES). Furthermore, ego-depletion had no significant 

influence on the central cardiovascular markers of challenge and threat states (i.e., CO and TPR 

reactivity combined into CTI). As such, it appears that ego depletion had no effect on challenge 

and threat states. There are two possible explanations for this 1) HR failed to increase 

significantly from baseline across the entire sample. Within the challenge and threat literature 

(Blascovich, 2008; Moore et al, 2014) this would suggest that participants might not have been 

actively engaged in the pressurized muscular endurance task. 2) Self-control has previously 

been associated with the neuroviceral integration model (Thayer & Lane, 2009), which 

suggests that an increase in parasympathetic activation occurs (Seery, 2013; Segerstrom & Nes, 

2007), whereas challenge and threat has been associated with an increased sympathetic 

activation (Seery, 2013). Therefore, these opposing systems of nervous control could have 

counteracted each other and not significantly changed HR from baseline, and thus task-

engagement could still have occurred. Interestingly, another factor which suggests that task 

engagement might have occurred in the current study, irrespective of the HR reactivity data, is 

the significant interaction of time*group in cerebral perfusion at Fp1 and Fp2. During the one-

minute reflection period, there was a significant interaction of time*group in cerebral perfusion 

at Fp1 and Fp2 suggesting that the two groups, ego and control, reacted differently. Whilst the 

post-hoc within comparisons were not significantly different from pre to post, there was a small 

effect size in the both groups. Given that decreases in cerebral perfusion in the PFC have 



previously been shown to hinder cognitive performance (Hillis et al., 2002), it may be possible 

that changes in perfusion at FP1 and FP2 in the current study, reflects task engagement. 

However, this is speculative and further research is needed to confirm this.  

With respect to cerebrovascular and central cardiovascular responses to a task, previous 

research has suggested that there is a top-down prefrontal approach to the way we make 

resources available (Laborde, Mosley, & Mertgen, 2018). Previously, empirical evidence has 

suggested that greater engagement of the vagus nerve leads to an increased activation of the 

parasympathetic system, and facilitates better executive performance (Laborde & Raab, 2013; 

Laborde, Raab & Kinrade, 2014). Therefore, for executive self-control tasks such as the one in 

the current study, it may be better to increase the parasympathetic nervous response, and thus 

cause a reduced energy demand to the periphery, making more resources available for the 

cerebrovascular system, based on top-down prefrontal approach (Laborde et al., 2018). 

However, more research is needed in this area to further explore this potential mechanism, 

particularly given there was no performance decrease in the current study.   

In conclusion, there was no significant impact of ego depletion on a muscular endurance 

performance requiring self-control, or challenge and threat states. However, there was a 

significant interaction of time*group in cerebral perfusion (tHb), with the ego depletion group 

showing less perfusion in both Fp1 and Fp2 than the control group. Whilst post hoc analysis 

suggested no within group differences at Fp1 and Fp2, the small effect size could be attributed 

to different activation levels in the sympathetic and parasympathetic nervous systems, with 

activation of the parasympathetic nerve being associated with a top-down prefrontal approach. 

However, future research using a larger sample size, is needed to confirm this speculation.   
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