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Abstract: Model predictive control has become a first choice control strategy in industry because it is intuitive and 
can explicitly handle MIMO linear and nonlinear systems with the presence of variable constraints and interactions. 
In this work a nonlinear state-space model has been developed and used as the internal model in predictive control 
for the ALSTOM gasifier. A linear model of the plant at 0% load is adopted as a base model for prediction. Secondly, 
a static nonlinear neural network model has been created for a particular output channel, fuel gas pressure, to 
compensate its strong nonlinear behaviour observed in open-loop simulation. By linearizing the neural network 
model at each sampling time, the static nonlinear model provides certain adaptation to the linear base model. 
Noticeable performance improvement is observed when compared with pure linear model based predictive control.  
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INTRODUCTION   
  
A gasifier is essentially a chemical reactor where coal reacts with air and steam to produce low 
calorific value fuel gas, which then can be burnt in a suitably adapted gas turbine. In modern 
advanced power generating plants, gasification helps burning coal in a new and environmentally 
clean process.  
 
Based on an industrial scale gasifier, the ALSTOM Power Technology Centre issued a benchmark 
challenge in 1997 and a second round challenge in 2002.  The first round challenge included three 
linear models representing three operating conditions of the gasifier at 0%, 50% and 100% load 
respectively.  The challenge requires the controller to control the gasifier at three load conditions to 
satisfy input and output constraints in the presence of step and sinusoidal disturbances. (see Dixon 
et al (2002)). An overview and comparison of various control approaches submitted to the first round 
challenge are given in (Dixon 1999).   

  
None of the proposed controllers managed to meet all the performance criteria while satisfying 
the specified constraints. The only model predictive control (MPC) approach proposed to the 
first round challenge by Rice et al (2002) involved the use of a linear MPC with an additional 
inner loop to stabilize the process. The inner loop controller is supervised by an outer loop to 
handle the process constraints.   
  
The second round of the challenge issued in 2002 extended the original problem by providing 
participants with a nonlinear simulation model of the gasifier in MATLAB\SIMULINK (Dixon 
2002). In addition to the original disturbance test, two extra tests: load change and coal quality 
disturbance tests were included. Recently, a group of control solutions for the benchmark 
problem were presented at Control-2004 at Bath University, UK in September 2004. Most of 

                                                           
 



       

 

controllers were reported as capable to control the system at disturbance and load change tests. 
This was not the case for the coal quality disturbance test because of the char flow rate 
saturation behaviour. In the previous work (Al Seyab et al 2004) a linear MPC employing 
Generalized Predictive Control (GPC) strategy was proposed.   
The operating condition at 0% load point was considered to be the worst case and a linearized model 
around this load condition was adopted for the internal model. The controller was able to attain all the 
required performance specifications within the input and output constraints at all load conditions. In 
this work, it is shown that the plant/model mismatch can be further reduced using a partially developed 
nonlinear model instead of a pure linear model. More specifically, a nonlinear neural network model is 
developed for a static single output channel, fuel gas pressure (PGAS) to compensate for its strong 
nonlinear behaviour observed in open loop simulation. The nonlinear model was then linearized at 
every sampling instance to provide adaptation to the main linear controller. A similar strategy can be 
used for the other output variables but this was found neither necessary nor very productive. The 
partial nonlinearity compensated model leads to considerable performance improvement. The rest of 
this paper is organized as follows. Section 2 includes a short description of the ALSTOM gasifier 
benchmark problem. The details of the MPC algorithm and the internal model are discussed in section 
3. Section 4 explains the procedures of nonlinear system identification and controller design. Section 5 
presents the simulation results, and in section 6 some conclusions are drawn from this work.   
  

1. SYSTEM DISCRPITION  
  
The ALSTOM gasifier is a (5 4× ) MIMO nonlinear plant. One of the inputs, limestone mass (WLS) is used 
to absorb sulphur in the coal and its flow rate must be set to a fixed ratio of 1:10 against another input 
(WCOL) . This leaves effectively 4 degrees of freedom for the control design. The plant inputs and 
outputs with their limits are given in Table 1. The full model of the gasifier has 25 states and the aim of 
the benchmark challenge is to design a controller to work with the given SIMULINK model as the plant 
to satisfy the control performance. The control specification includes sink pressure step and sine wave 
disturbance testes (at the three different operating points), load ramp change from 50% to 100%, and 
coal quality change by ± 18%. The specifications of these tests that must be met are given in details in 
(Dixon 2002).   

  
  

2. INETRNAL MODEL DISCRPITION  
   

Linear models with linear constraints and quadratic objective function result in convex optimization 
problems easily solved using Quadratic Programming (QP). To extend linear MPC to the control of 
nonlinear processes, a model is required that can represent the salient nonlinearities but possibly 
without the complication associated with general nonlinear models. Wiener model corresponds to a 
plant with linear dynamics but nonlinear static gain and can adequately represent many of 
nonlinearities commonly encountered in industrial processes (Sandra et al 1998, Dumont et al 1994).  
  

Table 1 Outputs and inputs variables and limits  

  
Outputs     Description            Allowed fluctuations                                  
  
CVGAS   Fuel gas calorific value  ± 0.01 MJ/kg   
MASS     Bed mass                         ± 500 kg  
PGAS      Fuel gas pressure            ± 0.1 bar  



       

 

TGAS      Fuel gas temperature      ± 1 K               .  
Inputs     Description        Maximum       Peak rate .                                 
  
WCHR Char extraction rate 3.5 kg/s       0.2  kg/s2  
WAIR    Air flow rate          20 kg/s         1.0  kg/s2  
WCOL   Coal flow rate        10  kg/s       0.2  kg/s2  
WSTM   Steam flow rate       6   kg/s       1.0  kg/s2  

                  
  

Fig.1. The nonlinear internal model. 
  
In this work, the original linear MPC design (Al Seyab et al 2004) is extended to include some of 
the plant nonlinearities by developing a static nonlinear model in the form of Wiener 
configuration as shown in figure 1. Linear static gains are used for three outputs, CVGAS, MASS, 
TGAS, while, an artificial neural network (ANN) model is created for the forth output PGAS. The 
output selection was based on the open-loop step response comparison between the linear and 
nonlinear simulation model (see figure 2). The results showed that the linear model can correctly 
capture the dynamic behaviour in three of the four outputs for up to 20s (the practical prediction 
horizon length) under all load conditions. However, the forth output PGAS exhibits salient 
nonlinearities which cannot be predicted by the linear model. It is also observed that the effect 
of the unmeasured disturbance PSINK on the output variable PGAS is quite large, whilst the time 
constant of the response is very short compared to that of other outputs. Therefore, even for a 
short prediction horizon (P≤ 20s), both transient and static behaviour of PGAS should be covered 
by a prediction model, while for other outputs only transient characteristics have dominant 
response. Hence, a static nonlinear model would not be very useful for the other variables unless 
a very long prediction horizon (about 104s) is used which is clearly not practical.  
  
Assuming that the plant has manipulated inputs, u~∈ℜnu and outputs ~y∈ℜny , which have steady-

state values, u~0 and ~y0 at the nominal operating point, the partially nonlinear predictive model 

can be described by the following discrete time state-space model:  

  
  



       

 

where k stands for kth sampling time, u(k) =  are deviation 
variables. Outputs are divided into two groups: yL(k) outputs vector corresponding to the linear 
variables CVGAS, MASS, and TGAS, and yNL(k) corresponding to nonlinear output, PGAS. The vector x(k) 
contains the internal states of the model. The matrix CL represents the linear static gain, while fNN is the 
nonlinear function modelled by a neural network. Initially, the plant is assumed to be at the nominal 
operating point with x(0)=0, u(0)=0, y(0)=0.  
  
The matrices A, B, and CL are obtained by linearizing the nonlinear plant model at 0% load condition. 
The ANN static model consists of two hidden layers and one output layer. The hidden layers transfer 
function is the nonlinear function Tansig–sigmoid type while a linear transfer function is used for the 
output layer. The mathematical form of the function  fNN  is given in a vector form as :  
 
 

 
 
 
where H1, H2  and  yNL are the output values of each layer. The values W1, W2, and W3 are the weight 
parameters while b1, b2, and b3 are the bias parameters. The function fs (.) is the sigmoid tangent 
function which is defined as, f ns( ) = (2 /(2+e−2n)) −1.  
  
Because the model in equation 1 is nonlinear, the problem is no longer convex.  In order to use efficient 
QP algorithm, local linearization of the static ANN model around the current states is required. Future 
predictions of output based on current measurement yNL (k) can be approximated by the first two terms 
of the Taylor series expansion:   
  

 
The partial derivative ∂fNN /∂x can be calculated from the neural network structure in equation 2 using 
the chain rule as:  

 

This results in a time-varying linear state-space model to be used in predictive control.  
  
  



       

 

4. PREDICTIVE CONTROL FORMULATION  
 
 

 
The prediction model to be used can be represented by the following state-space equation:  
  

 

 
 

Fig.2. Open-loop step response at 0% load condition. 
 
 

Where   is the virtual output disturbance 

estimated from the outputs measurement to reduce the plant-model mismatch. Note is 

absorbed into At the kth sampling time, with currently measured outputs, 

and the current states x(k), the future output within the prediction horizon P can 
be estimated from the future input (to be determined within the moving horizon, M) u(k) as follows: 
Taking  



       

 

 
Future input, U is determined so as to follow a reference, r k( ), i.e. to minimize the performance 

cost: subject to input constraints, and input rate constraints, 

the predictive equation (6), a QP optimization problem is formulated.       
                 

 
 
where,  
u (k −1) is the previous input applied to the plant,  

 
Note, the weighted input cost and the output constraints are ignored to simplify the controller with 
little effects on the performance. The only tuneable parameters in this formulation are Q, P, M and 
sampling time. Thus, the control strategy can be easily implemented and tuned to satisfy required 
performance. Only the first nu rows of the vector U, which corresponds to u(k) are applied to the plant. 
The whole procedure is then repeated at the next sampling instance.  
  
 For the unconstraint case, the optimal solution, which corresponding to a state feedback control law, 
can be obtained analytically:  
  

 



       

 

Let K be the first  nu rows ofK1, then the nominal stability (perfect model without input saturation) of 
the closed-loop can be checked by calculating the eigenvalue of the matrix A-BK. 
  

  

4. PREDICTIVE CONTROL DESIGN  
  

4.1 Nonlinear System Identification.  
  
The first design task to implement the above algorithm is to get an internal model using equation 5. 
Three operating conditions are specified in the gasifier benchmark problem: 0%, 50%, and 100% load 
conditions. Since the performance requirements at 50% and 100% load conditions are relatively easier 
to achieve, it was decided to use the 0% load point as the nominal point to get the linearized state 
space model. The model obtained was then reduced to 16 states via pole-zero cancellation. The 16 
states model is discretized with the sampling time selected.  
   
For the ANN static model of PGAS, the number of node in the first and second hidden layers was 16 
and 10 respectively with one node in the output layer. Data were generated through applying a zero 
mean normalized sequence of random pulses with their periods and amplitudes corresponding to the 
maximum and minimum expected variations and frequency in response to individual input change 
under different load conditions. The sets over different loads were then linked together and used in 
training and validation of the ANN. The performance of the trained PGAS Wiener model is given in 
figure 2, which shows the model is capable to capture most characteristics behaviour of the plant.  
  
4.2 Predictive control design.  
  
Normally, the sampling time should be less than one tenth of 2π/ωb , where ωb is the required 
bandwidth of the closed-loop. The performance specifications require the imposition of a sine 
disturbance with a period of 25s (0.04 Hz). Therefore, the sampling time should be less than 2.5s. 
On the other hand, the sampling time should not be too large so that in any step disturbance test, 
the output variables will not deviate from their setpoints more than the limit specified before the 
controller starts to response. Hence, the sampling time was selected to be 1 s. This satisfies both 
requirements. The control algorithm is implemented in the form of a SIMULINK s-function to 
replace the control block in the nonlinear baseline model. The QP problem is solved by calling 
‘quadprog’ of the MATLAB/Optimization Toolbox at each sampling time. This is the major 
computation burden in the present algorithm and is solely determined by the length of the control 
horizon, M. The prediction horizon, P has little effect on computation burden, and thus can be 
select relatively large to improve robust stability. In this study, M = 7s and P = 17s. The weighting 
matrix, Q is diagonal and initially set to the inverse of the output error bounds. After online tuning, 
the final values were Q = diag[1.0 150 3.0 2×106 ]. Using the above configuration, nominal stability 
was achieved at all three load conditions. That is the magnitudes of all eigenvalues of Ai - BiK  are 
less than 1. Where, Ai  and Bi are the discrete state and control matrices at different load 
conditions.  
  
  

5. SIMULATION RESULTS  
  
5.1 Disturbance Tests.  
  



       

 

The following two disturbance tests were performed for three load conditions for 300 seconds:  
• Step change in sink pressure PSINK of -0.2 bar at t = 30 s.  
• 0.04 Hz sinusoidal variation in PSINK of amplitude 0.2 bar beginning at t = 30 s.  

  
All the results to follow are compared with the linear MPC. The maximum and minimum values as 
well as the peak rate change of the input variables of two disturbance tests under different load 
conditions are shown in Table 2. The maximum absolute error between output variables and their 
setpoints and the integral of absolute error (IAE) of these variables are calculated in Table 3 where 
(M1) and (M2) refer to the linear and nonlinear MPC approaches under comparison, respectively. 
The results are collected in tables to compare with other ALSTOM gasifer control approaches 
published before. Due to the space limitations only some plots of input and output responses are 
displayed here. Figures 3 to 5 show the system performance at 50% and 0% load conditions. In 
the 50% load case, the results are plotted for t≤ 100s to present the control performance in more 
details. After this time period, all the outputs response remained constant. The results in Table 2 
and 3 however are calculated until t=300s.  For 0% load sinusoidal test, results with extra 
simulation time are provided to confirm the satisfactory performance of output in meeting the 
given specifications. The results show that both controllers are capable of maintaining the output 
variables within the limits for the tests specified by ALSTOM. In the case of M2, an improvement 
in the whole system performance was observed.  In fact, all output variables have benefited from 
using more accurate PGAS internal model. Due to multivariable interactions, the improvement in 
other output variables sometimes is even larger than that in PGAS itself (Figures 4 and 5). This is 
explained as follows. The response of PGAS, particularly to disturbance PSINK is much faster than 
other output variables (Figure 1). The Improvement of nonlinear model is mainly in long term 
prediction (Figure 1). Hence, it has more effect on slow-response variables rather than PGAS, 
which is a fast-response variable. Moreover, the maximum drop of PGAS in Figure 4 is the response 
to disturbance before the controller can take action, hence is not able to be reduced by changing 
internal model only.    
  

5.2 Coal quality change test.  
  
 Both controllers M1 and M2 show a similar capability and they are capable to control the system 
under coal quality change at about ±10%. This is not the case when the change increases to ±18%  
because the output TGAS deviates from the desired region after a cretin time. This divergence 
happened faster in the case of M2 controller at sine wave disturbance test at 0% load condition. This 
is a problem due to an inherent performance limitation. When the coal quality change is large, an 
input saturation of WCHR is unavoidable so that TGAS deviates a long way from the setpoint, i.e. 
temperature cannot be maintained at given setpoint without violating constraints of WCHR.   
  

5.3 Load Change Test  
  
In this test, the load is required to increase from 50% to 100% within time from 100 s to 700 s. The 
actual response is collected from the simulation and compared with the results when using M1 
controller. For both controllers, good setpoint tracking performance is obtained. The outputs results 
show approximately similar behaviours for the two controllers, with a small improvement in the MASS 
response when using M2 approach. Also, the manipulated variables response is smoother in this case 
(see figures 6 -7).   
  
 



       

 

6.CONCULSION  
   
A simple predictive controller has been developed to control the ALSTOM gasifier benchmark process.   
LMPC employing GPC strategy is modified to include a partially nonlinear internal model.  A nonlinear 
class Wiener model is used to identify one of the process output variables (PGAS) which has strong 
nonlinearity while a linear model at 0% load condition is adopted for the other output variables. To 
regain the convex feature of the QP optimization problem, PGAS nonlinear model was linearized at 
every sampling time to update the linear model used for optimization. Thus, the internal model is 
actually a linear time-varying model. The new controller meets all the required performance 
specifications within given input and output constraints during sink pressure disturbance and load 
change tests and the results show a significant improvement in the system performance compared 
with the results obtained when only linear time-invariant model is used.   
  

 
Fig.3. Step disturbance: Inputs and limits at 50%. 

  

 
Fig.4. Step disturbance: Outputs and limits at 50%. 

 



       

 

 
Fig.5. Sine disturbance: Outputs and limits at 0%. 

 
 

 



       

 

             

Fig.6. Control signals at load change test. 
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