
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, 2007 Elsevier Ltd. All rights reserved and is licensed under Creative Commons:
Attribution-Noncommercial-No Derivative Works 4.0 license:

Al-Seyab, Rihab ORCID logoORCID: https://orcid.org/0000-
0001-6384-193X and Cao, Y (2008) Nonlinear system
identification for predictive control using continuous time
recurrent neural networks and automatic differentiation.
Nonlinear system identification for predictive control using
continuous time recurrent neural networks and automatic
differentiation, 18 (6). pp. 568-581.

Official URL: https://www.sciencedirect.com/science/article/pii/S095915240700159X?via
%3Dihub

EPrint URI: https://eprints.glos.ac.uk/id/eprint/7474

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Nonlinear system identification for predictive control using continuous time

recurrent neural networks and automatic differentiation.

R.K. Al Seyab, Y. Cao *

School of Engineering, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK

Abstract

In this paper, a continuous time recurrent neural network (CTRNN) is developed to be used in nonlinear model predictive control (NMPC)

context. The neural network represented in a general nonlinear state-space form is used to predict the future dynamic behavior of the nonlinear

process in real time. An efficient training algorithm for the proposed network is developed using automatic differentiation (AD) techniques. By

automatically generating Taylor coefficients, the algorithm not only solves the differentiation equations of the network but also produces the

sensitivity for the training problem. The same approach is also used to solve the online optimization problem in the predictive controller. The

proposed neural network and the nonlinear predictive controller were tested on an evaporation case study. A good model fitting for the nonlinear

plant is obtained using the new method. A comparison with other approaches shows that the new algorithm can considerably reduce network training

time and improve solution accuracy. The CTRNN trained is used as an internal model in a predictive controller and results in good performance

under different operating conditions. 2007 Elsevier Ltd. All rights reserved.

Keywords: Nonlinear system; System identification; Predictive control; Recurrent neural network; Automatic differentiation

1. Introduction

Model predictive control (MPC) is proving its continuous success in industrial applications particularly in the presence of

constraints and varying operating conditions, thereby allowing processes to operate at the limits of their achievable performance. The

basic control strategy in MPC is the selection of a set of future control moves (control horizon) and minimize a cost function based

on the desired output trajectory over a prediction horizon with a chosen length. This requires a reasonably accurate internal model

that captures the essential nonlinearities of the process under control, to predict multi-step ahead dynamic behavior [1].

In many reported applications of MPC, a linear model is assumed. However, MPC based on linear models, often results in poor

control performance for highly nonlinear processes because of the inadequateness of a linear model to predict dynamic behavior of a

nonlinear process. There is therefore, a strong requirement of a good fitting model for NMPC applications.

In many practical applications, a restrict mathematical model based on physical principles is either unknown or too complicated

to be used for control. In this case, nonlinear system identification is an inevitable step in a NMPC project. Possibly, it is also the

most costly and time consuming part of the project [2]. Therefore, an efficient and effective approach of nonlinear system

identification is critical to the success of NMPC.

Unlike linear system identification, there is no uniform way to parameterize general nonlinear dynamic systems. Among existing

techniques, the universal approximation properties of neural networks makes them a powerful tool for modelling nonlinear systems

[3]. The structure of neural networks may be classified as feedforward and recurrent. Most of the publications in nonlinear system

identification use feedforward neural networks (FFNNs) with backpropagation or its other variations for training, for example [4,5].

The main drawback of this approach is that it can only provide predictions for a predetermined finite number of steps, in most cases,

only one step. This drawback makes such models not well suitable for predictive control, where variable multi-step predictions are

desired.

Recurrent neural networks (RNNs) on the other hand are capable of providing long range predictions even in the presence of

measurements noise [8]. Therefore, RNN models are better suited for NMPC. RNNs with internal dynamics are adopted in several

recent works. Models with such networks are shown [3,9], to have the capability of capturing various plant nonlinearities. They have

been shown more efficient than FFNNs in terms of the number of neurons required to model a dynamic system [10,11]. In addition,

they are more suitable to be represented in statespace format, which is quite commonly used in most control algorithms [12].

In this work, a continuous time version of the recurrent neural networks (CTRNNs) in state-space form is used as the internal

model of NMPC. The continuous time RNN brings further advantages and computational efficiency over the discrete formulation

even if at the end both are represented on the computer using only discrete values [13]. Using a discrete-time RNNs causes a great

dependence of the resulting models on the sampling period used in the process and no information is given about the model trajectories

between the sampling instants. The sampling period used with CTRNNs, on the other hand, can be varied without the need for re-

training [14,15].

The main difficulty with recurrent neural networks is their training [13,16,17]. Various training strategies have been suggested in

the literature, such as the backpropagation method [18], the conjugate gradient method [19], Levenberg–Marquardt optimization [20],

or methods based on genetic algorithm (GAs) [21]. To solve the nonlinear optimization problem associated with CTRNN training,

the calculation of a large number of dynamic sensitivity equations is required. Depending on the number of sensitivity equations

involved, the sensitivity calculation could take more than 90% of the total computation time required for solving a training problem.

Hence, sensitivity calculation is a bottleneck in training CTRNNs. Ways to find the sensitivity of a dynamic system [22] are:

perturbation, sensitivity equations, and adjoint equations. In a perturbation approach, finite difference (FD) is used to approximate

derivatives. Hence at least N perturbations to the dynamic system are needed to get the solution of a N-parameter sensitivity problem

[22]. Alternatively, sensitivity can also be obtained by simultaneously solving the original ordinary differential equations (ODEs)

together with nN sensitivity equations, where n is the number of states [23]. Finally, sensitivity can be calculated by solving n adjoint

equations (in reverse direction).

Recently, the automatic differentiation (AD) techniques have been applied to tackle the dynamic optimization problem [24]. In our

previous work, [25], a first-order approximation was derived using AD to simplify the dynamic sensitivity equations associated with

a NMPC problem so that computation efficiency was improved.

In most published work using AD for dynamic optimization, AD has only been used to generate low (first and/ or second) order

derivatives. Recently, AD techniques have been used to solve ODEs and sensitivity equations using high-order Taylor series in a

NMPC formulation [26]. In this work, the approach of [26] is extended to solve both the CTRNN training and associated NMPC

control problems to speed up calculations and to increase efficiency. Both training and NMPC algorithms are applied to an evaporator

process [27]. The network training time is significantly reduced by using the new algorithm comparing with other methods. Using the

trained CTRNN as its internal model, the NMPC controller gives satisfactory control performance at different operating conditions.

The paper is organized as follows. After the introduction, a CTRNN training algorithm is discussed in Section 2. The details of the

MPC algorithm are presented in Section 3. Section 4 dedicates to the evaporator case study including its nonlinear system

identification using CTRNN, the predictive controller design and simulation results. In Section 5 some conclusions are drawn from

the work.

2. CTRNN training

2.1. Neural network model

It has been proven that CTRNNs are able to approximate trajectories generated by nonlinear dynamic systems given by:

 A key to the approximating capabilities of this type of networks is the use of hidden neurons, [10,28,29]. There are many types of

neural networks from multi-layer perceptrons (MLP) to radial basis functions (RBF), which can be constructed as recurrent networks

to approximate the nonlinear system (1). The training algorithm to be discussed is suitable for any kind networks. Hence, the CTRNN

to be considered is represented in the following general form.

Where is the external input, the network output, the network’s state vector, the

network parameter vector and the output matrix C is fixed as

i.e. outputs are the first ny states of the networks.

A particular example of (2), which will be used for the case study later, is shown in Fig. 2, where a MLP network is adopted to

construct the recurrent neural network of (2).

2.2. CTRNN sensitivity calculation using AD

The definition of the sensitivity is the variation of the network output against the variation of , where represents the

general parameters, in training cases, and in NMPC, whilst in other cases, may also include the initial state,

Assume the function is d-time continuously differentiable. Then, the sensitivity can be calculated by taking partial derivative for

both sides of Eq. (2):

ð4Þ

Eq. (4) is a linear time-varying system with initial condition, Generally, system (4) has no analytical solution

although it can be represented in a state-transition matrix form [30]. The dynamic sensitivity function xg can be calculated using

different method as mentioned earlier. Numerically, Eq. (4) can be solved together with the state Eq. (2) using a differential equation

solver. The total number of differential variables to be solved at each time instant is Depend on the size of a network,

this number of differential variables could growth so large that the calculation causes a significant burden on network training. To

tackle this problem, the sensitivity calculation method proposed in [26] is extended for CTRNNs.

To solve differential Eqs. (2) and (4), an integration step has to be determined. Normally, the integration step should be shorter

than the sampling period to get accurate results. However, for the approach developed here, the accuracy can be maintained by

adjusting the Taylor series order, d. Moreover, for the identification problem, there is no information available between two sampling

points to compare integration results if a shorter integration step is adopted. Therefore, for simplicity and efficiency, the integration

step is selected to be the same as the sampling period in this work.

Using normalized time, where h is the sampling period, the right-hand-side of the state equation becomes:¼

and the solution interval is for each integration step. Consider are given

by the truncated Taylor series:

with coefficients

and given as follows respectively:

Let then, can be expressed by a Taylor expansion:

From the chain rule, z[j] is uniquely determined by the coefficient vectors,

and with

Nevertheless, inherently, functions z[j] are also d-time continuously differentiable and their derivatives satisfy the identity [31];

AD techniques provide an efficient way to calculate these coefficients vectors, z[j] and matrices A[i] [32]. For example, with the

software package, ADOL-C [33,34], using the forward mode of AD all Taylor coefficient vectors for a given degree, d can be

calculated simultaneously, whilst the matrices, A[i] can be obtained using the reverse mode of AD. The run time and memory

requirement associated with these calculations grow only as d2.

Using AD for the CTRNN system (2), the Taylor coefficients of can be iteratively determined from and [26]:

Then, by applying AD to (16), the partial derivatives are obtained and partitioned as;

The total derivatives are accumulated from these partial derivatives as follows:

Note, where In summary, the solutions of system (2) at t = h are;

whilst their sensitivities to initial value, ^x½0 and coefficients v are,

2.3. Network training algorithm

Training produces the optimal connection weights for the networks by minimizing a quadratic cost function of the errors between

the neural network output and the plant output over the entire set of samples. Among many network training algorithms, Levenberg–

Marquardt (LM) algorithm [20] is known to be a robust and fast gradient method because of its second-order converging speed

without having to compute the Hessian matrix. For this reason, the LM algorithm is combined with the sensitivity algorithm using

AD described above for the dynamic network training.

Firstly, assume the dynamic system (1) is initially at steady-state. By introducing a set of random inputs to the system, the

outputs of the plant are collected with the inputs for N sampling points at sampling rate h. Then, the unknown network parameters

h are estimated from the input–output data set by minimizing the sum of squared approximation errors, i.e.

where ei is the error between the actual plant output and the network output at ith sampling point which is a function of the model

parameter vector given by:

Let:

The Jacobian matrix of E is defined as oEðhÞ

Then, the gradient of whilst the Hessian of can be approximated as The training algorithm based

on the nonlinear least square approach of Levenberg–Marquandt [20] is:

where is an updated vector of weights and biases, the current weights and biases, and I the identity matrix. When the scalar l

is zero, this is a quasi-Newton approach, using the approximate Hessian matrix, When l is large, it is equivalent to a gradient

descent method with a small step size. Quasi-Newton method is faster and more efficient when is near the error minimum. In this

way, the performance function will always be reduced at each iteration of the algorithm.

The Jacobian matrix can be partitioned into N blokes as:

where each block is an matrix as:

For accurate and fast calculation of the sensitivity equations required for the Jacobian matrix above, the method described in the

previous section is adopted here. Since h is a constant vector,

For given and are iteratively determined from

using (20). Then the value of can be calculated using (19) and (21)–(23) as:

Hence, with AD, the nonlinear training problem can be efficiently solved using the LM method.

2.3. Model validation

Many model validity tests for nonlinear models have been developed [35], for example, the Akaike information criterion (AIC),

the statistical X2 tests, the predicted squared error criterion, and the higher–order correlation tests.

The most common method of validation is to investigate the residual (prediction errors) by cross validation on a test data set. Here,

validation is done by carrying out a number of tests on correlation functions, including autocorrelation function of the residual and

cross-correlation function between controls and residuals. If the identified model based on CTRNN is adequate, the prediction errors

should satisfy the following conditions of high-order correlation tests [36]:

where indicates the cross-correlation function between , e is the model residual. These tests look into the

cross-correlation amongst model residuals and inputs. These test are normalized to be within a range of ±1 so that the tests are

independent of signal amplitude and easy to interpret [36]. The significance of the correlation between variables is indicated by a

confidence interval. For a sufficiently large data set with length N, the 95% confidence bounds are approximately

If these correlation tests are satisfied (within the confidence limits) then the model residuals are a random sequence and are not

predictable from the model inputs. This provides additional evidence of the validity of the identified model.

3. Nonlinear predictive control algorithm

Once the CTRNN has been trained, the network can be used as an internal model of a predictive controller. The recurrent neural

network generates prediction of future process outputs over a specified prediction horizon P, which allows the following performance

criterion to be minimized:

where M and P are the control and prediction horizons respectively, are the weighting matrices for

the output error and the control signal changes respectively, is the output reference vector at is a virtual disturbance

estimated at the current time and used to reduce the model-plant mismatch, u and u are constant vectors determining the input

constraints as elementby-element inequalities.

The prediction horizon is divided into P intervals,

For piecewise constant control, assume the optimal solution to (38) is

Then, only the solution in the first interval is to be implemented and whole procedure will be repeated at next sampling instant.

 Problem (38) is a standard nonlinear programming problem (NLP)
which can be solved by any modern NLP solvers. To efficiently solve the online optimization problem of the predictive controller
the same gradient calculation strategy of the NMPC approach proposed by [26] is used.

A simple method is used to estimate the initial value of the model states required to solve the optimization problem at each

sample time. In this method, the new states are updated from the old values using the dynamic Eq. (39). Also, the state estimate

error was reduced further by adding the virtual disturbance d to the output. No terminal penalty is used in this work and a good

tuning of h, P, M, Q, and R was found enough to ensure the close-loop stability for the case study in different operation conditions.

4. Case study – an evaporator process

This case study is based on the forced-circulation evaporator described by Newell and Lee [27], and shown in

T200

Fig. 1. In this process, a feed stream enters the process at concentration X1 and temperature T1, with flow rate F1. It is mixed with

recirculating liquor, which is pumped through the evaporator at a flow rate F3. The evaporator itself is a heat exchanger, which is

heated by steam flowing at rate F100 with entry temperature T100 and pressure P100. The mixture of feed and recirculating liquor boil

inside the heat exchanger, and the resulting mixture of vapour and liquid enters a separator where the liquid level is L2. The operating

pressure inside the evaporator is P2. Most of the liquid from the separator becomes the recirculating liquor. A small proportion of

it is drawn off as product, with concentration X2, at a flow rate F2 and temperature T2. The vapour from the separator flows into a

condenser at flow rate F4 and temperature T3, where it is condensed by cooling water flowing at rate F200, with entry temperature

T200 and exist temperature T201. The nominal values of the system variables are given in Table 1, while the first-principle model

equations are available in [27].

Table 1. Evaporator variables and values

Fig. 1. Evaporator system.

Variables Description Nominal value Units

F1 Feed flowrate 10 kg/min

F2 Product flowrate 2.0 kg/min
F3 Circulating flowrate 50 kg/min
F4 Vapor flowrate 8.0 kg/min
F5 Condensate flowrate 8 kg/min
X1 Feed composition 5.0 %
X2 Product composition 25 %
T1 Feed temperature 40.0 %
T2 Product temperature 84.6 C
T3 Vapor temperature 80.6 C
L2 Separator level 1.0 m
P2 Operator pressure 50.5 kPa
F100 Steam flowrate 9.3 kg/min
T100 Steam temperature 119.9 C
P100 Steam pressure 194.7 kPa
Q100 Heat duty 339 kW
F200 Cooling water flowrate 208 kg/min
T200 Inlet C.W. temperature 25.0 C
T201 Outlet C.W. temperature 46.1 C
Q200 Condenser duty 307 kW

Steam T100
F100 P100

Evaporator

Condensate

Feed
F1, X1, T1

F3

Separator
P2, L2

Product
F2, X2, T2

T201
F200

Cooling
water

Condenser

4.1. System identification using CTRNN

The evaporator system has been adopted as a case study for system identification using CTRNN by a group of researchers [15],

where a Genetic Algorithm (GA) based approach was used to train the CTRNN as it was believed that ‘‘the implementation of

gradient-based training algorithms is computationally expensive’’. However, only a short period (5 min) of data with simple input

signals (step changes) was used to train the network and another short
Table 1
Evaporator variables and values

period (7.5 min) was adopted for model validation. In this work, it is to be demonstrated that with the approach

developed above the gradient-based algorithm is not computationally expensive any more comparing with the GA

based approach since the new training algorithm is able to handle a much longer period (500 min) of data with

much more complicated input signals (random pulses) for training and validation.

The evaporator is approximated using a continuous time recurrent MLP network with one hidden layer as

shown in Fig. 2:

Where are connection weights,

are bias vectors, whilst each element of the vector represents the

sigmoid-tanh function as the neural activation function,

i.e.

The parameter vector is

The identification scheme assumes that the plant model equations are unknown and the only available information

is the input–output data which is generated through various runs of the first principle model of the plant given by

[27]. Two different structures of the CTRNN are studied to model the process. The first network (Network 1) was

trained with and while the second one (Network 2) was trained with

The training was carried out repetitively over the data collected within a fixed

time interval of 500 min and sampled at every 0.2 min. The inputs training data was a random pulses with a

different amplitude and durations with the range chosen to cover all the region of operation of the plant (see Fig.

3). Another set of data at sampling time 0.05 min is randomly generated from the plant to be used for network

validation. The output data are corrupted with a normally distributed zero mean noise with variance 5% of the

steady-state values of the output variables. The initial values of the first ny network states were chosen equal to

the steady-state values of the simulated plant outputs while the remains were equal to zeros.

time, minutes

Input layer Hidden layer output layer

ˆ y (t)

) (s

s

) (s

) (s

u (t)

ˆ x (t)

ˆ x (t)

) (s

C

W 2

b 1

b 2

W x

W u

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

Fig. 3. Training data set, inputs, 0.2 min.

To demonstrate the CTRNN capability for evaporator model approximation, the simulated plant output and

the trained neural networks output are compared in Figs. 4 and 5. A good model fitting is observed for both

networks

with approximately similar accuracy with the training data. In terms of model validation, Network 1 is better

than Network 2 as shown in Fig. 5. This means increase the network state dimension does not necessarily

improve the model fitting. Sometimes, networks with high order could include undesirable eigenvalues which

may induce an unstable or poor performance. Therefore, Network 1 is chosen as the internal model of the

predictive controller for accurate and fast online calculations. Also, the validation results show the capability

of the network to approximate the simulated plant output with a sampling time less than that used for training,

without the need to re-train the network. In fact, this is one of the most important advantages of CTRNNs over

discrete-time recurrent networks.

time, minutes

Fig. 4. Training data set, outputs,

Also, as a confidence test of the resulting model, the correlation–based model validation results for the CTRNN model can be

calculated according to Eqs. (36) and (37) and shown in Figs. 6 and 7 respectively. The dotted lines in each plot are the 95%

confidence bounds It can be seen that only a small number of points are outside the bounds. This demonstrates

that the model can be considered as being adequate for modelling this plant.

Fig. 5. Validation data set, outputs, 0.05 min.

Fig. 6. Validation tests/autocorrelation coefficient for error, 0.05 min.

Fig. 7. Validation tests/cross-correlation coefficient of U, 0.05 min.

To solve the training problem, a total sensitivity variables have to be calculated

in addition to the original three ordinary differential equations (ODEs) of Network 1 while for Network 2, the number of sensitivity

is 5 · 2000 · 117 = 1,170,000. To demonstrate the efficiency of the new algorithm, it is compared with the traditional sensitivity

equation integrating approach using a typical numerical ODE solver, the MATLAB function ode15s.

To compare computation time associated with a given accuracy, a reference solution is produced by using ode15s solver and

setting the error tolerance to 1014. Then with four tolerance settings, and four different Taylor series orders

(3, 6, 8, 10), computation time and accuracy against the reference solutions using two different approaches are compared in Table 2.

A third network (Network 3) with new configurations and sensitivity variables number = 4 x 2000 x 169 =

1,352,000) has been trained and the results are given in Table 2 for comparison. Note that the computation time in Table 2 is the time

required to calculate the cost function and the sensitivity variables over one optimization iteration whilst the error term in the same

table is the maximum absolute error against the reference solution. The table shows that training algorithm using AD perform better

than the traditional sensitivity approach in both efficiency and accuracy. It can be seen that the order of Taylor series plays an

important role in error control. Increase the order by a few number, the error would be reduced by a number of orders magnitude

without increasing too much computation time. However, using traditional approaches, significant computation time may have to be

traded off for a reduction in computation error. A way to determine an appropriate order of Taylor series for a given error tolerant

was suggested in [26]. It is worth to mention that a successful training would require thousands of iterations. If the accuracy of ODE

solver is lower, it would require even more iterations to get a converged solution. Therefore, the time comparison listed in Table 2

suggests a massive efficiency improvement in network training achieved by the proposed approach.

Table 2. Computing time and accuracy comparison

All tests are done on a Windows XP PC with an Intel Pentium-4 processor running at 3.0 GHz. Note that, the proposed algorithm

is implemented in C using ADOL-C and interfaced to MATLAB via a mex warp.

4.2. Evaporator predictive control

Effective control of the evaporator system using traditional PID controllers was not very successful especially for large setpoint

changes [27]. Predictive control was also considered by a number of workers. Linear model predictive control (LMPC) was

demonstrated to be not sufficient to fully control this process for an excessive range of variation (see control objectives given

bellow) [37] (see Fig. 8). A nonlinear MPC strategy based on successive linearization solution to control this process under a large

setpoint change condition was proposed by Maciejowski [37]. A good performance was observed after re-linearizing the nonlinear

process model after every few steps. However, disturbances have not been considered there. In this paper, the NMPC algorithms

described in Section 3 is applied to control the process for setpoint tracking and disturbance rejection tests described as follows;

time, min. time, min.

Fig. 8. Evaporator performance at setpoints ramp changes using LMPC [37] and the proposed NMPC,

The control objective of the case study is;

1. Track setpoint ramp changes of X2 from 25% to 15% and P2 from 50.5 kPa to 70 kPa.

2. Track setpoint changes as above when unmeasured disturbances, F1, X1, T1 and T200 are varied within ±20% of their nominal values.

The control system is configured with three manipulated variables, F2,P100 and F200 and three measurements, L2, X2 and P2. All

manipulated variables are subject to a first order lag with a time constant equal to 0.5 min and saturation constraints,

To tune control horizon M, prediction horizon P, and sampling time h, initially let P = M = 1 min, and h = 1 min. By varying M

(and assuming P = M) from 1 to 15 min, a stable performance is obtained which satisfies all control specifications for

 When , the improvement on the system performance is negligible but computation time increases.

Therefore M = 4 min is selected. The same steps are used to choose a suitable prediction horizon P, a reasonable range from the

minimum value (P = M = 1) min to P = 40 min has been tested. A stable response without any constraints violation is detected within

range min. No performance improvement can be observed when min. Therefore min is chosen to ensure that both

the system stability and satisfactory control performance achieved within a reasonable computation time.

The weighting matrix, is diagonal and initially set to be the inverse of the output error bounds.

After online tuning, the final values are:

Also, the input weighting matrix where R0 is diagonal and set to I.

By using piecewise constant input, the result NLP problem has degrees of freedom. To solve the NLP problem of

the NMPC, a total sensitivity variables have to calculated in addition to original 3 ODEs of the neural

network. In this work, the sensitivity equations are solved using the sensitivity algorithm of [26].

4.3. Simulation results

Simulation results of all tests above are shown in Figs. 8 and 9. The efficiency and the stability of the proposed CTRNN based

NMPC during setpoint ramp test has been proved in contrast with the LMPC [37] as shown in Fig. 8. Also, it can be seen from the

results given in Fig. 9 that measured outputs follow the setpoints quite well without any input constraints violation in spite of the

existence of severe unmeasured disturbances.

(f) Manipulated variables; (g)–(j) Disturbances,

To test the controller sensitivity to the sampling time, simulations have also been done by varying h from 0.5 min to 2 min. A

stable performance without constraints violation at all tests are also obtained. Knowing that the recurrent neural network (Network 1)

which is trained at h = 0.2 min is used as the controller internal model at all the above tests.

A detailed stability analysis for nonlinear model predictive control of the evaporator has been done [38], where using the new

stability measure developed, a concrete conclusion had been obtained, i.e. the NMPC of the evaporator is asymptotically stable around

the nominal steady state for any positive definite state weighting matrix, Q. The work also provided a way to calculate the stability

region around the nominal steady state. According to [38], it can be shown that the NMPC described in this work is always stable.

5. Conclusion

This paper demonstrates the reliability of artificial neural networks in process control. An efficient algorithm has been proposed

to train continuous time recurrent neural networks to approximate nonlinear dynamic systems so that the trained network can be used

as the internal model for a nonlinear predictive controller. The new training algorithm is based on the efficient Levenberge–Marquardt

method combined with an efficient and accurate tool: automatic differentiation. The dynamic sensitivity equations and the ODEs of

the recurrent neural network are solved accurately and simultaneously via AD. Big time saving to solve sensitivity equations with a

higher accuracy are observed using the new algorithm compared with a traditional method. Also, the trained networks with a different

i

Fig. 9. Evaporator performance using the present NMPC at setpoint changes plus random disturbances test. (a)–(c) Measured outputs with setpoints; (d)–

model orders show the capability to approximated the multivariable nonlinear plant at different sampling time without the need to re-

train the networks. The results show that, the choice of the network order is also very important to get a good model fitting and stable

performance. Based on the identified neural network model, a NMPC controller has been developed. The similar strategy that used

in the network training has been used to solve the online optimization problem of the predictive controller. The capability of the new

nonlinear identification algorithm and NMPC algorithm are demonstrated via an evaporator case study with satisfactory results.

References

[1] R.K. Pearson, Selecting nonlinear model structures for computer control: review, Journal of Process Control 13 (2003) 1–26.
[2] H. Zhao, J. Guiver, G. Sentoni, An identification approach to nonlinear state space model for industrial multivariable model predictive control, in: Proceedings

of the American Control Conference, Philadelphia, PA, 1998.
[3] K.L. Funahashi, Y. Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks 6 (1993) 183–192.
[4] H. Temeng, P. Schenelle, T. McAvoy, Model predictive control of an industrial packed reactors using neural networks, Journal of Process Control 5 (1) (1995)

19–28.
[5] Y. Tan, A. Cauwenberghe, Nonlinear one step ahead control using neural networks: control strategy and stability design, Automatica 32 (12) (1996) 1701–

1706.
[8] H.T. Su, T.J. McAvoy, Artificial neural networks for nonlinear process identification and control, in: M.A. Henson, D.E. Seborg (Eds.), Nonlinear Process Control,

Prentice-Hall, New Jersey, 1997, pp. 371–428.
[9] L. Jin, P. Nikiforuk, M. Gupta, Approximation of discrete-time statespace trajectories using dynamic recurrent neural networks, IEEE Transactions on Automatic

Control 40 (7) (1995) 1266–1270.
[10] A. Delgado, C. Kambhampati, K. Warwick, Dynamic recurrent neural network for system identification and control, IEE Proceedings on Control Theory

Applications 142 (4) (1995) 307–314.
[11] D.R. Hush, B.G. Horne, Progress in supervised neural networks, IEEE Signal Processing Magazine 1 (1993) 8–39.
[12] J.M. Zamarreno, P. Vega, State-space neural network, properties and application, Neural Networks 11 (1998) 1099–1112.
[13] B.A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Transactions on Neural Networks, 1995.
[14] C. Kambhampati, R.J. Craddock, M. Tham, K. Warwick, Inverse model control using recurrent networks, Mathematics and Computers in Simulation 51 (2000)

181–199.
[15] C. Kambhampati, F. Garces, K. Warwick, Approximation of Nonautonomous dynamic systems by continuous time recurrent neural networks, in: Proceedings of

the IEEE–INNS–ENNS International Joint Conference on Neural Networks IJCNN 2000, 1 (2000), pp. 64–
69.

[16] C. Kambhampati, S. Manchanda, A. Delgado, G. Green, K. Warwick, M. Tham, The relative order and inverses of recurrent networks, Automatica 32 (1) (1996)

117–123.
[17] V. Prasad, B.W. Bequette, Nonlinear system identification and model reduction using artificial neural networks, Computers and Chemical Engineering 27 (2003)

1741–1754.
[18] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in: D.E. Rumelhart, J.L. MeClelland (Eds.), Parallel

Distributed Processing, MIT Press, Cambridge, MA, 1986.
[19] J.A. Leonard, M.A. Kramer, Improvement of the back-propagation algorithm for training neural networks, Computers and Chemical Engineering 14 (1990) 337–

341.
[20] D. Marquardt, An algorithm for least-square estimation of nonlinear parameters, SIAM Journal of Applied Mathematics 11 (1963) 431– 441.
[21] D.E. Goldberge, Genetic Algorithms in Search, Optimization and Machine Learning, Addision-Wesley, Reading, MA, 1989.
[22] S. Storen, T. Hertzberg, Obtaining sensitivity information in dynamic optimization problems solved by the sequential approach, Computer and Chemical

Engineering 23 (1999) 807–819.
[23] M. Schlegel, W. Marquardt, R. Ehrig, U. Nowak, Sensitivity analysis of linearly implicit differential-algebraic systems by one-step extrapolation, Applied

Numerical Mathematics 48 (2004) 83–102.
[24] R. Griesse, A. Walther, Evaluating gradients in optimal control: continuous adjoint versus automatic differentiation, Journal of Optimization Theory and

Applications 122 (1) (2004) 63–86.
[25] Y. Cao, R.A. Seyab, Nonlinear model predictive control using automatic differentiation, in: European Control Conference (ECC 2003), Cambridge, UK, 2003, p.

in CDROM.
[26] Y. Cao, A formulation of nonlinear model predictive control using automatic differentiation, Journal of Process Control 15 (2005) 851– 858.
[27] R.B. Newell, P.L. Lee, Applied Process Control – A Case Study, Prentice Hall, Englewood Cliffs, NJ, 1989.
[28] F. Garces, C. Kambhampati, K. Warwick, Dynamic recurrent neural networks for identification of a multivariable nonlinear evaporator systems, In: Proceedings

DYCONS’99, World Scientific, 1999.
[29] F. Garces, C. Kambhampati, K. Warwick, Dynamic recurrent neural networks for feedback linearization of a multivariable nonlinear evaporator systems, in:

Review for UKACC International Conference Control, 2000.
[30] C.T. Chen, Linear System Theory and Design, third ed., Oxford University Press, New York, 1999.
[31] B. Christianson, Reverse accumulation and accurate rounding error estimates for Taylor series, Optimization Methods and Software 1 (1992) 81–94.
[32] A. Griewank, Evaluating Derivatives, SIAM, Philadelphia, PA, 2000.
[33] A. Griewank, J. David, U. Jean, ADOL-C: a package for the automatic differentiation of algorithms written in C/C++, ACM Transactions on Mathematical

Software 22 (2) (1996) 131–167.

[34] A. Griewank, ODE solving via automatic differentiation and rational prediction, in: D. Griffiths, G. Watson (Eds.), Numerical Analysis 1995, Pitman Research

Notes in Mathematics Series, vol. 344, Addison-Wesley, Reading, MA, 1995.
[35] J. Zhang, J. Morris, Recurrent neuro-fuzzy networks for nonlinear process modeling, IEEE Transactions on Neural Networks 10 (2) (1999) 313–326.
[36] S.A. Billings, W.S.F. Voon, Correlation based model validity tests for nonlinear models, International Journal of Control 44 (1986) 235– 244.
[37] J.M. Maciejowski, Predictive Control with Constraints, PrenticeHall, Harlow, England, 2002.
[38] W.H. Chen, Y. Cao, Stability analysis of constrained nonlinear model predictive control with terminal weighting, Unpublished.

