
This is a peer-reviewed, final published version of the following document and is licensed under
All Rights Reserved license:

Dreyer, Hanna, Wynn, Martin G ORCID logoORCID:
https://orcid.org/0000-0001-7619-6079 and Bown, G Robin
ORCID logoORCID: https://orcid.org/0000-0001-7793-108X
(2020) Triggering specialised knowledge in the software
development process: a case study analysis. In: Current
Issues and Trends in Knowledge Management, Discovery and
Transfer. IGI-Global, Hershey, Pennsylvania, pp. 305-329. ISBN
9781799821892

Official URL: https://www.igi-global.com/chapter/triggering-specialised-knowledge-in-the-
software-development-process/244889
DOI: http://dx.doi.org/10.4018/978-1-7998-2189-2.ch013
EPrint URI: https://eprints.glos.ac.uk/id/eprint/7152

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

305

DOI: 10.4018/978-1-7998-2189-2.ch013

ABSTRACT
Many factors determine the success of software development projects. The exchange
and harnessing of specialized knowledge amongst and between the project team
members is one of these. To explore this situation, an ethnographic case study
of the product-testing phase of a new human resources management system was
undertaken. Extempore verbal exchanges occur through the interplay of project team
members in weekly meetings, as the software was tested, analyzed, and altered in
accordance with the customer’s needs. Utilizing tacit knowledge from the project
members as well as the group, new tacit knowledge surfaces and spirals, which
allows it to build over time. Five extempore triggers surfaced during the research
generated through explicit stimuli, allowing project members to share and create
new knowledge. The theoretical development places these learning triggers in an
interpretive framework, which could add value to other software development and
project management contexts.

Triggering Specialised
Knowledge in the Software

Development Process:
A Case Study Analysis

Hanna Dreyer
University of Gloucestershire, UK

Martin George Wynn
 https://orcid.org/0000-0001-7619-6079

University of Gloucestershire, UK

Robin Bown
 https://orcid.org/0000-0001-7793-108X

University of Gloucestershire, UK

https://orcid.org/0000-0001-7619-6079
https://orcid.org/0000-0001-7793-108X

306

Triggering Specialised Knowledge in the Software Development Process

INTRODUCTION

Recent research has identified and assessed the significance of a range of issues that
determine software project development outcomes (Wynn, 2018a, 2018b). These
include factors concerning not only technology, but also people and process related
indicators, including knowledge transfer intensity (Figure 1). In other literature, the
surfacing of such knowledge in projects has been conceptualised as emanating from
a combination of improvisation, project management and knowledge management
activities (Leybourne & Kennedy, 2015). The issue of improvisation, however, can
be seen to be at odds with established best practice project management principles.
Prescriptive, probabilistic and objective based project management systems are no
guarantee of success and in some cases they can create an illusion of control that is
not always justified (Hodgson & Drummond, 2009). All projects have a temporal
focus and the dominant logic in this field is structured planning to achieve workable
projects on time. Knowledge sharing is at the core of meetings where different forms
of expert knowledge are required.

Tacit knowledge is a difficult form of knowledge to share and acquire during a
project due to its intangible nature. Tacit knowledge is at the core of a knowledge
based society and its exchange is still of great interest to researchers. How tacit
knowledge is exchanged and used within the different project teams plays a vital
role in project success. Banacu (2013) stresses the importance of tacit knowledge
transfer due to companies needing it to obtain a competitive advantage. Project
teams, and in particular those involved in software development, exist to provide
workable solutions that incorporate and create new knowledge from the separate
areas of expertise held within the team. This research analyses a project team’s tacit
knowledge exchange within a software development meeting environment.

White and Perry (2016) argue that there has not been enough focus on the
expert knowledge of software developers and their influence on the production of
information systems. This is an area where software work is highly socialized but
careers were highly individualized (Benner, 2008). Their mutual standing in the
work overcomes the set of partial knowledge that they each possess. Being able
to manage different knowledge sources through coordination and integration is a
significant challenge during such a project (de Souza et al., 2006). The focus of the
research lies in exploring knowledge exchange in software development projects
and sheds light on how this expert group knowledge actualises and thus contributes
to theory. Embedded observation in a particular project provided the empirical
material for this research.

307

Triggering Specialised Knowledge in the Software Development Process

This article discusses the findings of a research project (Dreyer, 2018) which
aimed to understand how tacit knowledge surfaces within the software development
process. It examines how the group knowledge generated through expert interaction
can be recognised in a software development project, and used to improve project
implementation (Clancy, 2006). The paper consists of five sections. After this
introductory section, literature relevant to the field of study is discussed, and the
following section then outlines the research methodology deployed in the study.
There then follows an evaluation of the data and a discussion of research findings.
In the concluding section, the main outcomes of the research are summarised and
implications are discussed.

Figure 1. Change factors in a software development project (at TPG DisableAids)
Source: Wynn, 2018b, p.115.

308

Triggering Specialised Knowledge in the Software Development Process

LITERATURE REVIEW

In the context of knowledge creation, the theory of tacit knowledge has been
influential since the work of Nonaka and Takeuchi (1995). This created a protocol for
a knowledge generating company using a Socialisation, Externalisation, Combination
and Internalisation (SECI) model. In the same volume, three of the model elements
are presented in a recursive pathway, as more available knowledge is created in the
transfer from tacit to explicit knowledge. Internalisation is the counter flow in this
model, and it occurs across and counter to the other three modalities.

The concept of tacit knowledge arises from the observation by Polanyi (1962)
that “our personal knowing of a thing is unspecifiable” (p.343) to the extent that
it is more than the articulated fact. Importantly, this tacit knowledge is seen as the
form of knowledge that is not routinely articulated and embodied in human action
(Scharmer, 2001; Riain, 2009). This leaves open the question of whether the knowing
is not, or cannot, be articulated. Personal knowledge communication contains both
these elements in ways that are difficult to separate. This will apply to knowledge
from an expert who, as such, is considered to have expertise. Importantly, Nonaka
and Takeuchi (1995) see the process to convert tacit knowledge to explicit knowledge
as essentially context dependent, which entails physical proximity and interaction.

In this view, a shared reality and face-to-face interactions are the root of
knowledge creation (Berger & Luckmann, 1967). These interactions are seen as “the
key to conversion and transfer of tacit knowledge and, thus, are the triggers for the
whole knowledge creation process” (Bartolacci et al., 2016, p.795). This process
is holistically contained in the context, but often needs disjunctions to crystallise
the knowledge available. Having several groups of experts involved moderates the
flow of knowledge substantially, and hence developing a shared understanding is
essential, as it is a group effort to develop software (Fischer & Ostwald, 2001). This
shared reality is a form of “putting oneself into work” (Heidegger, 2001, p.160).

There have been a number of difficulties in implementing such a knowledge
creation project in a timely manner, particularly in software projects (Marouf &
Khalil, 2015). Project management assumes a rational approach to decision-making
by project managers, but some empirical studies (Hodgson & Drummond, 2009)
support the view that managerial judgment is the preferred mode of decision selection
in many projects. Managerial judgment is based on situational assessment, and thus
on time-constrained knowledge rather than on more prescriptive rational decision-
making (Taylor, 2004).

A Husseralian approach to phenomenology is one that derives the essence of an
idea. Husserl (2012) considers that a thought can emerge as a vague thought that is,
in its initial stages “an inarticulate grasp” (p.255). Polanyi’s (1962) use of the term
“strenuous groping” and the view that “any science is grounded in a tacit ontology

309

Triggering Specialised Knowledge in the Software Development Process

of its object domain” indicates the “unspoken assumption about the objects in use”
(p.301). Knowledge we acquire and own is not entirely specifiable and therefore
gives rise to the articulate grasping as we seek to extend our articulation of what
we know. Triggers add value in a group context by enabling this process. Triggers
can be seen as unique events that start a process, initiating something new. They
are an initiation of a phase change in the knowledge development process that
enables articulation. Accepting that there are some dynamic effects, the process
of knowledge exchange will not be self-generating without interventions. These
situations are not always easy to recognize, as they are not routinely articulated,
and therefore the opportunity for the identification of a new understanding may
be missed. Engeström, Kerosuo, and Kajamaa (2007) see these discontinuities as
either mundane or directional. Directional changes can seem an anathema to the
idea of continuity but continuity is not the same for all participants. These triggers,
or “discontinuities” in the existing situation, can be created from outside the group,
and can “trigger micro-processes of organizational learning” (Berends & Lammers,
2010, p.1060). Through the recognition of tacit knowledge triggers and the creation
of an analytical framework, the group as well as the individual knowledge sources
are assessed. This analysis builds upon existing theories, discussed below, which
were used to understand and extract tacit knowledge.

Others have developed the idea of a shared space as the forum for knowledge
development. It is possible to share knowledge through different channels; however,
a shared space reinforces the relationship between colleagues allowing knowledge
creation to take place (Dreyer & Wynn, 2017). These spaces are formed in different
ways, such as through informal discussions during a break, emails or meetings.
Developing the view of shared reality, the environment where knowledge can be
exchanged and is able to build up has been called “Ba”. This concept, developed
by Nonaka and Teece (2001), gives a basis for knowledge to be shared and created.
Nonaka and Konno (1998) see “Ba” as a mental flexibility and an ongoing dynamic
process that allows new insights to be constantly generated. The space of “Ba”
provides for a continuous flow of knowledge exchange, where the knowledge is able
to transform and change. Knowledge is not tangible, but is able to evolve and build
up tacitly through its self-transcendence. This view recognizes that this knowledge
forum is a shared space where relationships can emerge (Nonaka & Teece, 2009).

Knowledge is thus not a set of facts and figures; it is not a set of statistics or
applied conceits, but a “space” in which processes are constantly iterative, marked
by close communication, by modelling, by mentoring, and by incessant experiential
inputs that lead to outputs. Given the creation of a knowledge generating space, they
recognize the need for dynamic effects. This space is not tangible, but is a fluid
continuum wherein there is constant change and transformation resulting in new
levels of knowledge. Knowledge is a process and never becomes finalised, which is

310

Triggering Specialised Knowledge in the Software Development Process

paralleled in the software development process, where databases are built and then
later updated over time with more information. However, both need knowledge or
information, which is captured and put into context. It is a self-transcending and
ever-spiraling evolution. Embracing the concept of “Ba” is essentially arguing for
a learning culture, which has the advantage of promoting the concept of presence
to each other. However, it seems that the proximity entailed in knowledge creation
needs further exploration. In Heidegger’s terms, this space can be seen as a “clearing”
or a “shedding of light”. (Heidegger, 2015, p.133).

Further work has been done on the knowledge exchange dynamic. Group tacit
knowledge is the focus of Ryan and O’Connor’s (2013) Theoretical Model for
the acquisition and sharing of Tacit Knowledge in Teams (TMTKT). They note,
“individuals draw from the team tacit knowledge and create their own tacit knowledge.
This is a background process which is dynamic and reciprocal relying on constructivist
situated learning” (Ryan & O’Connor, 2013, p.1618). Looking at knowledge flow,
their approach allows the analysis of knowledge movement within a group. The
model (Figure 2) was constructed by using a qualitative approach and the focus is
to explore the flow of team tacit knowledge. The cycle of the model begins with
the current state of knowledge within the team; through constructive learning, an
essential part of knowledge creation and sharing which greatly develops individual
knowledge. Constructive learning is, at its essence, the process of an individual
assimilating new facts and experiences into a pre-existing web of knowledge and
understanding (Ryan & O’Connor, 2013). The gained individual knowledge - expert
knowledge - can then be shared with the team, allowing “transactive memory” to
build up. In the context of this model, the “transactive memory” is defined as team
tacit knowledge, where the expert knowledge from each individual in the team is
stored and a common understanding is developed. Transactive memory is thus the
combination of specialization, credibility and coordination of knowledge within the
group (Ryan & O’Connor, 2012). Once the team has established common team tacit
knowledge, which can be influenced by other human factors such as emotions or
outside influences, the spiral begins anew in a continuous cycle. Team tacit knowledge
and its flow allows the social analysis of the project group during the meetings. This
model proposes that individual constructive learning precedes the development of
transactive memory. Given the discussion above, any team tacit knowledge must be
present but individualized; the transactive memory becomes focused on the project
outcomes and therefore allows a team to progress in the project.

Clarke (2010) proposes a model evaluating tacit knowledge from an individual
point of view (Figure 3). Incorporating the idea of triggers, knowledge input begins
the process; tacit knowledge is then created through reflection; and triggers, such
as group discussions and breakdowns, influence reflection on the newly gained
knowledge. There are both tacit and explicit elements of this new knowledge. The

311

Triggering Specialised Knowledge in the Software Development Process

tacit knowledge triggers in Clarke’s model are used as a form of sensitization during
this research, and are then further developed to be utilized in a group setting.

The benefit of this model (Figure 3) is the manner in which it incorporates
the idea of triggers and the cycle of reflection by team members. The literature
discussed above provides the theoretical basis for the analysis of tacit knowledge
within teams as well as the flow of tacit knowledge and its environment. Nonaka
and Teece (2009) established the “Ba” environment for tacit knowledge exchange;
the SECI model allows the classification and evaluation of knowledge exchange and
associated learning; Ryan and O’Connor’s (2012) model provides a team view of
tacit knowledge exchange, complemented by Clarke’s (2010) individual perspective
of tacit knowledge. Knowing more about the operation of these triggers will help
develop an understanding of expert team knowledge creation.

Figure 2. Theoretical model for the acquisition and sharing of tacit knowledge in
teams
Source: Ryan and O’Connor (2013)

312

Triggering Specialised Knowledge in the Software Development Process

RESEARCH METHOD

The goal of the research is to show what influenced the surfacing of expert knowledge
and the articulated interaction surrounding the occurrence of triggers. The aim is
to provide insight into which triggers allow tacit, expert, knowledge to surface to
aid teams to achieve project success. Using the theoretical ideas discussed above,
a strategy of analytic generalization (Yin, 2009) was adopted to develop theory.

As noted above, an embedded case study was chosen to analyse the interactions
in a potential group knowledge space. The case study is a widely used methodology
within business research. Bryman and Bell (2011), for example, argue that the case
study is particularly appropriate to be used in combination with a qualitative research
method. A case study facilitates detailed and intensive research activity, usually in
combination with an inductive approach as regards the relationship between theory
and research. Saunders, Lewis and Thornhill (2009) argue that case studies are of
particular value for explanatory or exploratory investigation. This research used
an organization and a specific software project as a single ethnographic case study
which “remains firmly grounded in the ethnographer being there” (Riain, 2009,
p. 303). A case study approach allows a “detailed investigation of one or more
organizations, or groups within organizations, with a view to providing an analysis
of the context and processes involved in the phenomenon under study” (Hartley,

Figure 3. The tacit knowledge spectrum model
Source: Clarke (2010)

313

Triggering Specialised Knowledge in the Software Development Process

1994, p.323). They “provide the opportunity to place research into a certain context
due to the selection of specific sectors, institutions, countries, etc.” (Cunningham,
Menter & Young, 2017, p. 923). This approach can generate a great deal of detail,
and Silverman (2013) has pointed out how case studies can provide a complex and
rich understanding of change projects across a period of time.

The chosen case study allowed an inside, participant, view of a software
development project, where experts discussed the content needed for the development
of the software product. By electing to pursue participant observation and an inductive
research approach, the aim was to let the findings emerge over time. The research
was conducted over a three-month period, focusing on approximately 30 hours of
recorded meetings, with ten team members involved. The software environment was
geared to a fast-paced project, there being a clear launch date for the new software.
One of the authors was an embedded member of the software team, and an active
participant in the work of that team. To develop a software product, multiple groups
of experts are needed to achieve a productive knowledge flow (Fischer & Ostwald,
2001). These sessions were project meetings, which took place several times a
week. Four of the team members were core, attending most of the meetings and
therefore had the most influence on the project. According to Valente and Davies
(1999), key actors play a central role in groups through the creation of new ideas
and their understanding. The core team consisted of human resource consultants,
later referred to as HR A and HR B, as well as software developers, SD A and SD
B. In addition, the end user or client - CL A - was often involved in the process.
Other experts from the companies joined in when their knowledge was needed, and
their input is represented by the prefix HR, CL or SD depending on the company
from which they come.

The focus lies within the times the meetings took place, shedding light on the expert
knowledge exchanged during face-to-face formal interaction, aiming to highlight the
importance of meetings. The extensive researcher involvement created a developed
appreciation of the interactions at work in these meetings. The recordings of the
meetings were coded through contextualization, and then systematically reviewed.
First, the meetings were generally evaluated by date, which then allowed topics
discussed during the meetings to surface. These transactional topics were then pulled
together to find tacit knowledge, its triggers, expert and team knowledge, knowledge
creation as well as the exchange over time, through the previously discussed theories.
Different themes started to surface, which were previously found in the literature,
such as constructive learning, individual and group tacit knowledge, as well as tacit
knowledge triggers. Focusing on tacit knowledge triggers, a more in-depth analysis
through a narrative, inductive approach was undertaken using the ideas of individual
noemic knowledge and the interactions from being present in the discussion.

314

Triggering Specialised Knowledge in the Software Development Process

The case study and the focus on being with others allows a greater appreciation
of the knowledge exchange that can develop. Using the phenomenology of Husserl
(2012, pp. 86-7) which emphasizes the indutiablity of internal perception and the
tenuousness of outer perceptions. The internal perceptions are noetic but they are
influenced by the social environment. This interaction between what is personally
known and sharing space with others should become manifest in expert project
meetings. Rabanaque (2010) quotes Husserl to note that the living body is “the
connecting bridge (verbindende Brucke) between subjectivity in the world and
physical thinghood in the world” (p.47). Noting this standpoint has enabled the study
to develop the connection between personal knowledge and contextual interaction.
Thus, a cumulative picture emerged from the findings and allowed theoretical
generalization in order to create new knowledge. Focusing on one project, each team
member plays a crucial role in passing on tacit knowledge to his or her colleague.
Knowledge elements are then passed on to other project team members through one
or multiple triggers, which allows knowledge to surface. Each team member passes
on his or her currently articulated knowledge. This then encourages or triggers the
creation of new knowledge in the other team members. The knowledge is dragged
from the tacit to the articulate in this process. This key assumption was evaluated and
examined in the software development context. The triggers are related to extracts in
the data where evidence of each trigger was found and established. As the research
focuses on one project, knowledge passed on over time can be put into context and
evaluated against knowledge that has been previously exchanged.

In the following section, the data is evaluated to highlight knowledge generating
episodes. Using the knowledge exchanged in the different companies, the interplay
of knowledge exchange helps further understand how the knowledge spirals within
the project. Five main triggers were found, which are discussed in detail below.

RESULTS AND DISCUSSION

The knowledge within the project was spread between the different participants,
and a group effort was needed to achieve success. Within each collected extract,
triggers were observed which allowed tacit knowledge to surface. The goal during
the analysis was first, to find evidence of tacit knowledge, and then to understand
what kind of tacit knowledge was found, and lastly, to determine what made tacit
knowledge surface. During this analysis phase, five main triggers were identified
which are discussed below with collected extracts from the research. Clarke (2010)
identified tacit knowledge triggers, but they were not identified in types. The trigger
types emerged through the data as well as their impacts.

315

Triggering Specialised Knowledge in the Software Development Process

Following the transcription and analysis of the meetings, 45 extracts were
selected and used to demonstrate evidence of tacit knowledge and its triggers. In
this initial phase, the SECI model was used as a sensitizing approach. Within these
extracts, Socialization, Internalization and Group tacit knowledge were always found;
externalization was found 28 times, and combination nine. These findings were
used as the basis to show tacit knowledge exchange. Then, tacit knowledge triggers
were analyzed from the data. Visual triggers were found 18 times, conversational
triggers 39, constructive learning triggers 19, anticipation triggers two and recall
triggers seven times (Figure 4). These triggers and their operation are the focus of
the following discussion.

Visual Triggers

Visual triggers allow an individual to utilize previously gained knowledge to surface
by reading or seeing information. During the research, this trigger mainly surfaced
when the software was looked at and edited by the team. The knowledge is gained
tacitly, becomes processed, thus triggering a socialization within the group. In these
scenarios, the software development company would present the developed software
pages (i.e. screen design and content) to the human resource consultancy. The pages
in the software were analyzed by the team and changed according to their needs
when possible. This mainly focused on wording, the layout or process in which the
pages were to be found and structured within the software. Visual triggers were
found on numerous occasions, one example is the following:

SD A: Multiple Pensions. Order of priority. So, when they run out of money, this
one comes first, this one comes next... Say you are on 500 GBP a week and
you get an attachment of earning because you failed to pay your child support.
So, the attachment will have top priority. There is a level at which deductions
should stop.

HR A: Sorry can you just go back to the pensions type.
SD A: Yea.
HR A: Just wanted to see where I can attach the file.
SD A: I think this needs a real thorough look; I am just skimming through it.

In this extract, SD A explained the pensions pages. Through constructive
learning, the HR consultants learned how the pensions pages functioned; during
the explanations, HR A stops the discussion to refer back to a previously seen page.
SD A had moved on, HR A was still processing the visually gained knowledge in
the previous page and asked to go back to see if a feature was available. In another
extract, one specific part of a page - the payroll ID - triggered a conversation within

316

Triggering Specialised Knowledge in the Software Development Process

the group. The work reference and the ID were confused by SD A, thinking two
references were used by the HR company; this triggered HR A to further explain
their system of referencing employees. This visual trigger allowed conversational
triggers to surface by starting socialization between the project members.

Visual triggers can also be more simplistic. In another extract, the team looks at
the salary screen, and needs to rearrange the display order to fit the requirements
of the HR consultants. The visual stimuli of the software triggers work and process
knowledge of the HR team, which is to be combined with the software engineering
environment. Similar situations were found in other extracts, where the 360 feedback
is being assessed. HR A says changes within the structure of the pages will need
to be done to fit the requirements of the client. HR A’s tacit knowledge base of the
customer as well as experience are combined with the knowledge visually gained
through the software.

Throughout the data analysis there have been several extracts demonstrating how
visual mediums trigger knowledge within an individual. This triggered knowledge
enables the project team to further conversations, complete gaps of knowledge
within the group’ and thus allows group tacit knowledge to prosper. Visual triggers
launch an internal process within an individual, where the tacit knowledge base is
used to combine the current tacit knowledge of an individual with the new visually
gained knowledge.

Conversational Triggers

Conversational triggers occur frequently during meetings. Knowledge surfaces
explicitly, which is then processed by a team member. The individual will then use
the newly gained knowledge, add it to their existing knowledge and create new tacit
knowledge. This interaction continues within the group and allows knowledge gaps to
be addressed. Due to conversations being at the center of the research, conversational
triggers are one of the most frequent and are found throughout the research. The
following extract demonstrates a conversational trigger:

HR A: In an unrelated topic, we talked about sick pay, policies and rules last week.
I do not have any up to date paper work from you guys. Could you send me
the most recent copy?

CL A: I can send you the policies, because we did update them about 6 weeks ago,
when we changed the sickness payroll for the organization…. So I can send
that over to you. Could you copy in SD A as well? Thank you.

SD A: So Payroll, while you mention that…

317

Triggering Specialised Knowledge in the Software Development Process

The analyzed extract demonstrated a conversational trigger, where HR A
discusses the pay policies, this then triggers SD A’s tacit knowledge, where the
topic is changed to payroll. SD A listens to HR A and CL A discussing a finance
related topic and this enables the recall of an unsolved issue with payroll. Later in
the discussion, seen during another extract HR A furthers the topic of payroll by
building on the knowledge SD A shared. Through explicit exchange within the group,
knowledge spirals and builds individual knowledge within each individual. Topics
of discussion are altered and enhanced by using the tacit knowledge gained from the
previous group member. Their similarities trigger socialization and externalization
such as in another conversation, where the discussion allows knowledge to spiral
and prosper within the group. Externalized knowledge is used by several members
of the project, processed and complemented by the knowledge of each individual
taking part in the discussion.

Conversational triggers are one of the most frequent triggers found in the analysis
of the data. Explicit communication within the group allows group tacit knowledge
to build and each individual to utilize the knowledge to work to achieve project
success. This trigger is often in combination with visual or constructive learning,
where an external verbal medium allows an individual to take in information, process
and reflect the knowledge to then externalize the new processed knowledge. This
greatly supports group tacit knowledge and the core objective of a meeting - ‘to get
everyone on the same page’.

Constructive Learning Triggers

A constructive learning trigger occurs when a project member explains to the
others a specific topic of the project. The knowledge is passed on from one person
explicitly to the group as a whole, which tacitly utilizes and combines the knowledge.
During the project, learning was crucial due to the software being tailored to the
company. Each project group, the HR consultants, software developers as well as
the customer exchanged knowledge through learning and integrating the knowledge
in the software as well as its usage. This trigger also results in socialization, where
questions are raised to clarify and add to the subject. An example of a constructive
learning trigger can be found in the following extract:

318

Triggering Specialised Knowledge in the Software Development Process

SD A: Is it a standard wage? You can have multiple standard wages such as London
living wage. You can put pay on hold. So you know when the customer.... just
going to get SD B up to speed.

HR A: So that is going to be the annual basic pay, sorry, the FTA (in full) isn’t it?
Oh no, it’s going to be FTM (in full).

SD A: Yea.
HR A: Because over here you have the percentage haven’t you. So will it work out?
SD A: I don’t know, we need to ask SD B.
HR A: Because otherwise there is a lot of room for error.
SD A: The pro rata bit didn’t work, the rest did. The standard hours need to be

calculated to see hourly rate by default (on screen).

When SD A explains the pay by period page to the HR consultants, constructive
learning takes place. This allowed HR A to process the gained knowledge and
externalize what had not yet been understood. Externalization of knowledge can
also confirm newly gained knowledge. SD A explains payments, which then triggers
HR A to confirm the name of annual basic pay, FTM.

Constructive learning can also be task related; another extract shows the customer
as well as the HR team are trying to understand what data can be fed into the system
and how it should be structured. This allows an interplay between constructive learning
and conversational triggers, which can also be found in the extract above, where
knowledge surfaces by teaching as well as learning and ultimately an understanding
of an issue of the project is achieved.

Visual, conversational and constructive learning triggers interplay in some of
the extracts. While the software pages are being shown, conversations are being
triggered and furthered within the group. This also allows constructive learning to
take place. Conversational triggers can also often be triggered by visual triggers.
During another meeting, the recruitment page in the software triggers a conversation
on how the employees are ordered, by usage or alphabetically. Here, the visually,
explicitly gained knowledge triggers a thought process within each individual, which
is then turned into a conversation where knowledge surfaces through discussion.

Anticipation Triggers

An anticipation trigger allows an individual to raise a topic within the group, which
he or she had waited or hesitated to address. The trigger surfaces through a similar
topic of discussion and allows a change of topic. In this case, the project member
plans to talk about a subject during the meeting, and waits for a moment to bring
it up. This is not to be put in direct comparison to a “to-do-list” or minutes, where
the subjects of discussion are being listed before a meeting and discussed one after

319

Triggering Specialised Knowledge in the Software Development Process

the other, but rather allows another issue to emerge through its similarity. It can
surface during externalization or socialization.

During the extract shown in the conversation trigger section, SR A was anticipating
discussing payroll during the meeting, but a conversational trigger allowed the
finance topic to emerge. Another example of an anticipation trigger is demonstrated
in an extract, which builds on a previous meeting where HR A asks to run through
the 360 feedback. Here an email was sent to the group about the topic. It was not
necessarily planned to discuss the topic; however, HR A specifically asks CL A to
explain and run through the process. This built on the previous meeting between
SD A and HR A found in the extract below:

SD A: Now we are getting into linked records - we have done the core records. We
talked about name changing, to be the item type: appraisal type; standard
appraisal; 360 appraisals; and scoring appraisal. So this is something to look
at with SD B tomorrow.

HR A: My thoughts on the whole are that we will probably have to change some of
that, but I am not quite sure to what yet, until we start building the form, and
then work through every stage of the process. I think it will become clearer.

SD A: Is there something from the old software that could make it clearer?
HR A: No, because they currently don’t use it. I’ve got draft one of the questionnaire

done now, which I would be happy to send to you but it hasn’t even been checked
by CL A yet. While we’re at it, you know we talked about the summary of the
feedback and SD B asked what kind of format you wanted it in? We just got
some off the internet that CL A quite likes - do you want them now or should
I give them to SD B?

SD A: To SD B -the feedback is in the process engine, so that’s his / her part.

Anticipation triggers are the least commonly found triggers within the data. The
meetings were usually structured around a specific topic of the software, which was
addressed. Unlike recall triggers, where knowledge pops up, anticipation triggers
build around the notion of waiting to discuss a topic when the meeting allows the
subject to come up.

Recall Triggers

Recall triggers surface when a topic of discussion or a visual trigger allows an
individual to remember knowledge related to the subject which seemed forgotten
or not shared in its entirety. This trigger can occur during any stage of the tacit
knowledge process. New gained knowledge is processed through several steps, when
it is initially heard or seen, and combined with existing knowledge; or when it is

320

Triggering Specialised Knowledge in the Software Development Process

transformed into explicit knowledge and shared with the group, recall triggers can
emerge. This can change previously shared knowledge and alter the conversation.
These triggers are of significance due to the knowledge almost being forgotten and
often not being able to surface, as well as the knowledge being at risk of not being
shared in its entirety or differently; this could change the outcome of parts of the
project.

SD A: So they might have a monthly London weighting allowance. What do you
pay by period?

HR A: They have a clothing allowance and a first aid allowance.
SD A: So those sort of things. So it has a name, pay by period name, it has a pay

type, it has a period it can fall into. It has to be authorized.
HR A: Every period?
SD A: Every payment has to be authorized. Sorry yes, it is authorized on their account

and then it’s generated into weekly or monthly payroll as it gets signed off.
HR A: Would you only put in payments for that month or put in something for

future months?
SD A: ...you put it in as a go ahead, so when you set it up you select if it is set up

for just once or if it runs every month.... For example, season tickets run over
10 or 12 months.

During the above extract, SD A explains the monthly allowance page to the HR
consultants and during this discussion, HR A asks how allowances are authorized.
SD A first replies quickly, but then goes into more detail when recalling that the
short answer was not sufficient to understand the authorization process. This
internalisation process allowed SD A to clarify and further the discussion. Recall
triggers can also be minimal, where an individual mistakes one thing for another.
In another extract, validating recall triggers, HR A recalls a conversation from the
day before and combines the current topic and processes with the previously gained
bureau knowledge to fill in gaps of knowledge.

In addition, more evidence was found in an incident where HR A confuses
FTA with FTM, which is a tacit process where, through knowledge recall, the
initial thought is corrected. In the extract above HR A recalls previously gained
work knowledge and shares it with the project members. The conversation focuses
on recruitment, where HR C is the recruitment expert within the group. HR A’s
knowledge is triggered through HR C’s uncertainties and is able to add valuable
knowledge, having previously worked in the field.

321

Triggering Specialised Knowledge in the Software Development Process

Recall triggers are quite frequent throughout the meetings and they are often
found in combination with conversations, constructive learning and visual stimuli.
Recall triggers are an internal tacit process where knowledge ‘pops up’ at random.
This might be related, as well as unrelated, to the discussed topic. This trigger allows
an individual to communicate knowledge, which is recalled in order to further the

Figure 4. Tacit knowledge triggers found in the analysed data

Figure 5. Knowledge creation and its relationship to trigger points

322

Triggering Specialised Knowledge in the Software Development Process

knowledge exchange within the group, and thereby enhance group tacit knowledge.
Figure 4 shows the number of triggers (left–hand ‘y’ axis) by category (‘x’ axis)
found in the analysed conversational data. Conversational triggers were the most
frequent, meaning that within a conversation newly gained knowledge allowed new
knowledge to surface. This is followed by constructive learning triggers, visual
triggers, recall triggers and anticipation triggers.

The triggers found through the research demonstrate the need to allow the creation
of a knowledge-sharing place within a company as well as teams. These spaces should
help teams find a safe environment which supports knowledge exchange and allows
the experts within the team to share and build on each other’s knowledge. Using
different means throughout the meetings can also help trigger expert knowledge to
surface, allowing more knowledge to spiral and build.

Figure 5 indicates the relationship between the creation of knowledge and the
trigger points. In absolute terms, conversational triggers allow group tacit knowledge
(Group TK) to surface the most. Constructive learning and visual triggers are the
second and third respectively. It can also be seen that knowledge combination is
the least likely to surface via these triggers, whereas socialization, internalization
and group tacit knowledge were the strongest tacit knowledge exchange factors. The

Figure 6. Five phase model of the organisation knowledge creation process
Source: Nonaka and Takeuchi (1995, p.84)

323

Triggering Specialised Knowledge in the Software Development Process

model helps understand the trigger points and their importance to tacit knowledge
exchange.

Tacit knowledge triggers allow the exchange of expert knowledge in an
organization. In the five-phase model of Nonaka and Takeuchi (1995), the process of
tacit knowledge in relation to the market can be seen (Figure 6). This allows a view
of the continuous cycle of sharing tacit knowledge within a company. From sharing
tacit knowledge, creating concepts, justifying concepts, building an archetype and
cross-levelling knowledge, the internalization process is shown. This process helps
the triggers find their place in the knowledge creation process.

In summary, this research project discovered and described the development of
five types of triggers that are episodic moments for tacit knowledge conversion. The
different triggers that emerged through the research were:

1. Visual Triggers: Tacit knowledge surfacing through visual stimuli.
2. Conversational Triggers: Tacit knowledge surfaces through a conversation

held within the team.
3. Constructive Learning Triggers: Tacit knowledge is enabled through a team

member explaining and the others learning from them.
4. Anticipation Triggers: Tacit knowledge was exchanged by an individual in

the group by waiting for the topic to come up or the meeting to take place.
5. Recall Triggers: Tacit knowledge resurfaces through discussions or visual

aids, which seemed forgotten or not presented by an individual.

Table 1. Phenomenology of trigger types

Mode of Knowledge Generation Trigger Type

routine-directive-productive operating
Conversational Triggers are those that become
involved with productive operating towards the
work

observing-discussing-revealing determination
Constructive learning Triggers are those where
there is merit in further discussion about the
issue.

solicitous circumspecting (circumspection)
Anticipation Triggers are those where an issue
needs to be brought out in advance from the
work.

authentic-seeing understanding Visual Triggers stem from the productive
observation of the material at hand.

pure beholding
Recall Triggers occur when knowledge is
retained and becomes part of intelligent
application.

324

Triggering Specialised Knowledge in the Software Development Process

Appreciating the role of triggers in the situated learning of software teams is
a significant contribution to the understanding of how group knowledge emerges.
This will also help researchers further understand the impact tacit knowledge has
on project success. It is important to interpret and analyse knowledge adequately in
software projects to prevent misconceptions (McAfee, 2003). Using an appreciation
of a developed theory of triggers can help project teams focus on exchanging and
exploring knowledge from different perspectives. Constructive learning within the
group, as well as discussions to further understand the software and exploring the
knowledge input from each individual are crucial for a project to succeed.

However, these moments can only be created within a dynamic environment
in which an exchange of knowledge is supported by the project team. Spending
time together as a team and working together is at the core of knowledge creation
and transfer. Seeing the project develop over time allows strategies to surface and
be applied during the software development process (Vitalari & Dickson, 1983).
Bouncing ideas off one another, and subsequent mutual learning, furthers the
knowledge creation process. This allows each individual to take in more knowledge
and provide a better, more complete view of the subject and enables the prospect of
more complete software to emerge.

In relation to categorizing these triggers, Heidegger (1992) notes that Aristotle
identifies five modes bringing things into “truthful safekeeping” (p. 377). So
anticipation triggers, for example, are self-reflective, in that becoming aware of them
allows their incorporation into group discussion. The modes are detailed in Table
1, and it is possible to map the triggers against these modes. It should be noted that
these modes are not mutually exclusive; some modes are combinations of others.

CONCLUSION

This chapter set out to further understand and progress the field of knowledge
transfer and its triggers within a software development environment. This initial
objective gave rise to a new theoretical idea. The conversion of tactile skills is not
the crucial element in the development of group knowledge. From the empirical data
conducted for this study, the process of externalisation can be considered as being
with Mitsein and the joint presence of the expert group allows their presence to be
a noematic bridge. The basis of expert meetings is not therefore one of discussion
but the emergence of new presentations by the participants. This emergent expertise
is the refinement of the phenomenological essences of what is needed to deliver
the combined knowledge. This framework, based on a phenomenological approach,
will aid the implementation of managerial judgement in expert group sessions.
Possessing an awareness of these distinctions will facilitate knowledge capture. How

325

Triggering Specialised Knowledge in the Software Development Process

they emerge opens the way to further research into what makes tacit knowledge
surface within groups. Appreciating them as breaks in the flow of the project that
generate knowledge is important; together with this, they are an opportunity to
understand in a better way the mind of the other. Heidegger indicates that practical
revealing is “a factical relationship of concern with respect to the world which is just
encountered” (Heidegger, 1992, p.382). His further work resonates with this theme
where the Scientist, Scholar, and Guide continue to discuss the relationship between
determination, speculation, and authentic seeing (Heidegger, 2010, pp.5-6). This
structure provides for valuing the unexpected, and what Berends and Antonacopoulou
(2014) call “surprises”, as they are not always in accord with the espoused aims of
the project. This allows managers the opportunity to create environments, in which
this personal knowledge can surface and be shared within the teams.

This research highlights how interaction (seen as a “noematic bridge” in terms of
a shared learning conversation) with the knowledge triggers can be productive. Taylor
(2004) sees triggers as risk factors, and whilst they may delay project completion,
an appreciation of the operation of triggers will enable the team learning to be
incorporated within an appropriate timescale. Varying the context of the project
team as well as testing the triggers in day-to-day working groups can shed light
on tacit knowledge triggers. This study has found that recognizing phase changes
in project temporality allows managers to appreciate the knowledge gained from
extempore interjections. The development of awareness of triggers in a dynamic
environment helps the comprehension of expert knowledge exchange in software
projects. Understating the knowledge a team has, and aiding its emergence through
exchange, can ultimately lead to more productive outcomes for software development
teams, and will contribute to successful and well-functioning products. The value
of such an approach to the creation of knowledge is to see the concept of truth not
as correctness towards the object, because in this situation it remains indeterminate.
The alternative view is to see truth as non-concealment - it brings forward that which
remains hidden. Using the framework to identify triggers, in the form of modes
of knowing, is an approach that reveals the personal knowledge that indicates the
unspoken assumptions about the objects in use discussed above. Further investigation
into knowledge sharing and interaction between software project groups will help
to validate the triggers.

326

Triggering Specialised Knowledge in the Software Development Process

REFERENCES

Banacu, C. S., Busu, C., & Nedelcu, A. C. (2013). Tacit Knowledge Management –
Strategic Role in Disclosing the Intellectual Capital. Proceedings of the International
Management Conference, Faculty of Management, Academy of Economic Studies,
Bucharest, Romania, 7(1), 491-500.

Bartolacci, C., Cristalli, C., Isidori, D., & Niccolini, F. (2016). Ba virtual and inter-
organizational evolution: A case study from an EU research project. Journal of
Knowledge Management, 20(4), 793–811. doi:10.1108/JKM-09-2015-0342

Benner, A. (2008). Work in the New Economy: Flexible Labor Markets in Silicon
Valley. doi:10.1002/9780470696163

Berends, H., & Antonacopoulou, E. (2014). Time and Organizational Learning:
A Review and Agenda for Future Research. International Journal of Management
Reviews, 16(4), 437–453. doi:10.1111/ijmr.12029

Berends, H., & Lammers, I. (2010). Explaining Discontinuity in Organizational
Learning: A Process Analysis. Organization Studies, 31(8), 1045–1068.
doi:10.1177/0170840610376140

Berger, P., & Luckmann, T. (1967). The Social Construction of Reality. New York:
Anchor.

Bryman, A., & Bell, E. (2011). Business Research Methods (3rd ed.). Oxford, UK:
Oxford University Press.

Clancy, T. (2006). The Standish Group Report Chaos. New York: ACM.

Clarke, T. (2010). The development of a tacit knowledge spectrum based on the
interrelationships between tacit and explicit knowledge. Retrieved March 9 2019 from
https://repository.cardiffmet.ac.uk/bitstream/handle/10369/909/T%20Clarke.pdf

Cunningham, J. A., Menter, M., & Young, C. (2017). A review of qualitative case
methods trends and themes used in technology transfer research. The Journal of
Technology Transfer, 42(4), 923–956. doi:10.100710961-016-9491-6

De Souza, K., Awazu, Y., & Baloh, P. (2006). Managing Knowledge in Global
Software Development Efforts, Issues and Practices. IEEE Software, 23(5), 30–37.
doi:10.1109/MS.2006.135

https://repository.cardiffmet.ac.uk/bitstream/handle/10369/909/T%20Clarke.pdf

327

Triggering Specialised Knowledge in the Software Development Process

Dreyer, H. (2018). Tacit Knowledge in a Software Development Project (PhD
Thesis). University of Gloucestershire, UK. Available at: http://eprints.glos.
ac.uk/6441/1/PhD%20Thesis_Tacit%20Knowledge%20in%20a%20Software%20
Development%20Project_Hanna%20Dreyer_redacted_personal_information.pdf

Dreyer, H., & Wynn, M. (2016). Tacit and Explicit Knowledge in Software
Development Projects: A Combined Model for Analysis. International Journal on
Advances in Software, 9(3&4), 154–166.

Engeström, Y., Kerosuo, H., & Kajamaa, A. (2007). Beyond discontinuity: Expansive
organizational learning remembered. Management Learning, 38(3), 319–336.
doi:10.1177/1350507607079032

Fischer, G., & Ostwald, J. (2001). Knowledge management: Problems promises realities
and challenges. IEEE Intelligent Systems, 16(1), 60–72. doi:10.1109/5254.912386

Hartley, J. (2004). Case Study Research. London: Sage.

Heidegger, M. (1992). Phenomenological interpretations with respect to Aristotle:
Indication of the hermeneutical situation. Continental Philosophy Review, 25(3–4),
355–393.

Heidegger, M. (2001). Zollikon Seminars: Protocols - Conversations – Letters.
Evanston, IL: Northwestern University Press

Heidegger, M. (2010). Country Path Conversations. Bloomington, IN: Indiana
University Press.

Heidegger, M. (2015). Being and Truth. Bloomington, IN: University Press.

Hodgson, J., & Drummond, H. (2009). Learning from fiasco: What causes
decision error and how to avoid it? Journal of General Management, 35(2), 81–92.
doi:10.1177/030630700903500206

Husserl, E. (2012). Ideas. London: Routledge. (First published in 1931)

Langford, T., & Poteat, W. (1968) Upon first sitting down to read Personal Knowledge:
an introduction. Intellect and Hope: Essays in the thought of Michael Polanyi, 3-18.

Leybourne, S., & Kennedy, M. (2015). Learning to Improvise, or Improvising to
Learn: Knowledge Generation and Innovative Practice. Knowledge and Process
Management, 22(1), 1–10. doi:10.1002/kpm.1457

http://eprints.glos.ac.uk/6441/1/PhD%20Thesis_Tacit%20Knowledge%20in%20a%20Software%20Development%20Project_Hanna%20Dreyer_redacted_personal_information.pdf
http://eprints.glos.ac.uk/6441/1/PhD%20Thesis_Tacit%20Knowledge%20in%20a%20Software%20Development%20Project_Hanna%20Dreyer_redacted_personal_information.pdf
http://eprints.glos.ac.uk/6441/1/PhD%20Thesis_Tacit%20Knowledge%20in%20a%20Software%20Development%20Project_Hanna%20Dreyer_redacted_personal_information.pdf

328

Triggering Specialised Knowledge in the Software Development Process

Marouf, L., & Khalil, O. (2015). The Influence of Individual Characteristics on
Knowledge Sharing Practices Enablers and Barriers in a Project Management
Context. International Journal of Knowledge Management, 11(1), 1–27. doi:10.4018/
IJKM.2015010101

McAfee, A. (2003). When too much IT knowledge is a dangerous thing. MIT Sloane
Management Review, 44(2), 83-89.

Nonaka, I., & Konno, N. (1998). The concept of ‘Ba’: Building a foundation
for knowledge creation. California Management Review, 40(3), 40–54.
doi:10.2307/41165942

Nonaka, I., & Takeuchi, H. (1995). The Knowledge Creating Company. Oxford,
UK: Oxford University Press.

Nonaka, I., & Teece, D. (2001). Managing Industrial Knowledge. London: Sage.

Polanyi, M. (1962). Personal Knowledge. London: Routledge.

Rabanaque, L. R. (2010). The Body as Noematic Bridge Between Nature and Culture.
In P. Vandevelde & S. Luft (Eds.), Epistemology, archaeology, ethics: current
investigations of Husserl’s Corpus (pp. 41–52). London: Continuum.

Riain, S. O. (2009). Extending the Ethnographic Case Study. In D. Byrne & C. C.
Ragin (Eds.), The Sage Handbook of Case Based Methods (pp. 289–306). London:
Sage. doi:10.4135/9781446249413.n17

Ryan, S., & O’Connor, R. V. (2013). Acquiring and sharing tacit knowledge in software
development teams: An empirical study. Information and Software Technology,
55(9), 1614–1624. doi:10.1016/j.infsof.2013.02.013

Saunders, M., Lewis, P., & Thornhill, A. (2009). Research methods for business
students (5th ed.). Pearson Education Limited.

Scharmer, C. (2001). Self‐transcending knowledge: Sensing and organizing around
emerging opportunities. Journal of Knowledge Management, 5(2), 137–150.
doi:10.1108/13673270110393185

Silverman, D. (2013). Doing Qualitative Research. London: Sage.

Taylor, H. A. (2004). Risk management and tacit knowledge in IT projects: making
the implicit explicit (PhD thesis). Queensland University of Technology. Retrieved
March 8 2019 from http://eprints.qut.edu.au/15907/

http://eprints.qut.edu.au/15907/

329

Triggering Specialised Knowledge in the Software Development Process

Valente, T. W., & Davies, R. (1999). Accelerating the diffusion of innovations
using opinion leaders. The Annals of the American Academy of Political and Social
Science, 566(1), 55–67. doi:10.1177/000271629956600105

Vitalari, N., & Dickson, G. (1983). Problem solving for effective systems analysis:
An experiential exploration. Communications of the Association for Information
Systems, 26(11), 948–956.

White, G., Parry, G., & Puckering, A. (2016). Knowledge acquisition in information
system development: A case study of system developers in an international bank.
Strategic Change, 25(1), 81–95. doi:10.1002/jsc.2048

Wynn, M. (2018a). Technology Transfer Projects in the UK: An Analysis of
University-Industry Collaboration. International Journal of Knowledge Management,
14(2), 52-72.

Wynn, M. (2018b). University-Industry Technology Transfer in the UK: Emerging
Research and Future Opportunities. IGI-Global, Hershey, USA.

Yin, R. K. (2009). Case Study Research Design and Methods. London: Sage.

