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Abstract. The combustion engine is a typical nonlinear multi-input multi-output (MIMO) 

system with strong couplings, actuator constraints, and fast dynamics. This paper addresses a 

model-based multi-critical optimisation approach in diesel engines, which allows to improve 

emission performance and to provide a reference for the design and optimisation of the diesel 

engine system. The first part of this paper introduces a data-based modelling method that 

appears particularly suitable for emission modelling. The Design of Experiments (DoE) 

method helps to generate and collect the required measurement for data-based modelling in a 

short time, despite the increasing number of manipulated variables. The second part establishes 

a new model-based multi-critical optimisation approach that supports the optimisation of fuel 

consumption and emissions based on engine models. This proposed model-based framework 

consists of system identification and multi-critical optimisation. This framework has the ability 

to achieve the fast and precise solving of multi-critical optimisation problem and is suitable for 

implementation in the engine control unit. The experiment results illustrate that the model-

based multi-critical optimisation significantly improves the engine exhaust emissions and fuel 

consumption against the original ECU.  

1. Introduction 

The diesel engine plays a dominant role in heavy-duty vehicles, agricultural machinery, engineering 

machinery, and other fields due to its high energy efficiency, strong driving performance, and good 

economic characteristics. Shown in Figure 1 is a common configuration in many modern diesel 

engines for a power vehicle system, especially when high performance is required. However, the 

primary problem for the diesel engine is its emissions of nitrogen oxides (NOx) and particulate matter 

(PM; also called OPAC when measured as opacity) [1]. With increasingly stringent emission 

regulations, the question of how to improve the economy and emissions of diesel engines has become 

an important issue for engine development [2]. For diesel engines, this pursuit involves using control 

optimisation as well as exhaust gas recirculation (EGR) technology to reduce NOx emissions, and 

employing after-treatment technology, such as three-ways catalytic, diesel particulate soot filters, and 

other methods, to reduce its particulate emissions [3]. Furthermore, the engine turbocharger 

technology is an important means to improve engine performance. Variable-geometry turbochargers 

(VGTs) are a family of turbochargers usually designed to allow the ratio of Area/Radius (A/R) of the 

turbo to be adapted as engine operations change [4]. Variable-geometry turbochargers can reduce the 

turbine vane’s variable angle opening when the engine is running at low speed, thus increasing the 

exhaust gas pressure and flow rate, improving the exhaust energy efficiency, and enhancing the low 

speed torque performance. The turbine vane’s variable angle opening can be adjusted during high-

speed operation, so that it works within the high-efficiency area of the turbocharger. When combined 

with the EGR system, one can adjust the opening of VGT vanes to improve the pressure difference 
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between the turbine and EGR system, which could further improve the EGR rate and reduce NOx 

emissions.  

 
 

Figure 1. Turbocharged Diesel Engine Equipped with EGR 

 

Therefore, the classic manipulated variables of injection volume and the injection process are joined 

by further manipulated variables, such as EGR, VGT, injection pressure in common rail systems, 

variable valve train (VVT), and injection volume modulation. These control variables affect torque, 

fuel consumption, and emissions. The cross-coupling effect of control variables creates a complex 

nonlinear multivariable system. The variety of control options and their interactions make it 

increasingly difficult for engine designers to find an optimal engine setting, and the number of 

realisable characteristics in modern engine controls rise sharply. For some time, the traditional test-

bench approach, which is limited to a stationary assignment of the inputs and outputs variables listed 

above, has not met all requirements [5]. Hence, model-based methods are required to develop engine 

control systems further that permit the static and dynamic behaviour of internal combustion engines to 

be exactly determined with the help of a more precise mathematical simulation. This paper presents an 

integrated method based on emission modelling to optimise the consumption and emission behaviour 

of internal combustion engines. 

 

In the first part of the paper, the modelling of emissions will be explained in detail. With the help of 

the DoE approach, the required measurement data for data-based modelling of emissions can be 

collected in a short time despite the increasing number of manipulated variables. The validation results 

of the emission models are then presented and discussed. The second part of this paper describes how 

the presented emission models form the basis of a model-based optimisation of fuel consumption and 

emissions.  

 

2. Data-based modelling of emissions  

In many real-world situations, it is too difficult to describe a system using known physical laws. With 

engine exhaust emissions, for example, the system identification method can be used to perform data-

based modelling. The goal of system identification is to estimate a model of a system based on 

observed input-output data [6]. System identification is useful when the only available information 

from a system is input and output data. The procedure to determine a model of a dynamic system from 

observed input-output data involves three components: 1) the input-output data; 2) the model 

structure- possible candidate models; and 3) the identification method (some criterion to select a 

model in the set, given the information in the data).  
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Identifying the engine exhaust emission model uses the data set collected from the engine test bench. 

Figure2 presents the emission model structure, which includes all the inputs and outputs for 

identification. To obtain this measurement data, a DoE plan was applied to the engine. The input 

signals are mf: injected fuel mass in mg/cycle; n: engine speed in rpm; MAP: manifold absolute 

pressure in mbar; MAF: manifold air flow in mg/cycle. The output signals are NOx in ppm and OPAC 

in %. Figure 3 illustrates the results of the DoE data in 3D. The duration of the measurements for the 

training data sets was around 0.5 seconds at every operating point, whereby the control variables were 

changed abruptly in a region around the series setting. The sampling time was 100ms. 

 

 
Figure 2. Emission Simulink Model 

 

 

  

Figure 3. DoE-Data (Engine Injection, Engine Speed, MAP, and MAF) in 3D 

 

System identification can be performed from these measurements. The engine emission model is 

identified in one step, with a MIMO structure to catch the interactions between all inputs and outputs. 

The system identification toolbox from Matlab enables to estimate models of different types and 

orders. To perform the validation, Figure 4 shows that the NLARX model estimations yield a 

reasonably close response to the original measurement data. The average error of NLARX model was 

between 5% and 10%. Thus, the identified model is able to represent the real behaviour of the engine 

emissions in the given operating range. So far, the output variables (NOx and OPAC) were modelled 

with the engine control variables as model inputs. This emission model is further connected to a mean-

value engine model which was modelled in a previous work [7]. Alternatively, internal variables from 

the measurement dataset, such as MAF and MAP can be used as input variables for the models. The 

MAF and MAP used as input are useful when the optimisation aim introduced in the second part is not 
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the calculation of control characteristics for the manipulated variables but when calculating command 

variable mapping characteristics for secondary control (VGT or EGR) [7]. 

 

 
Figure 4. Comparison of Measurement, NLARX and ARX Model 

 

3. Model-based multi-critical optimisation of fuel consumption and emissions  

With engine optimisation, the exhaust emissions must be restricted for the duration of an operating 

cycle to the legally permissible limit for each emission component with minimal fuel consumption. 

These two requirements often contradict each other and reducing certain exhaust gas constituents 

typically entails an increase in consumption, which is why an appropriate compromise must be found. 

Experienced test engineers traditionally carry out optimisation based on test-bench conditions [7]. This 

procedure is time consuming and is impossible to implement when the number of manipulated 

variables rises. In this paper, the engine behaviour is presented with a mathematical model (mean-

value engine model connected with emission model); offline optimisation can be performed on this 

model to determine the optimum manipulated variables [8]. 

 

Optimisation is based on cost function J (Eq. 1) to determine fuel consumption and emissions. Engine 

control variables should minimise this cost function through optimisation algorithms. Optimisation 

tasks frequently lead to a situation where a reduction (e.g. of an emission variable) is associated with 

an increase of other values, such as consumption. The model-based multi-critical optimisation is 

available for the optimisation of such ‘opposite’ outputs.  

 

𝐽 = 𝑘1(𝑛,𝑚𝑓)(𝑛𝑜𝑟𝑚(𝑁𝑂𝑥))2 + 𝑘2(𝑛,𝑚𝑓)(𝑛𝑜𝑟𝑚(𝑂𝑃𝐴𝐶))2 + 𝑘3(𝑛,𝑚𝑓)(𝑛𝑜𝑟𝑚(𝑓𝑢𝑒𝑙))2       (1)       
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Table 1. Elements of cost function 

 

Name Weight  Target 

NOx k1 Low NOx Emission 

OPAC k2 Low OPAC Emission 

Fuel k3 Low Fuel Consumption Equivalent Power 

 

In order to achieve comparable sensitivity of the cost function for the respective components, it is 

necessary to first normalise them within each operating point. To this end, for any reference values, 

the respective behaviour can be used in the series products. The weighting factors are defined in the 

offline application of this procedure by different value combinations that appear useful. To prevent 

inhibiting the drivability of the vehicle, the engine torque must be not smaller than a predetermined 

moment represents an additional condition. Optimisation for each operating point means that Eq. 1 

must be solved by an optimisation method. For this purpose, the method SQP (sequential quadratic 

programming) was used [9], which is designed for non-linear, multivariable problems with constraints 

and, for example, as a function called ‘fmincon’ in MATLAB’s Optimisation Toolbox. 

 

 

Figure 5. FTP-75 Cycle-Based Weighting Factors for OPAC (left) and NOx (right) 

 

 

Figure 6. Comparison of Engine Cycle Emisisons and Fuel Consumption 
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After optimising, a control map is selected for driving that complies with the emission limit values for 

a particular driving cycle and that achieves the lowest consumption. If further optimised control maps 

for other weightings are defined in the control unit then a different emissions and fuel consumption 

composition can be set (e.g. depending on the driving situation while in operation). This cycle-based 

weighting, as shown in Figure 5 and positioning of the operation points, k (n, mf), with the reference to 

the calculation rules can now be used for the global optimization. These optimised manipulated 

variable maps are further applied to the engine-air-path control. The results of the optimisation 

compared with the original ECU are shown in Figure 6.  The simulation results showed that the NOx 

emission, OPAC and fuel consumption were decreased by 29%, 13% and 5% respectively against the 

original ECU. 

4. Summary 

To meet the increasing demands on modern diesel engines in terms of low consumption and minimal 

exhaust emissions, it is necessary to control the engine more optimally. The presented model-based 

multi-critical optimisation methods are carried out for multiple manipulated variables (Engine 

Injection, Engine Speed, MAP, and MAF) and outputs (fuel consumption and emissions) with cycle-

based weighting factors in a relatively short time whereby any driving cycles and either stationary or 

transient engine models can be used. Optimisation, therefore, does not require a lengthy online engine 

test, but can be performed offline with simulation engine models. Overall, a model-based framework 

is thus available, which helps achieve optimisation of engine control within a relatively short amount 

of time. 
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