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Abstract 

Purpose: The purpose of this study was to analyse the relationship between several parameters of 

neuromuscular performance with dynamic postural control using a Bayesian Network Classifiers (BN) 

based analysis. 

Methods: The y-balance test (measure of dynamic postural control), isokinetic (concentric and 

eccentric) knee flexion and extension strength, isometric hip abduction and adduction strength, lower 

extremity joint range of motion (ROM) and core stability were assessed in 44 elite male futsal players. 

A feature selection process was carried out before building a BN (using the Tabu search algorithm) for 

each leg. The BN models built were used to make belief updating processes to study the individual and 

concurrent contributions of the selected parameters of neuromuscular performance on dynamic postural 

control. 

Results: The BNs generated using the selected features by the algorithms correlation attribute evaluator 

and chi squared reported the highest evaluation criteria (area under the receiver operating characteristic 

curve [AUC]) for the dominant (AUC = 0.899) and non-dominant (AUC = 0.879) legs, respectively.  

Conclusions: The BNs demonstrated that performance achieved in the y-balance test appears to be 

widely influenced by hip and knee flexion and ankle dorsiflexion ROM measures in the sagittal plane, 

as well as by measures of static but mainly dynamic core stability in the frontal plane. Therefore, training 

interventions aimed at improving or maintaining dynamic postural control in elite male futsal players 

should include, among other things, exercises that produce ROM scores equal or higher than 127º of hip 

flexion, 132.5º of knee flexion as well as 34º and 30.5º of ankle dorsiflexion with the knee flexed and 

extended, respectively. Likewise, these training interventions should also include exercises to maintain 

or improve both the static and dynamic (medial-lateral plane) core stability so that futsal players can 

achieve medial radial error values lower than 6.69 and 8.79 mm, respectively. 

 

Keywords: y-balance, injury, futsal, strength, core stability, performance, machine learning. 
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Introduction 

The y-balance is a reliable [1,2], time efficient and portable (field-based) test widely used to 

assess dynamic postural control [3]. This test is usually included as part of an injury risk battery in both 

clinical and sporting contexts, primarily based on the fact that several studies [4–8], although not all 

[9,10], have reported that poor performance and bilateral asymmetries may be considered as valid 

predictors for identifying athletes at high risk of non-contact lower extremity injuries (mainly knee and 

ankle injuries). Thus, Butler et al. [5] found that collegiate football players were 3.5 times more likely 

to suffer a non-contact lower extremity injury when they reported y-balance normalized composite 

scores below 89.6%. Similarly, Calvo-Gonel et al. [6] reported that elite football players with bilateral 

asymmetries equal to or greater than 4 cm in the posteromedial direction of the y-balance test had a 3.86 

greater probability of suffering a non-contact injury than those who did not. Furthermore, the y-balance 

test is sensitive enough to differentiate between different levels of competition [11–13] and sporting 

populations [14]. Elite football players have demonstrated better y-balance scores than their non-elite 

peers [11,12] and when compared with other sporting populations, footballers have performed better on 

either leg [14]. 

The y-balance test involves maintaining single-legged balance whilst simultaneously reaching as 

far as possible with the contralateral leg in three directions (anterior, posterolateral and posteromedial). 

Potentially, the execution of this test might require, among others, adequate levels of hip and knee 

strength, power, trunk or core stability, coordination and lower extremity ranges of motion (ROM). With 

the aim of improving the design of training interventions, some studies have explored the individual 

contribution of certain measures of knee strength [15–17], hip strength [17–19], lower extremity power 

[20], core stability [17] and lower extremity ROMs [17,21] on y-balance test performance using linear 

regression models in different cohorts of athletes. However, these studies have reported conflicting 

results that might not permit clinicians, physiotherapists and physical trainers to make general training 

recommendations. For example, Booysen, Gradidge & Watson [15] did not show any relationship 

between the isokinetic strength of the knee flexors and extensors and the y-balance test score in 

professional football players, whereas Lockie et al. [16] did find a positive and statistically significant 
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correlation (r = 0.50; p = 0.008) between the isokinetic strength of the knee extensors and the y-balance 

test performance in amateur team sport athletes. The conflicting results might be partially attributed to 

the different sport modalities and levels of competition (i.e. amateur vs. professional or elite) of the 

athletes recruited in each study. In particular, the differences in technical skills, specific movements, 

training load and physical capacities among sports and levels of competition may predispose participants 

to individual chronic musculoskeletal adaptations, thus influencing some neuromuscular measures and 

their subsequent impact on the y-balance test performance.Therefore, it may be necessary a sport-

specific and level of competition-based analysis of which neuromuscular parameters contribute to y-

balance test performance in order to design effective dynamic postural control training interventions.  

Despite being one of the most popular sports worldwide [22,23] and being ranked among the top 

ten non-contact lower extremity injury-prone sports [24], an analysis of the influence of the main 

modifiable measures of neuromuscular performance (i.e. hip and knee strength, core stability, lower 

extremity ROMs) on y-balance test scores in futsal players has not been undertaken. In terms of sport 

performance, futsal players might be a target group for dynamic postural control training programmes 

since they are required to perform repetitively high intensity unilateral movements such as sudden 

acceleration and deceleration tasks, rapid changes of direction, kicking and tackling [25,26].  

The existing literature has predominantly used traditional lineal regression analyses to explore 

statistical associations and to our knowledge no studies have used contemporary statistical techniques, 

such as Bayesian Networks Classifiers (BNs) (also referred to as causal networks or belief networks) to 

provide evidence of relationships of dependency and conditional independence between different 

measures or variables [27]. In contrast to traditional statistics, BNs not only provide statistical models 

describing the relationships between variables from empirical data (as a way of representing 

uncertainty), but construct graphical probabilistic models (directed acyclic graphs) based on the 

underlying structure in which variables are represented by nodes and their relationships of dependency 

are symbolized by arrows or arcs [28]. Thus, the graphical representation of BNs captures the 

compositional structure of the relations and the general aspects of all probability distributions that 

factorize according to that structure [29]. Furthermore, BNs allow making inference or relevance 

analysis/reasoning in a natural manner and within a dynamic context to generate intercausal reasoning, 
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that is to say, adding new evidence to the model in order to study the impact of the new relationships 

generated in the class variable. Therefore, the use of a BN based analysis to study the relationships of 

dependency and conditional independence between the main modifiable measures of neuromuscular 

performance and dynamic postural control and particularly the subsequent graph generated will help 

clinicians, physiotherapists and physical trainers to understand this complex phenomenon better. In 

addition, the BN model built could be used to make belief updating processes (by adding new evidence 

[the scores obtained by an athlete in the different neuromuscular performance tests]) in order to study 

the concurrent and individual contribution of the neuromuscular factors on the dynamic postural control 

of each futsal player and thus allowing the design of individualised training programs. 

Therefore, the main purpose of the current study was to analyse the relationships between several 

parameters of neuromuscular performance with dynamic postural control (measured through the y-

balance test) using a BN based analysis in a cohort of elite futsal players. 

 

Method 

Participants 

A total of 44 elite male futsal players from four different teams (16 players from a club engaged 

in the First [top] National Spanish Futsal division and 28 players from three clubs engaged in the Second 

National Futsal division) completed this cross-sectional study (convenience sampling). To be included, 

all participants had to be free of pain at the time of the study and currently involved in futsal-related 

activities. Participants were excluded if they reported the presence of any lower extremity injury within 

the last month, a current upper respiratory tract infection, any bone or joint abnormalities, any 

uncorrected visual and vestibular problems and/or a concussion within the last three months [15]. The 

study was conducted at the end of the pre-season phase in 2015 and 2016 (September). Before any 

participation, experimental procedures and potential risks were fully explained to the participants in 

verbal and written form, and written informed consent was obtained from participants. An Institutional 

Research Ethics committee approved the study protocol prior to data collection (DPS.FAR.01.14), 

conforming to the recommendations of the Declaration of Helsinki. 
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Testing procedure 

Prior to the neuromuscular testing, all participants performed a standardised dynamic warm-up 

designed by Taylor et al. [30]. Three to 5 min after the dynamic warm-up was carried out, participants 

completed five different neuromuscular assessments in the following order: 1) dynamic postural control; 

2) isometric hip abduction and adduction strength; 3) lower extremity joint ROMs; 4) core stability; and 

5) isokinetic knee flexion and extension strength. 

Dynamic postural control was measured using the y-balance test (Y-Balance Test, 

Move2Perform, Evansville, IN) (composite score) and followed the guidelines proposed by Shaffer et 

al. [2]. After having completed a 2 min practise of the testing procedure, players were allowed a 

maximum of five trials to obtain three successful trials for each reach direction (anterior, posteromedial 

and posterolateral). To obtain a global measure of the dynamic postural control performance, the greatest 

distance reached in each direction was normalised (by dividing by leg length) and then averaged (by 

multiplying by 100) to establish a composite balance score. 

Isometric hip abduction and adduction peak torque of the dominant and non-dominant leg were 

assessed using a portable handheld dynamometer (Nicholas Manual Muscle Tester, Lafayette Indiana 

Instruments) with the participant lying in a supine position on a plinth with legs extended, following the 

methods described by Thorborg et al. [31]. Participants performed two practice trials (50 and 80% of 

the self-perceived isometric maximal voluntary contraction) and then three 5s isometric maximal 

voluntary contraction trials for each hip movement. The best trial was used for the subsequent statistical 

analyses. 

Likewise, passive hip flexion with knee flexed and extended, extension, abduction, external and 

internal rotation; knee flexion; and ankle dorsiflexion with knee flexed and extended ROMs of the 

dominant and non-dominant leg were assessed following the methods previously described [32]. The 

best score for each test was used in the subsequent analyses. 

An unstable sitting protocol was used to assess participant’s core stability, determined as the 

ability to control trunk posture and motion while sitting, following the methods previously described by 

Barbado et al. [33]. Briefly, after a familiarization period (2 min), participants performed different static 
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and dynamic tasks while sitting on an unstable seat. All tasks were performed twice. The duration of 

each trial was 70s and the rest period between trials was 1 min. The mean radial error was used as a 

global measure to quantify the trunk/core performance during the trials.  

Finally, isokinetic concentric and eccentric torques during knee extension and flexion actions in 

both legs were determined (Biodex System-4, Biodex Corp., Shirley, NY, USA) following the methods 

employed by Ayala et al. [34]. In each of the three trials at each velocity (60º/s and 180º/s for concentric 

muscle actions and 30º/ and 60º/s for eccentric muscle actions), the peak torque was reported as the 

single highest torque value achieved. For each peak torque variable, the best of the three trials at each 

velocity was used for subsequent statistical analysis. When a variation >5% was found in the peak torque 

values between the three trials, the mean of the two most closely related torque values was used for the 

subsequent statistical analyses. 

Appendix 1 summarizes the list of variables recorded from each assessment procedure (and it also 

shows the abbreviations that have been used within the manuscript). Each of the 6 testers who took part 

in this study conducted the same tests throughout all the testing sessions. All testers had more than 4 

years of experience in using the neuromuscular assessments.  

 

Statistical analysis 

Prior to building the BN of each leg, all variables were discretized as this has been shown to be 

an effective measure to improve the performance of several BN and logistic regression techniques [35]. 

Thus, both class variables (y-balance composite score of the dominant and non-dominant legs) were 

discretized into two intervals (high risk and low risk of injury) according to the cut-off score of 89.6% 

reported by Butler et al. [5], in which composite scores below 89.6% indicate that players are 3.5 times 

more likely to suffer a non-contact lower extremity injury (100% of sensitivity and 71.7% of specificity). 

A statistician experienced in running BN analysis carried out the discretization of the continuous 

variables using a visual inspection of their histogram (in which each instance was colored [blue or red] 

according to their relationship to each interval of the class variable [high risk or low risk]) which allowed 

identification of a clear cut-off point. Thus for the y-balance composite score of the dominant and non-
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dominant leg, six and eight variables were discretized into two intervals, respectively. For those 

variables in which a clear cut-off score was not visually identified, the unsupervised discretization 

algorithm available in the WEKA Data Mining software was applied using the equal frequency binning 

approach (three cut point intervals). Three intervals were selected in order to reflect taxonomy of low, 

moderate and high scores that might make the final models more comprehensible. Appendix 1 shows a 

description of all variables recorded to build the BNs. 

In order to build the BN of each leg that allows the classification of futsal players into one of the 

two injury risk categories (low risk or moderate risk) previously defined according to their dynamic 

postural control scores, we used the well-known WEKA (Waikato Environment for Knowledge 

Analysis) Data Mining software. To build the BN the score + search approach was used [36]. 

Specifically, the Tabu search algorithm as a search engine [37] coupled with the BDeu score [38] was 

selected to build the structure of both BNs (dominant and non-dominant leg). This algorithm explores 

the search space starting from a network structure and adding, deleting, or reversing one arc at a time 

until the score can no longer be improved. Thus, the Tabu search algorithm is a modified hill climbing 

algorithm able to escape local optima by selecting a network that minimally decreases the score function. 

Neither expert knowledge nor prior knowledge of the system under study was taken into account in the 

model selection process in order to prevent the model from encoding the prior information instead of 

the information in the data. As the Tabu search is a stochastic algorithm, the final model was obtained 

by repeating the structure learning several times (in our case 1,000 times). A large number of network 

structures were explored (1,000 BNs) to reduce the impact of locally optimal (but globally suboptimal) 

network learning. The networks learned were averaged to obtain a more robust model. A conditional 

probability distribution was obtained for each node.  

The performance of the BNs was assessed using a 5-fold stratified cross validation technique. 

That is, we split the dataset into 5 folds, each one containing 20% of the patterns of the dataset. For each 

fold, the BN was trained with the examples contained in the remaining folds and then tested with the 

current fold. A wide range of performance measures can be obtained from the stratified cross validation 

technique. A well-known approach to unify these measures and to produce an evaluation criterion is to 

use the area under the Receiver Operating Characteristic Curve (AUC). In particular, the AUC 
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corresponds to the probability of identifying which one of the two stimuli is noise and which one is 

signal plus noise correctly [39]. Thus, the AUC was used as a single measure of BNs´ performance.  

However, and before learning the BNs, a feature selection process was carried out to reduce the 

dimensionality of the feature space and eliminate irrelevant, weakly relevant and/or redundant features. 

In other words, the aim of this pre-learning process was to find the minimal subset of attributes such 

that the resulting probability distribution of data classes is close to the original distribution obtained 

using all attributes and that they do not decrease the accuracy of the model significantly [40]. Feature 

selection algorithms are separated into three categories: a) the filters which extract features from the 

data without any learning involved, b) the wrappers that use learning techniques to evaluate which 

features are useful, and c) the embedded techniques which combine the feature selection step and the 

classifier construction [41,42].  A priori it is not possible to determine with certainty which category of 

the feature selection algorithms might be applied to address each problem more accurately. Thus, it has 

been suggested that an appropriate approach may be to analyze and compare the accuracy of the models 

built for a given classifier (in our case the Tabu search algorithm) to which different feature selection 

techniques have been previously applied and then select the best performing BN-based feature selection 

method [43–45]. Accordingly, the behavior of numerous feature selection algorithms coming from the 

filter and wrapper categories were analyzed and compared (using the metaclassifier “attribute selected 

classifier” available in Weka´s repository) in order to select the best performing BN to describe the 

relationships between the main measures of neuromuscular performance and dynamic postural control. 

For those filter algorithms in which a ranker search technique is required (e.g. chi squared attribute 

evaluator and correlation attribute evaluator techniques), it was set up to select the top-10 ranked 

features so that a comprehensible and straightforward model could be developed. Once the top-10 

ranked features were determined, the performance of these filter algorithms were assessed by using the 

top-10, 9, 8, 7 … and 2 features and then compared in order to find the minimal subset of features with 

the best performance. On the other hand, the search algorithms used for the wrapper algorithms were 

the Best First (backward direction) and Greedy Stepwise (backward direction) and as base classifier the 

following three classifier algorithms were selected: Naïve Bayes, C4.5 and Support Vector Machine. 
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The accuracy scores of all the possible combinations for the wrapper algorithms were compared and the 

best performing model was finally selected. 

The BNs were implemented using SAMIAM (Sensitivity Analysis Modeling Inference and More) 

software (2013) to obtain a graphical interface for manipulating the probabilistic network. 

Once the BNs were built, different configurations of variable's values where entered with the aim 

of studying different intercausal (interactions among different causes of the same effect) and causal 

(predictions from causes to effects) reasoning scenarios.   

 

Results 

Tables 1 and 2 show the accuracy scores obtained by the 11 feature selection algorithms used to 

build different dynamic postural control BNs (y-balance test composite score) for the dominant and non-

dominant leg, respectively. For the dynamic postural control of the dominant leg, the feature selection 

algorithm “correlation attribute evaluator” (which evaluates the worth of an attribute by measuring the 

correlation [Pearson's] between it and the class) belonging to the filters category was the algorithm that 

built the BN with the highest accuracy score (AUC = 0.899). The dynamic postural control BN built for 

the non-dominant leg after the application (pre-processing) of the “chi squared” feature selection 

algorithm (that evaluates the worth of an attribute by computing the value of the chi-squared statistic 

with respect to the class), also belonged to the filters category, and had the highest AUC scores (0.879). 

Furthermore, these two feature selection algorithms used six and ten variables to build the dynamic 

postural control BNs that showed the highest performance for the dominant and non-dominant leg, 

respectively.   

Table 1: Comparisons among the accuracy scores obtained by all the BN-based feature selection 

methods for the dominant leg. In grey is highlighted the best performing BN. 

Feature selection 

algorithm 

Search 

technique 
AUC 

Nº of features 

selected 

Description in ascending (from more 

to less important/relevant) order 

- - 0.865 31 S1_table 

Correlation-based feature 

subset evaluator 
Best First 0.858 5 

ISOK-PT-ECC-KF180, CS-NF, CS-ML, 

ROM-HFKF and ROM-KF 
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Chi squared attribute 

evaluator 
Ranker 0.835 4 

ROM-KF, ROM-HFKF, CS-ML and 

ROM-HE 

Classifier attribute 

evaluator (Naïve Bayes) 
Ranker 0.874 7 

ROM-KF, ROM-HFKF, CS-NF, ISOK-

PT-ECC-KF180, ISOM-PT-Hip-Abd and 

CS-ML, CS-WF 

Classifier subset evaluator 

(Naïve Bayes) 
Best First 0.774 10 

ISOK-PT-CON-KF60, Stature, ISOK-

PT-CON-KE180, ISOK-PT-ECC-KF60, 

ISOK-PTECC-KF180, ISOK-PTECC-

KE60, ISOM-PT-Hip-Abd, CS-ML, 

ROM-HIR, ROM-HER, ROM-HE, 

ROM-KF, ROM-AKDFKE and ROM-

AKDFKF 

Consistency subset 

evaluator 
Best First 0.699 5 

ROM-HIR, ROM-HER, ROM-HE, 

ROM-KF and ROM-AKDFKF 

Correlation attribute 

evaluator 
Ranker 0.899 6 

ROM-KF, ROM-HFKF, CS-ML, Stature, 

CS-NF and CS-CD 

CV Attribute evaluator Ranker 0.697 7 

CS-ML, Dominant-leg, ISOK-PTECC-

KF60, ROM-AKDFKF, ISOK-PTECC-

KF180, ISOK-PTCON-KE240 and ISOK-

PTECC-KE30 

Gain ratio attribute 

evaluator 
Ranker 0.865 6 

CS-ML, ROM-KF, ROM-HFKF, Stature, 

ROM-HE and CS-CD 

Info gain attribute 

evaluator 
Ranker 0.874 6 

ROM-KF, CS-ML, ROM-HFKF, ROM-

HE, CS-CD and ISOK-PTECC-KF180 

One R attribute evaluator Ranker 0.857 7 

ROM-KF, ROM-HFKF, CS-NF, ISOK-

PTECC-KF180, CS-ML, ISOM-PT-Hip-

Abd, CS-WF 

Wrapper subset evaluator 

(Naïve Bayes) 
Best First 0.851 9 

Stature, ISOM-PT-Hip-Abd, CS-NF, 

CS-ML, CS-AP, ROM-HFKF, ROM-

HER, ROM-HE, ROM-KF 

BN: Bayesian Network Classifiers; AUC: area under the receiver operating characteristic curve; ISOK: 

isokinetic; KE: knee extensors; CON: concentric; ECC: eccentric; ISOM: isometric; PT: peak torque; 

Abd: abduction; ROM: range of motion; HFKF: hip flexion with the knee flexed; HE: Hip extension; 

HIR: hip internal rotation; HER: hip external rotation; KF: knee flexors; AKDFKE: ankle dorsi-flexion 

with the knee extended; AKDFKF: ankle dorsi-flexion with the knee flexed; CS: core stability; NF: 

unstable sitting without feedback; WF: unstable sitting with feedback; ML: unstable sitting while 

performing medial-lateral displacements with feedback; AP: unstable sitting while performing anterior-
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posterior displacements with feedback; CD: unstable sitting while performing circular displacements 

with feedback. 

 
Table 2: Comparisons among the accuracy scores obtained by all the BN-based feature selection 

methods for the non-dominant leg. In grey is highlighted the best performing BN. 

Feature selection 

algorithm 

Search 

technique 
AUC 

Nº of features 

selected 

Description in ascending (from more 

to less important/relevant) order 

- - 0.821 31 S1_table  

Correlation-based feature 

subset evaluator 
Best First 0.817 8 

Dominant-leg, ISOM-Hip-Abd, CS-WF, 

CS-ML, ROM-HE, ROM-KF, ROM-

AKDFKE and ROM-AKDFKF 

Chi squared attribute 

evaluator 
Ranker 0.879 10 

ROM-AKDFKE, ROM-AKDFKF, ROM-

KF, ROM-HE, CS-ML, CS-CD, CS-

WF, ROM-HFKF, ISOK-ECC-KF180 and 

CS-NF 

Classifier attribute 

evaluator (Naïve Bayes) 
Ranker 0.809 10 

ROM-AKDFKF, ROM-KF, ROM-HE, 

ISOK-ECC-KF180, ROM-AKDFKE, 

ROM-HFKF, CS-WF, ISOK-ECC-KE30, 

ISOK-ECC-KE60 and CS-CD 

Classifier subset evaluator 

(Naïve Bayes) 
Best First 0.758 10 

ISOK-ECC-KF180, ISOK-ECC-KE60, 

ISOM-Hip-Add, CS-NF, CS-WF, CS-

CD, ROM-HE, ROM-KF, ROM-

AKDFKE and ROM-AKDFKF 

Consistency subset 

evaluator 
Best First 0.828 5 

ROM-HABD, ROM-HIR, ROM-HER, 

ROM-KF and ROM-AKDFKF 

Correlation attribute 

evaluator 
Ranker 0.853 9 

ROM-AKDFKE, ROM-AKDFKF, ROM-

KF, CS-ML, ROM-HFKF, CS-WF, CS-

NF, ISOM-Hip-Add and Dominant-leg 

CV Attribute evaluator Ranker 0.700 9 

ROM-AKDFKE, Dominant-leg, ISOK-

ECC-KF180, ISOK-ECC-KF60, ISOK-

ECC-KE30, ISOK-CON-KE240, ISOK-

ECC-KE60, ISOK-ECC-KF30 and ROM-

AKDFKF 

Gain ratio attribute 

evaluator 
Ranker 0.853 10 

ROM-AKDFKE, ROM-AKDFKF, ROM-

KF, CS-ML, ROM-HFKF, CS-WF, CS-

NF, Dominant-leg, ISOM-Hip-Add and 

ROM-HE 
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Info gain attribute 

evaluator 
Ranker 0.853 9 

ROM-AKDFKE, ROM-AKDFKF, ROM-

KF, CS-ML, ROM-HE, CS-CD, ROM-

HFKF, CS-WF, ISOK-ECC-KF180 and 

CS-NF 

One R attribute evaluator Ranker 0.731 9 

ROM-AKDFKF, ROM-KF, ROM-HE, 

ISOK-ECC-KF180, ROM-AKDFKE, 

ISOK-ECC-KE60, ISOK-ECC-KF60, 

ISOK-CON-KF240 and ISOK-CON-

KF180 

Wrapper subset evaluator 

(Naïve Bayes) 
Best First 0.809 22 

ISOK-CON-KF60, Body-mass, ISOK-

CON-KE180, ISOK-CON-KE240, ISOK-

ECC-KF30, ISOK-ECC-KF60, ISOK-

ECC-KF180, ISOK-ECC-KE30, ISOK-

ECC-KE60, ISOM-Hip-Abd, ISOM-Hip-

Add, CS-NF, CS-ML, CS-AP, CS-CD, 

ROM-HFKF, ROM-HFKE, ROM-HABD, 

ROM-HE, ROM-KF, ROM-AKDFKE 

and ROM-AKDFKF 

BN: Bayesian Network Classifiers; AUC: area under the receiver operating  characteristic curve; ISOK: 

isokinetic; KE: knee extensors; CON: concentric; ECC: eccentric; ISOM: isometric; PT: peak torque; 

Abd: abduction; ROM: range of motion; HFKF: hip flexion with the knee flexed; HE: Hip extension; 

HIR: hip internal rotation; HER: hip external rotation; KF: knee flexors; AKDFKE: ankle dorsi-flexion 

with the knee extended; AKDFKF: ankle dorsi-flexion with the knee flexed; CS: core stability; NF: 

unstable sitting without feedback; WF: unstable sitting with feedback; ML: unstable sitting while 

performing medial-lateral displacements with feedback; AP: unstable sitting while performing anterior-

posterior displacements with feedback; CD: unstable sitting while performing circular displacements 

with feedback. 

 
 

Fig 1 presents the directed acyclic graphs (DAGs) corresponding to the dynamic postural control 

BNs built for the dominant (Fig 1a) and non-dominant leg (Fig 1b). In addition, both DAGs also show 

the a priori probability distributions (expressed in percentages), that is, without entering any observed 

value, for each of the two or three labels of the six and ten variables selected to build the dynamic 

postural control BNs. Thus, for the class variable of the dominant leg (Y-BALANCE_DOM), six child 

nodes or independent predictors were observed: knee flexion (ROM-KF_DOM) and hip flexion with 
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knee flexed (ROM-HFKF_DOM) ROMs, core stability measures recorded while performing medial-

lateral (CS-ML) and circular (CS-CD) displacements with feedback, and also without displacement and 

nor feedback (CS-NF), and stature. Likewise, what can also be observed is the presence of connections 

between hip flexion ROM and the players´ stature (ROM-KF_DOM → Stature) as well as between the 

measures of core stability assessed while performing medial-lateral (CS-ML) and circular (CS-CD) 

displacements (CS-ML → CS-CD). The DAG corresponding to the dynamic postural control BN of the 

non-dominant leg shows the presence of nine child nodes, corresponding to five ROM (ankle 

dorsiflexion with knee extended [ROM-AKDFKE_NODOM] and flexed [ROM-AKDFKE_NODOM], 

knee flexion [ROM-KF_NODOM] and hip extension [ROM-HE_NODOM] and flexion with knee 

flexed [ROM-HFKF_NODOM] ROMs), three core stability measured during both static (unstable sitting 

with [CS-WF] and without [CS-NF] feedback) and dynamic tasks (unstable sitting while performing 

medial-lateral displacements with feedback [CS-ML]) and one isokinetic strength (eccentric knee 

flexors peak torque [ISOK-ECC-KF180_NODOM]) measures. Likewise, a number of connections 

among variables were also displayed in the DAG for the dynamic postural control BN of the non-

dominant leg (e.g.: CS-NF → ISOK-ECC-KF180_NODOM, ROM-KF_NODOM → ROM-

HFKF_NODOM). Another child node was observed, the measure of core stability assessed while 

performing circular displacements with feedback (CS-CD), that acts as descendent of another measure 

of core stability, in its case the one measured while performing medial-lateral displacements (CS-ML). 
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Fig 1: Directed acyclic graphs corresponding to the dynamic postural control BNs built for the dominant leg (Fig 1a) and non-dominant leg (Fig 

1b). The a priori probability distributions for each feature are given, where the likelihood for each feature’s label is expressed in percentage 
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The individual contribution of each label of the different variables finally selected on the 

probability of having the class variable (y-balance test composite score) in its low and moderate risk 

states is shown in table 3 for both the dominant and non-dominant legs. Knee flexion ROM (≥132.5º) 

and core stability assessed while performing medial-lateral displacements with feedback (≥8.79 mm) 

measures were the ones that presented the highest impact on the probability of having the class variable 

of the dominant leg in its low (84.34%) and moderate risk (95.01%) states, respectively. Hip extension 

(≥14.5º) and ankle dorsiflexion with knee extended (<30.5º) ROM measures were also the predictors 

with the highest contribution to have the class variable of the non-dominant leg in its low (62.84%) and 

moderate risk (96.7%) states, respectively. 

 

Table 3: Individual contribution of each level of the final variables 

selected on the probability of having the class variable (y-balance 

composite score) of the non-dominant leg in its low and moderate 

risk states. In grey are highlighted the labels of the variables that 

present the highest individual contribution of having the class 

variable in its low and moderate risk scores. 

 Y-balance (composite score) 

 Low risk Moderate risk 

 Dominant leg 

No instantiations 46.74 53.26 

ROM-KF (º)   

 <132.5 27.36 72.64 

 ≥132.5 84.34 15.66 

ROM-HFKF (º)   

 <127 14.67 85.33 

 ≥127 64.94 35.06 

CS-ML (CoP mm)   

 <8.79 58.04 41.96 

 ≥8.79 4.99 95.01 

Stature (cm)   

 <180 56.55 43.45 

 ≥180 23.27 76.73 
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CS-NF (CoP mm)   

 <5.24 34.25 65.75 

 5.24 – 6.09 71.76 28.24 

 ≥6.09 34.25 65.75 

CS-CD (CoP mm)   

 <8.31 52.04 47.96 

 8.31 – 9.81 62.74 37.26 

 ≥9.81 18.92 81.8 

 Non-dominant leg 

No instantiations 38.04 61.96 

ROM-AKDFKE (º)   

 <30.5 3.3 96.7 

 ≥30.5 54.42 45.58 

ROM-AKDFKF (º)   

 <34 18.23 81.77 

 ≥34 61.79 38.21 

ROM-KF (º)   

 <122 15.77 84.23 

 ≥122 57.74 42.26 

ROM-HE (º)   

 <9.5 31.8 68.11 

 9.5 – 14.5 21.52 78.48 

 ≥14.5 62.84 37.16 

CS-ML (CoP mm)   

 <8.3 48.26 51.74 

 ≥8.3 11.43 88.57 

CS-CD (CoP mm)   

 <8.31 47.13 52.87 

 8.31 – 9.81 42.6 57.4 

 ≥9.81 24.25 75.75 

CS-WF (CoP mm)   

 <5 47.97 52.03 

 ≥5 25.56 74.44 

ROM-HFKF (º)   

 <130 25.61 74.39 

 ≥130 52.26 47.74 
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ISOK-ECC-KF180 (Nm)   

 <96.85 20.95 79.05 

 96.85 – 120.15 56.45 43.55 

 ≥120.15 35.45 64.55 

CS-NF (CoP mm)   

 <6.75 46.7 53.3 

 ≥6.75 17.7 82.3 

ISOK: isokinetic; KE: knee extensors; ECC: eccentric; ROM: range of 

motion; HFKF: hip flexion with the knee flexed; HE: Hip extension; KF: 

knee flexors; AKDFKE: ankle dorsi-flexion with the knee extended; 

AKDFKF: ankle dorsi-flexion with the knee flexed; CS: core stability; 

NF: unstable sitting without feedback; WF: unstable sitting with 

feedback; ML: unstable sitting while performing medial-lateral 

displacements with feedback; CD: unstable sitting while performing 

circular displacements with feedback. 

 

In table 4 it can be seen that by mean of a belief updating process which uses two different 

configurations (i.e.: the process by which new evidence is introduced in some target variables of the 

model), it was possible to achieve the maximal hypothetical probability (98.98%) that a futsal player 

will show a limited (moderate risk) dynamic postural control performance of the dominant leg, which 

implies a “jump” of approximately 45 percentage points from the initial value shown within the studied 

population. Table 4 also displays how through three instantiations it is possible to achieve the maximal 

hypothetical probability that a player would have a dynamic postural control performance of the 

dominant leg that might be categorized as “low risk for lower-extremity injuries” (98.08%), with an 

increase of approximately 52 percentage points from the initial value. Similarly, table 5 presents another 

step-by-step belief updating process carried out to maximize both labels (low risk and moderate risk) of 

the class variable for the dynamic postural control model of the non-dominant leg. In particular, only 

two variables need to be observed (fixed) to achieve the greatest hypothetical probability (99.29%) that 

a player would have a limited dynamic postural control performance (moderate risk). However, the 

correct value must be entered for 5 variables to maximize the probability (98.65%) that a player would 

have a dynamic postural stability performance categorized as “low risk for lower-extremity injuries”, 
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which suppose an increase of approximately 60 percentage points with respect to its initial probability 

(38.04%). For the belief updating process carried out in both BNs and shown in tables 4 and 5, an 

intercausal reasoning (when different causes of the same effect can interact) was applied. From each 

step, the variable and the state that induces the greatest increase in the likelihood of the class variable to 

show a low and moderate state were chosen. 

Table 4: Step-by-step instantiations leading to maximization of the 

likelihood of having the class variable (y-balance) of the dominant leg 

in its low and moderate risk categories. 

Step Instantiate variable Label y-balance  

   Moderate risk 

1 None  53.26% 

2 CS-ML ≥8.79 95.01% 

3 ROM-HFKF_DOM <127 98.98% 

   Low risk 

1 None  46.74% 

2 ROM-KF_DOM ≥132.5 84.34% 

3 ROM-HFKF_DOM ≥127 91.91% 

4 CS-NF 5.24 – 6.69 97.05% 

CS: core stability; ML: unstable sitting while performing medial-lateral 

displacements with feedback; ROM: range of motion; HFKF: hip flexion 

with the knee flexed; KF: knee flexors; DOM: dominant leg; NF: no 

feedback. 

 
Table 5: Step-by-step instantiations leading to maximization of the likelihood of 

having the criterion variable (y-balance) of the non-dominant leg in its low and 

moderate risk states. 

Step Instantiate variable Label y-balance  

   Moderate risk 

1 None  61.96% 

2 ROM-AKDFKE_NONDOM <30.5 96.7% 

3 CS-ML ≥8.3 99.29% 

   Low risk 

1 None  38.04% 
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2 ROM-HE_NODOM >14.5 63.84% 

3 ISOK-ECC-KF180_NODOM 96.85-120.15 81.54% 

4 ROM-AKDFKF_NONDOM ≥34 94.32% 

5 ROM-AKDFKE_NONDOM ≥30.5 97.03% 

6 ROM-KF_NONDOM ≥122 98.65% 

CS: core stability; ML: unstable sitting while performing medial-lateral 

displacements with feedback; ROM: range of motion; KF: knee flexors; AKDFKE: 

ankle dorsi-flexion with the knee extended; AKDFKF: ankle dorsi-flexion with the 

knee flexed; HE: hip extension; ISOK: isokinetic strength; ECC: eccentric; 

NONDOM: non-dominant leg. 

 

Finally, Fig 2 (dominant leg) and 3 (non-dominant leg) show a top-down reasoning for the 

dynamic postural control BNs in which in both cases, the class variable (y-balance composite scores) 

was instantiated in their two labels in order to define / predict a profile.  For the dynamic postural control 

BN of the dominant leg, Fig 2 shows that when the class variable is instantiated at is maximum of “low 

risk” (Fig 2a), three variables or father nodes show a clearly imbalanced distribution of probabilities in 

favor of one of their labels (ROM-HFKF_DOM, CS-ML and stature). In particular, a futsal player with 

a dynamic postural control performance categorized as “low risk” is very likely to have a hip flexion 

with knee flexed ROM higher than 127º, a core stability score (measured while performing medial-

lateral displacements) lower than 8.79 mm (mean radial error) and a stature shorter than 180 cm. 

Subsequently, Fig 2b also shows that when the label “high risk” of the class variable is instantiated, only 

knee flexion ROM reported a clear imbalance in the distribution of probabilities between its two labels 

(in favour to the label “<132.5°”) and hence, a high-risk profile was not visually clear. Regarding the 

dynamic postural control BN of the non-dominant leg, Fig 3 shows that when the class variable is 

instantiated in its “low risk” label (Fig 3a), seven out of nine variables present a clearly imbalanced 

distribution orientated to one of their labels. Thus, there seems to be a low risk profile characterised by 

moderate to high ROM values for the ankle, knee and hip (flexion) joints alongside with a high core 

stability performance during static and dynamic tasks. Contrarily, when the moderate risk label was 

instantiated (Fig 3b), it was not possible to find a clear profile 
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Fig 2: A top-down reasoning for the dynamic postural control BNs of the dominant leg in which the 

class variable (y-balance composite scores) was instantiated in their two labels: a) low risk and b) 

moderate risk. 
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Fig 3: A top-down reasoning for the dynamic postural control BNs of the non-dominant leg in 

which the class variable (y-balance composite scores) was instantiated in their two labels: a) low risk 

and b) moderate risk 

 

Discussion 

The BNs generated using the selected features by the algorithms correlation attribute evaluator 

and chi squared reported the highest evaluation criteria for the dominant (AUC = 0.899) and non-

dominant (AUC = 0.879) legs, respectively. The ability of both BNs to classify the instances correctly 

into one of the two categories of the class variable (low risk vs. moderate risk) cannot be compared with 
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the models developed (through regression logistic techniques) in previous studies because neither of 

them reported any measure of their global ability or accuracy. 

The BN built for the dynamic postural control of the dominant leg identified six independent 

predictors: knee flexion and hip flexion with the knee flexed ROMs, stature, and one static (with 

feedback) and two dynamic (assessed while performing medial-lateral and circular displacements with 

feedback) core stability measures. On the contrary, the feature selection-based BN of the dynamic 

postural control of the non-dominant leg shows nine father nodes or independent predictors for the 

distance reached in the y-balance test: five of them were ROMs (hip flexion and extension with knee 

flexed, knee flexion and ankle dorsiflexion with knee flexed and extended), three were static (with and 

without feedback) and dynamic (assessed while performing medial-lateral displacements) core stability 

measures and one was a measure of the isokinetic eccentric strength of the knee flexors. Therefore, the 

performance achieved in the y-balance test (independent of the leg) and consequently, the dynamic 

postural control, appears to be widely influenced by the hip and knee flexion and the ankle dorsiflexion 

ROM measures, all in the sagittal plane, as well as by measures of static but mainly dynamic core 

stability in the frontal plane. In particular, the highest label of the dynamic core stability measure (the 

higher the value the worse the core stability) recorded while performing medial-lateral displacements 

(≥8.9 mm) and the lowest label of the hip flexion with knee flexed ROM (<127°) were the two 

neuromuscular parameters that presented the largest individual contribution (an increase of 41.7 and 

32.1 percentage points, respectively) to the probability that the class variable of the dominant leg (y-

balance composite score) would adopt its moderate risk category. For the non-dominant leg, the two 

measures that have the highest impact on the probability of having the class variable in its moderate risk 

category were the lowest label of the ankle dorsiflexion with knee extended ROM (<30.5°) and again, 

the highest label of the dynamic core stability measure recorded while performing medial-lateral 

displacements (≥8.3 mm). 

These results are in agreement with the findings reported by previous studies [17,21,46] which 

found that the hip and knee flexion and ankle dorsiflexion ROMs individually determined a meaningful 

proportion of the explained variance (R2) for the y-balance test (ranging from 5 to 30% of the composite 

score) in different cohorts of athletes. These findings may support the hypothesis that those athletes with 



24 
 

limited hip and knee flexion and ankle dorsiflexion ROMs might show a sub-optimal dynamic postural 

control while performing explosive actions (i.e., kicking and changes of direction) due to a smaller 

anterior displacement of their center of mass, which may increase the likelihood of losing stability. 

Although core stability has been proposed as a crucial factor for y-balance test [47], only López-

Valenciano et al. [17] have confirmed this link in professional female football players. In particular, this 

study found that the measure of core stability recorded while players were performing medial-lateral 

displacements on an unstable seat explained a large percentage (31.1%) of the performance achieved in 

the composite score of the y-balance test in female, but not in male professional football players. These 

sex-related differences found by López-Valenciano et al. [17] in the identification of this variable as an 

independent predictor for the y-balance test performance, but not in the absolute distances reached 

(composite scores), may be partially attributed to the fact that female players reported better results 

(statistically significant) in the core stability measures (with the exception of the static stability measure 

with feedback [CS-WF]) in comparison with their counterpart male football players (e.g.: CS-NF: 6.1 

mm [males] – 4.3 mm [females], CS-CD: 10.8 mm [males] – 9.2 mm [females]). These differences in 

the core stability results in favor of the female players might have allowed them to develop different 

neuromuscular strategies to control the trunk in the frontal plane more efficiently while performing 

functional unilateral movements (e.g. changes of direction, kicking). Consequently, the individual 

contribution of the different measures of neuromuscular performance on dynamic postural control might 

have been modified, so core stability may have now adopted a more relevant role in such cohort of 

female players in contrast to other parameters (e.g. ROM). This hypothesis seems to be supported by 

the results reported in the current study, in which the scores obtained by the male futsal players in the 

core stability tasks were similar or even slightly better to those reported by López-Valenciano et al. [17] 

for the female players, and both BNs also selected some of these measures as independent predictors for 

the dynamic postural control performance. 

Thanks to the fact that BNs have the ability to make simulations or instantiations when new 

evidence is introduced in the model, it was possible to carry out the study of the simplest step-by step 

combination of instanced variables (in term of the number of instantiations made) to maximize the 

probability for the class variable (composite score) to have its low and moderate category for the 
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dominant (table 4) and non-dominant legs (table 5). The combination of poor dynamic core stability 

scores (medial-lateral displacement) (≥8.79 and 8.3 mm for the dominant and non-dominant leg, 

respectively) with limited hip flexion with knee flexed (dominant leg) (<127º) or ankle dorsiflexion with 

knee flexed (non-dominant leg) (<30.5º) ROM measures presented a strong probabilistic and negative 

relationship with dynamic postural control. On the contrary, the combination of high hip (>127º) and 

knee (>132.5 and 122º for the dominant and non-dominant leg, respectively) flexion and ankle 

dorsiflexion with knee flexed (>34º) and extended (>30.5º) ROM values seems to have presented the 

strongest probabilistic and positive impact on dynamic postural control.     

 

Limitations 

The current findings are limited to the participants’ sport background (elite futsal players) so the 

extrapolation to other sport cohorts should be made with a certain degree of caution. Each sport modality 

and level of competition requires differences in technical skills, specific movements, training load and 

physical capacities, all of which predispose athletes to individual chronic musculo-skeletal adaptations, 

thus possibly developing different strategies for neuromuscular control and influencing subsequent y-

balance test scores. 

 

Conclusion 

The BNs built (AUC = 0.899 and 0.879 for the dominant and non-dominant legs respectively) in 

the current study demonstrated that the dynamic postural control in elite male futsal players presents a 

strong relationship to the abilities to flex the hip, knee and ankle (dorsiflexion) joints in the sagittal plane 

and to control the core structures during static, but mainly during dynamic actions in the frontal plane. 

Therefore, training interventions aimed at improving or maintaining unilateral dynamic balance in 

professional male football players should include, among other things, exercises (i.e. stretching 

exercises for the major muscles of the posterior chain) that allow futsal players to achieve hip and knee 

flexion and ankle dorsiflexion with knee flexed and extended ROM scores equal or higher than 127º, 

132.5º, 34º and 30.5º, respectively. Likewise, these training interventions should also include exercises 
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to maintain or improve both the static (e.g. frontal, back and side planks) and dynamic medial-lateral 

(e.g. plank jacks and Russian twists, one-legged squats, lunges, airplane exercises) core stability so that 

futsal players can achieve medial radial error values lower than 6.69 and 8.79 mm, respectively. 
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Supporting information 

S1 Table. Description of the features recorded to build the Bayesian Networks. 

Name 
Labels 

Dominant leg Non-dominant leg 

Y-balance (composite score) High risk (<89.6%) or Low risk (≥89.6%) 

Personal characteristics:   

1. Dominant leg Left or right 

2. Stature (cm) <180 or ≥180* <173.55, 173.55-179.35 or >179.35 

3. Body mass (kg) <70.1, 70.1-74.95 or >74.95 <70.1, 70.1-74.95 or >74.95 

Isometric hip abduction and adduction strength (N/kg):  

4. ISOM-Hip-Abd <2.73, 2.73-2.93 or >2.93 <2.55, 2.55-2.81 or >2.81 

5. ISOM-Hip-Abd <2.61, 2.61-3.27 or >3.27 <3 or ≥3* 

Lower extremity ranges of motion (º):  

6. ROM-HFKF <127 or ≥127* <130 or ≥130* 

7. ROM-HFKE <70.5, 70.5-79.5 or >79.5 <70.5, 70.5-81 or >81 

8. ROM-HAB <56, 56-63.5 or >63.5 <51.5, 51.5-60.5 or >60.5 

9. ROM-HIR <39.5, 39.5-44.5 or >44.5 <34.5, 34.5-44.5 or >44.5 

10. ROM-HER <51.5, 51.5-59.5 or >59.5 <49.5, 49.5-58 or >58 

11. ROM-HE <9, 9-14 or >14* <9.5, 9.5-14.5 or >14.5 

12. ROM-KF <132.5 or ≥132.5* <122 or ≥122* 

13. ROM-AKDFKE <31 or ≥31* <30.5 or ≥30.5* 

14. ROM-AKDFKF <32.5, 32.5-37.5 or >37.5 <34 or ≥34* 

Core stability (mm):   

15. CS-NF <5.24, 5.24-6.69 or >6.69 <6.75 or ≥6.75* 

16. CS-WF <3.66, 3.66-5.34 or >5.34 <5 or ≥5* 

17. CS-ML <8.79 or ≥8.79* <8.3 or ≥8.3 

18. CS-AP <6.88, 6.88-7.96 or >7.96 <6.88, 6.88-7.96 or >7.96 

19. CS-CD <8.31, 8.31-9.81 or >9.81 <8.31, 8.31-9.81 or >9.81 

Isokinetic knee flexion and extension strength (Nm):  

20. ISOK-CON-KF60 <98.95, 98.95-113.95 or >113.95 <92.45, 92.45-112 or >112 

21. ISOK-CON-KF180 <84.2, 84.2-106.05 or >106.05 <80.8, 80.8-106.65 or >106.65 

22. ISOK-CON-KF240 <82.65, 82.65-104 or >104 <80.35, 80.35-100.35 or >100.35 

23. ISOK-CON-KE60 <172.6, 172.6-220 or >220 <175.4, 175.4-204.15 or >204.15 

24. ISOK-CON-KE180 <124.85, 124.85-149.5 or >149.5 <127, 127-145.4 or >145.4 
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25. ISOK-CON-KE240 <112, 112-142.65 or >142.65 <116.55, 116.55-134.05 >134.05 

26. ISOK-ECC-KF30 <98, 98-130.25 or >130.25 <97.45, 97.45-119.65 or >119.65 

27. ISOK-ECC-KF60 <79.95, 79.95-102.4 or >102.4 <101.3, 101.3-126.05 or >126.05 

28. ISOK-ECC-KF180 <103.4, 103.4-124.45 or >124.45 <96.85, 96.85-120.15 or >120.15 

29. ISOK-ECC-KE30 <218.9, 218.9-268.75 or >268.75 <222.45, 222.45-268.35 or >268.35 

30. ISOK-ECC-KE60 <217.75, 217.75-262.95 or >262.95 <223, 223-267.2 or >267.2 

31. ISOK-ECC-KE180 <191.75, 191.75-246.25 or >246.25 <188.95, 188.95-238.45 or >238.45 

 


