
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, This is an Accepted Manuscript of an article published by Taylor & Francis in Urban
Water Journal on [date of publication], available online:
http://www.tandfonline.com/10.1080/1573062X.2019.1611886 and is licensed under All Rights
Reserved license:

Sayers, William ORCID logoORCID: https://orcid.org/0000-
0003-1677-4409, Savic, Dragan and Kapelan, Zoran (2019)
Performance of LEMMO with artificial neural networks for
water systems optimisation. Urban Water Journal, 16 (1). pp.
21-32. doi:10.1080/1573062X.2019.1611886

Official URL: http://dx.doi.org/10.1080/1573062X.2019.1611886
DOI: http://dx.doi.org/10.1080/1573062X.2019.1611886
EPrint URI: https://eprints.glos.ac.uk/id/eprint/6916

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Performance of LEMMO with artificial neural networks for water

systems optimisation

William Sayersa*, Dragan Savicb,c and Zoran Kapelanb,d

aSchool of Business and Technology, University of Gloucestershire, Cheltenham, UK;
bCentre for Water Systems, University of Exeter, Exeter, UK

cKWR Water Cycle Research Institute, Nieuwegein, the Netherlands

dDelft university of Technology, Faculty of Civil Engineering and Geosciences,

Department of Water Management, Delft, The Netherlands.

William Sayers, wsayers@glos.ac.uk; Dragan Savic, d.savic@exeter.ac.uk,

dragan.savic@kwrwater.nl; Zoran Kapelan, z.kapelan@exeter.ac.uk,

z.kapelan@tudelft.nl;

Artificial neural networks and LEMMO for water systems

optimisation

Optimisation algorithms could potentially provide extremely valuable guidance

towards improved intervention strategies and/or designs for water systems. The

application of these algorithms in this domain has historically been hindered by

the extreme computational cost of performing hydraulic modelling of water

systems. This is because running an optimisation algorithm generally involves

running a very large number of simulations of the system being optimised. In this

paper, a novel optimisation approach is described, based upon the “learning

evolution model for multi-objective optimisation” algorithm. This approach uses

deep learning artificial neural network meta-models to reduce the number of

simulations of the water system required, without reducing the accuracy of the

optimisation results. This is then compared to an industry standard optimisation

approach, showing results with increased speed of convergence and equivalent or

improved accuracy. Therefore, demonstrating that this approach is suitable for

use in highly computationally demanding areas such as water systems

optimisation.

Keywords: optimization; flooding; water-distribution

Introduction

The application of optimisation algorithms to water systems has been hindered by the

extreme computational cost of hydraulic system modelling, although a large amount of

research in this area has been undertaken, increasing in quantity in the last 5-10 years

(Bach et al., 2014; Djordjević et al., 1999; Garcìa et al., 2015; Hammond et al., 2018;

Sayers, 2015; Sayers et al., 2014; Shirzad, 2017; Shishegar et al., 2018; Wang et al.,

2014; Webber et al., 2018; Woodward, 2012; Woodward et al., 2013a, 2013b; Zheng et

al., 2019). The run time of hydraulic system models can vary considerably, depending

on the exact model and the hardware running it. However, runtimes in the order of sixty

seconds per model run, for a reasonably complex model, would not be unreasonable.

Assuming this runtime, if one hundred thousand evaluations were required (as is the

case for the simplest networks we have tested with) the total runtime would be

approximately 70 days. In reality, due to model complexity this is likely to be

significantly under-estimating the time necessary. It is because of this computational

limitation that research such as that by Shirzad (2017) on shortening search times in

water distribution optimisation, or Webber et al. (2018) on more rapid assessment of

flood management options are of such importance to the field.Various optimisation

algorithms have been tested for suitability, accuracy of results, and speed of

convergence, amongst other performance measures (Behzadian et al., 2009; Shirzad,

2017; Shishegar et al., 2018; Wang et al., 2014; Wang, 1997; Webber et al., 2018;

Woodward, 2012; Woodward et al., 2013a, 2013b; Zheng et al., 2017).

In this paper we present an optimisation algorithm based on the learning

evolution model for multiple-objective optimisation (LEMMO) (Jourdan et al., 2004,

2005) combined with feed-forward artificial neural network (ANN) meta-models

(Behzadian et al., 2009; Mohtar et al., 2018; Sayers, 2015; Sayers et al., 2014). Along

with this a rigorous examination of the effectiveness of this algorithm when applied to

selected water distribution systems test-cases described in Wang et al. (2014) and

compared to reference pareto fronts generated in the same paper is also presented.

Methodology

LEMMO-ANN Overview

The basis of the multi-objective optimisation in the described algorithm is the industry-

standard and well-used NSGA-II algorithm (Bekele and Nicklow, 2007; Deb et al.,

2000, 2002; Kannan et al., 2009). In order to reduce the computational impact of

objective function evaluation, and therefore increase the speed and accuracy with which

a reasonable Pareto front can be achieved, NSGA-II can be combined with heuristic

meta-models (Behzadian et al., 2009; Sayers et al., 2014; Sayers, 2015).

The technique used in this research paper is based upon the LEMMO algorithm

(di Pierro et al., 2009; Jourdan et al., 2004, 2005), specifically a modification of

“LEMMO-fix4”, which is in turn based upon the LEM algorithm (Michalski et al.,

2000; Wojtusiak and Michalski, 2006). LEMMO-fix4 is a multi-objective version of

LEM, which utilises decision trees to identify rules that characterise promising

solutions. The LEMMO algorithm works by performing a number of iterations of

standard NSGA-II (Deb et al., 2000, 2002) and storing data on which of the generated

solutions are “good”, and which are “poor” in respect to a randomly chosen objective

from the objectives specified. This stored data is then used to train a decision tree

algorithm to distinguish between “good” and “poor” solutions, using the best and worst

30% as “good” and “poor” sets. New solutions are then generated which the decision

tree categorises as “good”. These generated solutions are then integrated with the main

population of the optimisation algorithm (allowing them to be culled if existing

solutions are better) and the algorithm continues.

The implementation described in this paper uses a similar approach, but with

artificial neural networks taking the place of decision trees within the algorithm (Sayers,

2015) in an attempt to improve the performance of the original algorithm when applied

to computationally intensive problems such as water systems optimisation. This is

described in detail below.

This approach is designed to give the incremental improvement behaviour of the

original optimisation algorithm, but also allows the algorithm to make intuitive bursts

when it discovers promising new strategies (Jourdan et al., 2004, 2005; Sayers, 2015).

This is by virtue of the machine learning techniques recognising new high-scoring

solutions and “seeding” the population with variants of these.

Optimisation objectives for LEMMO-ANN testing

In common with other optimisation algorithms, the formulation of the objective

function is of paramount importance, the problem must be represented in a way that

captures all essential elements, is differentiable, and is easily modifiable.

In the case of the algorithm described in this paper, LEMMO with artificial

neural networks (LEMMO-ANN) two objective functions minimum are required for a

meaningful test of the algorithm.

In (Wang et al., 2014) a number of reference Pareto fronts are generated using

benchmark water distribution system problems. In order to compare with these

reference Pareto fronts, when applied to water distribution system problems, we are

using network resilience (Prasad and Park, 2004; Wang et al., 2014) and capital

expenditure as our objectives. The formulation of these objectives can be seen in the

following equations:

min𝐶𝐶 = �𝑎𝑎 × 𝐷𝐷𝑖𝑖𝑏𝑏 × 𝐿𝐿𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖=1

(1)

max 𝐼𝐼𝑛𝑛 =
∑ 𝐶𝐶𝑗𝑗𝑄𝑄𝑗𝑗�𝐻𝐻𝑗𝑗 − 𝐻𝐻𝑗𝑗

𝑟𝑟𝑟𝑟𝑟𝑟�𝑛𝑛𝑛𝑛
𝑗𝑗=1

�∑ 𝑄𝑄𝑘𝑘𝐻𝐻𝑘𝑘 + ∑ 𝑃𝑃𝑖𝑖
𝛾𝛾

𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑛𝑛
𝑘𝑘=1 � − ∑ 𝑄𝑄𝑗𝑗𝐻𝐻𝑗𝑗

𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛
𝑗𝑗=1

(2)

𝐶𝐶𝑗𝑗 =
∑ 𝐷𝐷𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑛𝑛𝑛𝑛 × max{𝐷𝐷𝑖𝑖}

(3)

In equation 1 ‘𝐶𝐶’ represents total cost (monetary units are problem dependant);

‘𝑛𝑛𝑛𝑛’ represents the total number of pipes; ‘𝑎𝑎’ and ‘𝑏𝑏’ represent constants depending on

specific problems; ‘𝐷𝐷𝑖𝑖’ is the diameter of pipe ‘𝑖𝑖’ and ‘𝐿𝐿𝑖𝑖’ is the length of pipe ‘𝑖𝑖’

(Wang et al., 2014).

In equations 2 and 3, ‘𝐼𝐼𝑛𝑛’ is network resilience; ‘𝑛𝑛𝑛𝑛’ represents number of

demand nodes; ‘𝐶𝐶𝑗𝑗’, ‘𝑄𝑄𝑗𝑗’, ‘𝐻𝐻𝑗𝑗’ and ‘𝐻𝐻𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟’ represent uniformity, demand, actual head,

and minimum required head of node ‘𝑗𝑗’; ‘𝑛𝑛𝑛𝑛’ is number of reservoirs; ‘𝑄𝑄𝑘𝑘’ and ‘𝐻𝐻𝑘𝑘’ are

discharge and actual head of reservoir ‘𝑘𝑘’; ‘𝑛𝑛𝑛𝑛𝑛𝑛’ is the number of pumps; ‘𝑃𝑃𝑖𝑖’ is the

power of pump ‘𝑖𝑖’; ‘𝛾𝛾’ represents the specific weight of water; ‘𝑛𝑛𝑛𝑛𝑛𝑛’ is the number of

pipes that are connected to node ‘𝑗𝑗’; ‘𝐷𝐷𝑖𝑖’ is the diameter of pipe ‘𝑖𝑖’ connected to

demand node ‘𝑗𝑗’ (Wang et al., 2014).

The LEMMO-ANN algorithm

The optimisation algorithm implemented is based on the NSGA-II algorithm (Deb et al.,

2000, 2002) and the LEM (Wojtusiak and Michalski, 2006) and LEMMO algorithms (di

Pierro et al., 2009; Jourdan et al., 2004, 2005), specifically LEMMO-fix4. Rather than

the decision-tree system used as a machine learning meta-model in the original

LEMMO implementation, a feed-forward artificial neural network is employed.

The algorithm performs a number of iterations of standard NSGA-II (Deb et al., 2002),

storing data on which of the generated solutions are “good” solutions and which are

“poor”. For this purpose, “good” solutions are those within the top 30% when ordered

by rank and then crowding distance, “poor” are those within the bottom 30% with the

same ordering. It then uses this data to train a machine-learning algorithm as a classifier

to distinguish between good and bad solutions and uses the resulting network from this

training to generate new solutions which are classified as “good” via a search process.

These are then integrated with the main population in the same manner as newly

generated solutions are in the standard algorithm. Execution then continues with further

iterations based on pure NSGA-II and further iterations of machine learning as

described in LEMMo-fix4 (Jourdan et al., 2005).

This approach is driven by the knowledge that for certain classifications of

problem, ANNs have several potential advantages over decision trees. Firstly, ANNs

are universal approximators (Cybenko, 1989; Hartman et al., 1990; Hornik et al., 1989;

Hornik, 1991) which cope well with on-line training in a continuous manner.

Additionally, ANNs classify data into sets based on non-linear boundaries (Masters,

1993), whereas decision trees are limited to linear boundaries (Quinlan, 1993), which

depending on maximum tree-depth, could affect classification accuracy.

Artificial neural network implementation

The artificial neural network used in this project is and is a feed-forward neural network

trained by means of a resilient propagation algorithm (RPROP) (Igel and Hüsken, 2000;

Riedmiller and Braun, 1993). The implementation in this work is a part of the Accord

library (Souza, 2015). A feed-forward neural network was selected as this type of

network is robustly proven to be a universal approximator (Cybenko, 1989; Hartman et

al., 1990; Hornik et al., 1989; Hornik, 1991; Park and Sandberg, 1991). Additionally,

the function of the network, where a given number of inputs are associated with a

specified output and the weights are altered to give an input/output mapping for the

problem fits well into the context of being used within another algorithm. Multilayer

feed forward artificial neural networks degrade in performance gracefully, as the

amount of noise in the input increases (Svozil et al., 1997). ANN’s also cope well with

being trained online, which is important for the applications detailed in this paper.

RPROP was chosen as it is a fast and effective alternative to standard back

propagation. Due to the way in which the various approaches integrate with the ANN, a

large or complex training algorithm is likely to have a significant impact on

performance. So something relatively simple, but proven and effective (Igel and

Hüsken, 2000; Riedmiller and Braun, 1993) was selected.

Artificial neural network structure

It has been shown that a feed-forward neural network with one hidden layer is a

universal approximator (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) given the

correct parameters (i.e. weight values). However, how to find these parameters and how

many nodes should be present in a hidden layer is not identified.

Additionally these papers (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) do

not show that the three-layer approach is the most efficient and effective for a given

problem, only that it theoretically should be able to achieve an approximation. There is

no universal rule or system for selection of the correct number of hidden neurons for a

given problem, but most suggested guidelines are between zero and 'n' with 'n' being the

number of decision variables. Initially, therefore, a three-layer network was used where

the number of hidden nodes was equal to the number of decision variables divided by

two (see Figure 1).

Figure 1. Initial neural network structure with six input nodes

The training algorithm used was resilient back-propagation (RPROP)

(Riedmiller and Braun, 1993), as previously mentioned. This network structure seemed

to produce an improvement in approximating the Pareto front on smaller problems but

failed to achieve the same for larger problems. Additionally, by analysing the execution

of the code, it could be seen that the neural network-training algorithm was running

until it hit a hard limit imposed to prevent endless loops (Sayers, 2015). This was

interpreted as meaning that the neural network was struggling to classify the inputs, and

was not producing a meaningful enough answer for the LEMMO algorithm to function

correctly (Sayers, 2015).

It has been suggested (Chester, 1990; Masters, 1993) that a network with two

hidden layers could perform better than one with a single hidden layer when

approximating complex discontinuous functions. Based on this, it was decided to

experiment with adding an extra layer, comprised of half the number of hidden nodes in

the previously existing hidden layer (number of decision variables divided by two)

(Chester, 1990; Sayers, 2015). This layer is between the previously existing hidden

layer and the input layer (see Figure 2). This network structure produced considerably

improved results in terms of convergence, diversity and dominated hypervolume

(Sayers, 2015), over the previous arrangement and the results for LEMMO-ANN are

based on this network structure.

Figure 2. Graphical representation of the neural network structure with ten input nodes

(for illustration only - test-problems and real problems should have more inputs).

Integration of ANN meta-models into LEMMO

The machine learning algorithms used in previous implementations of LEMMO are

decision tree classifiers. In this case the machine-learning algorithm is an artificial

neural network, which has necessitated some modification of the algorithm. This

machine-learning algorithm is then utilised to generate a new population for the next

evolution phase to use as a starting point. This functionality had to be adapted

somewhat to make it applicable to multiple-objective optimisation.

Five variants were examined in Jourdan's (2005) paper, referred to as LEMMO-

1, LEMMO-fix1, LEMMO-fix2, LEMMO-fix3 and LEMMO-fix4.

An approach based upon LEMMO-Fix4 has been used as this was recommended

in Jourdan et al. (2005) and testing in di Pierro et al. (2009) led to that study also

following this recommendation.

In our approach, the LEMMO-ANN algorithm is run as part of the NSGA2

algorithm, every ten generations.

The feed-forward artificial neural network is trained using RPROP with the best

thirty percent of the solutions from the last ten generations as the “good” set and the

worst thirty percent as the “poor” set. In order to generate solutions that match the

“good” set and do not match the “poor”, solutions are generated for each of the

population members in turn.

These solutions are, in a loop, mutated and evaluated (by the ANN), discarding

poor mutations and retaining the mutations that improve the solution. At this stage, no

solution can enter the population if a solution already exists with the same

characteristics. Once a specified number of iterations are completed, the best solution

generated so far is retained in that position in the population, and we move onto

generating the next.

Finally, this newly generated population is treated as a new child population within the

NSGA2 algorithm. This means that a conglomerated population of the current solutions,

plus these newly generated solutions is created, evaluated, ranked, analysed for

crowding distance, sorted by rank then crowding distance, and the best 50% retained for

the next iteration of NSGA2. In this way it is ensured that only improved solutions

generated by LEMMO will persist into the optimisation process, the rest will be

discarded (see 3).

Figure 3. Implementation of LEMMO-ANN and NSGA2 Algorithm (simplified

diagram)

Performance metrics utilised

Three performance metrics will be utilised in evaluation the performance of the

algorithm presented in this document, when applied to water distribution systems. These

are a diversity metric, a convergence metric, and a measure of dominated hypervolume.

Diversity Metric

The first of the three selected performance metrics is the diversity measure described by

Deb et al. (2002). This measure involves calculating the Euclidean distance between

each member of the generated Pareto front and its neighbour. The extreme solutions are

then calculated in Deb’s implementation by fitting a curve parallel to that of the true

Pareto-optimal front. The extreme solutions are found by calculating the values of both

objectives for the problem in question for two cases. The first case being where all pipes

and storage nodes are the maximum allowed size, and the second case being where all

pipes and storage nodes are their initial size (i.e. cost will be 0, EAD will be at its

starting value).

In equation 4 the process for calculating the diversity metric is described, where

“df” and “dl” are the Euclidean distances between the extreme solutions and the

boundary solutions of the non-dominated set. Meanwhile “d” represents the average of

all distances for the non-dominated set.

∆=
𝑑𝑑𝑓𝑓 + 𝑑𝑑𝑙𝑙 + ∑ �𝑑𝑑𝑖𝑖 − 𝑑̅𝑑�𝑁𝑁−1

𝑖𝑖=1

𝑑𝑑𝑓𝑓 + 𝑑𝑑𝑙𝑙 + (𝑁𝑁 − 1)𝑑̅𝑑

(4)

With this measure, lower numbers are better, as they indicate a more uniform

spread of solutions along the estimated Pareto front, covering larger areas of the

estimated Pareto front. This measure has a benefit in that it can be applied to problems

where the true Pareto front is unknown provided one can calculate the extreme end-

points of the true Pareto front (Deb et al., 2002).

 Convergence Metric

This metric involves measuring how close the various points in a non-dominated set are

to another set of coordinates (representing either a true Pareto front, or another

estimated Pareto front which is believed to be a superior approximation). It is based

upon the measure described in Deb’s (2002) paper on NSGA-II. In Deb’s original

metric a set of 500 uniformly spaced solutions is selected from the superior front. For

each calculated solution to be compared, the minimum Euclidean distance of that point

from the chosen solutions in the superior front is then computed. The average of all

these distances is used as the metric. Therefore, the lower the average of these distances,

the better the score.

The issue encountered with Deb’s metric is that in a situation where there are

fewer solutions on the estimated Pareto front than the true Pareto front a very low value

can be obtained. This could give a false impression as to how close to matching the

Pareto front an estimated front may be.

A modification has, therefore, been made by the author to overcome this

problem. The solutions on the best-known front are taken and for each of those

solutions the minimum Euclidean distance to a member of the set of algorithmically

generated solutions is identified. The average of those distances is then taken.

The difference can be seen in Table 1 and Figure 4. These tables and figure

contain unitless example data, simply to demonstrate the mathematics (units in a real-

world application would depend upon the parameters being measured). Table 1 contains

the coordinates for data section ‘A’, as well as the minimum Euclidean distance from

each of these points to the points in the Pareto front. The average of these points is 1.21.

Table 1 also contains the coordinates for data section ‘B’ from Figure 4 and,

again, the minimum Euclidean distances for these points to the points in the Pareto

front. These distances average to 0.35.

The data in these two sections, combined with a visual check on Figure 4,

indicates that dataset ‘B’ is a poorer fit than dataset ‘A”. However, because of the

different numbers of data points in each dataset, dataset ‘B’ achieves a better

convergence value than dataset ‘A’.

On the other hand, in the final sectio the figures for the minimum distances from

each data point in the Pareto front, to the data points in ‘A’ and ‘B’, can be seen. These

figures average to 1.04 and 2.47 respectively, giving a better estimation of how far from

matching the true Pareto front these two datasets are. Much like the original measure, if

there is a perfect match (including identical data-points being found) this measure will

produce zero. Therefore, the lower the number, the closer the estimated front is to the

true Pareto front.

The mathematical expression for this metric can be seen in equation 5 where ‘x’

and ‘y’ are the coordinates for the Pareto front and accented ‘x’ and ‘y’ are the

coordinates for the estimated Pareto front.

Table 1. Convergence metric example data 'A'

Example Data 'A' Example Data 'B'
X Y Distances X Y Distances
7 0 2.00

4.00 1.00 0.00 6 1 1.41
5 2 1.41
3 3 1.00

5.50 0.50 0.71 3 4 1.41
1 4 0.00
Average
Distance: 1.21 Average

Distance: 0.35

Example Pareto Front Data
X Y 'A' Distances 'B' Distances
5 0 1.41 0.71
4 1 1.41 0.00
3 2 1.00 1.41
2 3 1.00 2.83
1 4 0.00 4.24
0 5 1.41 5.66

Figure 4. Convergence metric example data

∑ �∑ 𝑚𝑚𝑚𝑚𝑚𝑚��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝚥́𝚥�
2

+ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚥́𝚥�
2𝑚𝑚

𝑗𝑗=1 �𝑛𝑛
𝑖𝑖=1

𝑛𝑛

(5)

Dominated Hypervolume Metric

The dominated hypervolume or “S-Metric” is a measure of the Hypervolume dominated

by the estimated front (Zitzler and Thiele, 1998). Given a reference point, the volume of

space dominated by the estimated Pareto front can be calculated, resulting in a measure

by which to compare different estimated fronts. The larger the volume of dominated

space (i.e. the higher the numerical value of the metric) the better the estimation of the

Pareto front. This can be seen in figure 5, where the dominated region is indicated by

shading.

The reference has to be in such a position that it will encompass the entire Pareto

front to be measured. Additionally, the reference point must be the same between

separate tests, if they are intended to be compared. Differing reference points could

result in wildly different results. Finally, in the given example (see figure 5) both

objectives are being minimized – whereas in our test networks, one objective

(resiliency) is being maximised rather than minimised.

We are using the DEAP library implementation of the Hypervolume metric,

written in Python (Fortin et al., 2012; Wessing, 2010), executed in the .NET

environment alongside C# code using the IronPython python implementation (Foord

and Muirhead, 2009). This implementation assumes minimisation on both objectives.

This problem was solved by inverting the scores from the particular objective that is

being maximised, before applying the hypervolume metric. This results in a “flip” of the

curve for that particular objective, meaning a reference point based upon this new, but

equivalent, curve can be provided and the algorithm works without issue or alteration.

Figure 5. Dominated Hypervolume example, shaded area represents dominated volume

Discussion and results

Water distribution system test-cases

In the original paper describing these benchmark problems (Wang et al., 2014) twelve

water distribution system design problems were examined. They fit into four categories:

small, medium, large and very large network problems. This categorisation is based on

the size of the search space that is defined by each of these problems (see Table 2).

Table 2. Test problem categories (the size of the search space given in the brackets)

Small Medium Large Very Large

Two-reservoir network

(TRN)

(3.28 × 107)

New York tunnel network

(NYT)

(1.93 × 1025)

Fossolo network

(FOS)

(7.25 × 1077)

Modena network

(MOD)

(1.32 × 10353)

Two-loop network

(TLN)

(1.48 × 109)

Blacksburg network

(BLA)

(2.30 × 1026)

Pescara network

(PES)

(1.91 × 10110)

Balerma irrigation

network

(BIN)

(1.00 × 10455)

BakRyan network

(BAK)

(2.36 × 109)

Hanoi network

(HAN)

(2.87 × 1026)

 Exeter network

(EXN)

(2.95 × 10590)

 GoYang network

(GOY)

(1.24 × 1027)

It was considered that at least one small problem should be included to allow for

easy bug testing and modification of software. Additionally, a smaller problem has the

advantage that the best estimated Pareto front has been found by exhaustive search and

is therefore known. A medium problem was then included, in order to ensure that

problems were tested across a reasonable range of the complexities available (see Table

2). Finally, two ‘very large’ problems were included, as these most accurately represent

the scale and type of problem that the new approach is designed to solve.

Taking these considerations into account the selected problems are the two-loop

network (TLN), the GoYang network (GOY), the Modena network (MOD) and the

Balerma irrigation network (BIN). The details of these problems can be seen in Table 3.

Table 3. Test problem details

Problem Water
Sources

Decision
Variables
(Pipes)

Pipe
Diameter
Options

Search
Space
Size

TLN 1 8 14 1.48×109

GOY 1 30 8 1.24×1027

MOD 4 317 13 1.32×10353

BIN 4 454 10 1.00×10455

In the benchmark test paper (Wang et al., 2014) a computational budget was

fixed, in order that the results were repeatable easily by maintaining a similar

computational budget. The computational budgets used in this paper for the chosen tests

can be seen in Table 4. They are represented by a cap on the number of model

evaluations allowed. Additionally, tests were performed with varying populations

(groups 1, 2, and 3). This is because a smaller population with a hard cap on evaluations

will cause a deeper search, and a larger population a broader search.

Table 4. Test problem computational budget in original benchmarking

Problem Number of
Evaluations

Group
1 Pop.

Group
2 Pop.

Group
3 Pop.

TLN 100,000 40 80 160

GOY 600,000 60 120 240

MOD 2,000,000 200 400 800

BIN 2,000,000 200 400 800

The best-known Pareto set was identified in Wang et al. (2014) by running a

large number of different optimisation algorithms, conglomerating the results, and

identifying the best non-dominated set from those conglomerated results. Because of

this all the results within the best-known Pareto front were not generated using NSGA-

II, and it was not expected that during our testing the algorithm would identify every

single result that the Wang et al. (2014) identified. The number and percentage (against

the overall total) of solutions identified by NSGA-II in the best known-Pareto fronts for

each problem selected can be seen in Table 5 and Table 6, respectively.

Table 5. Contribution to best-known Pareto front from NSGA-II (Wang et al., 2014)

Problem Group 1
Contribution

Group 2
Contribution

Group 3
Contribution

TLN 54 74 77

GOY 4 23 31

MOD 71 61 26

BIN 8 67 179

Table 6. Percentage contribution to the best-known Pareto front from NSGA-II in

percentages (Wang et al., 2014)

Problem Total Solutions in Best-Known
Pareto front

Percent Discovered by NSGA-II
(%)

TLN 77 100
GOY 67 43.3
MOD 196 57.7
BIN 265 72.5

In Table 5 the number of contributions to the best-known Pareto front can be

seen from each NSGA-II group run within Wang's tests. It can be seen in these results

that certain problems seem to lend themselves to higher populations, which means a

broader exploration of the available search space. Meanwhile, other problems lend

themselves to smaller populations but necessarily higher numbers of iterations (to keep

to the same computational budget), which means a deeper exploration of the available

search space. With regard to the very large problems one of each of these variants is

included (the MOD and BIN problems).

Additionally in Table 6 it can be seen that during Wang et al. (2014)’s tests,

NSGA-II performs very well on TLN, more poorly on MOD and GOY, and then better

again on BIN. This pattern is mirrored by the NSGA-II implementation we have

developed, as would be expected.

Test-case approach

In order for the two different algorithm types to be analysed for each of the four

problems, twenty tests were run for each, first without and then with LEMMO-ANN.

For each of these twenty tests, two tests that are a reasonable representation of the

overall results were selected to be shown in more detail in this chapter. Each of these

selected tests were separated into evenly spaced iterations, in order to show clear

progression of the optimisation in the way which would be expected. A visual

comparison of these tests also holds some value. It may be worth noting that for every

single iteration, of every single result, a graph was generated and inspected. However,

for brevity’s sake, not all were included.

Test-case analyses

Three metrics have been utilised in the analysis of these results, these are convergence,

diversity, and dominated hypervolume. For each test WDS problem there are twenty

runs of the tested algorithm, for which the results for every tenth iteration of that run

have been recorded.

All results from all twenty runs are included within this analysis. This is

achieved by calculating all three metrics for each tenth iteration of every single test.

These metrics for each iteration are then averaged across common tests. For example,

the metric results for TLN with NSGA-II and no LEMMO consist of a set of averages

of the metrics produced for each iteration.

 TLN

The analysis for TLN (see figure 6) shows that in terms of convergence towards the best

known Pareto front, LEMMO tests show distinctly improved results over the NSGA-II

base algorithm.

In terms of diversity, both LEMMO-ANN and the NSGA-II base algorithm start

off at a diversity of approximately point five. This diversity then decreases slightly but

remains fairly static for the duration of the run algorithm. The NSGA-II base algorithm

tends towards very slightly lower diversity throughout, probably explained by the lack

of meta-model generated solutions that would be present in the LEMMO-ANN

algorithm.

In terms of dominated hypervolume, LEMMO-ANN out-performs the NSGA-II

base algorithm fairly decisively.

Figure 6. Averaged metrics for TLN

GOY
The analysis of the GOY test (see figure 7) shows that in terms of convergence

and dominated hypervolume, LEMMO-ANN consistently out-performs the NSGA-II

base algorithm. In terms of diversity, the metric appears to be extremely variable from

iteration to iteration. However, the overall mean diversity for the NGSA-II base

algorithm is 0.427, whereas the overall mean diversity for the LEMMO-ANN

implementation is 0.422. So on average the NSGA-II base algorithm is very slightly

out-performing the LEMMO implementation in terms of diversity on this particular

problem.

Figure 7. Averaged metrics for GOY

MOD
The analysis of MOD (see figure 8) shows that for convergence, the NSGA-II

base algorithm out-performs LEMMO-ANN. In terms of diversity it appears that

NSGA-II algorithm has very slightly higher diversity, followed by ANN LEMMO.

However, in terms of dominated hypervolume LEMMO-ANN demonstrates improved

results. This suggests that LEMMO-ANN is achieving a better estimation of the Pareto

front, but with solutions that differ from NSGA-II’s.

Figure 8. Averaged metrics for MOD

BIN

In the analysis of the metrics for the BIN WDS test problem (see figure 9) it is clear to

see that LEMMO-ANN consistently out-performs NSGA-II in all cases.

Figure 9. Averaged metrics for BIN

It can be seen from the presented results here that the NSGA-II (Deb et al., 2002)

algorithm converges well on test problems, approaching the best known Pareto fronts

that are being used for comparison (Wang et al., 2014). . The LEMMO-ANN approach

can be seen to achieve better convergence towards the same best-known Pareto fronts

when using the same number of objective function evaluations. Additionally, it can be

seen that the LEMMO-ANN approach achieves equivalent (to the NSGA-II base

algorithm) or better convergence to the best-known Pareto fronts in fewer iterations

(and thus fewer objective function evaluations). It is also entirely possible that further

tuning the ANN structure, training strategy, and solution generation technique, could

further improve the algorithms results in terms of how quickly they approach the

optimal Pareto front, and how closely they match it.

Logically, no accuracy is lost through this process. The LEMMO-ANN

algorithm integrates into the NSGA-II algorithm in such a way that if a LEMMO

iteration produces only very poor solutions to the problem, they will not enter the

population. The only anticipatable negative effect is that if the neural network cannot

model the complexities of the problem well, it could bias the algorithm towards

convergence to a local optimum.

Additionally, extra time taken to run a LEMMO iteration versus running a full

iteration is negligible in this application, meaning that it is very cheap in terms of

computational demand to use this technique to improve the results of the NSGA-II

algorithm, for applications with a very computationally demanding objective function.

Conclusion

Within this article, an optimisation algorithm is suggested for the design of

water distribution systems. This model is developed based on the LEMMO (Jourdan et

al., 2005, 2004) algorithm, modified to use artificial neural networks as meta-heuristics.

The algorithm modifies the existing water distribution system design attempting to

optimise this with regard to two objectives, network resilience and capital expenditure.

The results of this optimisation are then compared against the results of the same

optimisation performed with standard NSGA-II (Deb et al., 2002) in terms of diversity,

convergence and dominated hypervolume. The results compared overall favourably

with the pareto fronts generated by NSGA-II, with less computational effort invested.

Given the same amount of computational effort, the results improved upon the NSGA-II

results. The conclusion, therefore, is that the LEMMO approach used with NSGA-II

performs well with ANN meta-models as in the LEMMO-ANN approach. It generally

improves the results compared to a standard NSGA-II base algorithm and achieves

comparable results in fewer iterations. The caveat is that the ANN used must be

structured and trained well enough that it will approximate the testing function well,

otherwise it could potentially bias the algorithm towards local optima.

References:

Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T., Deletic, A., 2014. A critical
review of integrated urban water modelling - Urban drainage and beyond.
Environ. Model. Softw. 54, 88–107.
https://doi.org/10.1016/j.envsoft.2013.12.018

Behzadian, K., Kapelan, Z., Savić, D.A., Ardeshir, A., 2009. Stochastic Sampling Design
using Multiobjective Genetic Algorithm and Adaptive Neural Networks. Environ.
Model. Softw. 24, 530–541.

Bekele, E.G., Nicklow, J., 2007. Multi-objective automatic calibration of SWAT using
NSGA-II. J. Hydrol. 341, 165–176.

Chester, D.L., 1990. Why Two Hidden Layers are Better than One. IJCNN-90-WASH-
DC 1, 265–366.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2, 303–314.

Deb, K., Agrawal, S., Pratab, A., Meyarivan, T., 2000. A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, in: et Al.,
M.S. (Ed.), . Springer, Paris, France, pp. 849–858.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197.

di Pierro, F., Khu, S.-T., Savić, D., Berardi, L., 2009. Efficient multi-objective optimal
design of water distribution networks on a budget of simulations using hybrid
algorithms. Environ. Model. Softw. 24, 202–213.
https://doi.org/10.1016/j.envsoft.2008.06.008

Djordjević, S., Prodanović, D., Maksimović, C., 1999. An approach to simulation of dual
drainage. Water Sci. Technol. 39, 95–103.

Foord, M., Muirhead, C., 2009. IronPython in Action. Manning Publications Co.,
Greenwich, CT, USA.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C., 2012. DEAP:
Evolutionary Algorithms Made Easy. J. Mach. Learn. Res. 13, 2171–2175.

Garcìa, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., Ocampo-Martinez,
C., 2015. Modeling and Real-Time Control of Urban Drainage Systems: A
Review. Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2015.08.007

Hammond, M., Chen, A.S., Batica, J., Butler, D., Djordjević, S., Gourbesville, P.,
Manojlović, N., Mark, O., Veerbeek, W., 2018. A new flood risk assessment
framework for evaluating the effectiveness of policies to improve urban flood
resilience. Urban Water J. 15, 427–436.
https://doi.org/10.1080/1573062X.2018.1508598

Hartman, E.J., Keeler, J.D., Kowalski, J.M., 1990. Layered neural networks with gaussian
hidden units as universal approximations. Neural Comput. 2, 210–215.

Hornik, K., 1991. Approximation Capabilities of Mutlilayer Feedforward Networks.
Neural Netw. 4, 251–257.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedfordward networks are
universal approximators. Neural Netw. 2, 359–366.

Igel, C., Hüsken, M., 2000. Improving the Rprop Learning Algorithm, in: Proceedings of
the Second International Symposium on Neural Computation.

Jourdan, L., Corne, D., Savić, D., Walters, G., 2005. Preliminary Investigation of the
`Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems
Design. Evol. Multi-Criterion Optim. 841–855.

Jourdan, L., Corne, D., Savić, D., Walters, G., 2004. Hybridising Rule Induction and
Multi-Objective Evolutionary Search for Optimising Water Distribution Systems,
in: Hybrid Intelligent Systems, 2004. HIS ’04. Fourth International Conference
On. Presented at the Fourth International Conference on Hybrid Intelligent
Systems, IEEE, pp. 434–439. https://doi.org/10.1109/ICHIS.2004.58

Kannan, S., Baskar, S., McCalley, J.D., Murugan, P., 2009. Application of NSGA-II
Algorithm to Generation Expansion Planning. IEEE Trans. Power Syst. 24, 454–
461.

Masters, T., 1993. Practical Neural Network Recipes in C++. Morgan Kauffman
Publishers.

Michalski, R.S., Esposito, F., Saitta, L., 2000. Learning Evolution model: Evolutionary
Processes Guided by Machine Learning. Mach. Learn. 38, 9–40.

Mohtar, W.H.M.W., Afan, H., El-Shafie, A., Bong, C.H.J., Ghani, A.A., 2018. Influence
of bed deposit in the prediction of incipient sediment motion in sewers using
artificial neural networks. Urban Water J. 15, 296–302.
https://doi.org/10.1080/1573062X.2018.1455880

Park, J., Sandberg, I.W., 1991. Universal approximation using radial basis function
networks. Neural Comput. 3, 246–257.

Prasad, T.D., Park, N.-S., 2004. Multiobjective Genetic Algorithms for Design of Water
Distribution Networks. J. Water Resour. Plan. Manag. 130, 73–82.
https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(73)

Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Riedmiller, M., Braun, H., 1993. A direct adaptive method for faster backpropagation
learning: The rprop algorithm. Proc. IEEE Int. Conf. Neural Netw. 586–591.

Sayers, W., 2015. Artificial Intelligence Techniques for Flood Risk Management in
Urban Environments (EngD). University of Exeter, Exeter, UK.

Sayers, W., Savić, D., Kapelan, Z., Kellagher, R., 2014. Artificial Intelligence Techniques
for Flood Risk Management in Urban Environments, in: Procedia Engineering.
Presented at the 12th International Conference on Computing and Control for the

Water Industry, Perugia, Italy, pp. 1505–1512.
https://doi.org/10.1016/j.proeng.2014.02.165

Shirzad, A., 2017. Shortening the search time in optimization of water distribution
networks. Urban Water J. 14, 1038–1044.
https://doi.org/10.1080/1573062X.2017.1325502

Shishegar, S., Duchesne, S., Pelletier, G., 2018. Optimization methods applied to
stormwater management problems: a review. Urban Water J. 15, 276–286.
https://doi.org/10.1080/1573062X.2018.1439976

Souza, C., 2015. Accord Framework .NET.
Svozil, D., Kvasnička, V., Pospíchal, J., 1997. Introduction to multi-layer feed-forward

neural networks. Chemom. Intell. Lab. Syst. 39, 43–62.
Wang, Q., Guidolin, M., Savic, D., Kapelan, Z., 2014. Two-Objective Design of

Benchmark Problems of a Water Distribution System via MOEAs: Towards the
Best-Known Approximation of the True Pareto Front. J. Water Resour. Plan.
Manag. 141, 04014060. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000460

Wang, Q.J., 1997. Using Genetic Algorithms to Optimise Model Parameters. Environ.
Model. Softw. 27–34.

Webber, J.L., Gibson, M.J., Chen, A.S., Savic, D., Fu, G., Butler, D., 2018. Rapid
assessment of surface-water flood-management options in urban catchments.
Urban Water J. 15, 210–217. https://doi.org/10.1080/1573062X.2018.1424212

Wessing, S., 2010. HyperVolume. TU Dortmund University.
Wojtusiak, J., Michalski, R., 2006. The LEM3 Implementation of learnable evolution

model and its testing on complex function optimization problems, in: Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation.
Presented at the 8th Annual Conference on Genetic and Evolutionary
Computation, ACM, pp. 1281–1288. https://doi.org/10.1145/1143997.1144197

Woodward, M., 2012. The use of real options and multi-objective optimisation in flood
risk management (PhD Thesis). University of Exeter, Exeter, UK.

Woodward, M., Gouldby, B., Kapelan, Z., Hames, D., 2013a. Multiobjective optimisation
for improved management of flood risk. J. Water Resour. Plan. Manag. ASCE 2,
201–215.

Woodward, M., Kapelan, Z., Gouldby, B., 2013b. Adaptive Flood Risk management
under Climate Change Uncertainty using Real Options and Optimisation. Risk
Anal. 1, 75–92.

Zheng, J.-F., Jiao, J.-D., Zhang, S., Sun, L.-P., 2017. An optimization model for water
quantity and quality integrated management of an urban lake in a water deficient
city. Urban Water J. 14, 922–929.
https://doi.org/10.1080/1573062X.2017.1301500

Zheng, Z., Li, J., Duan, P., 2019. Optimal chiller loading by improved artificial fish
swarm algorithm for energy saving. Math. Comput. Simul., International
Conference on Mathematical Modeling and Computational Methods in Science
and Engineering 155, 227–243. https://doi.org/10.1016/j.matcom.2018.04.013

Zitzler, E., Thiele, L., 1998. Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Study, in: Eiben, A.E. (Ed.), . Springer-Verlag, Amsterdam, pp.
292–301.

Table 1. Convergence metric example data 'A'

Example Data 'A' Example Data 'B'
X Y Distances X Y Distances
7 0 2.00

4.00 1.00 0.00 6 1 1.41
5 2 1.41
3 3 1.00

5.50 0.50 0.71 3 4 1.41
1 4 0.00
Average
Distance: 1.21 Average

Distance: 0.35

Example Pareto Front Data
X Y 'A' Distances 'B' Distances
5 0 1.41 0.71
4 1 1.41 0.00
3 2 1.00 1.41
2 3 1.00 2.83
1 4 0.00 4.24
0 5 1.41 5.66

Table 2. Test problem categories (the size of the search space given in the brackets)

Small Medium Large Very Large

Two-reservoir network

(TRN)

(3.28 × 107)

New York tunnel network

(NYT)

(1.93 × 1025)

Fossolo network

(FOS)

(7.25 × 1077)

Modena network

(MOD)

(1.32 × 10353)

Two-loop network

(TLN)

(1.48 × 109)

Blacksburg network

(BLA)

(2.30 × 1026)

Pescara network

(PES)

(1.91 × 10110)

Balerma irrigation

network

(BIN)

(1.00 × 10455)

BakRyan network

(BAK)

(2.36 × 109)

Hanoi network

(HAN)

(2.87 × 1026)

 Exeter network

(EXN)

(2.95 × 10590)

 GoYang network

(GOY)

(1.24 × 1027)

Table 3. Test problem details

Problem Water
Sources

Decision
Variables
(Pipes)

Pipe
Diameter
Options

Search
Space
Size

TLN 1 8 14 1.48×109

GOY 1 30 8 1.24×1027

MOD 4 317 13 1.32×10353

BIN 4 454 10 1.00×10455

Table 4. Test problem computational budget in original benchmarking

Problem Number of
Evaluations

Group
1 Pop.

Group
2 Pop.

Group
3 Pop.

TLN 100,000 40 80 160

GOY 600,000 60 120 240

MOD 2,000,000 200 400 800

BIN 2,000,000 200 400 800

Table 5. Contribution to best-known Pareto front from NSGA-II (Wang et al., 2014)

Problem Group 1
Contribution

Group 2
Contribution

Group 3
Contribution

TLN 54 74 77

GOY 4 23 31

MOD 71 61 26

BIN 8 67 179

Table 6. Percentage contribution to the best-known Pareto front from NSGA-II in

percentages (Wang et al., 2014)

Problem Total Solutions in Best-Known
Pareto front

Percent Discovered by NSGA-II
(%)

TLN 77 100
GOY 67 43.3
MOD 196 57.7
BIN 265 72.5

Figure 1. Initial neural network structure with six input nodes

Figure 2. Graphical representation of the neural network structure with ten input nodes

(for illustration only - test-problems and real problems should have more inputs).

Figure 3. Implementation of LEMMO-ANN and NSGA2 Algorithm (simplified

diagram)

Figure 4. Convergence metric example data

Figure 5. Dominated Hypervolume example, shaded area represents dominated volume

from the single red reference point, to the blue line.

Figure 6. Averaged metrics for TLN

Figure 7. Averaged metrics for GOY

Figure 8. Averaged metrics for MOD

Figure 9. Averaged metrics for BIN

	Introduction
	Methodology
	LEMMO-ANN Overview
	Optimisation objectives for LEMMO-ANN testing
	The LEMMO-ANN algorithm
	Artificial neural network implementation
	Artificial neural network structure
	Integration of ANN meta-models into LEMMO

	Performance metrics utilised
	Diversity Metric
	Convergence Metric
	Dominated Hypervolume Metric

	Discussion and results
	Water distribution system test-cases
	Test-case approach
	Test-case analyses
	TLN
	GOY
	MOD
	BIN

	Conclusion

