Reply to ‘A note of caution about the excess winter deaths measure’

Staddon et al. reply — Hajat and Kovats¹ question our conclusion that climate change may no longer be assumed to bring a health dividend due to the warming of winters². We accept that the excess winter deaths (EWDs) measure is not perfect; more work is required to develop better temperature and health metrics relevant to seasons and years (rather than extrapolating from daily observations) as has been done for air pollution³. However, we do not agree that the EWDs measure is so flawed as to prevent its use in drawing conclusions about relationships between weather and mortality. Cold-related deaths that occur outside the December–March period are irrelevant because our study has focussed on winter deaths. We did this specifically because winter deaths have been predicted to fall as winters warm. The Health Protection Agency stated that “the number of cold-related deaths will likely decrease due to milder winters”⁴. The UK Climate Change Risk Assessment⁵ concluded that “increased winter temperatures may lead to decreased levels of mortality and morbidity due to cold”. The estimate made by Hajat and Kovats that 70% of all cold-related deaths occur on days warmer than the 5 °C threshold is misleading; this conclusion is based on the assumption that deaths occurring on days below 20 °C are cold-related and deaths on days above 20 °C are warm-related⁶; by this definition, most UK deaths are cold-related. However, we would challenge the simplicity of this notion given that temperature–mortality relationships show two inflections points, not one.

That the excess in winter deaths relative to those in summer may fall if summer heat-related death-rates rise is obvious, but is not germane to our observations of past trends. Indeed, we know of no evidence to suggest that summer heat-related deaths have significantly risen in the past couple of decades; the exception was the 2003 heatwave that caused 2,000 deaths in England and Wales⁷ — which is small compared with the 25,000 expected annual EWDs. This heatwave event, which has garnered so much attention, had no discernible effect on the following winter’s EWDs.

The publications of Hajat and Kovats⁷,⁸ — which they cite to support the role of future winter warming in decreasing winter deaths — quantify the average relationship across years between temperature and mortality: they then extrapolate to determine the impact of warmer weather mortality. However, they assume that the daily temperature–mortality relationship is stable when, in fact, it changes both spatially and temporally, making it unreliable for projecting future cold-related mortality. Recent independent research by Ebi and Mills⁹ also concludes that “climate change […] is unlikely to dramatically reduce overall winter mortality rates”, and confirms our finding that influenza activity is now a key driver of year-to-year fluctuations in winter mortality²,⁹,¹⁰.

We agree, that “climate change is an important public health challenge for the UK” and that “policymakers need to be informed by the best available evidence on the probable harms and benefits to human health.” This was the motivation for our work. Our findings², corroborated by others⁹,¹¹, indicate that future warmer winters are unlikely to decrease winter mortality²,⁹,¹¹, especially if temperature volatility increases¹².

References

5. UK Climate Change Risk Assessment (DEFRA, 2012); http://go.nature.com/lNoqn7
Philip Staddon1*, Hugh Montgomery2,3 and Michael Depledge1
1 University of Exeter Medical School European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital Trust, Truro TR1 3HD, UK, 2 University College London Institute for Human Health and Performance, Charterhouse Building, Archway Campus, Highgate Hill, London N19 5LW, UK, 3 NIHR University College London Hospitals Biomedical Research Centre, Maple House 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.
*e-mail: P.L.Staddon@exeter.ac.uk