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Abstract: The UK Brexit vote triggered a new wave of policy development for a future 

outside the EU. In that context, this paper presents analysis investigating the business 

performance of English hill and upland farms, characterised by marginal economic 

conditions but also high nature value (HNV). The analysis aims to help identify farm-level 

management and policy options for greater economic, environmental and social 

sustainability. Business performance is measured as technical efficiency and the occurrence 

and persistence of abnormal profits, estimated through stochastic frontier analysis and static 

and dynamic panel-data methods. The results help indicate rationales for recent trends 

including farm enlargement, farm family diversification, and agri-environment scheme 

entry. The single farm payment was negatively associated with farms technical efficiency 

but positively associated to short-term farm profitability. Farm adaptation and resilience 

during a period of likely turbulence in external circumstances is discussed in light of these 

findings, as well as potential parallels with marginal HNV areas across Europe. 
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1 Introduction 

In debates surrounding global food security and environmental sustainability, marginal lands are 

subject to multiple contrasting demands from society. In respect of food security, they can be 

considered as necessary areas for food production, although characterized by low productivity and 

thus modest economic returns. For environment, they are often particularly valuable in respect of 

their distinctive landscapes, biodiversity and ecosystem services (Kang et al., 2013). Indeed, the 

concept of High Nature Value (HNV) areas was formulated to describe the traditional, extensive 

and often marginal farmed landscapes of Europe, emphasising their importance in protecting and 

enhancing nature and cultural landscape quality. In recognition of these combined qualities of 

economic marginality and HNV ecosystem services, the EU’s Common Agriculture Policy (CAP) 

offers Member States the opportunity to provide targeted aid to these ‘Areas of Natural Constraint’ 

(ANC) – formerly Less Favoured Areas (LFAs). 

In England most designated ANC are hill and upland areas managed by extensive livestock 

grazing, which are characteristically rich in semi-natural habitats, hosting rare species of plants 

and animals. With many areas of deep peat soils, the uplands are also a major carbon store and key 

water catchment zone, regulating hydrological cycles, as well as providing an important recreation 

resource for the urban population (Acs et al., 2010). Despite these important roles, England’s hill 

farmers are among the most financially-challenged farming communities in the UK, with 

comparatively low incomes from agriculture and a heavy dependence upon public subsidy. But 

the continuation of upland farms through an economically viable system is integral to the 

protection and enhancement of England’s upland landscapes and ecosystems (Dwyer et al, 2010; 

Reed et al, 2009). This has been a high-profile issue in current discussions concerning the future 

of support to farms in the UK as it prepares to leave the EU, and must replace the provisions of 

the CAP with a new framework. 

Despite the importance of upland agricultural systems, the amount of recent research on the 

economics of upland farms is relatively limited. Turner et al. (2008) investigated the impact of 

product prices and input costs on UK upland farms’ incomes, showing that a small increase in 

input costs (feed and energy) can easily overcome potential gains from products’ market prices. 

They concluded that, although upland farming is a low-input system, its profitability is very 

sensitive to market risks. Acs et al. (2010) studied potential effects of policy changes on hill and 

upland farms and found that the decoupling of support reduced grazing intensity, and the Single 



 

3 
 

Farm Payment increased net farm incomes and reduced land abandonment. Similar conclusions 

were provided by Turner and Wibberley (2009). For many years now, the Farm Business Survey 

(FBS) analysis of farming in England’s LFA has indicated that upland farms struggle to cover their 

costs, and depend significantly for their survival upon continuing high levels of subsidy from both 

Pillars of the CAP (Harvey and Scott, 2012; 2013; 2014; 2015; 2016). The contribution of various 

on- or off-farm diversification options is also important for farm households. At the same time, 

these analyses suggest significant differences in performance between farms, with the most 

efficient businesses making reasonable agricultural income (i.e. net of subsidy), even in relatively 

poor years (ibid). Linked to this literature, although in a different national context, Barath et al.’s 

(2017) study indicated that farms in Slovenian upland and mountainous LFAs are not more 

inefficient than farms in other areas of the country, but rather use different, production–

environment-specific technologies: in effect, they are different systems producing equally efficient 

results.  

Considering the importance of upland farming for the maintenance of valuable habitats and 

ecosystem services, the objective of this paper is to analyse the economic viability of England’s 

upland farms through two complementary analyses based on two fundamental measures of farms’ 

performance, namely efficiency and productivity. In a first analysis, we measure efficiency using 

stochastic frontier analysis (SFA) which provides an estimate of farms’ technical efficiency in 

converting inputs into outputs, incorporating different exogenous drivers of efficiency via a 

simultaneous estimation. In a second analysis, the drivers of upland farms’ profitability are 

examined using both static and dynamic panel-data methods, allowing the estimation of the impact 

of drivers on the occurrence and persistence of abnormal profits (above and below the sector’s 

competitive norm). In other words, we estimate the impact of drivers on farm profitability in the 

short (one-off occurrence) and in the longer term (persistence over more than one year), where 

persistence provides information on the resilience of upland farms facing market and policy 

turbulence. In the second analysis, the upland farms’ technical efficiency obtained from the SFA 

is used as an explanatory variable of profitability, accounting for its potential endogeneity in 

driving profits. Moreover, our two complementary analyses seek to account for different agro-

ecological conditions within the upland eco-system, by controlling for farms located above and 

below 300m in altitude; as altitude affects the productivity of land and the applicability of 

enhanced management and diversification. 
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Through this approach, the paper contributes to the literature on technical efficiency of UK 

agriculture that since the 1980s has provided important insights into its sectoral and spatially-

differentiated development. A comprehensive review of early studies within this literature can be 

consulted in Hadley (2006). Our results can also be compared and contrasted more broadly with 

other efficiency analyses for UK farms. These include Wilson et al. (2001) who used SFA to 

explain the influence of management on the efficiency of wheat farms in eastern England during 

the period 1993-1997; Karagiannis et al. (2002 and 2004) who analysed the efficiency of dairy 

farms in England and Wales; Hadley (2006) who estimated stochastic frontier production functions 

for eight different farm types (cereal, dairy, sheep, beef, poultry, pigs, general cropping and mixed) 

for the period 1982 - 2002 in England and Wales; and Barnes (2008) who completed the work of 

Hadley (2006) by estimating efficiency of the same agricultural sectors in Scotland. The paper also 

has direct relevance to wider literature on the performance of farms in marginal areas, as mentioned 

in the previous paragraphs. 

The paper is organised as follows. The next section provides some background to the policies 

and factors affecting the economic viability of English upland farming systems and on that basis 

develops two hypotheses for empirical testing. Section 3 describes and develops the econometric 

strategy and empirical specifications used to test the hypotheses. Section 4 presents and discusses 

the results, and section 5 draws some conclusions and sets them in a broader UK and European 

policy context. 

2 Policy background: deriving hypotheses 

Upland farming systems in England are characterised by relatively extensive grazing of permanent 

grassland and other semi-natural vegetation, by sheep and beef cattle. This creates habitats and 

landscapes of recognised national and international importance. 

As reviewed in section 1, the survival of marginal farms such as these is critically dependent 

on CAP subsidies. However, in the near future changes in public support are expected for marginal 

farms across Europe, due to a likely reduction in the CAP’s budget. In the UK, the Brexit process 

heralds the creation of an entirely new UK farm policy and trading environment in which the 

rationale and scale of support may shift significantly, and potentially downwards (Buckwell, 2016; 

Helm, 2016; Dwyer, 2018). 
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In the year following the UK referendum vote to leave the EU in June 2016, an informal 

coalition of practitioners, policy makers and academics known as ‘The Upland Alliance’ (UA), 

hosted a series of workshops around England. Their aim was to seek ideas and exchange 

knowledge about the distinctive characteristics of the English Uplands, with a view to promoting 

better policy for, and sustainable management of, these areas in future1. From these events, we 

identify an emerging consensus about the economic fragility and yet high public value of the 

uplands, and an effort to secure broader public recognition of this value and continuing support for 

the environmental and social benefits that they generate. Nevertheless, the future role, form and 

significance of commercial upland farm businesses remains uncertain, with some calling for the 

virtual eradication of farming from upland areas (Monbiot, 2017), while others see it as an essential 

part of the quality and character of these landscapes (EHFN, 2017). Tensions between these views 

are inherent, if less explicit, within a wider EU and international literature on the value of marginal 

and HNV farming in upland and mountainous areas (e.g. Beaufoy, undated; Ruffini and 

Streifeneder,  2008). 

From discussions stimulated at the Upland Alliance events, it is clear that many farmers feel 

conflicting pressures from the economic signals of markets on the one hand, and agri-

environmental policies on the other. Relatively few English upland farms operate without agri-

environmental subsidies; most hold contracts which restrict grazing densities on semi-natural 

habitats and often exclude stock for periods of the year. These agri-environmental conditions 

trigger a need to find compensatory actions elsewhere within the business, cutting management 

costs or increasing productivity on land that is not subject to the same constraints, or developing 

new enterprises which are less land-dependent, such as indoor fattening of livestock, or non-

farming diversification. In many of these farmers’ eyes, such activities do not represent resilient 

or sustainable farm business options but short-term necessities; and there is a widespread wish 

among many upland stakeholder bodies to search for better long-term management strategies. 

Potential drivers of upland farm performance in England can be identified from: i) studies that 

have explored these farms’ decision-making and management strategies from a qualitative 

perspective (e.g. Gaskell et al, 2010; Jones, 2014; Dwyer et al, 2015); also ii) quantitative empirical 

studies (Turner et al., 2008; Turner and Wibberley, 2009; Acs et al., 2010; Harvey and Scott, 2012 

                                                           
1

 A website collates and publicises the various outputs of the UA events, see https://uplandsalliance.wordpress.com  

https://uplandsalliance.wordpress.com/
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- 2013; Barath et al., 2017); and iii) the authors’ discussions in a wide variety of policy and 

stakeholder workshops and ongoing research engagement with upland farmers in England and 

Wales. Collating from these information sources, we designed two hypotheses for testing using 

the FBS data.  

The first hypothesis is built on the common assumption that the most successful upland farms 

– therefore those which appear most profitable and technically efficient - are those with bigger 

dimensions (as was identified broadly by Harvey and Scott in 2013). This is in line with a notion 

of economies of scale applying to England’s upland farms and it could also reflect anecdotal 

opinion that farms are now driven as much by subsidy maximisation (paid on a per-hectare basis) 

as by the underlying performance of their agricultural production. Based on this assumption, the 

first hypothesis that we test is: 

H1: Upland farms’ performance increases by pursuing economies of scale. 

 

The second hypothesis is more complex, and derives from a consideration of market and policy 

challenges faced by farms in the uplands, over the last decade. These challenges are linked to 

market liberalisation, increased price volatility and the decoupling of single payment subsidies in 

2005, as well as the increased targeting of support to those upland farms delivering environmental 

services, through agri-environment ‘Stewardship’ schemes (Silcock et al., 2012). In responding to 

these combined challenges, we suggest that some farms may be pursuing economies of scope, as 

a tactic to enhance performance, adopting strategies of either agricultural intensification, or 

extensification, and/or greater ‘risk management’, including income diversification. Hence a 

second hypothesis for testing is: 

H2: Upland farms’ performance increases by pursuing economies of scope. 

 

3 Methods 

3.1 Econometric strategy 

What makes some upland farms more successful than others can depend on a wide range of factors. 

These factors may be linked to structural characteristics of the farm, to its financial position, to the 

level of public support, and to diversification and management strategies.  
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A key aspect in studying the impact of these factors is defining how to measure “success”. A 

common measure of farm performance is its efficiency in transforming inputs into outputs (given 

a certain technological level), which requires strategic decisions on the allocation of resources and 

management capacity. However, farmers’ survival or business success is ultimately governed by 

profitability. While efficiency and profitability are strongly linked, they may not coincide: for 

example, some diversification strategies (e.g. equine recreation) might not be technically efficient 

for agriculture, as they take resources from the main production activity (e.g. producing beef cattle 

or breeding sheep), thereby reducing scope for economies of scale; but they could nonetheless be 

highly profitable. 

For these reasons we use two different measures of performance, namely technical efficiency 

and profitability, and we compare the impact of several farm characteristics and management 

decisions on both measures. We measure the technical efficiency (TE) of upland farms using 

stochastic frontier (SF) analysis, which allows the estimation of the impact of the determinants of 

farm efficiency through a simultaneous process: the estimation of the SF production function; and 

the estimation of the inefficiency model.  

The SF model is based on the theory that no economic agent (company or farm) can exceed 

the ideal “frontier” of the maximum amount of output that can be obtained from a given allocation 

of inputs – so, it gives a measure of relative technical efficiency in using the factors of production. 

Any deviations from this frontier are seen as representing an individual farm’s relative inefficiency 

in allocating and using inputs.  

The SF production function is estimated with a “true” fixed-effects (TFE) time-varying 

approach of the following Normal-Truncated Normal model (Greene, 2005a; Greene, 2005b): 

 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝒙𝒊𝒕
’ 𝜷 + 𝜀𝑖𝑡,             𝑖 = 1, … , 𝑁,   𝑡 = 2, … , 𝑇   (1) 

𝜀𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡         (2) 

𝑣𝑖𝑡 ~ 𝑁(0, 𝜎𝑣
2)        (3) 

𝑢𝑖𝑡 ~ 𝑁+(𝜇𝑖𝑡, 𝜎𝑢
2)        (4) 

 

Where yit represents the net output of farm i at year t, αi is a time-invariant farm-specific 

parameter, xit is a vector of production inputs (typically land, labour, capital and intermediate 

inputs), β is a vector of parameters to be estimated and εit is the error term. Note that for this 
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calculation, the total value of output is measured net of CAP subsidies – so, assessing the value of 

the agricultural outputs alone. 

In this model, the error term has two components: the statistical noise vit and the inefficiency 

term uit. The distribution of the farm’s inefficiency (uit) can be determined by a series of 

(exogenous) factors differing from the inputs and the outputs of the production process, but 

nonetheless affecting farm performance by shifting the production frontier (Belotti et al., 2012). 

To control for such determining factors, the mean of the pre-truncated inefficiency distribution 

can be parametrized with a vector of variables zit (Kumbhakar et al., 1991; Huang and Liu, 1994). 

Model (1) – (4) can be completed by the following inefficiency model, where the estimated 

parameters are identified by ψ: 

 

𝜇𝑖𝑡 = 𝒛𝒊𝒕
′ 𝜓       (5) 

 

Finally, given 𝔼(𝑢𝑖𝑡|𝑧𝑖𝑡
′ 𝜓) = �̂�, the estimates of farm efficiency (controlling for its exogenous 

determinants) are obtained by: 

 

𝑇𝐸 = exp(−�̂�)     (6) 

 

The key advantage of using Greene’s TFE over other types of time-varying models is that it 

allows a separation of farm-specific heterogeneity from inefficiency. In other words, αi is treated 

as a fixed parameter representing farm-specific time-invariant heterogeneity which is not part of 

inefficiency, therefore separating farms’ heterogeneity from inefficiency. 

The larger number of αi (one for each farm) with respect to T can potentially lead to the 

“incidental parameter problem”. However, Greene (2005a and b) demonstrates that with the 

inclusion of dummy variables for each i=1,…,N the incidental parameters problem does not cause 

significant bias to the estimated parameters. 

Another important issue to consider in the estimation of production frontiers is that estimates 

are conditional on the given technology and if the sample of farms is heterogeneous in terms of 

production technologies, then the estimation of a single production function can provide biased 

frontiers, unless such technological heterogeneity is properly accounted for.  
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Different approaches can be taken to account for heterogeneous production technologies. One 

is the metafrontier approach, where the sample is divided into groups of units based on a priori 

knowledge of differences in technology. Efficiencies are then estimated for each group and the 

production frontiers can be compared. However, estimating different frontiers for different groups 

might not be efficient because inter-group information gets lost and farms in different groups may 

share common characteristics despite different technologies. Moreover, this approach cannot be 

used if the researcher cannot observe different technology groups within the sample. 

If the sample is structured with unobservable different technological groups, an alternative 

approach is to use latent class modelling. This second approach exploits multivariate analysis to 

estimate the probability of a farm belonging in a particular (latent) technological group, thus 

exploiting all the information contained in the data. 

In the case of upland farming, a clear distinction in the sample can be made between farms 

located above and below 300m of altitude. This threshold is used in the FBS to discriminate 

between different agro-ecological conditions. The reason is that at higher-altitude land is much 

less fertile and less productive and this difference in land productivity may induce farms to adopt 

different strategies in allocating inputs, so different tactics may be needed and different business 

strategies may be better suited to the harsher conditions. Such a distinction is supported by an 

examination of the characteristics of the FBS data. Therefore this threshold seems likely also to 

discriminate between two different technological groups. However, the relatively small sample 

size for FBS farms in the English LFA represents a limitation to distinguish the effect of 

heterogeneous technology through latent class modelling. The partial solution taken for this 

analysis is to control for the potential variation in the technology between farms above and below 

300m by including grouping dummy variables within the list of regressors of the efficiency model. 

The second measure of farm performance is profit. More specifically, we refer to the literature 

on “abnormal profit” (Mueller, 1977) – i.e. the difference between a farm’s profit and the 

competitive norm for the sector in a specific period, where profit can be either in excess or below 

the competitive norm. In this context, we distinguish between two types of profitability, namely 

the “occurrence” and “persistence” of abnormal profits. The occurrence of abnormal profits is the 

deviation of farm profit from the competitive norm at a specific point in time. The occurrence of 

profitability model takes the following form: 
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𝜋𝑖𝑡 = 𝑿𝒊𝒕𝜷 + 𝛾𝑇𝐸𝑖𝑡 + 𝜇𝑡 + 𝜀𝑖𝑡  (7) 

 

where  𝜀𝑖𝑡 = 𝛼𝑖 + 𝜈𝑖𝑡 

Where πit represents farm profit i at year t, Xit is a vector of variables affecting profitability 

occurrence, αi is a time-invariant farm-specific parameter, μt are year intercept terms, β and γ are 

parameters to be estimated and νit is the iid error. 

Following Greene and Segal (2004), to examine the association between profitability and 

efficiency we include in equation (7) the farm-specific time-varying technical efficiency (TEit) 

estimated through SF. Because efficiency and profitability can be affected by double causality 

problems (i.e. more efficient farms can obtain higher profits and more profitable farms can improve 

their level of efficiency), model (7) needs to be estimated correcting for endogeneity. 

Conventional instrumental variable (IV) estimators are consistent models correcting for 

endogeneity. However, if the model is affected by heteroscedasticity, IV estimators are inefficient, 

preventing valid inference (Baum et al., 2003). The most efficient approach in the presence of 

heteroscedasticity is to use the generalized method of moments (GMM) estimator.  

Therefore, we first test for heteroscedasticity using the White/Koenker statistic on (7) 

estimated with OLS. If the test is statistically significant it is possible to reject the null hypothesis 

of no heteroscedasticity, and GMM is the most consistent estimator with an endogenous regressor, 

where the set of L moments is equal to the number K of instruments for TE. 

Profit persistence is defined as the percentage of a farm’s profit in one year that remains in the 

following year (Schumacher and Boland, 2005). Persistence can be considered in the short- (3-10 

years) or in the longer-term (>10 years) and abnormal profits in period t-1 are likely to induce 

abnormal profits also in the period t (Geroski and Jacquemin, 1988), indicating a persistently 

(un)successful farm. 

In order to estimate the drivers of upland farms’ profit persistence, we use a dynamic panel 

model. Equation (8) is the model estimated: 

 

𝜋𝑖𝑡 = 𝜆𝜋𝑖𝑡−1 + 𝑿𝒊𝒕𝜷 + 𝑇𝐸𝑖𝑡 + 𝜇𝑡 + 𝜀𝑖𝑡    (8) 

 

where  𝜀𝑖𝑡 = 𝛼𝑖 + 𝜈𝑖𝑡 
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Where 𝜆𝜋𝑖𝑡−1 is the autoregressive term and λ is the persistence measure (Hirsch and 

Gschwandtner, 2013). 

Dynamic panel data are characterized by two sources of time-series correlation: the correlation 

of the lagged dependent variable with the disturbance term (i.e. πit-1 is correlated with νit); and the 

correlation of πit-1 with individual effects characterizing farms heterogeneity, αi. By using classic 

panel data estimators, it is possible to remove the individual effects, but the lagged dependent 

variable is still potentially endogenous. Therefore, in order to consistently estimate equation (8), 

data need to be transformed in such a way that both individual effects and the correlation of πit-1 

with νit are removed.  

Different approaches to estimate dynamic panels have been developed in several stages in the 

literature. Here we concentrate on the two most widely adopted estimators in the recent literature2, 

which are also the ones applied in this paper, namely difference and system GMM estimators. 

These two estimators are suited for small time series data and allow the use of regressors that are 

not strictly exogenous. 

The first estimator is the one proposed by Arellano and Bond (1991) which is based on the 

transformation of all regressors into their first-difference and on instrumenting the differences with 

level lagged variables through GMM estimator. This approach takes the name of “difference 

GMM”. However, the Arellano-Bond estimator has limited efficiency with unbalanced panels with 

short time-series such as hours and it is not possible to use lags of πit as instruments (Roodman, 

2009).  

Arellano and Bover (1995) and Blundell and Bond (1998) make an additional stationarity 

restriction to the Arellano-Bond estimator that results in the assumption that first-differences of 

instrument variables are uncorrelated with the fixed effects, allowing to introduce more 

instruments and to improve efficiency. The Blundell-Bond estimator builds a system of two 

equations (“system GMM”), namely the original equation and the equation in which instruments 

are differenced, so that level variables are instrumented with differences. 

Both difference and system GMM estimators are preferably estimated with two-step rather 

than one-step GMM estimators, because the two-steps estimator is more robust to any pattern of 

heteroscedasticity and cross correlation. However, in finite samples, the standard errors obtained 

                                                           
2

 An extensive and detailed discussion of dynamic panel estimators can be found in Baltagi (2013) 
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through the two-step GMM estimator can be severely biased downwards. This bias can be reduced 

using the two-step finite-sample correction proposed by Windmeijer (2005).  

One additional issue to consider when estimating difference and system GMM models is the 

(potential) bias caused by weak instruments. This issue has been raised and largely discussed by 

Bazzi and Clemens (2013), who show how the majority of the applications of system GMM 

assume that instruments are strong. Currently there are no formal tests for weak instruments in 

dynamic panel GMM regressions, but there are available weak instrument tests for 2SLS 

(Kleibergen-Paap LM test; Cragg-Donald and Kleibergen-Paap Wald tests). Therefore, Bazzi and 

Clemens (2013) suggest the following heuristic approach: construct the GMM instrument matrix 

of the system estimator and carry out the corresponding regressions using 2SLS;  as when the 

instrumentation in the 2SLS is strong (weak), the performance of the corresponding system GMM 

is robust (poor). 

However, this approach  has some limitations. Firstly, Bazzi and Clemens (2013) considered 

the Kleibergen-Paap test for a cross-sectional setting, therefore not taking into account the 

clustering of observations in a panel setting (Windmeijer, 2018). Secondly, it relies on Stock and 

Yogo (2005) critical values which are tabulated only up to two endogenous variables. For these 

reasons, the standard tests AR(1) and (2), Hansen’s J and Diff-in-Hansen  are taken as the main 

reference for evaluating the robustness of the difference and system GMM models, here. 

Finally, profit persistence can also be interpreted as a measure of economic resilience – i.e. 

the capacity of a system to retain its functions, organisational structure and performance, 

withstanding perturbations (Holling, 1973; Di Falco and Chavas, 2008). As explained in section 

2, upland farms face a series of different shocks due to changing market and policy conditions at 

national and global level. The persistence of profits indicates the capacity of farms to cope with 

such shocks, by remaining economically viable and continuing to deliver vital ecosystem services. 

 

3.2 Data and empirical specification 

The analysis uses a panel dataset containing four years of the FBS: 2010/11, 2011/12, 2012/13 and 

2013/14. The selection of these years was motivated by the fact that prior to 2010 the sample of 

farms in the FBS was classified based on Standard Gross Margins (SGM), whereas since 2010 

farms have been classified based on Standard Outputs (SO). This difference reduces comparability 

across the two time periods. 
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In order to target English upland farms, we use a subsample of 263 farms contained in the FBS 

dataset. These farms are classified as LFA Grazing Livestock Farms, each one having more than 

two thirds of its total SO coming from cattle, sheep and other grazing livestock; and 50% or more 

of its total area within the LFA.  

In order to select the most relevant characteristics affecting upland farms’ performance, and 

therefore to test H1 and H2, a variety of variables was used. Initially, a large set of potential drivers 

of farm performance were tested using comprehensive specifications of both the SFA and profit 

models3. Starting from these comprehensive specifications, it was possible to identify smaller sets 

of variables with tangible impact on farms’ performance and therefore to derive more 

parsimonious model specifications. This allowed us to better focus the results with respect to H1 

and H2. Descriptive statistics and definitions of the variables used in the parsimonious models are 

presented in Table 1. 

With respect to the SF specification, the productivity of upland farms is represented by a 

Cobb–Douglas4 stochastic production frontier, estimated through the following maximum 

likelihood TFE time-varying model (Greene 2005, a and b): 

 

𝑙𝑛𝑦𝑖𝑡 = ɑi + 𝛽1 𝑙𝑛𝐿𝑎𝑏𝑜𝑢𝑟𝑖𝑡 + 𝛽2 𝑙𝑛𝐿𝑎𝑛𝑑𝑖𝑡 + 𝛽3 𝑙𝑛𝐴𝑠𝑠𝑒𝑡𝑠𝑖𝑡 + 𝛽𝑛 ∑𝑙𝑛Variable 𝑖𝑛𝑝𝑢𝑡𝑠𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡          (9) 

 

Where 𝑦𝑖𝑡 is the value of agricultural output (excluding CAP subsidies) of farm i at time t and 

variable inputs are crop (seeds, fertilizers and crop protection), livestock (feed, fodder and 

veterinary) and machinery (fuel, oil, repairs and rental) costs. 

The inefficiency model contains the determinants potentially affecting farm efficiency and is 

defined by the equation: 

 

𝑢𝑖𝑡 =  δ 0 +  ∑ δ𝑙
𝑘
𝑙=1 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡𝑠𝑖𝑡         (10) 

                                                           
3

 The results of the comprehensive specifications of the SF and profitability models are presented in Appendix  2, 3 and 4. In addition to the 

variables used in the parsimonious models, the comprehensive ones included the following variables: standard head-of-household characteristics 
(age and education); output from recreation activities; percentage of cereals land. 

4
 Cobb-Douglas production functions are widely used in the stochastic frontier literature, despite this functional form imposes some restrictive 

assumptions on the structure of the production technology, return to scales and elasticity of substitution. In order to overcome these limitations, a 

more flexible functional form, the translog production function, was tested (results available upon request to the authors). The estimation of the 
tranlog production function failed the monotonicity and strict concavity conditions, suggesting that, with the data at hand, the Cobb-Douglas 

production function provides more robust results. 
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Where the group Determinants contains a series of factors potentially affecting farms’ 

efficiency. 

The specification of the occurrence profitability model is the following: 

 

𝑙𝑛π𝑖𝑡 = 𝛽1TEit + ∑ 𝛿𝑙
𝑘
𝑙=1 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡𝑠𝑖𝑡  + ε𝑖𝑡   (11) 

 

While the specification of the persistence profitability model is: 

 

𝑙𝑛π𝑖𝑡 = ɑπ𝑖,t-1 + 𝛽1TEit  + ∑ 𝛿𝑙
𝑘
𝑙=1 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡𝑠𝑖𝑡  + ε𝑖𝑡   (12) 

 

Where πit are profits and TEit is the technical efficiency estimated in (6). Profits are measured 

in terms of gross profit (GP), calculated as the difference between total farm’s sales and production 

costs of sold goods, that can be expressed as 𝐺𝑃𝑖𝑡 = ∑ (𝑄𝑖𝑡𝑔𝑃𝑡𝑔)
𝑔
1 − ∑ (𝑄𝑖𝑡𝑔𝐶𝑡𝑔)

𝑔
1 . Qg is the 

quantity of good g produced and sold by the farm i in year t, while Ptg and Ctg are output and input 

prices, respectively. Quantities Qitg are related to the farm’s efficiency (TEit ) and productivity, 

while Ptg and Ctg are determined by the market; they can fluctuate from year to year and are 

unrelated to the farm’s efficiency.  

Following Hirsch and Hartmann (2014), in order to capture abnormal profits, πit is measured 

as the deviation from the competitive norm, where the sample mean is considered the norm. 

Therefore, πit = GPit – 𝐺𝑃̅̅ ̅̅ t . This normalization removes the potential variations in profits due to 

external influences and business cycles, giving an equal impact on all farms (Hirsch and Hartmann, 

2014)5. 

Our variable of interest to test H1 is Land (UAA), while the group Determinants contains our 

variables of interest with respect to H2. This group of variables includes proxies for agricultural 

intensification, the farm’s financial situation, the level of public support, and management and 

diversification strategies. These variables were selected based on the relevant literature on upland 

                                                           
5

 Note that results do not change if πit is measured in level and not as deviation from the sample norm, therefore in this application the distinction 

between profit and abnormal profit is mainly used to obtain better benchmarking between farms and with the “abnormal profit” literature. 
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farming and profitability (Hanley et al, 2007; Turner et al., 2008; Turner and Wibberley, 2009), as 

well as discussion in workshops and meetings with farmers in Exmoor (Dwyer et al, 2015) and 

national meetings of the Upland Alliance in Cumbria (2015) and London (2016). 

In relation to H2, two financial variables are tested. Tenant is the share of tenanted land in 

total UAA. A higher share of tenanted land indicates higher financial exposure of farms, given that 

land rent is not capitalised into fixed assets but represents a net farm cost. Loans is the amount of 

loans for long-term borrowing for future projects and investments, such as agricultural mortgages 

(Turner et al., 2008). Traditionally upland farms have operated with low levels of borrowing and 

this pattern persists, as showed by the low average loans in Table 1. 

Among diversification strategies, the spouse off-farm income (Spouse off-farm) is the most 

relevant. According to the CRC report (2010) most upland farmers depend on opportunities for 

off-farm employment and diversification. In theory, off-farm income helps stabilize the overall 

household income when agricultural activity is affected by lower performance due to production 

or market shocks. 

Regarding farm management strategies, we tested a series of livestock, land and differentiation 

strategies. Mixed grazing of livestock is the most traditional and widespread activity in the 

uplands, as it is considered more robust agronomically than sheep or beef specialization (Turner 

et al., 2008). This is due to complementarities between the two activities: cattle prefer tall grass 

and can clean the pasture of nettles and thistles, while sheep graze short grass and keep the sward 

short. In moorland areas sheep and cattle also favour different food sources. Moreover, mixed 

grazing may provide more stable income by reducing price risks (as lamb and beef prices do not 

depend on the same factors) and veterinary risks (i.e. diseases are quite different). These 

complementarities between beef and sheep may improve the resilience of the upland farming 

system (ADAS et al, 2007). We represent these complementarities by using the proportion of 

breeding ewes per beef cow (Ewe/beef). Moreover, profitability and efficiency is likely to be 

affected by potential over- and/or under-grazing of pastures, therefore we account for grazing 

pressure using grazing livestock units per Ha of land (LUha).  

In order to investigate the role of public support, we distinguish between payments for agri-

environmental agreements (AES - the Upland Entry Level Scheme and the Higher Level                                                                                                                                                            

Stewardship Scheme, predominantly) and the decoupled CAP Pillar 1 subsidies of the Single 

Payment Scheme. In both cases, we calculate their average amount per hectare of UAA of the 
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farm, which measures the intensity of subsidy per hectare. The reason for doing this is that total 

single farm and AES payments are higher for larger farms; hence one potential farm strategy is to 

increase scale, thus increasing the revenues from these subsidies. However, this strategic behaviour 

of the farm should already be captured by testing H1 through Land. Our purpose here is to estimate 

the direct impact of the relative intensity of policy support, as higher intensity represents a direct 

cash flow that stabilizes income and allows for investment and experimentation in alternative 

practices, at lower risk.6 For this reason we calculate an adjusted measure of the single farm 

payment, and total annual agri-environment receipts, per hectare. It should be noted that per ha 

variables impose homogeneity of degree one on the production technology and hence constant 

returns to scale (Wilson et al., 2001). 

Because of the relationship between Qitg and TEit described above, simultaneity bias between 

πit and TEit is likely, therefore the occurrence profitability model is estimated with IV techniques. 

A frequent solution adopted by applied economists to avoid simultaneity problems is to use lagged 

values of the potentially endogenous variable as instruments. However, there is debate surrounding 

the use of lagged variables as IVs. Some authors argue that lagged variables do not in all cases 

remove the endogeneity bias, especially if the lagged variables are insufficiently correlated with 

the simultaneously determined explanatory variable (Reed, 2015). Bellamare et al. (2017) suggests 

that researchers should evaluate whether lagging the explanatory variable solves the endogeneity 

problem. In order to tackle this issue, we compare different instrumentation strategies based on a 

set of external and internal instruments, comparing their exclusion restrictions and relevance to 

check the robustness of the profit occurrence model.  

Exclusion restrictions of IV lagged variables are valid as TEit-1 is correlated to TEit (i.e. the 

current (in)efficient allocation of production factors will affect the future allocation, especially if 

factors of production are fixed, such as land and assets); but TEit-1 is uncorrelated to GPit as: i) 

production quantities Qitg depend primarily on climatic and environmental factors, which are 

                                                           
6

 The variability of these amounts per hectare is due to two quite different factors, for the period analysed. For agri-environmental payments, a 

higher intensity of aid would generally represent more ambitious kinds of environmental management under the Environmental Stewardship 

scheme’s Higher Level (HLS) or the organic entry level scheme (OELS), as compared to the lower level of payment per hectare available under 
the Upland Entry Level Scheme (UELS). For the Single Farm Payment, higher levels of payment per hectare during this period would reflect farms 

with more productive land, on average – i.e. a smaller proportion of land within the Moorland category; and a non-moorland area which was 

attracting higher than average payment rates due to historically higher stocking densities than the average. This historic stocking effect applied only 
under the minor and declining component of SFP which was based on historic receipts, in this time period. (England chose to adopt a ‘dynamic 

hybrid’ approach to decoupled payments, phasing out a historic-based payment rate and phasing in a flat-rate payment, between 2007 and 2012). 
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independent of the farm’s efficiency; and ii) TEit-1 cannot affect market prices of outputs and inputs 

(Ptg and Ctg). 

For external instruments, we use the ratio labour/capital (calculated as AWU/Assets). The 

exclusion restrictions are valid because AWU/Assets is not correlated to GPit : that is, i) a higher 

(or lower) proportion of labour with respect to assets such as machinery does not affect production 

quantity because Qitg depends on the relative productivity of the production factors, but not their 

relative allocation. This is apparent when considering the elasticity of substitution of an isoquant 

between production factors – i.e a farm with many workers and few machines, can produce as 

much as a farm which has many machines operated by few workers; and ii) AWU/Assets cannot 

affect the market prices of outputs and inputs (Ptg and Ctg) – it is correlated to TEit as lower values 

indicate higher technical efficiency, so fewer workers produce the same amount of output. 

While the validity of the exclusion restrictions cannot be statistically tested, the relevance of 

both the internal and external instruments is indicated by their coefficients in the first stage of the 

IV regression, that are significantly different to zero. More importantly, we can test for over-

identification, under-identification and weak identification with the Hansen J, Kleibergen-Paap 

LM, and the Cragg-Donald and Kleibergen-Paap Wald F statistics, respectively.Finally, all the 

variables included in the models are used in their logarithmic form, so that coefficients can be 

interpreted as elasticities. 

4 Results 

The methodology applied to assess upland farms’ performance consists of two complementary 

analyses. First, estimating upland farms’ technical efficiency and its drivers; second, estimating 

upland farms’ profitability, taking into account their efficiency. Results are therefore presented 

following this structure. 

Moreover, this section reports the results of parsimonious specifications of each SF, occurrence 

and persistence of profits models, while the more comprehensive specifications using a full set of 

‘drivers’ variables are reported in the appendixes. The fact that the parsimonious specifications  

are different across models indicates that there are different drivers affecting different aspects of 

upland farms’ performance. 
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4.1 Technical efficiency of upland farms 

Table 2 shows the results of the SF model. Columns 1 to 3 estimate only the production frontier 

in order to obtain benchmark estimations of the production function and to test whether there are 

differences in technology between the group of farms located above 300m altitude and those 

below.  

In all columns of table 2, the coefficients of the production function estimation are positive 

and their sum is <1. A Wald test ensured that the sum of the coefficients was statistically different 

from 1 (constant return to scale) and the significant test result suggests that upland farms operate 

under decreasing returns to scale. Previous studies using SFA to estimate TE in UK farming found 

different returns to scale for different types of farm: constant returns to scale were found in the 

cereals (Wilson et al., 2001; Hadley, 2006), beef, poultry and pig sectors (Hadley, 2006); 

increasing returns to scale among dairy and mixed farms; but decreasing returns to scale in the 

sheep and general cropping ones (Hadley, 2006).  

The large difference in the inputs coefficients between column 2 and 3 of table 2 suggests that 

farms located above and below 300m are likely to operate under different technological levels, and 

therefore that this difference should be taken into account in estimating the TE of upland farms 

(see section 3). 

The results of the inefficiency model are displayed in column 4 of table 27, resulting from the 

estimation of equations (1) to (5)8. The distributions of the efficiencies of the whole sample and of 

the farms above and below 300m are shown in Figure 1. Farms are relatively efficient with a large 

proportion of farms operating close to the production frontier. The distributions of the sub-samples 

are similar, all with negative skewness, but the figure shows that lower-lying farms are, on average, 

slightly more technically efficient than higher farms (85.5% cf. 83.6% respectively), as would be 

expected, given the variation in land quality with altitude. On average lower-lying farms are 2.3% 

more efficient than higher farms. The fact that farms’ TE tends to converge towards higher values 

is not surprising. As Kumbhakar et al. (2015, page 60) highlighted, in sectors that are highly 

                                                           
7

 Column 4 of table 2 presents the results of a parsimonious specification of the inefficiency model. A more comprehensive specification was 

tested and results are shown in Appendix 1. 
8

 Note that the coefficients in the inefficiency part of table 2 concern INEFFICIENCY so a negative sign indicate a negative relation with 

inefficiency (therefore a positive relationship with EFFICIENCY) and vice versa. Coefficients in tables 3, 4 and 5 are more straightforward, so a 

positive sign indicates higher profitability and a negative sign lower profitability. 



 

19 
 

regulated and with strong public incentives for a long time, as in the case of agriculture in the UK, 

TE convergence is likely to move towards the frontier. 

Regarding H1, the coefficient of UAA in the frontier model of column 4 of table 2 is the largest 

among the inputs, with 35.4% output elasticity of land. So, larger farms (by area) produce a higher 

value of output, as would be expected. Previous work from Dawson (1985), Wilson et al.,(1998 

and 2001) and Hadley (2006), found that larger farm area is associated with higher efficiency, 

although for other farm types. However, considering that upland farms operate under decreasing 

returns to scale, this suggests that it is only up to a certain level of farm size that they can benefit 

from higher efficiency. Once that level is surpassed, the returns are less than proportional and other 

factors could become more important than scale.  

Concerning H2, we begin by looking at the results of subsidies on technical inefficiency. 

Higher intensity of SFP is significantly associated with higher inefficiency at the 5% significance 

level, suggesting that higher SFPs reduce farm efficiency. This result is in line with studies 

analysing the impact of the CAP on farm productivity in other EU countries (Mary, 2012; Rizov 

et al., 2013). These studies posit that subsidies, by guaranteeing a minimum income, reduce 

farmers’ incentives to be more competitive and adopt productive technologies and practices, 

therefore potentially provoking a misallocation of resources. The possibility that higher intensity 

of subsidies can lead to technical inefficiencies in UK farming is more directly supported by 

Hadley (2006) who found negative effects on technical efficiency for the majority of farm types 

(cereal, sheep, general cropping and mixed farms) in England and Wales.  

A higher spouse off-farm income is negatively associated with inefficiency at 10% 

significance level, suggesting that it represents an efficient income diversification. This is an 

interesting finding, as some have suggested that having half of a typical family unit not working 

on the farm is a challenge to efficiency as it takes resource from the core business (Dwyer et al, 

2015 report this view among farmers in their survey). It also seems plausible that significant off-

farm income could induce farmers to ‘sit back’ and rely on this, rather than improving farm 

performance. The pattern observed is more consistent with a situation where, when the farm family 

does not seek off-farm income for a spouse it may be carrying some degree of disguised 

unemployment. Alternatively, it could be that households where a spouse works ‘officially’ off-

farm actually benefit from unrecorded additional farm labour from that spouse, given informally 

and unpaid.  
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Regarding financial variables, a higher percentage of tenanted land is significantly associated 

with higher inefficiency. This finding confirms similar results from Hadley (2006) and Barnes 

(2008), this last one related to Scotland. These authors suggest that tenant farmers might have less 

incentive to look after the rented land, hence achieving poorer results. However, it is possible that 

this reflects the relatively lower ‘room for manoeuvre’ of farmers on rented land in achieving 

optimal resource allocations, which might constrain their capacity to achieve the greatest 

efficiency. 

Financial exposure is captured by Loans, and this significantly (10%) increases the 

inefficiency of upland farms, although the coefficient is relatively small. So, upland farms with 

greater loans tend to be less efficient or, in other words, lower debts tend to increase farms’ 

efficiency, a conclusion shared also by Hadley (2006). An interpretation of this impact was 

provided by Paul et al. (2000), suggesting that financially-constrained farms have less capacity to 

adapt to market and policy changes, therefore decreasing their technical efficiency. 

Finally, a higher intensity of livestock grazing (LUha) has a negative and large magnitude 

coefficient, which is significant at 5% level, suggesting that the underlying determinant here could 

be land capability rather than management strategy per se. So, farms with more productive land 

are able to be more technically efficient. 

 

4.2 Profitability of upland farms 

In this section we present the results of both the profit occurrence and persistence parsimonious 

models (see appendixes 3 and 4 for the comprehensive specifications of both models).  

Table 3 shows the results of the profit occurrence model. Column 1 displays results from the 

pooled OLS estimation used to test for heteroscedasticity. At the bottom of the column, the 

significant p-value of the White/Koenker test indicates the presence of heteroscedasticity. 

Therefore, GMM is the most consistent estimator for the profit occurrence model. 

Columns 2, 3 and 4 of table 3 show the results for the occurrence of profits using static, fixed 

effects GMM estimators, with different instrumentation strategies to control for the potential 

endogeneity of TE9. In column 2 we use the external instrument AWU/Assets. In column 3 we use 

                                                           
9

 All regressors have been tested for endogeneity using the endog option after the Stata command xtivreg2. The endog option performs the 

difference of two Sargan-Hansen statistics: one for the equation where regressors are treated as endogenous, and one for the equation where the 

regressors are treated as exogenous. Using such test we could not detect other endogenous variables in addition to TE. 
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two internal instruments, which are lagged 1 and 2 TE variables. In column 4 we combine both 

external and internal instruments. At the bottom of these columns, we test for under-identification 

(Kleibergen-Paap LM statistic), weak identification (Cragg-Donald and Kleibergen-Paap Wald F 

statistic) and over-identifying restrictions (Hansen’s J test).Even though the exclusion restrictions 

of both the external and internal instruments are valid as discussed in section X, and the 

coefficients of the instruments in the first stage of the FE GMM are significantly different from 

zero (see Appendix 1), the external instruments alone do not pass the tests. This suggests that the 

instrumentation strategy in column 2 is quite weak, while the results in columns 3 and 4 are more 

robust. 

The results of the profit occurrence models across columns 2 to 4 in table 3 are quite consistent, 

even though the number of observations drops with the lagged instruments. The first important 

result is that efficiency has positive and significant coefficients. This confirms the important 

association between farm efficiency and profitability, suggesting that the more technically efficient 

a farm is, the more profitable also. 

Regarding H1, the coefficients of UAA are positive and significant at 1% level with the largest 

magnitudes across the covariates. This suggests that larger upland farms (by area) produce above 

the norm profits, and not only higher efficiency as demonstrated in table 2. In other words, tables 

2 and 3 provide evidence that pursuing economies of scale can be a successful strategy for upland 

farms to improve their performance in terms of efficiency and occurrence of profitability. 

With respect to economies of scope (H2), a higher proportion of breeding ewes in the livestock 

mix increases the occurrence of abnormal profits, although the positive and 1% level significant 

coefficients are much smaller than those for farm size. 

Agri-environmental payments are positively and significantly associated with profit 

occurrence, although the magnitude of the effect is quite small. It is worth noting that agri-

environmental payments affect profit occurrence but not technical efficiency nor profit persistence, 

as they do not appear in the parsimonious specifications in tables 2 and 4. This could be a reflection 

of the fact that these schemes guarantee a level of farm income irrespective of market conditions, 

subject to agreed management prescriptions being followed throughout. 

Single farm payments have a positive impact on the occurrence of abnormal profits, significant 

at 1% level in column 2 of table 3. This positive impact is opposite to the negative impact that SFP 

have on the technical efficiency of upland farms in table 2, suggesting that direct payments are a 
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useful tool to support upland farms’ survival, but that they do not provide incentives to become 

more productive. This is not surprising considering that the primary objective of SFP is to sustain 

the stability and the level of farms’ income. However, because the instrumentation strategy in 

column 2 is weak and given our decision to consider SFP intensity per hectare, it could be that 

these results simply confirm that farms with more productive land generated more profit. 

Moving to the results of the profit persistence models, these are displayed in table 4. Column 

1 and 2 provide estimates of pooled and fixed effects (within) OLS estimators, which accompany 

the results of the difference and system GMM models providing upper and lower bounds for the 

autoregressive coefficients. As one can see, the autoregressive coefficient in column 1 is positive 

and highly significant, but the one in column 2 is not-significant. Therefore, we mainly rely on the 

upper limit of 0.848 as a benchmark for the results of the dynamic panel models. At the bottom of 

column 4 of table 4, the p-value reported for AR(1) suggest that there is first order 

autocorrelation10. 

Regarding the instrumentation strategy, only internal instruments were used. A series of tests 

have been performed to verify the validity and robustness of the instrumentation strategy. First of 

all, the Hansen J and Sargan tests in table 4 support the validity of the over-identifying restrictions 

in both difference and system GMM. However, the negative autoregressive coefficient in column 

3 casts doubts on the robustness of the difference GMM results, supporting the idea that the system 

GMM estimator is the most reliable for our model. The system GMM estimator is supported also 

by the p-value reported for the Diff-in-Hansen test for the validity of the additional moment 

restrictions, suggesting that we cannot reject the null that the additional moment conditions are 

valid.  

The additional heuristic tests proposed by Bazzi and Clemens (2013) are  reported in table 511. 

The p-values of the Kleibergen-Paap LM indicate that we can reject the null of under-

identification, suggesting that identification is not weak and both the difference and levels 

equations of the system GMM are correctly identified. Moreover, we can reject the null hypotheses 

that the relative OLS bias is >30%, suggesting that the instrumentation is able to remove a 

                                                           
10

 It was not possible to calculate the AR(2) test for second order autocorrelation because of the low average number of observations per group, 

that is 2.53 
11

 Stock- Yogo critical values for the Kleibergen-Paap and Cragg-Donald Wald statistics are not tabulated for cases with more than two 

endogenous variables. Thus, we follow the indications of the online appendix to the paper of Bazzi and Clemens (2013) to take the penultimate 

available critical value in the given row and column of the table. According to this approach, the Stock-Yogo critical value for our model is 4.73. 
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substantial portion of OLS bias and therefore we can reject that the instrumentation is weak. To 

sum up, all our test statistics suggest a proper specification of the system GMM model and that the 

instruments are valid and not weak. 

Looking at the results of column 4 in table 4, the coefficient of the lagged profit π is positive, 

significant at the 1% level and below the upper bound estimated in column 1 through the pooled 

OLS. Interestingly, its magnitude (0.768) is higher than the coefficient estimated by Hirsch and 

Gschwandtner (2013) for the UK food industry (0.304). Such a coefficient indicates that upland 

farms’ profits strongly persist from year to year(lag π close to 1 indicates high profit persistence) 

even though profit fluctuation is quite high in the UK food industry sector.. Technical efficiency 

has a key role in this dynamic, as the coefficient is positive and significant at 1% level. 

Finally, a few management practices have a significant but negative impact on profitability in 

table 4, namely the proportion of breeding ewes per beef cow (Ewe/beef) and grazing livestock 

units per Ha of land (LUha). The coefficient of Ewe/beef, turns from positive to negative passing 

from table 3 to table 4, suggesting that, while a higher proportion of breeding ewes can benefit the 

farms’ profitability in the short-term, this is not an equally successful strategy for the long-term. 

A higher grazing pressure is negatively associated with the persistence of  profits, but positively 

with efficiency. These contrasting results tend to suggest that exogenous sources of volatility, such 

as shifts in market prices caused by exchange rate fluctuations, or extreme weather events (we note 

that 2012 was a particularly difficult year, with very high rainfall and persistent low winter 

temperatures), create real challenges for farms seeking to pursue long-term profitability. In these 

circumstances, it would seem unwise for farms to focus strongly on tactics for short-term profit at 

the expense of adaptability and resilience to unforeseen market shocks.   

 

5 Conclusions and discussion 

The survival and economic viability of marginal farming in the English uplands has been identified 

as an important factor in safeguarding these areas’ valuable ecosystem services and high nature 

value. 

This paper investigates the drivers that make upland farms more successful and economically 

resilient. The results show the importance of using two different measures of farming “success” 

by accounting for farms’ technical efficiency and profitability. In other studies, subsidies have 
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been described as the dominant factor assuring net farm incomes (Harvey and Scott, ibid). Our 

results find a positive profitability impact of agri-environmental subsidies under CAP Pillar 2 , but 

also a negative effect of basic CAP Pillar 1 Single Farm Payment (SFP) on farms’ efficiency. Also, 

some of the key management strategies adopted by upland farmers seem to have opposite effects 

with respect to different measures of performance, for example a higher grazing pressure is 

negatively associated with profitability, but positively with efficiency, while a higher proportion 

of breeding ewes per beef cow is positively associated with short-term profitability but negatively 

associated with long-term profitability, possibly due to large fluctuations year on year in 

exogenous factors including exchange rates, export markets and weather conditions. 

The patterns in the data tend to confirm the rationality, but also the significant risks, of some 

recent trends observed in upland farm change. Firstly, despite low returns from farming, it is 

apparent that many hill farmers seek any opportunity they can, to enlarge the area of land that they 

manage as part of the business. Our data suggest that this will help them to improve efficiency and 

profits, up to a point. However, the fact that upland farms operate under decreasing returns to scale 

should suggest that enlarging the business scale will eventually reach limits, above which marginal 

productivity cannot substantially increase. 

For this reason, strategies offering economies of scope also appear favoured as a tactic which 

may consciously or unconsciously enhance both efficiency and profitability. Farms which have 

the enterprise flexibility to respond to market fluctuations in beef and sheep prices, or those on 

which a spouse is working off the farm as an income diversification source, may have greater 

economic viability and longer term resilience than those whose incomes depend on a single on-

farm enterprise. The off-farm income effect could be a result of reducing disguised under-

employment in farm family labour or conversely of stimulating additional unrecorded (over-) 

employment within those families where one spouse has an additional income from off-farm work. 

We could investigate which of these options is more likely through complementary qualitative 

work. 

Reflecting, we note that the results reveal patterns that hold for the majority or the ‘average’ 

among farms in these situations. They could therefore have value as indicators of a benchmark 

among upland farms’ performance. Against these results it would be useful to examine specific 

innovative or unusual upland business models and strategies, to see whether they overcome some 

of the limitations indicated in these data and relationships. In that sense, the results presented and 



 

25 
 

discussed here can be considered not just as a yardstick of what it is possible to achieve in upland 

farm business performance, but equally as a stimulus to innovation to challenge existing patterns 

and norms, particularly in the light of changing market and policy conditions over the next few 

years. 

The authors plan to disseminate the results of this paper to stimulate further knowledge 

exchange with farmers, policy makers and other upland stakeholders to promote more resilient and 

successful farming in these areas, in future. In combination with more qualitative and deliberative 

approaches such as those that continue through the efforts of the Upland Alliance, this should help 

to ensure that future developments are grounded in current evidence.  

Some of the results presented here have potential to serve as evidence for designing future UK 

agricultural policies. In particular, the possible negative effect on technical efficiency of direct 

payments and their potential role in affecting management decisions, such as acquiring land in 

order to obtain more subsidy, could be seen as a rationale to reduce their future influence in favour 

of other forms of support. On the other hand, this analysis suggests that support targeting agri-

environmental management has the potential to bolster profitability whilst also promoting 

ecosystem services and public goods provision. 

Another important result with significant policy implications is related to the financial 

management of upland farms. The fact that higher financial exposure, either in the form of debts 

or in having a larger proportion of tenanted land, has a negative impact on the performance of 

upland farms indicates the fragility of such businesses and the need for well-designed support to 

provide long-term financial assurance, to promote the conservation of these high-value landscapes. 

Beyond the UK, we suggest that the implications of this study also have relevance and 

resonance with work on the challenges of maintaining sustainable mountains and other similar, 

remote and high-quality marginal cultural landscapes, across the globe (e.g. Ruffini & 

Streifeneder, 2008). In all these situations, farmers face continuing challenges to maintain viable 

businesses whilst also generating, maintaining and protecting biodiversity, landscape and key 

ecosystem services. In many countries and contexts, policy-makers and stakeholders need better 

information and understanding to help determine how best that balance can be achieved. It is our 

hope that by making better use of extant datasets and emerging analytical tools and approaches, 

particularly in processes which encourage reciprocal knowledge-sharing and exchange between 
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science, policy and practitioner communities, researchers may improve the chances of success in 

this context. 
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Figure 1 - Distribution of farms’ efficiency estimated through SFA 
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Tab. 1 – Summary description of variables 

  Description Obs Mean Std.Dev. Min Max 

Dependent variables: 
     

Output Agricultural output excluding subsidies 

(£) 

1,022 10.998 1.293 0.000 13.555 

π Deviation from the sample's gross 

profit (£) 

1,022 0.000 1.152 -11.162 2.567 

Independent variables: 
     

UAA Utilized agricultural area (Ha) 1,022 4.764 0.684 1.985 6.787 

AWU Annual working units  1,022 0.409 0.501 -1.316 2.124 

Assets Value of current assets (£) 1,022 10.986 1.030 5.136 13.951 

Inputs Crops, livestock and machinery 

variable costs (£) 

1,022 10.650 0.807 7.625 12.862 

Tenant Percentage of tenanted land 1,022 0.300 0.436 0 1.027 

Loan Total loans account (£) 1,022 3.887 5.326 0 14.569 

Spouse off-farm  Income generated off-farm by the 

spouse (£) 

1,022 3.133 4.342 0 11.071 

Ewe/beef Breeding ewes per beef cows 1,022 0.181 0.374 0 1 

LUha Grazing livestock units per Ha 1,022 0.940 0.411 0.094 2.929 

AE per Ha Agri-environmental EU payments 

(£)/UAA(Ha) 

1,022 1.761 0.581 0 2.852 

SFP per Ha Calculated as total Single Farm 

Payments received (£)/UAA(Ha) 

1,011 2.126 0.203 1.595 2.865 

TE Technical efficiency 959 0.846 0.167 0.0001 0.9999 
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Tab. 2 – Results of SFA estimation 

    
All Farms Above 300m Below 300m   All Farms 

    (1) (2) (3)   (4) 

Frontier:                      

 UAA 0.107*** 0.261*** 0.322***  0.354***   
(0.0001) (0.00002) (0.00003) 

 
(0.075) 

 AWU 0.199*** 0.114*** 0.121***  0.139**   
(0.0001) (0.00002) (0.00002) 

 
(0.058) 

 Assets 0.157*** 0.173*** 0.0740***  0.142***   
(0.00002) (0.00001) (0.00001) 

 
(0.016) 

 Variable inputs 0.282*** 0.227*** 0.0597***  0.205***   
(0.00001) (0.00001) (0.00001) 

 
(0.033) 

Inefficiency: 
     

 Spouse off-farm     -1.434*       
(0.736) 

 Tenant     10.370*       
(5.524) 

 Loan     0.498*       
(0.293) 

 LUha     -36.190**       
(18.330) 

 SFP per Ha     17.880**       
(9.092) 

 Above 300m     -36.250*       
(19.190) 

 Below 300m     -44.570*       
(22.760) 

 
Regional FE 

    
YES 

Observations 970 524 440 
 

959 

Usigma -2.960*** -3.437*** -2.522***  2.056***   
(0.064) (0.087) (0.095) 

 
(0.514) 

Vsigma -33.59 -34.05 -35.26  -20.33   
(44.010) (56.540) (76.670) 

 
(97.040) 

Notes: In parentheses robust standard error. ***, ** and * indicate significance level at 

the 1%, 5% and 10%, respectively. 
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Tab. 3 – Profitability occurrence model with static panel methods 

  (1) (2) (3) (4) 

  Pooled OLS FE GMM FE GMM FE GMM 

TE 1.363*** 1.269*** 1.238*** 1.197***  
(0.220) (0.264) (0.153) (0.148) 

UAA 0.789*** 1.501*** 1.875*** 1.672***  
(0.144) (0.464) (0.525) (0.491) 

Assets 0.178*** 0.175* 0.244*** 0.228***  
(0.022) (0.096) (0.053) (0.051) 

Ewe/beef 0.155*** 0.159* 0.346*** 0.295***  
(0.057) (0.087) (0.108) (0.097) 

AE per Ha 0.226** 0.117*** 0.199** 0.166**  
(0.089) (0.045) (0.078) (0.072) 

SFP per Ha -0.522 1.667* 1.923* 1.701  
(0.726) (0.989) (1.059) (1.039) 

dAltitude YES YES YES YES 

dYear YES YES YES YES 

Constant -6.025*** 
   

 
(2.058) 

   

Instruments  TE t-1 TE t-2 TE t-1 

    TE t-2 

    TE t-3 

White/Koenker p-value 0.000    

Hansen’s J p-value  0.486 0.284 0.308 

R-sq 0.517 0.237 0.5281 0.5301 

Observations 959 640 372 372 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively. OLS estimates do not include farm fixed effects. 
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Tab. 4 – Profitability persistence model with dynamic panel methods on upland farms 

  (1) (2) (3) (4) 

  Pooled OLS FE OLS Diff GMM SYS GMM 

Lag π 0.848*** 0.027 -0.444*** 0.768***  
(0.024) (0.049) (0.132) (0.111) 

TE 1.274*** 1.373*** 0.506* 1.772***  
(0.157) (0.179) (0.305) (0.338) 

LUha -0.177*** -0.527* 3.818* -2.172**  
(0.065) (0.295) (2.007) (1.023) 

Ewe/beef -0.066 0.009 -0.827 -1.000*  
(0.068) (0.253) (1.175) (0.518) 

dAltitude YES YES YES YES 

dYear YES YES YES YES 

Constant -1.048*** -0.738**  1.603  
(0.350) (0.287) 

 
(1.911) 

Instruments   20 24 

AR(1)  p-value   0.260 0.090 

Hansen’s J p-value   0.941 0.325 

Sargan's p-value   0.000 0.000 

Diff-in-Hansen p-value   0.850 0.242 

Observations 686 686 415 686 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively. Both Diff and SYS GMM regressions use the two-step efficient GMM 

estimator with the Windmeijer (2005) finite sample correction for standard errors. Variables TE, 

LUha and Ewe/beef are treated as predetermined. The instrument matrix is not collapsed.  
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Tab. 5 – Underidentification and weak instruments tests of system GMM model based on Bazzi 

and Clemens (2013) 

  Difference equation Levels equation 

  2SLS 2SLS 

Lag π -0.486*** -0.021**  
(0.014) (0.011) 

TE 0.636*** 1.188***  
(0.165) (0.157) 

LUha -0.621 -0.556**  
(0.566) (0.242) 

Ewe/beef 0.044 0.042  
(0.066) (0.097) 

dYear YES YES 

dAltitude YES YES 

Instruments 4 4 

Kleibergen-Paap LM test (p-value) 0.000 0.000 

Cragg-Donald Wald stat 30.256 52.587 

H0: Relative OLS bias > 30% (p-value) 0.000 0.000 

Kleibergen-Paap Wald stat 251.840 8.879 

H0: Relative OLS bias > 30% (p-value) 0.000 0.000 

Observations 372 372 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at 

the 1%, 5% and 10%, respectively. 
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Appendix 1 – First stage results of FE GMM estimations in table 3 columns 2, 3 and 4 

  (2) (3) (4) 

  FE GMM FE GMM FE GMM 

UAA -0.338** -0.774*** -0.780*** 

 (0.154) (0.254) (0.256) 

Ewe/beef -0.017 0.030 0.030 

 (0.052) (0.118) (0.189) 

AE per Ha -0.022 0.032 0.031 

 (0.024) (0.040) (0.040) 

SFP per Ha -1.046*** -2.282*** -2.295*** 

 (0.315) (0.552) (0.557) 

dAltitude YES YES YES 

dYear YES YES YES 

Instruments:    

AWU/Assets 46.592**  58.987*** 

 (22.378)  (7.337) 

TE t-1  -0.663*** -0.653*** 

  (0.084) (0.084) 

TE t-2  -0.430*** -0.414*** 

  (0.066) (0.067) 

Observations 958 372 372 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively. Dependent variable TEit, 
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Appendix 2 – SFA with comprehensive specification of the inefficiency model 

    
All Farms 

Frontier:   

 UAA 0.330*** 

  (0.084) 

 AWU 0.379*** 

  (0.064) 

 Assets 0.102*** 

  (0.019) 

 Variable inputs 0.721*** 

  (0.042) 

Inefficiency:  

 Age -3.647 

  (4.232) 

 Education -5.120 

  (4.161) 

 Spouse off-farm -1.649* 

  (0.964) 

 Tenant 6.998 

  (4.504) 

 Loan 0.376 

  (0.299) 

 Recreation -0.95 

  (1.391) 

 Ewe/beef -6.557 

  (4.767) 

 LUha -30.180* 

  (15.880) 

 Cereals -129.700 

  (91.110) 

 AE per Ha -0.071 

  (2.070) 

 SFP per Ha 14.310* 

  (8.353) 

 Above 300m -21.12 

  (17.010) 

 Below 300m -14.16 

  (15.040) 
 Regional FE YES 

Observations 959 

Usigma 2.076*** 

  (0.580) 

Vsigma -27.930 

    (3315.400) 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively. 
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Appendix 3 – Comprehensive specification of the profitability occurrence model 

  (1) (2) (3) (4) 

  Pooled OLS FE GMM FE GMM FE GMM 

TE 1.334*** 0.921 0.939*** 0.833***  
(0.272) (0.687) (0.205) (0.169) 

UAA 0.780*** 1.781*** 2.215*** 2.259***  
(0.138) (0.479) (0.712) (0.711) 

AWU 0.410*** 0.227 0.084 0.062  
(0.103) (0.218) (0.166) (0.164) 

Assets 0.142*** 0.127 0.201*** 0.182***  
(0.037) (0.119) (0.057) (0.054) 

Variable inputs -0.201** -0.661 -0.331** -0.349***  
(0.088) (0.580) (0.132) (0.130) 

Age -0.230*** -0.497 -0.431 -0.407  
(0.081) (0.657) (0.276) (0.273) 

Education 0.156*** -0.116 0.000 0.000  
(0.039) (0.156) (.) (.) 

Spouse off-farm -0.003 -0.001 0.003 0.003  
(0.006) (0.006) (0.004) (0.004) 

Tenant 0.045 -0.086 -0.046 -0.042  
(0.039) (0.088) (0.073) (0.072) 

Loan 0.008** 0.024 0.040 0.041  
(0.004) (0.015) (0.025) (0.025) 

Recreation 0.008 0.003 -0.002 -0.002  
(0.008) (0.012) (0.012) (0.012) 

Ewe/beef 0.199*** 0.208* 0.305** 0.294**  
(0.053) (0.109) (0.140) (0.141) 

LUha 0.144 0.245 0.030 0.091  
(0.126) (0.366) (0.265) (0.256) 

Cereals 0.897*** 1.738 1.430 1.761  
(0.297) (2.561) (1.279) (1.240) 

AE per Ha 0.216** 0.089** 0.125** 0.125**  
(0.098) (0.042) (0.060) (0.060) 

SFP per Ha -0.504 1.936* 2.831** 2.844**  
(0.588) (1.055) (1.374) (1.375) 

dAltitude YES YES YES YES 

dYear YES YES YES YES 

Constant -3.111 
   

 
(2.267) 

   

Instruments 
 

AWU/Assets TE t-1 TE t-1 
   

TE t-2 TE t-2    
TE t-3 TE t-3     

AWU/Assets 

White/Koenker p-value 0.000 
   

Kleibergen-Paap LM test (p-value) 
 

0.309 0.000 0.000 

Hansen’s J p-value 
 

0.000 0.489 0.520 

Observations 959 643 372 372 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively.   
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Appendix 4 – Comprehensive specification of the profitability persistence model 

  (1) (2) (3) (4) 

  Pooled OLS FE OLS Diff GMM SYS GMM 

Lag π 0.702*** 0.016 -0.312* 0.499**  
(0.033) (0.048) (0.172) (0.206) 

TE 1.205*** 1.310*** 0.850*** 1.362***  
(0.157) (0.182) (0.229) (0.247) 

UAA 0.307*** 1.737** 3.457* -0.156  
(0.114) (0.689) (2.088) (0.404) 

AWU 0.089 0.238 0.323 0.538*  
(0.077) (0.277) (0.302) (0.287) 

Assets 0.078** 0.139 0.266* 0.096  
(0.032) (0.093) (0.155) (0.063) 

Variable inputs -0.165*** -0.634*** 0.239 -0.315  
(0.063) (0.190) (0.404) (0.191) 

Age -0.115 -0.375 0.136 -0.121  
(0.147) (0.698) (0.838) (0.378) 

Education 0.043 -0.189 -0.111 0.044  
(0.056) (0.659) (0.073) (0.127) 

Spouse off-farm 0.002 -0.000 0.001 0.002  
(0.006) (0.008) (0.007) (0.005) 

Tenant 0.054 -0.061 -0.141 0.105  
(0.059) (0.203) (0.240) (0.218) 

Loan 0.005 0.023 0.025 0.022  
(0.005) (0.017) (0.042) (0.021) 

Recreation 0.002 0.006 -0.020 -0.041  
(0.015) (0.035) (0.035) (0.036) 

Ewe/beef 0.076 0.192 -0.075 -0.011  
(0.070) (0.258) (0.719) (0.307) 

LUha 0.082 0.068 0.842 -0.668*  
(0.103) (0.355) (0.723) (0.353) 

Cereals 0.478 0.810 0.571 2.291  
(0.547) (2.799) (3.462) (2.349) 

AE per Ha 0.144*** 0.096 0.027 0.003  
(0.045) (0.089) (0.115) (0.080) 

SFP per Ha -0.180 2.075 5.580 -2.918*  
(0.316) (1.697) (4.050) (1.544) 

dAltitude YES YES YES YES 

dYear YES YES YES YES 

Constant -1.370 -7.494    
(1.277) (7.805) 

  

Instruments   77 81 

Hansen’s p-value   1.000 0.538 

Diff-in-Hansen p-value    0.386 

AR(1)  p-value   0.307 0.183 

Observations 686 686 415 686 

Notes: In parentheses robust standard errors. ***, ** and * indicate significance level at the 1%, 

5% and 10%, respectively. 


