Transportation carbon dioxide emission offsets by public urban trees: A case study in Bolzano, Italy

Alessio Russo, Francisco J. Escobedo, Nilesh Timilsina, Stefan Zerbe

Keywords:
Climate change
CO₂ accounting
CO₂ sequestration
Streetscapes Transportation emissions

Abstract
Increased carbon dioxide (CO₂) emissions in urban areas due to rapid population growth and consequent increased energy use and vehicular traffic is a worldwide problem contributing to an altered global climate. Studies from North America and Asia have reported that urban trees can be used to mitigate these emissions. However, little is known about the role of European urban streetscapes in mitigating similar emissions from the transportation sector. Therefore, the aim of this study was to develop a method to calculate carbon dioxide storage and sequestration at the streetscapes level using field data, an existing tree inventory and available region-specific allometric equations. Results were compared to annual vehicular CO₂ emissions from a city in the Italian Alps to determine the CO₂ offset potential of urban streetscapes. We found that the trees in Bolzano’s streetscapes through sequestration annually offset 0.08% of the amount of CO₂ emitted by the transportation sector. Results, applications, and a potential indicator are discussed and compared against other studies. Findings from this study can be used as indicators and to better understand the potential role of urban streetscapes in reducing urban atmospheric CO₂ emissions.

Introduction
Currently, the increased greenhouse gas concentrations in the atmosphere are one of the most pressing environmental problems (Valsta et al., 2008). Carbon dioxide (CO₂) is an important greenhouse gas and a major driver of climate change effects (Nusbaumer and Matsumoto, 2008), as a result the predicted global temperature rise will be proportional to the total amount of CO₂ emitted (Skippon et al., 2012). In recent years, increases in carbon dioxide concentrations are mostly due to rapidly increasing population, energy use, and emissions from vehicular traffic (Sharma et al., 2010; Uherek et al., 2010). In fact, half of the world’s population is living in cities and in Europe alone, it is estimated that around 70% of the EU population–approximately 350 million people–live in urban agglomerations of more than 5000 inhabitants (European Commission – Directorate General for Regional Policy, 2011). It is also predicted that by 2030, 5 of the 8.5 billion people in the globe will be urban dweller (Vauramo, 2011). As a result, the anthropogenic and transportation-related sectors comprise more than 80% of all CO₂ emissions into the urban environment (Gratani and Varone, 2005; Koerner and Klopatek, 2002). Thus, increasing population and urbanization in the world are a major cause of CO₂ and other greenhouse gases that are affecting the global climate. As urbanization increases globally, it is becoming important to better understand the carbon dynamics of these urban ecosystems (Gratani and Varone, 2013; McHale et al., 2009; Weissert et al., 2014).

Although, cities are a primary source of CO₂ emissions, remnant and planted vegetation in urban forests and green spaces can sequester and store carbon dioxide (Díaz-Porras et al., 2014; Strohbach et al., 2012). For example, at the time of writing, several studies have demonstrated that urban trees in particular can play an important role in offsetting humans carbon dioxide (CO₂) emissions (Escobedo et al., 2010; Nowak et al., 2013; Poudyal et al., 2010; Timilsina et al., 2014; Weissert et al., 2014; Zhao et al., 2010). Urban forest carbon offset standards and protocols are currently being developed to better account for the CO₂ mitigation potential of urban trees and to incentivise tree preservation and plantings (CalFIRE and USFS, 2014).
In Asia, Zhao et al. (2010) calculated that urban forests in Hangzhou, China offset 19% of the annual amount of carbon emitted by industrial enterprises through sequestration, and store an amount of carbon equivalent to 1.75 times the amount of annual carbon emitted by industrial energy uses within the city. Jo (2002) quantified carbon (C) emissions from energy consumption and C storage and uptake by green space for three cities in South Korea and estimated that woody plants stored an amount of C equivalent to 6.0–59.1% of total C emissions within the cities, and annually offset total C emissions by 0.5–2.2% (Jo, 2002). In North America, Escobedo et al. (2010) studied two cities in Florida, USA, and showed that urban tree sequestered 3.4% and 1.8% of the total annual carbon emission in Gainesville and Miami Dade, respectively. However, McPherson and Kendall (2014) found that the total amount of CO₂ emitted from modeled, large scale tree plantings in Los Angeles, USA was slightly greater than the CO₂ stored by these trees over 40 years.

Studies that have quantified the offset potential of urban trees are less common in Europe (Roy et al., 2012; Weissert et al., 2014). Russo et al. (2014), in Bolzano, Italy found that a subsample of urban trees sequestered 5.73 Mg/year of carbon per year, but the study did not consider the potential CO₂ offset of anthropogenic emissions. Davies et al. (2011) in the United Kingdom found that 231.52 t of carbon are stored within the above-ground vegetation of Leicester, equating to 3.16 kg/C/m² of urban area, with 97.3% of this carbon pool being associated with trees rather than herbaceous and woody vegetation. To our knowledge, only in Florence, Italy has Vaccari et al. (2013) found that urban green spaces offset 6.2% of the total direct anthropogenic CO₂ emissions.

Given the above studies, quantifying carbon storage and sequestration by urban trees is necessary for the development of low-neutral carbon cities or climate friendly cities (Cao and Li, 2011; European Commission – Directorate General for Regional Policy, 2011; Kennedy and Sgouridis, 2011; Lehmann, 2013). As part of this initiative, European cities and towns are sharing their knowledge and their experience in climate policy initiatives with others. For example, London, Paris, Berlin, and Rome have signed the Covenant of Mayors (Covenant of Mayors, n.d.) that includes commitments to implementing sustainable energy policies (e.g. increased energy efficiency and development of renewable energy sources) that meet and exceed the EU’s 20% CO₂ reduction objective. In addition to energy efficiency and renewable energy sources, CO₂ reduction can also be achieved via CO₂ sequestration from vegetation.

Indeed, a framework that integrates existing and available tree inventory data with existing region-specific allometric equations to quantify the role of urban trees in offsetting CO₂ in European cities can be used to promote the integration of urban green and trees towards these efforts. Therefore, the aim of this study was to analyze the CO₂ offsetting potential of treed streetscapes in a European city by incorporating available methods and information. The specific objectives of this case study in Bolzano, Italy were to: (1) quantify carbon dioxide storage and sequestration by urban streetscapes and (2) to determine the amount of CO₂ offset from the city’s transportation sector.

Although, we use a city in the Italian Alps as our study area, this framework can be used by other European cities to quantify the potential carbon offsetting of urban trees. For this short communication, we built on past studies and developed a region-specific approach that European cities can use to calculate carbon dioxide offsetting using available tree inventories, allometric equations, and city-specific anthropogenic CO₂ emission information. Since the Bolzano City Council has taken part in the Covenant of Mayors in 2009 and decided to become a carbon neutral city by 2030 (Sparber et al., 2010), our study can not only contribute to the development of a methodology and indicator applicable to other cities such as Bolzano, but also will enhance the sustainable development of cities elsewhere in Europe.

Methods

The study was conducted in Bolzano situated in the Autonomous Province of Bolzano-South Tyrol in Northern Italy (46°29′28″N, 11°21′15″E). The average annual rainfall is 740 mm (Bonatti, 2008), average annual temperature is 12.3 °C, average annual minimum temperature is 6.8 °C and the average maximum temperature is 17.9 °C (Provincia Autonoma di Bolzano, 2012). The population of Bolzano is about 100,000 people and covers an area of more than 50 square kilometers and is divided into five quarters (Ufficio, 2012). Compared to other European cities, Bolzano depends little on fuel burning vehicles in regards to the mobility of its inhabitants within the city (Ufficio, 2010) since on average only 27.2% move by car, 6.7% used motorcycle, 7.6% used public transportation, 29% used bicycle; and 29.5% moved by foot (Ufficio, 2010). Everyday approx. 150,000 vehicles (HGVs 14%) are used (Ufficio, 2010).
We calculated above-ground biomass using Bolzano’s tree inventory data (Russo, 2013) and allometric equations from the literature (Jenkins et al., 2003; Liu and Li, 2012; Muukkonen and Mäkipää, 2006; Ruiz-Peinado et al., 2012; Tabacchi et al., 2011a,b; Zianis et al., 2005). Allometric equations are usually based on diameter measured at breast height (i.e. DBH). However, the diameter of Bolzano’s tree inventory was measured at 1 m above the ground. Using field data from a previous study in Bolzano in 2011 that contained information on several urban forest structural characteristics, among them diameter at 1 m and at 1.37 m (DBH) for a subsample of 475 trees (Russo, 2013; Russo et al., 2014), we calculated the DBH for all the species in the Bolzano’s tree inventory by multiplying the diameter at 1 m (DH) by the ratio of DBH/DH that was averaged at the taxonomic order and division level (Russo, 2013). Specifically, we calculated the diameter at 1 m for year 2011 (DHY2) by adding the initial diameter (DHY1) to the product of the annual growth rate and the number of years between two time periods (year of the initial diameter (DHY1) and year 2011).

We then converted the DHY2 to DBHY2 by multiplying the diameter (DHY2) by the ratio (R) of DBH/DH:

$$DBHY2 = \left[DHY1 + (AGR \times n) \right] \times R$$

where \(DBHY2\) = diameter at breast height year 2011, \(DHY1\) = diameter at 1 m (years change with different location), \(AGR\) = annual growth rate, \(R\) = ratio DBH/DH, and \(n\) = number of years between two time periods. Finally, dry weight of the above-ground biomass was converted to carbon (kg) by multiplying by 0.5 and CO2 equivalent was calculated by multiplying C by 3.67 (Dobbs et al., 2011). Carbon dioxide sequestration was estimated based on Bolzano’s annual growth rates as reported by Russo et al. (2014) and the difference of CO2 stored between year \(y\) (i.e. 2011) and year \(y + 1\) (i.e. 2012).

We also developed an urban tree-CO2 offset indicator to estimate CO2 sequestration per square meter of tree cover for every streetscape (CO2/year/m²). We first calculated the tree canopy cover across our different streetscapes using ground-plot measurements, photo-interpretation, and i-Tree Canopy V 6.1 (http://www.itreetools.org/canopy/). Using QGIS 2.2.0 and Bolzano’s tree inventory data, we created 38 unique ESRI shapefiles representing the boundary of each streetscape in the study area and the ESRI shapefiles were then used in the i-Tree Canopy analysis. A total of 100 random points (standard error <5%) were photo interpreted for each streetscape for a total of 3800 points. The percentage of each streetscape cover class (p) was calculated as the number of sample points (x) interpreted as tree cover divided by the total number of non-tree sample points (n) within the area of analysis \((p = x/n)\) (Nowak and Greenfield, 2012). The standard error of the estimate (SE) was calculated by i-Tree Canopy. Finally, the CO2 sequestration per square meter of tree cover for every streetscape, was calculated dividing the total CO2 sequestration (kg/year) by the estimated tree canopy cover (m²). The CO2 offset was estimated as the CO2 sequestered by a streetscape (StSQ) divided by the CO2 produced from transportation by one person (TRem): \(v = StSQ/TRem\). \(v\) = number of people offsetting, \(StSQ\) = CO2 sequestered by a streetscape (t/year), and \(TRem\) = CO2 produced from transportation by one person (t/year).

Transportation emissions were derived from data of Sparber et al. (2010), that estimated carbon dioxide (CO2) emissions for the City of Bolzano using ECO2Regio software (http://ecospeed.ch/eco2region/it). The authors estimated emissions at 9.7 Mg CO2 per person for the year 2007, out of which 3 Mg of CO2 were emitted from the transportation sector. This study determined that the majority of transportation CO2 emissions were from commuter traffic and transportation of goods by road (Sparber et al., 2010). Finally, we stratified our street tree inventory-based CO2 results by streetscape types based on tree location information as reported in Bolzano’s tree inventory. Based on Russo (2013), we developed a typology that results in six types of streetscapes in Bolzano, Italy: boulevard, cycle path, park, piazza, promenade and street. Fig. 1 provides representative photos for each of the six streetscape types.

Results and discussion

The total CO2 storage for Bolzano’s tree population was 6352.47 Mg and the CO2 sequestration was 229.66 Mg/year. Our CO2 storage estimates were greatest in parks accounting for 2415.48 Mg and our lowest estimates were found in cycle paths (34.76 Mg). This is because the greatest number of trees in Bolzano were located in parks (1417 trees). The average CO2 storage and sequestration per tree was greatest in piazzas at 397.79 kg and 94.14 kg/year. The lowest average CO2 storage and sequestration per
Fig. 1. Representative streetscape types in Bolzano, Italy: (1) boulevard, (2) street, (3) cycle path, (4) park, (5) promenade, (6) piazza.

tree was in cycle paths (Table 1). Overall, differences in the average CO₂ storage and sequestration by streetscape type depended on species composition, DBH size, growth, and presence of monumental trees. For example in piazza, *Platanus × hispanica* stored more than five times the atmospheric carbon dioxide stored by *Cedrus atlantica*; the most frequent species in piazzas. Our indicator for CO₂ sequestration by trees per m² of canopy cover ranged from 0.56 kg/year/m² in cycle paths to 0.92 kg/kg/year/m² in streets (Table 1).

Overall, we calculated that the trees in Bolzano’s streetscapes through their sequestration, annually offset 0.08% of the total amount of carbon dioxide emitted by the transportation sector (300,000 Mg/year). On average, treed boulevards in Bolzano can offset the annual CO₂ emissions from transportation-related activities of about 14 inhabitants, treed cycle paths can offset about one inhabitant, treed parks 25 inhabitants, treed urban places (piazza) 5 inhabitants, treed promenades 12 inhabitants, and street trees about 20 inhabitants.
<table>
<thead>
<tr>
<th>Streetscape Characteristics</th>
<th>No of trees</th>
<th>Most common species</th>
<th>DBH \bar{x} (cm)</th>
<th>SE</th>
<th>CO2 storage \bar{x} (Mg)</th>
<th>SE</th>
<th>CO2 sequestration \bar{x} (Kg/yr)</th>
<th>SE</th>
<th>per tree cover (kg/year/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulevard</td>
<td>715</td>
<td>Sophora japonica</td>
<td>36.22</td>
<td>0.63</td>
<td>997.35</td>
<td>1394.89</td>
<td>56.57</td>
<td>1.50</td>
<td>0.84</td>
</tr>
<tr>
<td>Cycle path</td>
<td>89</td>
<td>Carpinus betulus</td>
<td>20.91</td>
<td>1.41</td>
<td>34.76</td>
<td>390.61</td>
<td>87.86</td>
<td>2.18</td>
<td>2.65</td>
</tr>
<tr>
<td>Park</td>
<td>1417</td>
<td>Cedrus deodara</td>
<td>39.30</td>
<td>0.61</td>
<td>2415.48</td>
<td>1704.64</td>
<td>65.26</td>
<td>76.42</td>
<td>1.30</td>
</tr>
<tr>
<td>Piazza</td>
<td>154</td>
<td>Cedrus atlantica</td>
<td>59.10</td>
<td>2.03</td>
<td>612.60</td>
<td>3977.95</td>
<td>480.96</td>
<td>14.50</td>
<td>0.61</td>
</tr>
<tr>
<td>Promenade</td>
<td>1072</td>
<td>Quercus pubescens</td>
<td>24.61</td>
<td>0.37</td>
<td>585.93</td>
<td>546.58</td>
<td>26.00</td>
<td>35.46</td>
<td>0.76</td>
</tr>
<tr>
<td>Street</td>
<td>1125</td>
<td>Acer pseudoplatanus</td>
<td>33.62</td>
<td>0.60</td>
<td>1706.34</td>
<td>1516.75</td>
<td>81.86</td>
<td>59.74</td>
<td>1.87</td>
</tr>
</tbody>
</table>

\bar{x} = average; SE = standard error; Tot. = total; DBH = diameter at breast height; yr = year; SE = standard error.
Table 2
Carbon dioxide offsets in several urban forestry studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>City</th>
<th>Urban green type</th>
<th>Sector</th>
<th>Emissions</th>
<th>Offset (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>Bolzano, Italy</td>
<td>Treed Streetscapes</td>
<td>Transportation</td>
<td>300,000 t/CO₂/y</td>
<td>0.1</td>
</tr>
<tr>
<td>Vaccari et al. (2013)</td>
<td>Florence, Italy</td>
<td>Trees, shrubs, lawns, forest at the city scale</td>
<td>Total anthropogenic</td>
<td>1161.5 (±136) kt/CO₂/y</td>
<td>6.2</td>
</tr>
<tr>
<td>Zhao et al. (2010)</td>
<td>Hangzhou, China</td>
<td>Urban trees at the city scale</td>
<td>Industrial</td>
<td>700,000 t/C/ha/y</td>
<td>18.6</td>
</tr>
<tr>
<td>Escobedo et al. (2010)</td>
<td>Miami-Dade, USA</td>
<td>Urban trees at the city scale</td>
<td>Total anthropogenic</td>
<td>31967,000 t/CO₂/y</td>
<td>1.8</td>
</tr>
<tr>
<td>Escobedo et al. (2010)</td>
<td>Gainesville, USA</td>
<td>Urban trees at the city scale</td>
<td>Total anthropogenic</td>
<td>2097,627 t/CO₂/y</td>
<td>3.4</td>
</tr>
<tr>
<td>Jo (2002)</td>
<td>Chuncheon, Kangleung, and Seoul, Korea</td>
<td>Woody plants and soils at the city scale</td>
<td>Total anthropogenic</td>
<td>37.0–264.91 t/ha/y</td>
<td>0.5–2.2</td>
</tr>
</tbody>
</table>

C = carbon; y = year.
* We rounded off decimal to be consistent.

Since CO₂ estimates are based on individual trees and streetscape type and these results represent about 40% of all Bolzano’s public trees, care is needed when discussing our results with other studies at a city-level scale. Specifically, these results are difficult to compare with other studies from vastly different settings and climates because of differences in urban forest structures and composition, soils, climatic condition, land used and in particular because of the use of different methodologies such as disparate forest or urban derived tree allometric equations, the use of different available urban forest carbon models, root-to-shoot-ratios and different remote sensing techniques and resolutions (Aguaron and McPherson, 2012; Strohbach and Haase, 2012; Weissert et al., 2014).

Therefore, CO₂ offsets in Bolzano were lower than other studies (see Table 2). The low value offsets in Bolzano are due to several factors including: study area size, number of urban trees and omission of shrubs and grasses from our calculation. For example, Vaccari et al. (2013) focussed on the total CO₂ urban green spaces offset considering lawn, forest, mixed vegetation and lawn with shrubs, and a total number of 52,551 trees. The study area size is significant in the CO₂ offset calculation as in Florence the total urban green spaces (city and semi-rural peri-urban area) offset 6.2% of the direct carbon emissions while the green spaces in the densely built-up city only offset 1.1% of the emissions (Vaccari et al., 2013).

These CO₂ offset indicators and findings could easily be integrated into existing initiatives and policies. For example, they can be used to complement or integrated into carbon offset accounting protocols (CalFIRE and USFS, 2014) or national urban forest carbon stock assessments (Nowak et al., 2013). Also, according to the Italian Law on urban green spaces (LEGGE, 2013), Italian municipalities have to plant a new tree for every resident child born or adopted in the municipality. Therefore, tree plantings can partially offset the annual CO₂ emissions of every child born. For example, information from the Registry of the Municipality of Bolzano indicates 972 births (+1.6% increment) in 2012, that equates to 972 new tree plantings. Thus, new tree plantings in parks would result in an additional carbon sequestration of 52.42 Mg/year with a CO₂ offset of 0.09%. But, this would need to account for future CO₂ emissions from these new generations as well. Also, Life Cycle Assessments have indicated that the total amount of CO₂ emitted from large scale urban tree plantings, because of their maintenance and biological related emissions, might be slightly greater than their CO₂ offsets (McPherson and Kendall, 2014).

Additional research is needed to develop site-specific urban tree biomass equations and to quantify the effect of shrubs, grasslands and urban soils on overall carbon dynamics. In addition, we need to consider the CO₂ emissions from tree removals and maintenance-related operations. If fuel burning machinery were used to maintain vegetation structure and health, the urban forest ecosystem eventually will become a net emitter of carbon (Nowak et al., 2002). Hence, managers should consider the types of equipment that are used to plant, maintain, and remove vegetation (Nowak et al., 2002). To conclude, this study provides an improved and current approach and indicator for assessing the role of urban green in mitigating CO₂ cities. Findings could also be used to advocate city planners, politicians and urban green managers to improve the number of urban trees and to plan sufficient sustainable and low maintenance green streetscapes in order to deal with climate change effects.