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INTRODUCTION 

Sports games are popular among adolescent at various performance levels, and are important 

for the development of physical health, mental health, and for social development (46, 64). 

Adolescence is characterized by maturation, which evokes muscle-tendon unit growth resulting in 

a steep increase in strength and power performance on the one hand (34) and an increased risk of 

injury on the other (45, 58). Both physical performance and non-contact injuries are multifactorial 

domains including many intrinsic and extrinsic factors, which should also include the genetic 

profile (38, 46). However, the effect of genetics on muscle injury predictors and neuromuscular 

performance in adolescents is scarce in current research. 

It has been acknowledged that the risk of injury increases with chronological age and may 

be related to important periods during growth and maturation (45). According to a previous study, 

the 13 to 18-year-old age group is subject to the greatest risk and most injuries are likely to occur 

during this period (53, 58).  Others have suggested that injury incidence is highest around the time 

of Peak Height Velocity (PHV) (62), and that females appear to have a greater relative risk of a 

non-contact injury compared with males when hours of athlete exposure are taken into account 

(63). The higher incidence of injury during PHV in women may be explained by anatomical, 

neuromuscular and hormonal differences (20), or by genetic factors influencing the soft tissue (2, 

33, 56). Therefore, current efforts focus on injury prediction during the high risk maturation period, 

because a sustained injury itself is one of the strongest re-injury predictors (12, 23). 

Physical performance and the risk of injury have been associated with ligament and tendon 

properties which are dependent on individual genotypes. The collagen alpha chain (COL5A1) gene 

has been associated with mechanical properties of tendon structure in the knee extensors in vivo 

(26), and tendon and ligament injuries (57). Specifically, the COL5A1 rs12722 CT heterozygotes 
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has been linked to poorer flexibility than CC and TT homozygotes (6) during a  sit and reach test. 

Peroxisome proliferator-activated receptor alpha (PPARA) and growth differentiation factor 

(GDF5) genes have been associated with power performance (48), stress fractures (66)  and muscle 

regeneration (18). Specifically, it has been suggested that PPARA predicts anaerobic trainability 

(1), and aerobic trainability (43, 47, 49), while GDF5 regulates the response of the proliferation 

satellite cell (18) (crucial after resistance training), meniscus injury incidents, and knee joint 

function recovery (14). Therefore, the combination of candidate genes determining the loading 

response, injury incident and recovery rate might be important during the period of maturation. 

Moreover, the above-mentioned genes polymorphisms might be related to stretch shortening cycle 

capability (determined from leg stiffness and reactive strength index) (30, 31), but the importance 

of these parameters still need to be identified within young sporting population. The collagen tissue 

quality is genetically determined, inter alia, by genes encoding collagens, where the COL5A1 gene 

(rs12722, rs3196378, rs11103544) seems to play a key role in the probability of knee and achilles 

tendon injury (57) and muscle flexibility (6). Therefore, the relationship between mechanical 

properties such as leg stiffness and reactive strength index (RSI) might be correlated with the 

COL5A1 gene in addition to genes related to performance (PPARA), injury and recovery 

predisposition (GDF5).  

The genetic predisposition for collagen production (COL5A1), carbohydrate and protein 

metabolism (PPARA), cell differentiation and the transforming growth factor-β superfamily 

(GDF5) has a potential to determine overuse injuries or complex phenotypes related to tissue 

properties such as leg stiffness (LS) or RSI (33). Specifically, the GDF5 rs143383 A allele carriers 

have been shown to have lower GDF5 transcriptional activity in chondrogenic cells than GG 

homozygotes, which might influence the mount of cartilage of the vertebrae, limb dimensions or 
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joint angles (42, 55). In addition to above mentioned genetic predisposition, the power and stretch 

shortening cycle performance is related to PPARA rs4253778, where C allele carriers have shown 

greater power related outcomes that TT homozygotes (48) in adult athletes, however this 

relationship has not yet been confirmed in adolescents. 

Stiffness of the whole limb is affected by muscle and tendon mechanical properties as well as 

elastic properties of the joint structures and stiffness arising from muscle actions (21). Lower limb 

stiffness points to an ability to generate strength and to be able to resist  deformation resulting from 

movement, including a direct transition from eccentric to concentric muscle contraction (44) in a 

stretch shortening cycle. Therefore, leg stiffness should be closely related to the RSI (30), which 

has been reported as a predictor of injury in adolescent athletes (51). Leg stiffness and RSI are 

typically based on a squat jump movement pattern, where the hip extensor (posterior) muscle chain 

is crucial for successful technical execution of the test. This posterior muscle chain includes several 

critical muscle groups such as the hamstrings and low back extensors, whose shortening or other 

imbalances have been identified as injury predictors (10, 16, 24, 40).  

The current research has identified muscle flexibility, functional movements screens, leg 

stiffness, RSI and muscle strength as injury predictors, all of which depend on the collagen tissue 

condition (21). As the predictability of musculotendinous conditions by genetic factors is not 

sufficiently documented, the purpose of this study was to determine whether the COL5A1, PPARA 

and GDF5 genes are associated with muscle functions and stretch shortening cycle performance 

in adolescent athletes. 
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MATERIALS AND METHODS 

 

Experimental approach to the problem 

At the beginning of the competitive season, a cross-sectional measurement of anthropometry and 

muscle function were performed by each participant. An injury record for the past 12 months was 

obtained by a physician specialized in neurophysiology and muscle function. The participants were 

screened for anthropometry, DNA, muscle function, and neuromuscular performance (RSI and LS 

during vertical jumps). The participants were also requested not to exercise in excess of their 

normal training habits 2 days before the test in order to exclude the effects of delayed muscle 

soreness on muscle function (37).  

 

Subjects 

The participants were 146 youth players (age 13-15y, 14.4± 0.2y) of various team sports 

(basketball n= 54, soccer n= 50, handball n= 32), both sex (90 male, 56 female) with a high 

potential of lower limb soft tissue injury (Table 1). All participants were players in the highest 

league in their sport with at least 6 years of organized training experience and their current habitual 

training cycle met the following criteria as minimum: 6 training sessions per week, 160min of 

conditioning work, 120min of technical-tactical training, 190min of game time and 130min of 

warm ups . The research and the informed consent form were approved by the institutional ethics 

committee of the Palacky University Olomouc, Faculty of Physical Culture in accordance with the 

ethical standards of the Helsinki Declaration of 2013, and a signed written informed consent form 

was obtained from the parents of all adolescents participating in this study before measurements.  
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Table 1. Participant characteristics according to game and sex. 

 

All participants 

(n = 146) 

Handball 

(n=32) 

Basketball 

(n=54) 

Soccer 

(n=50) 

Female 

(n=56) 

Male 

(n=90) 

Body mass (kg) 60.30 ± 14 56.77 ± 8 62.95 ± 13 59.97 ± 18 57.32 ± 8.7 62.72 ± 12 

Stature (cm) 169.25 ± 12 164.43 ± 7 173.36 ± 11 168.45 ± 15 164.53 ± 10 172.49 ± 9 

Age (years) 14.36 ± 1.18 14.10 ± 1.21 14.54 ± 1.15 14.37 ±1.05 14.14 ± 1.32 14.57 ± 1.09 

Leg Length (cm) 81.27 ± 7.98 78.91 ± 3.8 84.86 ± 6 78.81 ± 10 79.30 ± 9.1 82.73 ± 8.1 
 

Procedures  
 
Biological maturity  

Biological maturity was determined using the gender-specific equation determined by Mirwald 

(41) based on measurement of leg length, body mass, standing and sitting heights. The equation 

for maturity offset in males (years) was - 9.236 + (0.0002708  (Leg length and sitting height 

interaction)) - (0.001663 (age and leg length interaction)) + 0.007216 (age and sitting height 

interaction)) + (0.02292 (body mass by height ratio)) with reported coefficient of determination 

R2 = 0.915, and standard error of estimate SEE =0.490 (41). The equation for maturity offset in 

female (years) was - 9.376 + (0.0001882  (Leg length and sitting height interaction)) + (0.0022 

(age and leg length interaction)) + 0.005841 (age and sitting height interaction)) - 0.002658 (age 

and body mass interaction)) + 0.07693 (body mass by height ratio)) with reported coefficient of 

determination R2 = 0.910, and SEE = 0.499 (41). The maturity offset was used as categorical value 

to identify the group of participants before PHV (pre-PHV) and after PHV (post-PHV), where any 

negative maturity offset prediction was classified as pre-PHV and any positive prediction as post-

PHV.  The numerical value of maturity offset was used as a value representing biological maturity 

in other analyses.  
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Anthropometry 

Anthropometry measurements were used to describe the participants, biological maturity 

estimation and normalization of leg stiffness. All measurements were undertaken by an 

experienced anthropometric technician according to the procedures of the International Society for 

the Advancement of Kinanthropometry (ISAK) (36). Leg length, tibia length, standing and sitting 

heights were measured using the A-226 Anthropometer (Trystom, Olomouc, CZ) with sliding 

telescopic sleeves. Body mass has been measured using the 2-axis force platform PS-2142 (Pasco, 

Roseville, USA). 

DNA analyses 

DNA was extracted from Flinders Technology Associates Classic cards (Cat. no. WB120305; 

Whatman International Ltd, Piscataway, NJ) according to the Whatman FTA® Elute protocol. A 

panel of SNPs in the genes associated with genes previously related to tendon structure, ligament 

structure and muscle function were selected as candidate variants for the present study (Table 2); 

the selected SNPs were examined using MALDI-TOF MS based MassARRAY (Agena 

Bioscience, San Diego, CA, USA) genotyping assay (25).  

Table 2. Analysed gene variants by MassARRAY (ADS v.20) 

Gene SNP ID Chr: Position Allele Location 

COL5A1 rs12722  9:137734416 C/T 3´-UTR 
 rs11103544  9:137735043 T/C 3´-UTR 
PPARA rs4253778  22:46630634 G/C Intron 
GDF5 rs143383  20:34025983 A/G 5´-UTR 
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Functional movement screen tests 

The test of muscle functions included a functional bend test (FBT), passive straight leg raise test 

(SLR), and individual muscle tests of the hip adductors, rectus femoris, tensor fascia lata, and 

iliopsoas. All manual muscle tests had acceptable reliability:  FBT test (CV = 9.86%; ICC = 0.89),  

SLR (CV = 5.46%; ICC = 0.85), lower limb muscle tests (SEM below 10%, ICC above 0.88) (5). 

The tests were selected according to the fact that altered musculotendinous functions such as 

flexibility may be associated with musculotendinous injuries (10, 16, 24, 40, 51). The functional 

screening measurements were conducted by the same experienced researcher. The SLR was 

performed according to the procedures of Göeken (15) using a three point scale (1 flexible, 3 

moderate, 3 stiff); the FBT, known also as the Thomayer or toe touch test was performed according 

to the procedures of Janda (22, 27) using a five point scale (1 hyperflexible, 2 flexible, 3 medium, 

4 stiff, 5 extremely stiff); and individual muscle tests were performed according to the procedures 

of Janda (22) using a three point scale (1 flexible, 3 moderate, 3 stiff). All functional tests were 

assessed twice and the average score was used for further analyses.  

 
Leg stiffness 

Absolute LS was measured during the sub-maximal bilateral hopping test performed using a 

mobile 2-axis force platform PS-2142 (Pasco, Roseville, USA) at a hopping frequency of 2.5 Hz. 

This frequency was chosen to ensure that the movement patterns are reflective of typical spring-

mass model behaviour (30). Relative LS was normalized to leg length and body mass (39). The 

participants were asked to hop two-legged on the force plates for 20 consecutive hops. Leg stiffness 

(kN·m-1) was calculated using the measures of body mass, contact times and flight times, which is 

known to be a valid and reliable method (11) with a reported ICC = 0.93 and CV = 9.48% in 

children (30). 
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Reactive strength index 

The RSI was determined during a 5 maximum hop test which was performed on a mobile contact 

mat (FITRO Jumper, Fitronic, Slovakia). The RSI been shown to have high test-retest reliability 

(13) with reported ICC = 0.90 and CV = 14.24% in children (30). The participants were instructed 

to maximize jump height and minimize ground contact time (11) and performed 3 trials. The RSI 

variable was calculated using the equation by Flanagan and Comyns (13), where RSI = Jump 

height (mm)/ground contact time (ms) and jump height (m) = (gravity ∙ (Flight time)2)/8, where 

gravity is 9.81 m∙s-1 and flight time in seconds. The first hop served as a countermovement jump 

and was consequently excluded from analysis, with the 4 remaining hops averaged for analysis of 

RSI. Players performed three trials with 2 min rest between trials. The greatest value recorded 

from the three attempts was used in further analysis. 

Statistical analyses 

The phenotype and genotype data are presented in the supporting information file (Supplementary 

file 1). The data was processed using the ORIGINE software (version 2018b SR0, OriginLab, 

Wellesley Hills, MA, USA,) where statistical significance was set up at α < .05. All analyses were 

performed separately for each sex . Genotype and allele frequencies between pre-PHV and post-

PHV groups were compared using χ2 test to identify potential differences in maturity status. In 

addition to frequency analyses, the phenotypes according to maturity status were compared using 

a Wilcoxon-Mann-Whitney U test. All variables in the genotype groups were tested for normality 

using the Kolmogorov-Smirnov test. As all variables were normally distributed, the data are 

expressed as mean and standard deviations. A MANOVA for unequal sample sizes (phenotype 

outcome x gender x polymorphism) was used to evaluate the differences between genotype groups, 

where p < 0.05, post-hoc Tukey tests, with Hays ω2 > 0.09 were considered significant. The ω2 
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0.10-0.29, 0.30-0.49 and >0.50 were considered as weak, moderate and strong associations, 

respectively (19). 

 

RESULTS 

The genotype frequency did not disrupt the Hardy Weinberg equilibrium (HWE) and did not show 

any differences in genotype frequency in comparison with an EU population and the population of 

Utah with Northern and Western European Ancestry (Table 3). Some genotype groups contained 

a low sample of carriers: men rs12722 CC genotypes (n= 1), women rs12722 CC genotypes (n= 

1), women rs11103544 CC genotypes (n= 2). The low sample groups were eliminated from 

statistical analyses if appropriate. The Kolmogorov-Smirnov test revealed no grounds for rejecting 

the hypothesis of normality in any genotype group included in MANOVA. 

Table 3. Genotype frequencies and comparison with EU population (EU) and population of Utah 
with Northern and Western European Ancestry (CEU), allele frequency and Hardy-Weinberg 
equilibrium (HWE) expressed by χ2.  

Gene 
 (N) 

SNP 
 

Genotype Genotype 
Frequency χ2 

EUR fr  
(n=503) 

CEU fr 
 (n=99) 

Allele 
 

Allele 
 Frequency 

COL5A1 rs11103544 TT 0.746 2.08 0.716 0.758  T 0.849 
138 T>C  TC 0.217  0.264 0.232 C 0.161 
  CC 0.036  0.020 0.010   
102 rs12722 TT 0.669 0.51 0.356 0.354 T 0.828 
 C>T CT 0.309  0.459 0.444 C 0.173 
   CC 0.022  0.185 0.202   
GDF5 G>A GG 0.236 3.55 0.161 0.091 G 0.405 
127 rs143383 GA 0.374  0.421 0.414 A 0.595 
    AA 0.390  0.417 0.495   
PPARA C>G CC 0.051 1.37 0.040 0.030 C 0.194 
138 rs4253778 CG 0.275  0.304 0.333 G 0.806 
    GG 0.673  0.656 0.636   

Biological maturity status did not show any differences between pre and post PHV groups (Table 

4) in genotype frequencies, allele frequencies (Table 5 and 6) and in phenotype values (Table 7). 

The MANOVA showed differences in maturity offset between female COL5A1 rs12722 genotype 

https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi99oHE6NnYAhVQhqYKHbsSCx4QFggoMAA&url=http%3A%2F%2Fscienceprimer.com%2Fhardy-weinberg-equilibrium-calculator&usg=AOvVaw1YYwj1_YetkqNu-G3VGJ1a
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groups (F1, 78 = 12.1, p= .029, ω2= 0.22), where CT heterozygotes showed a lower maturity offset 

than TT homozygotes (Figure 1).  

Figure Table 4. Basic anthropometrics characteristic of sex and maturation groups and 
differences between pre and post peak height velocity groups by Wilcoxon-Mann-Whitney U 
test. 
Test Male (n= 90) Female (n= 56) 
 Pre PHV 

 (n= 19) 
Post PHV 
 (n= 71) 

T test p Pre PHV  
(n= 35) 

Post PHV  
(n= 21) 

U test p 

Age 13.26 ± 
0.48 

14.78 ± 1.0 <0.001 13.0 ± 0.75  14.84 ± 0.94 <0.001 

Body mass (kg) 54 ± 8.7 65 ± 11.4 <0.18 51 ± 7.3 60 ± 7.7  <0.001 

Height (cm) 156 ± 0.10 175 ± 9.19 <0.001 160 ± 5.1 167 ± 5.9 <0.001 
Sitting Height 
(cm) 

80 ± 8.8 84.1 ± 8.0  <0.001 82 ± 3.5  87 ± 4.46  0.18 

Leg length (cm) 75 ± 9.1 83.9 ± 8.1 <0.001 77.9 ± 4.2 80.1 ± 9.0 <0.001 

Tibia length 45.5 ± 4.7 49.56 ± 5.5 0.003 43.48 ± 4.1 46.06 ± 3.4 0.001 

PHV = peak height velocity. Wilcoxon-Mann-Whitney U test 
 

Table 5. Gene and allele frequency comparison in pre and post peak height velocity groups in 
females.  
Female  Genotype Allele  

  
Geno
type 

Pre PHV Post PHV χ2 test  Pre PHV Post PHV χ2 test 

Gene (n) 
SNP 

 n f n f χ2 p allele n f n f χ2 p 
COL5A1 rs11103544 TT 13 0.650 24 0.706   T 33 0.825 56 0.824 0.10 0.75 54 T>C  TC 7 0.350 8 0.235 1.8 0.40 C 7 0.175 10 0.177 
  CC 0 --- 2 0.059          
51 rs12722 TT 8 0.381 14 0.467   T 28 0.667 44 0.733 0.30 0.58  C>T CT 12 0.571 16 0.533 1.67 0.43 C 13 0.333 16 0.267 
   CC 1 0.048 0 ---          
GDF5 G>A AA 8 0.471 10 0.345   A 22 0.647 32 0.551 2.11 0.15 46 rs143383 AG 6 0.353 12 0.414 0.74 0.69 G 9 0.353 26 0.448 
    GG 3 0.176 7 0.241          
PPARA C>G CC 1 0.050 3 0.088   C 11 0.275 13 0.191 1.02 0.31 54 rs4253778 CG 9 0.450 7 0.206 3.62 0.16 G 29 0.725 55 0.808 
    GG 10 0.500 24 0.706          
f = frequency, PHV= peak height velocity 
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Table 6. Gene and allele frequency comparison in pre and post peak height velocity groups in 
males.  

  Genotype Allele 

Gene (n) 
SNP 

 
Geno
type Pre PHV Post PHV χ2 test 

 Pre PHV 
Post PHV 

χ2 test 

  n f n f χ2 p allele n f n f χ2 p 
COL5A1 rs11103544 TT 11 0.846 53 0.753   T 24 0.923 119 0.842 1.31 0.25 84 T>C  TC 2 0.154 13 0.178 1.14 0.56 C 2 0.077 23 0.157 
  CC 0 -- 5 0.068          
49 rs12722 TT 10 0.769 32 0.556   T 23 0.884 68 0.944 1.03 0.31  C>T CT 3 0.231 4 0.444 1.11 0.29 C 3 0.115 4 0.056 
   CC 0 --- 0 ---          
GDF5 G>A AA 5 0.385 28 0.418   A 16 0.615 80 0.597 0.03 0.86 80 rs143383 GA 6 0.462 24 0.358 0.32 0.85 G 10 0.385 54 0.402 
    GG 2 0.154 15 0.224          
PPARA C>G CC 0 -- 3 0.042   C 2 0.077 27 0.190 1.97 0.16 84 rs4253778 CG 2 0.154 21 0.296 1.90 0.38 G 24 0.923 115 0.810 
    GG 11 0.846 47 0.662          
f = frequency, PHV= peak height velocity 
 

Table 7. The summary of functional test results and performance tests by sex and maturation and 
differences between pre and post peak height velocity groups by Wilcoxon-Mann-Whitney U 
test. 
Test Male (n= 90) Female (n= 56) 
 Pre PHV 

 (n= 19) 
Post PHV  
(n= 71) 

U test p Pre PHV  
(n= 35) 

Post PHV  
(n= 21) 

U test p 

Functional bend test 2.69 ± 1.37 2.68 ± 1.10 0.98 2.9 ± 1.48 3.38 ± 1.3 0.70 
Straight leg raise test 1.62 ± 0.51 1.75 ± 0.43 0.30 1.6 ± 0.50 1.82 ± 0.38 0.21 
Iliopsoas shortening 1.08 ± 0.29 1.11 ± 0.31 0.78 1.05 ± 0.23 1.00 ± 09 0.36 
Rectus femoris 1.91 ± 0.29  1.90 ± 0.30  0.89 1.37 ± 0.50  1.50 ± 0.51  0.18 
Tensor fascia latae  1.42 ± 

0.51  
1.28 ± 0.45  0.32  1.21 ± 0.42   1.08 ± 0.29  0.21 

Hip abductors 1.08 ± 0.29  1.18 ± 0.39  0.42 1. 05 ± 0.23  1.02 ± 0.17  0.67 
Reactive strength index 
(mm∙ms-1) 

1.35 ± 0.33 1.41 ± 0.37 0.19 1.24 ± 0.34  1.29 ± 0.39 0.75 

Relative leg stiffness  35 ± 6.7 41 ± 9.1 0.15 31 ± 7.2 37 ± 8.3 0.71 
U = Wilcoxon-Mann-Whitney U test. The values of functional test are point on three or five point 
scale. 
 
The FBT showed differences between COL5A1 rs12722 genotype groups in males (F1, 39 = 10, p= 

.003, ω2= 0.18) and females (F1, 37 =  8.5, p< .001, ω2= 0.16), where CT heterozygotes had lower 

functional test scores than TT homozygotes (Figure 2). The FBT showed differences between male 
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COL5A1 rs11103544 genotype groups (F2, 83= 8.1, p= .049, ω2= 0.14), where TT and CC 

homozygotes resulted in better FBT scores than TC heterozygotes (Figure 2).  

 

The SLR showed differences between COLA1 rs12722 genotype groups in males (F1, 39= 5.3, p= 

.027, ω2= 0.11) and females (F1, 37= 5.6, p= .027, ω2= 0.10), where CT heterozygotes showed lower 

test scores than TT homozygotes (Figure 3). The SLR showed differences in males between GDF5 

rs143383 genotype groups (F2, 82= 5.9, p= .030, ω2=  0.11), where GG homozygotes showed lower 

(better) test scores than AA and AG genotypes (Figure 3). 

 

Figure 1 Maturation offset differences in genotype groups. COL5A1= collagen alpha-1(V) chain. *significantly different than other 
genotype groups in the same sex. 
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Figure 2 Functional bend test in different genotype groups. The scale point 5 means lowest flexibility. COL5A1= Collagen alpha-
1(V) chain. *significantly different than other genotype groups in the same sex. 

 
The RSI differed between GDF5 rs143383 genotype groups in males (F2, 73= 5.8, p= .050, ω2= 

0.10) and females (F2, 48= 3.9, p= .033, ω2= 0.11), where AA homozygotes and AG heterozygotes 

had greater RSI than GG homozygotes (Figure 4). The best RSI differed between PPARA 

rs4253778 in males (F2, 74= 5.9, p=.049, ω2= 0.11) and females (F2, 49= 4.6, p= .034, ω2= 0.12) , 

where CC homozygotes had a greater RSI than GG homozygotes and GC heterozygotes (Figure 

4). 
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Figure 3 Straight leg raise test results in different genotype groups. The scale point 3 means lowest flexibility. COL5A1= Collagen 
alpha-1(V) chain, GDF5= growth differentiation factor. *significantly different than other genotype groups in the same sex. 

 
Figure 4 Reactive strength index differences in genotype groups. PPARA= peroxisome proliferator-activated receptor, GDF5= 
growth differentiation factor. *significantly different than other genotype groups in the same sex. 
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DISCUSSION 

The main finding of this study is that COL5A1 and GDF5 gene variants are associated with 

injury risk predictors represented by functional movement tests scores in adolescents. PPARA and 

GDF5 gene variants are also associated with RSI, and COL5A1 genes variants might determine 

the maturation status in females. Specifically, COL5A1 is a good predictor of muscle functional 

screening for males and females. Previous studies have shown that CT heterozygotes in COL5A1 

rs12722 are associated with decreased flexibility in the posterior fascial chain (hamstrings, erector 

spinae) during a  sit and reach and straight leg raise test, where heterozygotes were less flexible 

than homozygous individuals (TT and CC genotypes) (6). The results of the present study support 

this previous findings (6) for a team sport population in relation to posterior muscle chain function, 

which is the muscle group tested in the FBT. Moreover, TC heterozygotes in COL5A1 rs11103544 

were associated with a lower FBT score than TT homozygotes in males and GG male 

heterozygotes in GDF5 rs143383 with a better SLR score than AA and AG. Thus, a new possible 

relationship with functional muscle test in COL5A1 and GDF5 has been identified in the current 

study. However, the sample size did not allow COL5A1 and GDF5 gene interactions; therefore, 

this type of analysis should be performed in a future study with larger samples.  

It has previously been reported that COL5A1 rs12722 variation has an effect on ROM 

during aging and with respect to physical activity (3), however the present study is the first to 

include a group of young athletes at a high risk of musculotendinous injury. Although there is no 

experimental evidence, the authors believe that increased type V collagen production is influenced 

by COL5A1 rs12722 T allele variant (8), which might be especially important in terms of changes 

to bone and soft tissue mechanical properties during the period of maturation. Seven 

polymorphisms in 3'-UTR of COL5A1 forming T allele of rs12722 has been associated with 
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increased mRNA stability (28). This suggests that T allele of rs12722 could be responsible for 

different connective tissue phenotypes, where increased stiffness can be beneficial for increased 

performance but simultaneously also for increased injury risk (7). Moreover, maturity offset was 

delayed in female rs12722 CT heterozygotes, which might mean that these individuals might be 

under a higher risk of injury due to muscle function tests and hormonal factors in general (20). An 

opposite trend of faster maturation in rs12722 TT female homozygotes might mean that those girls 

might be preferred for elite teams due to a biological age bias. To our best knowledge, our finding 

that COL5A1 rs11103544 was related to FBT in males seems to be novel since this polymorphism 

relationship to the range of movement has been suggested, but not confirmed by previous research 

(6). 

Although GDF5 protein is involved in bone and tissue growth in youth and adults (4), this 

did not identify a direct link with GDF5 and players’ maturity offset. The GDF5 rs143383 A allele 

carriers has been previously associated with decreased stature and sitting height (55, 65) in Euro-

American population and British population (55). Our study did not find an association between 

stature, sitting height or maturation offset (derived from stature and sitting height) and rs143383, 

which might be explained by our relatively low sample or the ongoing maturation process itself. 

Moreover, GDF5 rs143383 has not been associated with pubertal height grow in a previous 

genome wide association (GWAS) study (9). Therefore, it is possible that GDF5 gene expression 

does not differ at different stages of maturity estimated by anthropometrics, such it was showed 

for other polymorphisms like Disruptor of telomeric silencing 1-like (DOT1-like) or Mitogen-

activated protein kinase 3 (MAPK3) (9, 59).  

The results of the present study suggest that GDF5 rs143383 polymorphism might play a 

role in male SLR score, where GG homozygotes do not have a increased test score; on the other 
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hand, GG homozygotes had lower RSI in both sexes. Thus, it might be speculated that rs143383 

GG homozygotes showed equal development of performance and mechanical properties of the 

lower limbs, which might protect these individuals from a potential injury. The situation in which 

performance is ahead of mechanical property development might be understood as a potential 

injury risk factor, especially in the period of accelerated growth, during which most anthropometric 

changes take place (34, 35). 

 CC homozygotes in PPARA gene in the present study showed better jump performance 

represented by RSI, which had been suggested by previous studies (1, 48). However, the finding 

that this predisposition is identical in adults and adolescents should be considered when training 

methods are selected. Especially as PPARs and their coactivators are associated with 

improvements in training programs for weight reduction (29), aerobic performance (49, 52, 60, 

61) and resistance training load capabilities (1). In this manner, the ketogenesis and other 

metabolic factors determined by PPARA indicate an individual response to strength and power 

training (1), and satellite cell proliferation determined by GDF5 can indicate a potential to 

regenerate from a long term physical load (18). Regarding the fact that the interaction of these 

genes in terms of performance, injury prevention and fatigue factors was not analysed, the authors 

suggest that this analysis should be performed in future studies.  

Limitations of the present study include the relatively small sample size and potential 

effects of other environmental (e.g. dietary) or genetic factors, therefore the results of the present 

study cannot be generalized to other populations. Validation in other cohorts and further studies 

are necessary to address the detailed role of the chosen polymorphisms of COL5A1, GDF5 and 

PPARA genes within the complex phenotype of strength and power performance. Our 

polymorphisms selection has been performed in relation to muscle function and performance 
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phenotypes, but not to specific polymorphisms previously related to growth and maturation, which  

we suggest for future studies performed on adolescents. The maturation status has been found to 

have effect on functional movement including SL (50) and the muscle strength and power 

performance (17). Our phenotype results (without considering anthropometry in Table 4) showed 

no difference between pre and post PHV young male (Table 7), which is in accordance with 

previous studies where e.g. leg stiffness and RSI did not significantly differ between pre and post 

PHV in males (31, 54). This might be explained by low range of our PHV groups (13-15y) or by 

complex training effects, where plyometric training might be more effective in pre PHV than post 

PHV participants and where other training responses might be similar in both maturity groups (32). 

Although numbers of training sessions slightly differ between sports and the sexes, all participants 

were in a structured training program (with a minimum of 6 training sessions per week) designed 

to promote progressive musculoskeletal adaptation. Moreover, all participants had been in 

systematic training for a number of years (minimum 6 years) which might mean that any potential 

confounding variables did not influence our genotype results. 

Practical application 

The present study showed that CT genotype in COL5A1 rs12722 is a possible predictor of 

decreased muscle function in the posterior hip muscle chain, causing shortening in FBT and SLR 

test. Therefore, COL5A1 rs12722 CT heterozygotes should be involved in specific programs 

targeting hamstring and posterior hip muscle chain flexibility, muscle functions and any other 

muscle imbalances. Woman with COL5A1 rs12722 TT homozygosity might be used as a predictor 

of faster maturation, therefore their carriers might have a biological advantage in adolescent 

categories, and their performance should not be overestimated in practice. PPARA rs4253778 CC 

homozygotes and GDF5 rs143383 AG and AA genotypes might have greater stretch shortening 
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cycle performance represented by RSI, therefore those athletes have a good potential to develop 

strength, power and speed in training.  
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