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Abstract
Accurate counts of wild populations are essential to monitor change through time, 
but some techniques demand specialist surveyors and may result in unacceptable 
disturbance or inaccurate counts. Recent technological developments in unmanned 
aerial vehicles (UAVs) offer great potential for a range of survey and monitoring ap-
proaches. They literally offer a bird’s-eye view, but this increased power of observa-
tion presents the challenge of translating large amounts of imagery into accurate 
survey data. Seabirds, in particular, present the particular challenges of nesting in 
large, often inaccessible colonies that are difficult to view for ground observers, 
which are commonly susceptible to disturbance. We develop a protocol for carrying 
out UAV surveys of a breeding seabird colony (Lesser Black-backed Gulls, Larus fus-
cus) and subsequent image processing to provide a semiautomated classification for 
counting the number of birds. Behavioral analysis of the gull colonies demonstrated 
that minimal disturbance occurred during UAV survey flights at an altitude of 15 m 
above ground level, which provided high-resolution imagery for analysis. A protocol 
of best practice was developed using the expertise from both a UAV perspective and 
that of a dedicated observer. A GIS-based semiautomated classification process suc-
cessfully counted the gulls, with a mean agreement of 98% and a correlation of 99% 
with manual counts of imagery. We also propose a method to differentiate between 
the different gull species captured by our survey. Our UAV survey and analysis ap-
proach provide accurate counts (when comparing manual vs. semi-automated counts 
taken from the UAV imagery) of a wild seabird population with minimal disturbance, 
with the potential to expand this to include species differentiation. The continued 
development of analytical and survey tools whilst minimizing the disturbance to wild 
populations is both key to unlocking the future of the rapid advances in UAV technol-
ogy for ecological survey.
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1  | INTRODUC TION

If the population dynamics of wild animal populations are to be un-
derstood and effective conservation management to take place, 
accurate estimates of population size are essential. However, some 
species are challenging to survey, inhabiting inaccessible locations 
that are difficult to visit or to observe (e.g., cliff-nesting or colony-
nesting seabirds) or are susceptible to disturbance by fieldworkers or 
recreational activity (Giese, 1996; Kerlinger et al., 2013; Schlacher, 
Nielsen, & Weston, 2013). Unmanned aerial vehicles (UAVs) present 
an opportunity to overcome such challenges, by using this increas-
ingly affordable technology to gather aerial views of animal popula-
tions. However, the rapid development of UAVs in wildlife research 
has brought its own challenges: how to conduct UAV surveys with-
out undue disturbance to the local population, and how to handle 
and analyze large amounts of aerial imagery to ensure that UAVs 
develop into a useful tool in ecological studies.

1.1 | Monitoring seabird populations

The United Kingdom hosts a relatively large number of seabirds 
compared to areas of similar latitudes because of the highly produc-
tive surrounding seas (Nager & O’Hanlon, 2016). The abundance and 
distribution of seabirds have been monitored since the late 1960s 
(Cramp, Bourne, & Sanders, 1974; Lloyd, Tasker, & Partridge, 1991; 
Mitchell, Newton, Ratcliffe, & Dunn, 2004), enabling the extraction 
and analysis of population trends which can promote understand-
ing of the underlying factors behind them and be used to influence 
decision making and provide information about the marine environ-
ment in which they live (Furness & Greenwood, 1993). Seabirds re-
quire predator-free breeding sites with access to open seas, which 
are often in large colonies in isolated locations such as oceanic is-
lands or sea cliffs, which can make monitoring populations difficult. 
A range of monitoring protocols have been developed to manually 
survey different colony-nesting seabird species, but the challenges 
of access, viewing, and disturbance remain, especially for gull spe-
cies (Larus spp.; Walsh et al., 1995).

Substantial declines have been observed in coastal colonies 
of gulls, with some now listed as species of conservation concern 
(Eaton et al., 2013). Surveys of gull populations are traditionally 
carried out by trained surveyors using methods such as point 
counts, transects, or walk-through surveys (Bibby, Burgess, Hill, 
& Mustoe, 2000). Point counts are made by an observer from a 
vantage point over a colony; however, inconsistencies arise due 
to nesting in dense vegetation, inaccessible subcolonies being 
disregarded, observer difficulties in the use of optical equipment 
in field conditions, and observer bias from different surveyors 
with varying levels of expertise (Bibby et al., 2000). Walk-through 
surveys are utilized specifically to count both numbers of nests 
and eggs within colonies and produce accurate results that are 
important in determining breeding success and survival rates of 
chicks. However, they present logistical challenges, requiring a 
large number of people and can take considerable time, and can 

be challenging in determining which nest belongs to which gull 
species. Significant disturbance can be caused during human in-
cursions into the colony, including increased levels of intraspecific 
aggression and/or predation of eggs and chicks, and increased nest 
abandonment (Carney & Sydeman, 1999). Disruption of the sur-
rounding habitat may also be of concern, such as damage to vege-
tation and the nests of burrow-nesting species in fragile habitats 
such as Atlantic Puffin, Fractercula arctica and Manx Shearwaters, 
Puffinus puffinus (pers. obs. by authors).

1.2 | Remote monitoring of seabird populations

Aerial images have the advantage of a permanent record that can be 
viewed any number of times, enabling studies at temporal and spa-
tial scales not feasible by traditional visual count methods (Lillesand, 
Kiefer, & Chipman, 2015). Recent technological developments have 
increased the availability of aerial imagery and the potential for re-
mote sensing applications in ecological studies, using either satellite-
derived images or unmanned aircraft (Anderson & Gaston, 2013) 
to capture imagery. For example, high-resolution satellite-borne 
imagery has been utilized to locate and count breeding colonies 
of larger seabirds such as Emperor Penguins, Aptenodytes forsteri 
(Fretwell, Trathan, Wienecke, & Kooyman, 2014; Fretwell et al., 
2012), and Wandering Albatrosses, Diomedea exulans (Fretwell, 
Scofield, & Phillips, 2017). However, the high cost of such imagery, 
the potential for cloud to obscure the area of interest when satellite-
derived images are available, and a lack of control over the acquired 
resolution preclude its use in many cases (Loarie, Joppa, & Pimm, 
2007). The development of UAVs, commonly referred to as drones 
or remotely piloted aircraft (RPA), offers the opportunity to bypass 
some of these difficulties whilst allowing the user greater control 
over the collection of aerial imagery at a suitable scale and resolution 
(Lillesand et al., 2015), thus permitting accurate counts. UAVs are 
small (typically <7 kg in weight), powered aerial vehicles that come 
in a variety of platforms including fixed- and rotary-winged aircraft, 
kites, and balloons (Woodget, Carbonneau, Visser, & Maddock, 
2014) that can carry a payload (i.e., a camera) and are able to be 
flown remotely or autonomously.

1.3 | Unmanned aerial vehicles as a solution

Following initial exploration of the utility of UAVs in wildlife moni-
toring (Hodgson & Koh, 2016; Jones, Pearlstine, & Percival, 2006; 
Mulero-Pazmany et al., 2017), a number of seabird colonies have 
been counted using this approach. This has typically involved the 
collection of images by UAV survey followed by manual image 
counting of the number of individuals, for example Black-headed 
Gulls, Chroicocephalus ridibundus (Sardà-Palomera et al., 2012) and 
Common Terns, Sterna hirundo (Chabot, Craik, & Bird, 2015), with 
93%–96% accuracy compared to ground counts. Hodgson, Baylis, 
Mott, Herrod, and Clarke (2016) used similar manual methods to 
count breeding individuals in colonies of three seabird species and, 
importantly, demonstrated an increased precision of population 
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counts derived from UAVs compared to those from ground-based 
observer counts.

Whilst the use of UAVs presents the enticing opportunity for 
more accurate population counts, the volumes of data become un-
wieldy for larger populations and may thus be subject to observer 
error during manual counts of individuals from colonywide imag-
ery. These considerations drive our use of image classification to 
automate counts of individuals and thereby unlock the potential 
for wider scale adoption of UAV survey approaches. Grenzdörffer 
(2013) combined the merging of UAV-derived images with the au-
tomatic counting of Common Gulls, Larus canus, using an approach 
similar to Fretwell et al.’s (2012, 2014) detection of image spectral 
signatures, indicating that individual birds could be automatically 
identified against a distinct background with reasonable accuracy 
(97.6%).

The bird’s-eye view offered by UAV surveys can only be useful if 
the imagery can be captured at sufficient resolution to be useful for 
population counts. High-resolution cameras of small size and weight 
are now available, but it is necessary for a UAV to fly low enough to 
capture useful images without causing unacceptable disturbance on 
ethical grounds or that could reduce the clarity of the images that are 
captured. This consideration seems to have been overlooked in early 
studies of wild animal monitoring, but has received much attention 
more recently.

Grenzdörffer (2013) does briefly remark on the optimal flying 
distance and the response of birds, but this was not quantified. Vas, 
Lescroël, Duriez, Boguszewski, and Grémillet (2015) reported lit-
tle effect of UAV color, flight speed, and angle of approach toward 
nonbreeding groups of semicaptive Mallards, Anas platyrhynchos 
and Greater Flamingos, Phoenicopterus roseus and wild Common 
Greenshanks, Tringa nebularia, flying as close as 4 m without notice-
able response. However, as the birds in the survey were semicaptive 
this could have influenced the results as they are more adjusted to 
human disturbance, and the authors acknowledge the flying height 
may be different depending on the species and the breeding sta-
tus. Weimerskirch, Prudor, and Schull (2017) explored the impact of 
flying height on 11 seabird species on the Crozet Islands, Southern 
Indian Ocean. They found that at 50 m, there was minimal distur-
bance with only one species showing a reaction, whereas at 10 m, all 
species demonstrated behavioral stresses, but again, the response 
was species-dependent with some showing little behavioral re-
sponse when flying at <5 m. Brisson-Curadeau et al. (2017) assessed 
the impact of using a UAV on cliff-nesting Arctic seabirds and con-
firmed that the response was species-dependent and suggested 
baseline tests to determine the species-specific responses, and en-
couraged habituation flights before capturing data from 20 m above 
the ground. McEvoy et al. (2016) determined that 40 m was a suit-
able height for flying a small UAV over nonbreeding wildfowl, with 
disturbance noted at flying heights below this, or whilst the UAV 
rapidly changed direction or altitude when above the birds. Hodgson 
et al. (2018) carried out UAV surveys on life-size replica colonies and 
found no significant increase in count accuracy was achieved by ob-
taining imagery from heights lower than or equal to 90 m, but this 

needs to be verified using real colonies that have complex vegetation 
and background patterns to extract data from. The small but rapidly 
developing body of research conducted thus far suggests that with 
prudent flying, UAV-based ornithological research has a multitude 
of possibilities which is largely dependent on species size and how 
distinctive they are from the surrounding habitat, but no unified pro-
tocols for the ethical use of UAV currently exist.

This work therefore aims to contribute to the development and 
application of UAV for avian surveys, addressing three research 
questions:

1.	 What is the best practice for flying a UAV above breeding 
gull colonies?

2.	 Can individuals within a Lesser Black-backed Gull colony be iden-
tified and be counted using a semiautomated system?

3.	 Can a semiautomated identification system recognize individuals 
of different gull species?

2  | MATERIAL S AND METHODS

2.1 | Study site

Field data collection was carried out on Skokholm Island, Wales, UK 
(Latitude: 51.69, Longitude: −5.28, Figure 1) between May 16, 2016, 
and May 23, 2016. Surveying was timed to coincide with island gull 
counts, which are carried out during the incubation period when 
birds are most closely associated with their nest. Skokholm Island 
is of national and international importance for its seabird popula-
tions (designation of Special Protected Area; Thompson, 2007). The 
flora of the Island is mainly submaritime, including grassland, boggy 
areas, and coastal vegetation. The island population in 2016 of ap-
proximately 1,400 breeding pairs of Lesser Black-backed Gulls is 
divided into 22 subcolonies (Figure 1, Brown & Eagle, 2016); these 
subcolonies contain primarily Lesser Black-backed Gulls rather than 
being mixed species. The population decline on the island (Eaton 
et al., 2013) has been linked with low breeding success, likely due to 
a reduction in food availability during the rearing period (Thompson, 
2007).

2.2 | Unmanned aerial vehicle survey

A DJI Inspire 1 quadcopter UAV was used for all aerial flights. This 
was fitted with a 12 megapixel DJI FC350 camera, with a rectilin-
ear, curved lens designed to eliminate distortion, and a 20 mm focal 
length allowing for wide angle pictures with minimal fish-eye with a 
resolution of 72 DPI. This UAV proved able to fly and remain stable 
in wind speeds of up to ≈15 mph.

The camera used had an internal global positioning system (GPS) 
that enabled georeferencing (i.e., positioning in the correct physi-
cal location) of each image. However, ground control points (GCPs) 
are required in most photogrammetry activities (Lillesand et al., 
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2015) and are of central importance in successful orthorectification 
projects by significantly increasing the accuracy of the final prod-
uct (Liu, Zhang, Peterson, & Chandra, 2007). The process of orth-
orectification used here is the process of removing the effects of 
image perspective and relief to create an image with a constant scale 
and features in their true relative positions (i.e., an orthorectified 
image). Therefore, a Leica differential global positioning system 
(DGPS) GS16 was used to collect 170 GCPs from around the Island. 
Identifiable points were selected that could be accessed without 
causing disturbance to the birds, were easily visible on the collected 
imagery, and represented variations in elevation across the island.

2.3 | Unmanned aerial vehicle flight protocol

For each UAV survey, a take-off and landing site was chosen that 
was accessible from the footpath network (to avoid damage to 
the fragile habitats on Skokholm) and an adequate distance from 
the colony so as not to disturb the birds as recommended by Vas 
et al. (2015), in this case a minimum of 50 m. Survey altitude was 
determined by a test flight at one subcolony, under dual expert 
observation by one of the Island wardens and a trained seabird 
ecologist, both familiar with gull behavioral responses and able 
to assess any behavioral disturbance. At 40 m above the surface 

of the ellipsoid (m.a.s.e.)—that is, the elevation above the start-
ing position of the UAV—gulls appeared to notice the presence of 
the UAV and were alert but not disturbed. Initially, the UAV was 
lowered from a stationary position at 40 m.a.s.e. directly above 
the subcolony, which caused immediate and widespread alarm 
in the subcolony (flights and alarm calling), similar to the preda-
tor response noted by Brisson-Curadeau et al. (2017); therefore, 
this practice was immediately discontinued. Thereafter, the UAV 
was flown at a steady speed (3–4 ms−1) whilst above the subcol-
ony. The UAV was then flown approximately 20 m to the side of 
the subcolony, and the height of the UAV was lowered by 5 m as 
smooth a flight as conditions allowed, and survey flight resumed 
over the subcolony. No observed disturbance was caused down 
to 15 m.a.s.e; at this elevation, a few birds took to the air, but no 
incubating birds took flight and no aggressive interactions were 
observed. Below 15 m.a.s.e., the levels of disturbance appeared 
to increase markedly; thus, an altitude of no lower than 15 m.a.s.e. 
was adopted. Imagery captured at this flight altitude has a ground 
pixel resolution of 10 mm (i.e., each pixel on the screen represents 
10 mm on the ground) and was deemed sufficient for this study 
(Figure 2 demonstrates the image quality achieved).

Following launch as described above, the protocol developed for 
each UAV flight was as follows:

F IGURE  1 Location map of Skokholm Island and position of Larus fuscus breeding colonies, indicating those that were used in this study
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1.	 A smooth flyover at 40 m above the subcolony with a take-off 
site approximately 20 m to the side of the subcolony, allowing 
the birds to become comfortable with the UAV.

2.	 The altitude of the UAV was lowered to 15 m whilst in motion to 
the side of the subcolony.

3.	 A transect was flown at a speed of 3–4 ms−1 providing image over-
lap of approximately 20% over the subcolony with images cap-
tured at 2-s intervals to ensure a similar overlap between images.

Subcolonies were flown either individually, or where practical, 
2–3 of the smaller neighboring subcolonies were grouped and flown 
together.

2.4 | Behavioral responses of gulls to UAV survey

Video recordings were taken of 12 individual subcolonies (each 
flown independently to avoid pseudoreplication of the analysis) be-
fore and during UAV surveys to quantify the impact of the UAV on 
the behavior of the gulls that were surveyed. It was decided that be-
havior resulting in birds leaving the ground would be most indicative 
of stress, rather than socializing and pair-bonding behavior, and so 
analysis did not include ground-based behavioral responses. These 
were analyzed into the following three categories of behavior to as-
sess the effect of UAV flights:

1.	 Hop—a gull flies briefly (<10 s in flight), and low, to land else-
where within the colony.

2.	 Flight—a bird takes flight from the ground in the colony and re-
mains in the air for more than 10 s, typically remaining aloft, but 
not approaching the UAV directly.

3.	 Attack—a gull flies aggressively and directly toward the UAV. A 
single attack was noted during survey flights, lasting just 5-s, and 
thus was not considered in analyses.

Counts of each behaviour were standardized as counts per min-
ute of observation, during the period prior to the UAV flight (mean 
1.084 ± 0.0093 min) and for the duration of the UAV survey (mean 
5.26 ± 1.047 min). The differences between both flights and hops per 
minute before and during UAV surveys were not normally distributed 
(Shapiro–Wilk tests: flights W = 0.726, p = 0.0015; hops W = 0.785, 
p = 0.0063), and thus, Wilcoxon signed rank tests were used to com-
pare behavior. A sample video of a traditional walk-through count was 
also collected and used for comparison, although no statistical testing 
was undertaken on this.

2.5 | Image processing

Photogrammetric data processing was carried out using the soft-
ware Agisoft PhotoScan v1.2.4 to orthorectify the images and pro-
duce an orthomosaic (i.e., a mosaic image with positional accuracy) 
of each subcolony. Photoscan is a commercially available program 
that uses algorithms to automatically detect features in the images 
such as edges and points from the unordered aerial image collec-
tion (Siebert & Teizer, 2014); combining this with ground control data 
produces accurate digital surface models (DSMs; Fonstad, Dietrich, 
Courville, Jensen, & Carbonneau, 2013). Based on this model, it is 
able to convert the images into a single 2D orthomosaic without the 
individual scale, tilt, and relief distortions of each image.

All images were manually assessed prior to processing and, 
where necessary, deleted from the subset if they were distorted or 
blurred from the flying motion. All remaining images for each sub-
colony were added to the software, and image processing followed 
the recommended procedure outlined by Agisoft (2016). Alignment 
was carried out using the “high” setting to achieve the best possi-
ble accuracy, and “Generic” pair preselection was used to reduce 
processing time. If this failed, the “Reference” pair preselection pa-
rameter, in which the overlapping pairs of photographs are selected 

F IGURE  2 Example imagery captured by the unmanned aerial vehicle flown at 15 m altitude with zoomed areas showing the spatial 
resolution achieved and Larus fuscus identification on (a) open grassland, (b) rough grass/bracken, Pteridium spp. scrub, and (c) bluebells, 
Hyacinthoides nonscripta
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based on the measured camera locations, was used (Agisoft, 2016). 
Where automated alignment failed, chunks (subsets of the images) 
were created and aligned. Subsequent merging of these chunks was 
effective in most instances and thus permitted further processing. 
If the processing failed again, due to insufficient overlap between 
images, the unaligned images within the model were discarded, or 
where they were critical for the model, the entire model had to be 
rejected. Of the subcolonies flown, successful models were created 
for 14 of these, with eight subcolonies deemed inadequate for fur-
ther processing, highlighting the importance of adequate overlap 
and sufficient transects during image capture.

A sparse point cloud was produced and georeferenced in the 
projection WGS 1984 using the camera’s internal GPS and supple-
mented with manually collected GCPs that could be identified on the 
imagery; however as these were located on the edges of colonies 
(to avoid disturbance during collection), their impact was negligible. 
A dense point cloud was then produced using the “high” setting to 
maximize the geometric accuracy. Aggressive depth filtering was 
used to remove outliers from the dense point cloud, which is more 
efficient at retaining the birds particularly in vegetation. A 3D mesh 
with 10,000 faces was produced to reduce processing and com-
plexity of the model whilst retaining sufficient detail. A DSM was 
produced, and then, an orthorectified aerial image was produced 
with color correction enabled based on this DSM (Figure 3). The or-
thomosaic was exported into ArcGIS v10.3.1 and reprojected into 
British National Grid.

2.6 | Classification

Following the development of the 14 orthomosaics, a semiauto-
mated classification was undertaken to count the number of Larus 
fuscus using supervised classification. This is a user-driven process 
that involves acquiring a sample of pixels from a known class (known 

as a training set) from the image that provides an accurate represen-
tation of the class (e.g., the heads of the gulls; Foody & Mathur, 2006) 
to create a unique spectral signature for each class; the classification 
process then automatically separates the image into these. The train-
ing sample manager tool was used to identify the spectral signature of 
areas of interest within ArcGIS v10.3.1. Polygons were selected that 
represented different areas of interest (the backs, heads, and tails of 
the gulls) and combined to create a spectral signature for each. The 
maximum likelihood tool was used to perform the supervised classi-
fication following similar studies by Fretwell et al. (2012, 2014, 2017) 
and Grenzdörffer (2013). An iterative process of adding further spec-
tral signatures to other surrounding features (such as bluebells, grass, 
and rocks) was followed. The statistics and histograms of each of the 
signatures’ color band were analyzed. Where a significant overlap ex-
isted, the histograms were narrowed and retested. The “reject frac-
tion” parameter was varied and likewise retested to reject a portion 
of cells due to the lowest possibility of correct assignments allowing 
for straightforward removal of any unrequired pixels.

Following a maximum likelihood classification of the spectral sig-
natures of the following classes, (a) the back portion of the gull; (b) 
the gulls’ head and tail; (c) bluebells; and (d) rocks and sea campion, 
with a reject fraction of 0.01, the gulls were selected and the majority 
of unwanted pixels excluded. Each additional orthomosaic was sub-
sequently classified using the original signature set (C1) along with a 
new signature set from the specific orthomosaic under evaluation to 
test for effectiveness (C2). The classification output was converted 
into polygons to enable further analysis of the discrete classes that 
had been identified, and parameters were tested in ArcGIS and ei-
ther discarded or retained to increase the accuracy of identification 
with the functions shown in Table 1, buffering was found to be the 
most important function. The model builder in ArcGIS was utilized 
to batch process all of the orthomosaics reducing user time greatly.

A shapefile with outlines of the objects identified as birds using 
both the C1 and C2 signature sets was overlaid over the original image 
to enable a short process of manual editing to be applied. The image 
was systematically scanned, and identified objects were checked to 
confirm that it was indeed a bird. If the object was not identified as 
a bird, the polygon was deleted. This process was relatively straight-
forward and fast to complete; the resulting layers are referred to as 
C1e and C2e for each subcolony. The counts for each method were re-
tained both before and after a phase of manual editing. Orthomosaics 
were resampled to give cell sizes of 1, 2, and 4 mm to assess the best 
cell size for autoidentification. A cell size of two undercounted the 
birds by 3.5%, whilst 4 mm resulted in a 4.5% loss of birds (Figure 4).

Each of the orthomosaics was counted manually using the 
method of Hodgson et al. (2016, 2018) to identify the number of 
gulls in each. The success of the classification was determined by 
comparison between these manual counts and the semiautomated 
classification outputs for both C1 and C2, as well as the further 
manual editing stage completed for each of these (see Figure 5). The 
orthomosaics were clipped to fit the subcolony extents in ArcGIS, 
digitized from a drawing provided by the reserve warden. However, 
it was not possible to compare the classification counts directly with 

F IGURE  3 Example of an orthomosaic showing the North 
Haven subcolony (Colony 3)
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the field point counts and walk-through surveys as the subcolony 
boundaries were not exact (due to both the hand-drawn maps used 
and the lack of image overlap at the edges of the colonies during 

image capture that resulted in not all colonies being re-created in 
their entirety), the primary focus of the field surveys was on counts 
of nests rather than birds, and the field and UAV surveys were not 

TABLE  1 The processes used in ArcGIS to improve the accuracy of gull extraction form within the orthomosaics and their perceived 
impacts

Processing function
Parameter defining the 
part to be erased

Positive impact on the 
file Negative impact on the file

Removal based on the size of initial 
polygons

<0.0008 m2 Able to reduce a lot of 
background noise 
whilst retaining gulls 
features.

Removes small outlying areas of the gulls

Removal based on the distance from other 
class of gull from the other (i.e., head 
from back)

>3 cm Removed much of the 
background, 
particularly bluebells 
that are not nearby 
polygons mistaken 
for the whiteheads.

Can remove outlying areas of the gulls.

Removal based on the size of merged 
polygons from head and backs

<0.0125 and >0.001 Removes areas of 
rock.

Fails if other areas fit within the 
bounding size. Has the potential to 
remove polygons of birds. The 
parameters could be widened but 
would result in extra manual cleaning 
up.

Buffering 1 cm Allows merging of 
nearby polygons and 
reduces the 
likelihood of gulls 
being counted twice.

F IGURE  4 Automated identification of the same orthomosaic at three different grid cell sizes: 10 mm (left), 20 mm (center), 40 mm 
(right). The images show birds that are both identified and the greater proportion that are missed at 20 and 40 mm resolution
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undertaken at the same time so there would be some discrepancy 
with the birds recorded. This meant that a full statistical comparison 
between the field and computer bird counts for all of the subcolo-
nies monitored was not possible.

Additionally, to address the third research question and explore 
the utility of this technique to identify different gull species, poly-
gons were drawn to create a signature set of the three different gull 
species using a collection of the raw images. The same technique as 
previously described was used to classify the gulls and surrounding 
features, but the back portion of the gull was used to differentiate 
between the three species of Laridae present (Larus argentus, L. fus-
cus, and Larus marinus).

2.7 | Statistical analysis

Variables were tested for normality (Shapiro–Wilk test) prior to anal-
ysis, and nonparametric tests were undertaken when variables failed 
(p < 0.05). Nonparametric correlations (Spearman’s rank) between 
the semiautomated classification outputs and manual image counts 
were examined. Statistical analyses were carried out using IBM SPSS 
Statistics for Windows v24 and R v3.4.2.

3  | RESULTS

3.1 | Behavioral responses of gulls to UAV survey

During observations of 12 gull subcolonies, no instances of nest loss 
due to predation or cannibalism were recorded, either before or dur-
ing any of our UAV surveys, and there was only one short-lived at-
tack of a UAV made by a gull. We found no impact of UAV survey 
flights at 15 m on gull behavior: There was no significant difference 
in either the number of flights by gulls (Wilcoxon signed rank test: 
V = 17, p = 0.1682) or the number of hops within the colony (V = 24, 
p = 0.2661) between the period immediately prior to or during the 
UAV survey flights (Figure 6). By comparison, walk-through counts 
caused all gulls in the subcolony to take flight at some point during 
the short (5–10 min) duration of the walk-through, with many birds 
alarm calling and a few gulls attacking fieldworkers with a swoop-
ing flight and a peck to the head and/or defecation (pers. obs. by 
authors). We cannot comment on the physiological responses of 

the birds, and their behavior indicated that the birds were not vis-
ibly stressed during or after the UAV flights. Little general distur-
bance was noted by the authors and wardens to other bird species 
in the vicinity of the subcolonies; however, both Oystercatchers, 
Haematopus ostralegus, and Ravens, Corvus corax, did approach the 
UAV whilst alarm calling when they first encountered it, but this re-
sponse lessened after the initial flight.

3.2 | Semiautomated gull counts

For the 14 orthomosaics created, the totals of the manual counts 
of images (“manual”) extracted from each subcolony classified are 
compared with the counts obtained through the semiautomated 
processing (C1 and C2) and additional manual editing that was ap-
plied to these (C1e and C2e). Hodgson et al. (2016) found that manual 
counting of birds within images is consistently similar to or signifi-
cantly larger than ground counts because of the downward-facing 
perspective, although it should be noted this is likely to be species- 
and habitat-specific. Thus, the correlation here between semiauto-
mated and manual counts suggests that these should correlate and 

F IGURE  5 An example of the classification output accuracy: (a) the original orthomosaic, (b) the manual counts with the pink stars 
highlighting gulls, and (c) the classification results outlining the gulls in yellow

(a) (c)(b)

F IGURE  6 Behavioral responses of Lesser Black-backed 
Gull before and during 12 unmanned aerial vehicle survey 
flights over subcolonies. There was no significant difference in 
the numbers of flights (before: 2.063.284 ± 3.024 per minute, 
during: 3.284 ± 3.024) or hops (before: 2.089 ± 1.964, during: 
4.217 ± 5.303 per minute)
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offer a real alternative for replacing time-consuming point counts 
and providing counts of inaccessible areas (Figures 7).

Method C1 underestimates the number of birds in 10 of 13 sub-
colonies (76%), whilst C2 generally overestimates, with 11 of the 14 
subcolonies having a count that was greater than the manual count 
(Figure 7). Counts from both methods were subsequently reduced 
following manual editing (C1e and C2e). The mean agreement when 
a single signature set was applied was 86% (C1), compared to 104% 
(C2) from a signature developed from each image. These fell to 79% 
and 98%, respectively, once manual editing was applied to the re-
sults. The manual editing confirmed all objects to have been cor-
rectly identified as birds in four of the subcolonies in both methods, 
with the C1 set having a mean error of 7% incorrect identifications 
and C2 having a mean error of 5%. There was a significant positive 
correlation between semiautomated counts and manual eye counts 
in all cases (Figure 7).

The C2 method was the most proficient, bringing the lowest dis-
crepancy between semiautomated counts and manual image counts, 
and the lower variance than method C1 (Figure 8). There was little 
variation in the counts between the subcolonies with the different 
background vegetation (shown in Figure 2), thus highlighting that 
the semiautomated classification technique was successful at de-
tecting birds over a range of complex backgrounds. Variation be-
tween subcolony accuracy was primarily due to the image quality of 
the orthophoto.

3.3 | Identifying gull species

Two example subcolonies were selected to investigate the poten-
tial of the semiautomated classification process to differentiate be-
tween the three species of Laridae: Herring Gull L. argentus, Lesser 
Black-backed Gull L. fuscus, and Great Black-backed Gull L. marinus. 
The original purpose of the UAV survey was focused on counting 
Lesser Black-backed Gulls, so although our imagery did not permit 

full statistical analysis of species differentiation of a mixed-species 
colony, there was sufficient imagery containing multiple gull species 
to enable a proof-of-concept analysis. The images collected are all 
true color and therefore contain three bands (red, green, and blue); 
using the band combinations, it is possible to determine whether the 
classification will be able to clearly distinguish between the signa-
tures of the three species. Figure 9 shows that there are clearly iden-
tifiable differences between the color bands of the three species, 
therefore indicating that this method is suitable for differentiating 
and counting the number of birds of each species, with Herring Gulls 
being particularly distinct from the other two gull species. The semi-
automated classification process successfully identified the three 
species of gulls on the subcolonies analyzed, an example of this is 
shown in Figure 10 where we differentiate Lesser and Great Black-
backed Gulls, and therefore shows the potential that this method has 
for species identification in future investigations.

4  | DISCUSSION

This paper demonstrates that UAVs can provide accurate counts 
(comparing manual vs. semiautomated bird counts using the UAV 
imagery) of a colony-nesting Lesser Black-backed Gulls, L. fuscus 
without undue disturbance, using semiautomated image processing. 
We also indicate a method to distinguish between three Laridae spe-
cies nesting in the same location. Behavioral analysis quantified the 
impact of the UAV on L. fuscus breeding colonies, which was found 
to be very low to negligible when flying at or above 15 m over the 
subcolony. This noninvasive method has the ability to remotely re-
cord seabird species and enhance the survey toolkit that is already 
employed, with the orthorectified images providing a permanent 
record of bird location and number, and the classification process 
outlined enabling semiautomated counts of individual birds and spe-
cies. There is potential to expand this technique to monitor other 

F IGURE  7 Variation between subcolonies in the agreement of semiautomated counting methods with manual counts. Overall correlation: 
C1 = 93% (N = 13, rs = 0.934, p < 0.001), C1e = 97% (N = 13, rs = 0.968, p < 0.001), C2 = 96% (N = 14, rs = 0.961, p < 0.001), C2e = 99% (N = 14, 
rs = 0.991, p < 0.001)
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seabird species, with appropriate behavioral assessment, and to 
monitor colonies that are currently inaccessible for traditional point 
and walk-through surveys at a relatively low cost, thus expanding 
the scope of the seabird monitoring program. UAVs could also prove 
useful in monitoring urban gull populations, which is a posing a chal-
lenge (Coulson & Coulson, 2015), but this would need to be carefully 
managed and potentially restricted to areas with low populations 
due to the restrictions around flying in built-up areas. The methods 
developed and applied here offer a promising avenue to improve and 
expand avian census techniques, and further developments in tech-
nology and image processing techniques will no doubt increase their 
utility further.

Flying a UAV in a controlled manner in the presence of the ex-
perienced ornithologists has allowed a suitable method for bird sur-
veys over breeding gull colonies to be developed. Vas et al. (2015) 
suggested that flying within 4 m of birds is feasible in certain sit-
uations. However, we found that flying below 15 m provided no 

useful increase in image quality that warranted the increased pro-
cessing time that accompanied the increased photographs that were 
captured, and brief trials below 10 m caused undue disturbance to 
nesting gulls. An altitude of 15 m is therefore recommended for 
flying over breeding gull colonies with minimum disturbance to 
obtain images with a cell size of 10 mm. With best practice includ-
ing a take-off and landing site for the UAV away from the colony, 
and an initial acclimatization flight at 40 m before gradually lower-
ing this to 15 m for the image collection, making sure to avoid any 
sudden drops in altitude that was perceived as predator behavior 
by the birds (Brisson-Curadeau et al., 2017). Our UAV protocol has 
been successfully adopted to survey breeding Lesser Black-backed 
Gulls using a fixed-wing UAV with similarly minimal disturbance (A. 
Kilcoyne, Natural England, pers. comm.). With a higher resolution 
camera, it would be possible to fly at a greater altitude and obtain 
similar resolution. With technological developments improving the 
quality and size of cameras, it may be possible to capture similar 
resolution imagery from higher m.a.s.e. in future. The result would 
be minimized disruption to birds, less flight time, and less process-
ing to produce the orthomosaics. Our image capture in this study 
was subject to edge effects; therefore, we recommend the flying of 
overlapping and perpendicular transects with suitable overlap on a 
preprogrammed flight route and with the flight path exceeding the 
colony boundary to avoid distortion at the edges having an impact 
on counts. Furthermore, GPS ground control points should be dis-
tributed around the colony and captured in at least three images.

Using a UAV for ecological surveys provides a method for efficient 
data capture, and as the images are recorded permanently, they can 
be referred back to in future years, to compare not only the num-
ber but also the position of nesting birds. The relatively low cost of 
UAVs (approximately £2k for a quadcopter in 2018) offers the poten-
tial to capture seabird colonies at a time of year and spatial extent 
of the researchers choosing. The UAV proved to be noninvasive and 
resulted in minimal disturbance to the birds within the subcolonies, 
and the overhead view provided by the images is ideally suited to ob-
serve birds in a range of habitats, including overgrown vegetation in 
which nests/birds can be difficult to spot from ground level. However, 
the importance of using both an experienced UAV pilot and a trained 

F IGURE  8 Differences between the manual counts and the 
semiautomated methods to count Lesser Black-backed Gulls. Boxes 
represent the first and third quartiles, and the median is marked 
and labeled, and bars represent 1.5 times the interquartile range. 
Extremes are shown as circles and stars as outliers

F IGURE  9 Scatterplots of the different color bands against each other of the three gull species (Band 1 = red, Band 2 = green, and Band 
3 = blue), highlighting that there are clear differences between the species especially between Band 1–Band 2 and Band 2–Band 3
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ornithologist to undertake bird surveys, at least in the first instance, 
is stressed and if this technique was to be used for other bird species, 
this would require further behavioral assessment and perhaps a mod-
ification to the minimum flying height used, as also recommended by 
Vas et al. (2015) and Brisson-Curadeau et al. (2017).

Unmanned aerial vehicle survey flights at 15 m had no signifi-
cant effect on flight behavior in the colony as compared to ground 
observers being present within 50 m, which is regularly experienced 
by these birds being approached by island visitors on nearby paths. 
By comparison, walk-through counts of gull nests typically result 

in a high level of disturbance and “attack” behavior by the gulls di-
rected at fieldworkers (pers. obs. by authors), although there are no 
current alternative methods for estimating productivity. Figure 11 
shows the potential utility of the images at 5 m whilst also demon-
strating the impact on the birds; the majority of incubating birds 
have left the nest, indicating high stress although they remained in 
attendance and returned to nests as soon as the UAV was no longer 
directly overhead. However, this provided the opportunity to survey 
the number of nests and eggs, potentially useful information in sur-
vey work and understanding in population studies, and potentially 

F IGURE  10 An example of the species classification output highlighting the Lesser (red) and Great (blue) Black-backed Gulls: (a) the 
original orthomosaic, (b) the manual species identification, and (c) the semiautomated classification output

(a) (c)(b)

F IGURE  11 An example of an image captured at 5 m.a.s.e.: Red circles = nests that were temporarily abandoned with eggs clearly visible, 
blue circles = nests temporarily abandoned with nests and eggs partially visible, yellow circles = nests with apparently incubating adults. 
Insets show examples of close-ups of individual birds
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separating breeders from nonbreeders and partner birds both on 
and off the nest, as has been demonstrated in Common Murres, Uria 
aalge (Brisson-Curadeau et al., 2017). However, this presents a risk 
of a collision between the UAV and birds that does not exist in a 
walk-through count. The complex costs and benefits of flight plans 
in UAV survey will vary between types of equipment, species, and 
sites, necessitating careful consideration and ideally trials of the im-
pacts of UAV survey on wildlife.

The semiautomated image classification method presented here 
has the ability to identify and count the number of individual birds 
within gull colonies, as well as offering the potential to differentiate 
gull species. Manual counting of birds in an image, similar to that em-
ployed elsewhere by Hodgson et al. (2016, 2018), Sardà-Palomera 
et al. (2012), and Chabot et al. (2015), proved to be time-consuming 
in our study system and more prone to errors. For example, semi-
automated classification identified birds that were not picked up by 
manual counting in four subcolonies.

Using Agisoft PhotoScan produced 14 useable orthomosaics and 
demonstrated that the method and software can produce suitable 
orthomosaics for further processing if adequate imagery is col-
lected. Importantly, creating an individual training set for each or-
thomosaic, similar to the method promoted by Fretwell et al. (2012, 
2014, 2017), improves the ability to recognize individuals. In an ideal 
scenario, all images would be collected under the same environmen-
tal conditions allowing for a single training set to be used; however, 
this is unrealistic in practice; different light conditions, cloud cover, 
and shadows create differences in the color bands that are hence 
best recognized by creating a signature set based on those exact 
conditions. Of the 64 individuals missed by the semiautomated 
counts (of a total 1,183) using this classification method, all were 
located in three subcolonies, two of which contained large distortion 
within the images, suggesting an excellent level of accuracy from this 
method and emphasizing the importance of the collection of well-
distributed, high-quality images.

The subsequent procedure of applying a set of parameters 
was successful in removing much of the noise during the classi-
fication process whilst retaining the bird identification, despite 
some overlap between the spectral signatures of the birds with the 
background habitat, particularly the bluebells. The parameters that 
were set here retain only a small amount of noise without missing 
individuals. Clearly, if the method is to be applied to other species 
then alterations to the parameters used and potentially new pa-
rameters will have to be explored and applied. A final manual stage 
to remove the remaining noise is recommended to increase the ac-
curacy of the final output; this procedure was relatively quick and 
easy; it was clear in virtually all cases which objects were not birds 
based on their shape, position within the frame, or position related 
to other objects. This process of manual editing proved important 
in this research in improving the accuracy and precision to a mean 
agreement of 98% and a correlation of 99% with manual counts.

Preliminary investigation of the functionality of identifying differ-
ent gull species suggests that the spectral signature of each gull species 
is sufficiently different such that it is possible to create a training set 

that can identify individuals of Herring Gull, Lesser Black-backed Gull, 
and Great Black-backed Gull. Indeed, given the advantage of overhead 
imagery, the potential for similar surveying of other species of nesting 
birds in similar or other habitats could be explored. Best practice will 
have to be established in terms of flying over other species and should 
be practiced in a similar way as here with experienced ornithologists 
being part of the team monitoring the bird behavior.
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