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Abstract  

The high floristic biodiversity value of ancient woodland is widely acknowledged, as is its 

status as a fragmented habitat of limited spatial extent. The distinctive vegetation of 

ancient woodland is an important factor in its conservation. Specifically, Ancient Woodland 

Indicator (AWI) species have been shown to be poor dispersers and incompatible with a 

fragmented habitat that is subject to environmental change. In recognition of their 

ecological importance, both Ancient Semi-Natural Woodland (ASNW) and Ancient 

Replanted Woodland (ARW) are protected by legislation.  

This thesis took the novel approach of examining the distinctiveness and community 

ecology of vegetation communities in all three woodland types of ASNW, ARW, and recent 

woodland. Importantly, analyses were based on new high-granularity primary vegetation 

and soil data. 

To address questions raised in the literature regarding the accuracy of ancient woodland 

and AWI identification, this research examined the metrics used to distinguish these 

habitats and species. Increasingly, the literature calls for further understanding of the 

ecological drivers of ancient woodland vegetation distinctiveness. In response, this 

research tested for differences in species composition of canopy, shrub, herb layer, AWI, 

and moss communities across all three woodland types. For AWI species, biotic, abiotic, 

and biogeographical variables were analysed for their contribution to community 

distinctiveness. 

Results highlighted the importance of consistency in metric selection when assessing the 

distinctiveness of ancient woodland and determining indicator species. In addition to the 

usual alpha scale measure of distinctiveness, assessing richness and community 

composition at the beta and gamma scales is recommended to inform conservation. Life 

traits and dispersal mechanisms were important differentiators for herb layer community 

composition among the woodland types. AWI richness was equally strongly explained by 

biogeographical variables as by ASNW, ARW, and recent status. Overall, this thesis 

supported ecological and biogeographical explanations for the distinctiveness of ancient 

woodland vegetation. 
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Glossary of key terms 

Ancient semi-natural woodland: ‘Ancient woodland composed of predominantly site 

native tree species, usually derived from coppice or natural regeneration; the composition 

may be modified by past management and more recent planting of native species’ (Forestry 

Commission, 2010:48) 

Ancient woodland: ‘A classification for woodland which has been in continuous existence 

from before AD 1600 in England, Wales and Northern Ireland and from before AD 1750 in 

Scotland’ (Forestry Commission, 2010:48). 

Ancient woodland indicator species: Vascular plants that are strongly associated with, but 

not exclusive to, ancient woodland (Hermy et al., 1999; Rose, 1999). Usually referring to 

shrub, field and herb layer species, although could refer to non-vascular plants. 

Ancient woodland species:  Plant species with a strong affinity for ancient woodland, slow-

colonisers, that are indicative of woodland interiors, habitat continuity and potentially 

original woodland conditions (Hermy et al., 1999). Usually referring to shrub, field and herb 

layer species. Sometimes used interchangeably with ancient woodland indicator species. 

Ancient woodland vascular plant species: - another term for ancient woodland indicator 

species, although less commonly used. Usually referring to shrub, field and herb layer 

species (Rose, 1999). 

Continuity indicator: Similar in scope to ancient woodland indicator species, but this term 

tends to be used for lichen studies (Whittet and Ellis, 2013). 

Old-growth forest: Defined as ‘stands in primary or secondary forests that have developed 

the structures and species normally associated with old primary woodland of that type that 



xii 

 

have sufficiently accumulated to act as a woodland ecosystem distinct from any younger 

age class’, which contain veteran trees over 200 years old (Forestry Commission, 2010: 50). 

Less commonly used in the UK than the similar term ancient semi-natural woodland. 

Primary woodland:  A continuation of primaeval woodland which has never been cleared 

(Peterken, 1993). 

Recent woodland Species: Plant species with a strong affinity for recent woodland, tending 

to be ruderal or competitive, with a persistent seed bank and good dispersal mechanisms 

(Graae et al., 2004). Usually referring to shrub, field and herb layer species. 

Secondary woodland: ‘Secondary woodland grows on land that was formerly used pasture, 

meadow, arable, grouse moors, deer forest, habitation, quarries, etc.’ (Peterken, 2013: 79). 

Woodland generalists/ woodland species: Plant species that prefer woodland but can 

occur in more open habitats (Brunet et al., 2011). Usually referring to shrub, field and herb 

layer species. 

Woodland specialists/ true woodland species/ core woodland species/ strict woodland 

species: A range of terms used to refer to plant species occurring in closed woodland 

(Whigham, 2004; Bierzychudek, 1982). Usually referring to shrub, field and herb layer 

species. Sometimes used interchangeably in the literature with ancient woodland species 

or ancient woodland indicator species. 

Woodland: The National Forest Inventory defines woodland in Britain as an area with 

minimum 20% canopy cover, of least 0.5 hectares, and width of 20 metres (Forestry 

Commission, 2011a). 
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Acronyms and abbreviations 

AONB – Area of Outstanding Natural Beauty 

ASNW – Ancient Semi-Natural Woodland 

ARW – Ancient Replanted Woodland 

AWI – Ancient Woodland Indicator 

AWS – Ancient Woodland Species 

Cal. BP – Calendar Years Before Present 

DEFRA – Department for Environment, Food and Rural Affairs 

d.f. – degrees of freedom 

GIS – Geographical Information System  

GPS – Geographical Positioning System   

ha – hectares 

km – kilometre  

MAGIC map – Multi-Agency Geographic Information for the Countryside  

m.a.s.l. – metres above sea level 

OS – Ordnance Survey  

RAWS – Restored Ancient Woodland Sites 

s.d. – standard deviation 

s.e. – standard error 

SNA – Strategic Nature Area  
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Terminology 

Woodland/ forest: ‘Woodland’ is the term used in UK policy and legislation, and so is used 

in place of ‘forest’ for consistency when referring to international studies, except where 

forest is an accepted part of the nomenclature for instance of a place, organisation or title. 

Ancient woodland/ Ancient Semi-Natural Woodland (ASNW): Many studies refer to 

ancient woodland as contrasted with recent woodland. However, in Britain ancient 

woodland comprises two categories ASNW and ARW. The majority of studies use the term 

‘ancient woodland’ to mean ASNW but not ARW. Therefore, throughout this thesis ASNW 

is used in place of ‘ancient’ where it refers to ASNW only.  

Ancient Replanted Woodland/ Plantation on Ancient Woodland Site. ‘Ancient Replanted 

Woodland’ (ARW) is used throughout instead of ‘Plantation on Ancient Woodland Site 

(PAWS), as the former terminology is becoming more common in recent literature. 

Ancient Woodland Indicator species. Throughout this thesis the term ‘Ancient Woodland 

Indicator’ (AWI) will encompass other terminology such as Ancient Woodland Species, 

woodland specialists, true woodland species. The terminology for woodland flora varies 

amongst studies and some terms are used interchangeably or conflated. The major terms 

are defined in the glossary. AWI is predominantly used in the UK. However, AWI and AWS 

terms are often used interchangeably in some European studies. Ancient Woodland 

Indicator (AWI) species are more correctly a subset of AWS (Hermy et al. 1999; Schmidt et 

al., 2014) and are not only strongly ecologically associated with ancient woodland, but are 

also used to identify it. The majority of studies distinguish between ‘Ancient Woodland 

Species’ (AWS) or ‘Ancient Woodland Indicators’ (AWI), ‘recent woodland species’ and 

‘other woodland species’ (De Keersmaeker et al., 2014; Kelemen et al., 2014; Schmidt et 

al., 2014; Kirby and Morecroft, 2011; Orczewska, 2009; Sciama et al., 2009; Hermy et al., 
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1999; Bossuyt and Hermy, 2000; Wulf, 1997). Other studies refer to ‘true woodland 

species’, ‘woodland core species’, ‘woodland specialists’, as opposed to ‘woodland 

generalists’, to distinguish those associated with good quality, established (often ancient) 

semi-natural woodland (Brunet et al., 2011; Vellend et al., 2007; Graae et al., 2004).   

 

Referencing 

This thesis employs the University of Gloucestershire Harvard system. 

 

Taxonomic nomenclature 

This thesis follows The Plant List http://www.theplantlist.org/  (Royal Botanic Gardens Kew 

and Missouri Botanical Garden, 2013). 

http://www.theplantlist.org/
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1. Introduction and literature Review 

 

 

Hyacinthoides non-scripta. Francombe Wood, Sapperton Strategic Nature Area  

04/05/14. Grid ref. SO 95469 05612.  

Scope of Chapter 

This combined introduction and literature review explores the ancient woodland concept 

in global, European and British contexts. Woodland history in Britain is outlined to set 

the context of current conservation policy and priorities. The identification of ancient 

woodland and ancient woodland indicator species are described and critiqued. The 

vegetation ecology of ancient woodland relative to recent woodland is discussed in the 

context of British and European literature. The structure of the thesis is outlined. This 

chapter closes with the rationale for the research and statement of research aim and 

objectives. 
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1.1 Woodland definition, cover and context 

This section presents a broad introduction to woodland internationally, and a detailed 

description of woodland types and classifications in Britain, with specific focus on the 

concept of ancient woodland.  

 

1.1.1 Global and European context 

Woodland and forests globally are firmly established as a high conservation priority (CBD, 

2016; IUCN, 2016; UNEP, 2016). Research-informed sustainable management of woodland 

and forest is necessary for the conservation of biodiversity, the regulation of environmental 

processes, and resource provision for human use (FAO, 2015).  

Long-established and continuously wooded areas are internationally recognised as having 

the highest conservation value of all types of woodland (Wirth et al., 2009a; Rackham, 

2008, Rackham, 2003; Peterken, 1993). These Ancient Semi-Natural Woodlands (ASNW) or 

old-growth forests are acknowledged not only for their high biodiversity value in 

comparison to recent woodland (Peterken, 1993), but also because they are considered to 

be the closest habitat to natural climatic climax vegetation due to their long-term 

continuously wooded state (Corney et al., 2008b). This is particularly important for 

countries with a history of extensive land use change and population growth, meaning that 

little primary woodland remains. As such they provide a semi-natural baseline or reference 

point for research which informs sustainable management of all woodland types (Wirth et 

al., 2009a; Corney et al., 2008b; Goldberg et al., 2007). 
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The distinction between ASNW and recent woodland originated in Britain (Peterken, 1977; 

Rackham, 1976) and has been adopted internationally, with the term ‘ancient’ being used 

within Europe and ‘old-growth’ in other continents. Although the two terms are not 

precisely synonymous (Wirth et al., 2009b), the principle is embedded in conservation and 

ecology research in North America (e.g. Vellend et al., 2007; Vosick et al., 2007), South 

America (e.g. Barlow et al., 2007; Clapp, 1998); Asia (e.g. Miura et al., 2007; Zhang et al., 

2000); Africa (e.g. Lawton et al., 1998); Australasia (e.g. Rudel et al., 2005; Keenan and Ryan 

2004; Woodgate et al., 1996); and Europe (e.g. Kirby and Morecroft, 2011; Hermy et al., 

1999). Despite the apparent value of such woodland, it is at risk from a multiplicity of 

threats, such as fragmentation, habitat loss, non-native species, pests and pathogens, 

disturbance, pollution and climate change (Corney et al., 2008b; Rackham, 2008). 

To assist with identification of ancient woodland for conservation purposes, many 

European countries have developed lists of indicator species that exhibit an affinity for 

long-established woodland (e.g. Schmidt et al., 2014; Blasi et al., 2010; Kirby, 2004; Rose, 

1999; Honnay et al., 1998; Wulf, 1997; Peterken, 1974). Such indicators may include 

bryophytes, lichens, herbaceous and woody plants, molluscs, birds, invertebrates, and 

fungi (Blasi et al., 2010; Glaves et al., 2009), although most commonly used are herb and 

shrub layer plants. The importance of Ancient Woodland Indicator (AWI) species research 

is two-fold: (a) the high status of ancient woodland in policy and legislation means robust 

and up-to-date lists for the identification of ancient woodland are required; and (b) the 

species are often of conservation value in their own right due to their restricted range 

within a fragmented and depleted habitat, combined with poor dispersal abilities (Hermy 

et al., 1999). 
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1.1.2 Woodland cover in Britain 

The last truly natural woodland extant in Britain was the Atlantic forest of 5000-7000 

Calendar years Before Present (Cal. BP), the climatic climax vegetation that developed after 

the last glaciation (Table 1.1) (Peterken, 1981). Both Peterken and Rackham (1990) refer to 

this early woodland as ‘wildwood’ (although the exact nature of this is contested (Vera, 

2000)), and conclude it is unlikely that any of this woodland has persisted until the present. 

The vegetation of woodland in Britain is partly explained by historical biogeographical 

factors. As the last glaciation ended, biomes that had shifted South, moved North again, 

facilitated by the low sea levels and land bridges to Europe (Rackham, 2000). Pollen records 

show that pine and birch woodland developed rapidly in the early post-glacial period, 

possibly having already been present in the non-glaciated south of the British Isles 

(Pennington, 1969). Today, the flora of mainland Europe is much richer than Britain’s, 

caused by rising sea levels around 7500 Cal. BP which disconnected Britain from Europe 

and reduced further migration of species. 
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In terms of early human influence, Rackham (1990) acknowledges the impacts of small-

scale woodland clearances 9500-6000 Cal. BP, but agrees with Peterken (1981) that the 

first large-scale human influence on woodland began with agricultural expansion 6000-

4000 Cal. BP.  Woodland clearance and coppice management continued between 4000-

2000 Cal. BP. Rackham (2000) depicts highly managed woodlands during 2000-1500 Cal. BP 

with little change occurring in wooded areas during 1400-1000 Cal. BP when charters began 

Table 1.1. Changes in composition and human influence on woodland in Britain during 

the Flandrian period (after Peterken (1981:6) and Godwin (1975). 

Calendar years 

before present 

(Cal. BP) 

Blytt and 

Sernander periods 

Forest Cover 

0-2700 Sub-Atlantic Substantial clearance by Iron Age cultures 

onwards. Severe reduction in forest cover. 

Extensive cultivation and soil modification. 

Alder, birch, oak, beech woodland. 

2700-5000 Sub-boreal Some forest clearance by Neolithic and 

Bronze Age cultures, but forest remaining 

widespread. Alder, oak, lime woodland. 

5000-7500 Atlantic Forest cover complete. Alder, oak, elm, lime 

woodland with pine, birch in North. 

7500-9500 Boreal Forest cover complete. Hazel, birch, pine 

woodland, becoming pine, hazel, elm, oak. 

9500-10,500 Pre-boreal Some open vegetation remaining from the 

last glaciation but forest cover increasing and 

becoming almost complete. Birch, pine 

woodland.  
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to provide more accurate written records. The Domesday book of 1086 shows England to 

be very unevenly and sparsely wooded, with an estimated 15% cover (Rackham, 2000); 

Forestry Commission, 2011a) (Fig. 1.1).  

 

Figure 1.1. Woodland as a percentage of land area in England 1086-2011. Forestry 
Commission, 2011a) 

Woodland planting was not common before c1600 (Goldberg et al., 2007). Despite 

woodland planting, net woodland cover decreased through the 1700s and 1800s (Fig. 1.1) 

(Forestry Commission, 2011a). By 1900 woodland cover was only 5%, necessitating the 

establishment of the Forestry Commission in 1919 to manage timber supplies (Forestry 

Commission, 2012). As a result, fast-growing species were needed and approximately 38% 

of ASNW was felled during the 19th century mainly to grow conifer plantations, creating 

Ancient Replanted Woodland (ARW). A further 7% was felled for conversion to agriculture 

(Atkinson and Townsend, 2011).  

The most rapid period of woodland cover change was an increase of 696,000ha in 1947 to 

904,000ha in 2002 (Hopkins and Kirby, 2007). Net woodland cover increased through 
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afforestation of non-wooded habitat, but initially of mainly non-native coniferous species, 

then later with increased planting of broadleaf species due to the Broadleaves Policy (1985) 

(Hopkins and Kirby, 2007). ASNW gained stronger protection through the UK Biodiversity 

Action Plan initiated in 1994, as well as restoration of ARW (Pryor et al., 2002). 

Consequently, in the late 1900s, conservation issues became more prominent and planting 

shifted from conifers to broadleaves (Forestry Commission, 2012). Today 10% of England’s 

land use is woodland cover, and 13% of the UK is wooded (Forestry Commission, 2017) in 

comparison to a European average of 37% (Atkinson and Townsend, 2011). 

 

1.1.3 Woodland classification in Britain 

Ecological woodland classification systems evolved through the 20th century, including: The 

Woodland Associations of Great Britain system (Moss et al., 1910); Tansley’s classification 

(1939); Peterken’s (1981, 1980) Stand Theory; Rackham’s (1980) classification; the 

Merlewood System (Bunce, 1982); and National Vegetation Classification (Rodwell, 1991). 

Each system is based on a different paradigm, and different sources and scales of primary 

data.  

Woodland classifications must keep pace with woodland changes in, for example, 

management, canopy cover, external factors or stochastic events (Hopkins and Kirby, 

2007). Since the development of early classifications, many oak woodlands have been 

felled and replaced with other broadleaves (Peterken, 1993), diseases, such as elm disease 

(Ophiostoma ulmi), have altered canopy composition, and coppice abandonment has 

altered woodland structure (Hopkins and Kirby, 2007). Additionally, several shifts in policy 

have occurred, particularly the Broadleaves Policy (1985) which aimed to increase and 
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maintain broadleaf woodland, particularly ASNW. Research continues to inform the 

development of classification systems, particularly the debate over the phytosociological 

approach that treats canopy and understorey strata as one community despite functioning 

at very different temporal and spatial scales (Rackham, 2003; Peterken, 1993).  

National Vegetation Classification (NVC) is the current standard Phase 2 habitat 

classification system applied to woodland and other habitats in Britain. It has been fully 

adopted by governmental and non-governmental organisations, ecological consultancies, 

and educational institutions (Rodwell, 2006; Kirby, 2003). NVC takes a phytosociological 

approach through the study of plant community composition and abundance and 

frequency occurrence of species in all woodland layers. Phytosociology is defined by 

Rodwell (2006:58) as ‘the science of characterising and understanding plant associations 

through the collection and tabling of relevés’. NVC is not solely a woodland classification; 

it covers all semi-natural and major artificial habitat types in Britain, enabling 

standardisation and a continuity in the classification of habitat types. 

NVC recognises 19 different upland and lowland woodland types (W1-19), divided into 73 

sub-categories, plus six scrub communities (W20-25) (Table 1.2). The classification was 

based on 2800 sample plots representative of ASNW and recent woodlands throughout 

Great Britain (Kirby, 2003), whereby stands were surveyed via five to ten nested quadrats 

of 50x50m, 10x10m and 4x4m. Species abundance was recorded using the DOMIN scale, 

and frequency occurrence in plots within a sample stand was allocated to classes 1-5.  
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Table 1.2. NVC classification for woodland and scrub (Rodwell, 1991). 

W1  

W2  

W3  

W4  

W5  

W6  

W7  

W8  

W9  

W10  

W11  

W12  

W13  

W14  

W15  

W16  

W17  

W18  

W19  

W20 

W21  

W22  

W23  

W24  

W25  

Salix cinerea - Galium palustre woodland  

Salix cinerea - Betula pubescens - Phragmites australis woodland 

Salix pentandra - Carex rostrata woodland 

Betula pubescens - Molinia caerulea woodland 

Alnus glutinosa - Carex paniculata woodland 

Alnus glutinosa - Urtica dioica woodland 

Alnus glutinosa - Fraxinus excelsior - Lysimachia nemorum woodland  

Fraxinus excelsior - Acer campestre - Mercurialis perennis woodland 

Fraxinus excelsior - Sorbus aucuparia - Mercurialis perennis woodland  

Quercus robur - Pteridium aquilinum - Rubus fruticosus woodland 

Quercus petraea - Betula pubescens - Oxalis acetosella woodland 

Fagus sylvatica - Mercurialis perennis woodland 

Taxus baccata woodland 

Fagus sylvatica - Rubus fruticosus woodland 

Fagus sylvatica - Deschampsia flexuosa woodland 

Quercus spp. - Betula spp. - Deschampsia flexuosa woodland 

Quercus petraea - Betula pubescens - Dicranium majus woodland  

Pinus sylvestris - Hylocomium splendens woodland 

Juniperus communis ssp. communis - Oxalis acetosella woodland 

Salix lapponum - Luzula sylvatica scrub  

Crataegus monogyna - Hedera helix scrub 

Prunus spinosa - Rubus fruticosus scrub  

Ulex europaeus - Rubus fruticosus scrub 

Rubus fruticosus - Holcus lanatus underscrub 

Pteridium aquilinum - Rubus fruticosus underscrub 
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NVC was greatly informed by earlier classification systems, and addressed some of their 

weaknesses. Tansley’s (1939) system classified woodland by the dominant species in the 

tallest layer, for example oakwoods, ashwoods, and scrub. Therefore mixed stands were 

not distinctly represented (Peterken, 1993). This criticism was addressed by NVC via a more 

comprehensive phytosociological approach. Peterken’s (1981, 1980) Stand Theory was the 

accepted classification system used by conservation agencies until 1986 (Hall and Kirby, 

1998). It included only the tree and shrub species, in conjunction with edaphic, historical 

and geographical characteristics. However, unlike Tansley’s system, mixed stands were 

more distinctly recognised in the Stand Theory (Peterken, 1993). Like NVC, stand species 

cover was recorded within each plot via a modified DOMIN scale and a constancy class was 

allocated for the proportion of plots within a woodland in which each species occurs 

(Peterken, 1993). NVC also adopted the floristic approach of the Merlewood classification 

system (Bunce, 1982), which considered canopy, shrub, field and ground strata, alongside 

abiotic data, to classify woodlands into 32 plot types. NVC records all vascular plant species, 

and moss species, whereas the Merlewood system groups species and focuses on the more 

easily identifiable (Peterken, 1981). 

The phytosociological paradigm of NVC is perhaps its most debated aspect. The criticisms 

of the phytosociological classification originate in the extent to which the plant 

communities at the canopy, shrub understorey, field and ground layers should be 

considered as separate communities. Rackham (2003) and Peterken (1993) argue against 

the use of phytosociological classifications, emphasising instead the inclusion of abiotic 

factors, history, time, and management. For this reason, NVC emphasises the understorey 

species, which are unlikely to have been deliberately altered, making the classification 

suitable for recent woodlands and plantations but, according to Rackham (2003), less 

suitable for ancient woodland.  
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NVC is accepted as the standard methodology yet devised for woodland classification. It 

has a number of potential research applications beyond basic classification. Whilst NVC 

alone is not recommended for long-term monitoring, an initial survey can be followed by 

percentage cover or count data from quadrat or transect surveys (Birnie et al., 2005). NVC 

analytical tools, such as the similarity coefficients produced by classification software, can 

be used in conjunction with quadrat data to monitor and predict changes in vegetation 

classification, for example post-management intervention (Birnie et al., 2005). There is 

potential for NVC to be used as a predictive proxy measure of environmental conditions of 

a site, although this type of study has only been carried out for grassland and mire 

communities (Sanderson et al., 1995). 

 

1.2 The ancient woodland concept 

This section sets the context of ancient woodland in England within the concepts of 

continuity and naturalness. The policy context is explained and the methods by which 

ancient woodland is identified are critiqued.  

 

1.2.1 Woodland age, continuity, and naturalness 

Although woodland in England covers only 10% of the land area (Forestry Commission, 

2017), it comprises significant variation in age, origin, structure, geographic configuration, 

and vegetation. Woodland can be assessed for ecological or conservation purposes by age, 

naturalness, and broad management structure (Fig. 1.2).  



12 

 

 

 

Figure 1.2. Classification of woodland according to age and naturalness (Forestry Commission, 
2003) 

 

Woodland age and continuity have become important distinctions in conservation and land 

use policy (Goldberg et al., 2007). ASNW in England is defined as having been continuously 

wooded since at least 1600 and containing predominantly naturally regenerated native 

species (Kirby and Goldberg, 2002). ARW has also been continuously wooded since 1600, 

but felled and replanted with predominantly non-native species, usually conifers (Kirby and 

Goldberg, 2002). The term ‘ancient woodland’ comprises both ASNW and ARW. Of the 

1,294,000ha of woodland in England approximately 340,000ha are ancient (200,000ha 

ASNW and 140,000ha ARW) (Forestry Commission, 2010). A new category for Restored 

Ancient Woodland sites (RAWS) is increasingly used, although no land use cover data is yet 

available (Forestry Commission Wales, 2012). Woodland that is not classified as ‘ancient’ is 
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generally termed ‘recent’, although theoretically it could have been established in 1601. 

Recent woodlands can be subcategorised into naturally regenerated or plantation. 

Degree of naturalness is often used to classify woodlands and as a proxy measure for 

biodiversity value. The Forestry Commission (2003:3) defines semi-natural woodland as 

being ‘composed of locally native trees and shrubs which derive from natural regeneration 

or coppicing rather than planting’. By contrast, Peterken (1993) allows that plantations of 

native species could also be considered as semi-natural, provided they are native to that 

site. Using the Forestry Commission definition, in England 416,000ha of woodland are semi-

natural, comprising 206,000ha ASNW and 210,000ha recent semi-natural woodland 

(Atkinson and Townsend, 2011). Semi-natural, rather than absolutely natural, is the 

realistic standard for ecologically valuable woodland; the term recognises traditional 

management and sustainable anthropogenic uses.  

Methods of establishment and regeneration are important factors when considering 

naturalness. The terms ‘primary’ and ‘secondary’ woodland were established by Peterken 

(1977). Primary woodland is defined as being a continuation of primaeval woodland which 

has never been cleared, whereas secondary woodland has established on land that was 

unwooded for a period of time. It is likely that very little, if any, truly primary woodland 

remains in Britain (Rackham, 2003; Peterken, 1993). Primary and secondary are not 

interchangeable with the terms ancient and recent, as ancient woodland could be of 

secondary development before 1600 (Peterken, 1993). Palynological studies have also 

demonstrated that ancient woodland may be secondary woodland (such as Sidlings Copse, 

Oxfordshire, established c1000 years ago (Day, 1993)), or may have experienced 

interruptions to continuous cover several hundred years ago (Webb and Goodenough, 

2018). 
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Regeneration of trees through natural succession, coppicing or planting is another 

determining factor of naturalness, and consequently biodiversity value. Coote et al. (2012) 

concluded that native Fraxinus excelsior plantations supported fewer woodland specialist 

species than succession-regenerated Fraxinus excelsior woodland. Coppicing is valued as a 

traditional regeneration technique that enables stability and continuity, as well as 

sustainable production, whilst the light-shade cycle provides temporal niche differentiation 

for a greater diversity of woodland specialist species within a given area (Rackham, 2001). 

The ‘nativeness’ of the dominant tree cover factors into the judgement of ‘naturalness’. At 

the simplest level, woodland can be classified by the taxonomy of the dominant tree cover 

as broadleaf or coniferous. Of the 1,306,000ha of woodland in England 74% is broadleaf 

and 26% coniferous, (UK 49% and 41% respectively) (Forestry Commission, 2017). The most 

common native broadleaf canopy species listed in the National Forest Inventory of England 

are Quercus sp., Fagus sylvatica, Fraxinus excelsior, Betula sp., Salix sp., and Alnus glutinosa 

(Forestry Commission, 2013). Whilst these are native nationally, their native range may not 

extend into every locality, and therefore could be considered less desirable than locally-

native trees. Acer pseudoplatanus is a naturalised canopy species (Rackham, 2003). Native 

British canopy conifers are Pinus sylvestris, and occasionally Taxus baccata (Forestry 

Commission, 2017). 

 

1.2.2 Ancient woodland 

The ancient woodland paradigm is a powerful conservation tool (Rotherham, 2011; 

Goldberg et al., 2007), which has become firmly integrated into ecological research and 

conservation policy (Sutherland et al., 2006) since it was first widely promulgated by 
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Rackham (1976) and Peterken (1977). The term ‘ancient’ was implemented to encompass 

all long-established woodland, whether of primary or secondary origin (Rackham, 2003).  

Ancient woodland in England is defined as an area that has been wooded continuously 

since at least the year 1600 (Kirby and Goldberg (2002:11). Three prominent reasons exist 

for the wide recognition of the ancient woodland classification. Firstly, the biodiversity 

value of ancient woodland is higher than recent woodland (Honnay et al., 1999a; Wulf, 

1997; Peterken, 1974), and it has the dubious status of containing a higher number of rare 

and threatened species than any other UK habitat (Corney et al., 2008b; Peterken, 1983). 

Secondly, ancient woodland is valued as the ‘terrestrial habitat most representative of 

original, natural, stable conditions’ (Corney et al., 2008b:10), providing a baseline against 

which to measure the impacts of land use and climate change. Thirdly, the extent of ancient 

woodland is limited: it covers just 2.3% of the UK’s land area in fragmented stands 

(Atkinson and Townsend, 2011:11). The definition of ancient woodland as irreplaceable 

(except in the very long-term) combined with threats to its geographical, ecological and 

historical integrity, readily justifies research. 

Accurate identification and mapping of ancient woodland is necessary not only for 

conservation purposes, but also due to its prominent legislative standing. A specific ancient 

woodland inventory, initiated by the Nature Conservancy Council in the 1980s (Spencer 

and Kirby, 1992), is now co-ordinated by Natural England. The original survey included only 

woodlands of over 2ha. Ancient woodland is identified through an aggregate of historic and 

biotic methods including: historic maps such as tithe maps; current maps, aerial 

photographs and satellite images; documentary evidence such as estate records or census 

information; archaeological evidence such as earthworks; location; name etymology e.g. 
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copse; biotic evidence such as the richness of AWI species; and presence of veteran trees 

(Glaves et al., 2009; Rackham, 2003). 

Updates to the initial survey have been made on a county basis (Goldberg et al., 2007). The 

current definitive map for ancient woodland in England is the MAGIC map directed by 

Natural England and DEFRA. Since the original ancient woodland inventory (Spencer and 

Kirby, 1992), further guidance for defining ancient woodland has been published (Kirby and 

Goldberg, 2002). Ongoing work by Rotherham (2011) seeks to establish a legally robust 

methodology for proving woodland is ancient, which will be used for conservation as well 

as informing planning applications. Ancient woodland inventories are maintained by the 

National Forest Inventory at the county level, and many local authorities have revised their 

lists using recent methodologies and have included woodland less than 2ha (Natural 

England, 2012).  

The recently published 25 year Environment Plan, highlights a commitment to greater 

protection for ‘irreplaceable’ ancient woodland (HM Government, 2018:47). Ancient 

woodland is currently highly, but not absolutely, protected by planning and biodiversity 

legislation, which recognise its historic and ecological values. The National Planning Policy 

Framework (Communities and Local Government, 2012:118) states that:  

‘planning permission should be refused for development resulting in the loss or 

deterioration of irreplaceable habitats, including ancient woodland and the loss of aged 

or veteran trees found outside ancient woodland, unless the need for, and benefits of, 

the development in that location clearly outweigh the loss’. 

The later National Planning Policy Guidance accords equal status to ASNW and ARW 

(Forestry Commission and Natural England, 2014). Additionally, the Government Forestry 
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and Woodlands Policy Statement (DEFRA, 2013) places strong emphasis on ancient 

woodland protection, and confirms its commitment to the Keepers of Time policy 

statement on England’s ancient and native woodland, which includes the maintenance of 

the existing area of ancient woodland. In addition to the above, Natural England and the 

Forestry Commission commit to restoration of ancient woodland (Forestry Commission and 

Natural England, 2014). A government white paper called for greater ancient woodland 

protection under the National Planning Policy Framework (House of Commons 

Environment, Food and Rural Affairs Committee, 2017). 

Despite acceptance of the ancient woodland concept in practice and policy, the 1600 

threshold has come under scrutiny. It has sound justification in being before widespread 

woodland planting (as promoted by the publication of ‘Sylva: a discourse on the 

propagation of timber’ (Evelyn, 1670)), but few accurate maps of this date exist (Goldberg 

et al., 2007). Interestingly, Rackham (2003:6), the proponent of the concept, suggests 

‘1700’ as being potentially suitable in Britain. Indeed, most European countries have 

defined ‘ancient’ by the earliest reliable maps, usually between 1700 and 1800 (Fig. 1.3; 

Hermy and Verheyen, 2007), including Scotland at 1750 (Goldberg et al., 2007). France uses 

later thresholds of 1800 to 1850 and biodiversity studies using this date have shown 

significant vegetation differences in comparison to younger woodland (Cateau et al., 2015; 

Sciama et al., 2009). The old-growth forest concept as used in North America has no specific 

age threshold, although 150 years is stipulated in some definitions (Wirth et al., 2009b). 

The variation in thresholds among countries should be acknowledged when reviewing and 

comparing prior studies. 
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Table 1.3. Ancient woodland/ long-established woodland date thresholds in northern and central 

Europe. After Hermy and Verheyen, 2007:363), modified with some threshold dates used in more 

recent studies referred to in this thesis. 

Decreasing age of woodland 

 

Ancient Recent 

Primary Secondary 

 

Threshold date        Country           Study 

1600                          GB                     Peterken (1974)  

1700                          GB                     Rackham (1980) 

1750                          Scotland          Goldberg et al. (2007) 

1765-1780                Poland             Orczewska (2009) 

1770-1800                Belgium           Hermy (1985) 

1775                          Belgium           De Keersmaeker et al. (2004) 

1782-1785                Hungary           Kelemen et al. (2014) 

1800-1830                France              Sciama et al. (2009) 

1850                          France              Cateau et al. (2015) 

 

Recent publications challenge the accuracy of ancient woodland designation. Palynological 

evidence showed AWI communities present in areas that had been unwooded for at least 

2700 years, and in sites that had experienced canopy interruptions (Webb and 

Goodenough, 2018). Stone and Williamson (2013) argue the case for ‘pseudo-ancient 

woodlands’: those that when surveyed in the field exhibit both the archaeological and 

ecological characteristics of ancient woodland, but are not present on 18th century maps. 

Barnes and Williamson (2015) re-evaluate the ancient woodland concept in the light of 

archaeological field evidence in Norfolk, concluding that many ancient woodlands are 

largely man-made environments, including those dating to the late medieval period (before 

the 1600 threshold), and others dating only to the 19th century.  
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Ancient woodland does not have to be as extensively old as the word ‘ancient’ implies.  The 

terminology is perhaps misleading – ancient woodland can include primary relict woodland 

or virgin forest (Wirth et al., 2009b; Rackham, 2008), but equally woodlands only 170 years 

old under the threshold dates used in France or North America. Moreover, ancient 

woodlands are not an ‘untouched’ environment: the ancient woodland concept clearly 

recognises that human input, such as coppicing, is an important and accepted aspect of 

ancient woodland ecology (Forestry Commission, 2010; Rackham, 2008). Expectations of 

degree of naturalness, successional phase, and representativeness of primary woodland 

naturally vary considerably depending on the definition used. Arguably the ancient 

woodland concept should be treated as just that – a concept – rather than a rigid definition. 

In a comprehensive literature review of definitions of old-growth forest and related 

terminology, Wirth et al. (2009b) state that they will not attempt to define ‘old-growth 

forest’, instead taking the view that a single definition is not desirable (Wells et al., 1998). 

Cateau et al. (2015) question the binary classification of ancient/ recent, as ancientness 

only encompasses the length of time an area of land has been wooded without 

acknowledgement of the age of the trees or successional stage of the ecosystem. A number 

of researchers also favour the continuity or ecological approach to identifying woodland of 

value (Stone and Williamson, 2013; Rotherham, 2011; Spencer, 1990). For conservation 

purposes, Cateau et al. (2015) propose a multi-category classification system (Table 1.4) 

encompassing age and maturity. The maturity classification also considers aspects of 

habitat quality and diversity. A classification focusing on ecology as well as continuity 

addresses the research impediment of a single age threshold: the biotic community of a 

wood established in 1601 may not be comparable with one established 200 or 400 years 

later. A more holistic classification obviates the problem of variation in thresholds among 

countries, and enables easier comparison of research findings.   
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The concept of continuity avoids the conflation of land-use duration and habitat stability. 

Many woodland specialist species are dependent on continuity (Rolstad et al., 2002) rather 

than age per se. The term ‘ecological continuity’ was introduced by Rose (1974) and is used 

in the literature with reference to study of lichens rather than vascular plants where 

‘ancientness’ is more commonly used.  Continuity is explained by Whittet and Ellis (2013) 

as comprising both habitat quality and extended time for colonisation. Habitat quality 

includes old-growth structural elements such as microhabitats and deadwood (Coppins and 

Coppins, 2002). Nordén and Appelqvist (2001) examine the concept of continuity in respect 

of theories of natural equilibrium and disturbance ecology, with continuity representing 

persistence through time without major disturbance. The phrase ‘continuity forest’ is used 

by Røsok (1998:154) rather than ancient forest. Ohlson et al. (1997:221) refer to ‘continuity 

indicator species’, rather than ancient woodland indicator species, and promote a more 

careful and precise use of the term continuity to distinguish it from age alone.  

Despite debate around the ancient woodland concept, there is strong justification for 

conducting research under the existing ancient woodland paradigm, due to: (a) its full 

integration into policy; and (b) agreement among scientific publications that long-

Table 1.4. A woodland maturity classification (after Cateau et al. (2015). 

Ancientness Over 8000 years old 

Over 2000 years old 

Over 600 years old 

Over 150 years old 

Maturity A scale of maturity based on: 

• Average age of the stand 

• Number of very large trees 

• Amount of deadwood 

• Abundance of dendro-microhabitats 



21 

 

established, continuously-wooded sites commonly have distinct vegetation communities 

and greater ecological value than recent sites, regardless of what the terminology for such 

sites should be (e.g. Barnes and Williamson, 2015; Wirth et al., 2009b; Peterken and Game, 

1984). Further research aiming to identify and understand the ecology of long-established 

woodland will certainly assist in enabling a more robust classification. 

 

1.3 Ancient Woodland Indicator (AWI) species 

This section discusses and critiques the use of Ancient Woodland Indicator (AWI) vascular 

plant species in the identification of ancient woodland and examines the autecology and 

synecology of AWI species.  

 

1.3.1 Defining AWI species. 

Ancient Woodland Indicator (AWI) species are defined as vascular plants particularly, but 

not exclusively, associated with ancient woodland (Glaves et al., 2009). Numerous studies 

have evidenced a strong affinity between some woodland species and long-established, 

continuously wooded habitat (e.g. Kelemen et al., 2014; Schmidt et al., 2014; Hofmeister 

et al., 2013; Orczewska, 2009; Verheyen and Hermy, 2004; Graae et al., 2003; Honnay et 

al., 1999a; Hermy et al., 1999; Wulf, 1997). Such species are termed Ancient Woodland 

Indicators. AWI species often act as such in only parts of their geographical range, 

necessitating separate identification at the local or regional scale (Kirby, 2004; Rackham, 

2003; Hermy et al., 1999). The association of such species with ancient woodland holds 
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true outside of Europe, for example in North America (Thomas and Packham, 2007; 

Gerhardt and Foster, 2002). 

The identification of AWI species is of two-fold importance: (a) the contribution of indicator 

species to ancient woodland identification for conservation and legislative purposes; and 

(b) the intrinsic value of some AWI species such as Hyacinthoides non-scripta and 

Lamiastrum galeobdolon that hold protected status (JNCC, 2017), whilst others, such as 

Paris quadrifolia have low prevalence in England in comparison to woodland generalist 

species (Hill et al., 2004). AWI species are of notable value due to their restricted range and 

affiliation with ancient woodlands. The relative scarcity of AWI species is considered to be 

due to poor dispersal and colonisation abilities (Baeten et al., 2009; Hermy and Verheyen, 

2007; Verheyen and Hermy, 2004; Hermy et al., 1999). 

The first widely-recognised study of plants associated with ancient woodland, particularly 

ASNW, was carried out by Peterken (1974). AWI species are extensively researched as a 

functional group of high conservation value due to being range-restricted and in some 

cases scarce (Rose, 1999; Peterken, 1974). AWI lists were originally intended as tools for 

the identification of ancient woodlands (Kirby, 2004; Rose, 1999; Peterken, 2000; Peterken, 

1974) and are still valued for determining these protected habitats (Mölder et al., 2015; 

Schmidt et al., 2014), but are additionally used to assess the biodiversity value of woodland 

(Glaves et al., 2009). 

The majority of AWI research has taken place within the fields of: landscape ecology (Bailey 

et al., 2002); dispersal and colonisation (Brunet and Von Oheimb, 1998); habitat ecology 

and change (Thomaes et al., 2014; Brunet et al., 2011; Van Couwenberghe et al., 2011); life 

traits (Kimberley et al., 2013; Verheyen et al., 2003a); restoration and management (Palo 



23 

 

et al., 2013; Godefroid et al., 2005); population ecology and genetics (Jacquemen et al., 

2006; Jacquemen et al., 2003b; Brys et al., 2004). In the UK, extensive long-term studies of 

AWI species ecology have been carried out at Wytham Woods, including research on the 

influence of woodland size and continuity on AWI presence and prevalence (Kirby and 

Morecroft, 2011). Recent work by Kimberley et al. (2016; 2014; 2013) has contributed 

strongly to understanding AWI life trait ecology at the national scale. 

 

1.3.2 Identification of AWI species 

Methods used to distinguish AWI species are far from standardised temporally, spatially, 

or among researchers. Initially AWI species were identified via a combination of field survey 

and anecdotal evidence. The AWI species noted by Peterken (1974) were derived from field 

research with 85 primary and over 150 secondary woodlands surveyed in Lincolnshire. 

Although AWI species were selected systematically, seemingly no statistical technique was 

used to establish the degree of species’ associations. Rose’s (1999) lists of AWI species for 

the four southern regions of England were based on published literature (Horby and Rose, 

1986) and expert opinion. Rose states clearly that no strictly objective methods were used 

in compilation of the list. Kirby’s (2004) AWI lists for 13 regions were based on historical 

information and opinion of experienced field surveyors; these are the standard lists used 

in prominent studies (e.g. Kimberley et al., 2013).  

Concern over the use of anecdotal evidence to distinguish AWI species from other 

woodland species (Kimberley et al., 2013) has been addressed through more statistically 

robust studies. Several studies have quantified and tested the suitability of woodland 

plants as indicators of woodland continuity, in order to either create new AWI lists or to 
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test them. An early study by Wulf (1997:636) identified 21 herbaceous and woody species 

as ‘very good indicators’ of ASNW beechwood in northwestern Germany, using chi-squared 

and Fisher’s exact test to analyse association. Honnay et al. (1998) used a chi-squared 

statistic to indicate the preference of species for ASNW in Belgium. Verheyen et al. (2003b) 

applied Pearson chi-squared test and found significant associations between six species 

and Quercus-dominated ASNW, and nine species and Populus-dominated ASNW in Europe 

and North America. Kelemen et al. (2014) applied Dufrene and Legendre’s (1997) Indicator 

Species Analysis technique, a specific mathematical model for indicator identification. 

In Britain, AWI suitability has been re-analysed and updated usually on a small-scale 

(county) basis. A revision of the ancient woodland inventory and AWI list for Somerset 

(Thompson et al., 2003a) applied an index of faithfulness to ancient woodland (number of 

sites in which the species occurs/total number of occurrences of the species), as well as 

chi-squared to test if the distribution of each species was independent of woodland type. 

However, the species tested were selected from the original list of 100 species produced 

by qualitative means by Hornby and Rose (1986). It is possible that species not included on 

the original list may also have been worthy of investigation, or significant changes in 

woodland ecology over the last 30 years may have altered the suitability of some species 

as indicators. 

By contrast, some studies have identified AWI species over a much larger area by 

synthesising published findings. Hermy et al. (1999) identified 132 AWI species from 22 

studies of deciduous and coniferous woodlands in north-western and central Europe (Table 

1.5). Wulf (1997) investigated the association of AWI species found in north-western 

Germany with ancient woodlands in other northern European countries based on the 

literature. The results showed five species strongly related to ancient woodland across 
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northern Europe (Table 1.5). Schmidt et al. (2014) devised a supra-regional list of AWI 

species for north-western Germany based on survey data collected between 1961 and 

2012. However, as acknowledged by Hermy et al. (1999), literature-informed lists depend 

on studies with varying methodologies, study size and a combination of anecdotal and 

statistical studies.  

 

The association of species with ancient woodland could more appropriately be regarded as 

a continuum between older-recent woodlands. Peterken and Game (1984) state that the 

bias of some species for ancient or recent woods varied even within their Lincolnshire study 

area. AWI species have occasionally been shown to be associated with recent woodland. 

Kelemen et al. (2014) demonstrated a significant link between the presence of both O. 

acetosella and G. odoratum and recent woodland in Hungary. Kirby and Morecroft (2011) 

Table 1.5 Findings of supra-regional AWI studies. 

AWI species cited in 9 or more of 22 

studies over north-western and central 

Europe (Hermy et al., 1999) 

Five species showing strong relation to 

ancient woodland across northern 

Europe (Wulf, 1997) 

Anemone nemorosa 

Convallaria majalis 

Lamiastrum galeobdolon 

Luzula pilosa 

Melica uniflora 

Mercurialis perennis 

Oxalis acetosella 

Paris quadrifolia 

Polygonatum multiflorum  

Sanicula europaea 

Carex sylvatica 

Paris quadrifolia 

Chryosplenium alternifolium 

Melica uniflora 

Lamiastrum galeobdolon  
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found that Adoxa moschatellina, Potentilla sterilis and Tamus communis occurred 

exclusively in recent woodland plots in Wytham Woods, Oxfordshire.  

A difficulty arises in statistical testing for rare species association with ancient woodland, 

usually ASNW. Many studies test for habitat association when species occur with frequency 

over a given threshold, for example: Wulf (1997) tested species occurring in >30 localities; 

Palo et al. (2013) excluded those with <3 observations; Graae et al. (2003) included only 

species with >10 observations. Some rare species are considered to have affinity to ancient 

woodland (Rose, 1999) but their infrequent occurrence makes it difficult to statistically test 

them, and their use as indicators is limited due to the low probability of sampling them 

during woodland surveys. However, Sciama et al. (2009) applied Fisher’s exact test to 

assess association of infrequently occurring species (n ≤ 5) with woodland age. In the case 

of rare species, expert observation could be supplementary to statistical testing of very 

infrequently occurring plants, as used for the Rare Ancient Woodland Vascular Plant 

species list (Rose, 1999). 

Testing for recent woodland indicators or reverse ancient woodland indicators is an 

alternative way of demonstrating the distinctiveness of ancient woodland (Schmidt et al., 

2014; Kirby and Morecroft, 2011; Sciama et al., 2009; Graae et al., 2003). Bossuyt and 

Hermy (2000) not only tested for difference in abundance of AWI species, but also for 

general woodland species and recent woodland species across four age categories. Results 

showed higher abundance of recent woodland species in younger in comparison to older 

woodlands and vice-versa for ancient woodland species. General woodland species had 

significantly higher abundance in ASNW compared to all younger woodland categories. 

Studies by Sciama et al. (2009) and Verheyen et al. (2003a) also developed lists of species 

associated with recent woodland in order to contrast with those affiliated to ASNW. This 
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reverse approach to distinguishing ancient and recent woodland flora raises a question 

about colonisation limitation. AWI species colonisation in recent woodland is thought to be 

reduced by competition with ruderal species, thus creating distinct communities. However, 

seemingly few studies have considered the reverse process of recent woodland species 

colonisation in ancient woodland (Honnay et al., 2002b) and its contribution to community 

distinctiveness between ancient and recent woodland. 

 

1.3.3 Utilisation of AWI species lists 

It is important to emphasise the scope and limitations of the AWI list approach to ancient 

woodland identification. Firstly, it is only one of a number of methods used to identify 

woodland continuity (Rose, 1999). Primary field archaeology, secondary documentary 

evidence and historic cartographic resources are also employed to identify and map these 

woodlands (Rackham, 2003). Secondly, the AWI list approach is community-based – the 

presence of a single AWI species does not denote ancient woodland (Rose, 1999).  

The AWI richness threshold required to reliably contribute to ancient woodland 

identification has been tested by very few studies. Honnay et al. (1998) found that a 

threshold of 25 AWI species, from a list of 66 generated by Fisher’s exact test, indicated a 

much higher probability of a woodland being ancient rather than recent. However, the 

woodland sizes in the study varied substantially between 0.5ha up to 5216ha, and the 

authors emphasise that threshold numbers are scale-dependent. At the lowest end of 

range used, Kühn (2000) suggests a threshold of just two indicators. Glaves et al. (2009:15) 

researched how local authorities and organisations in the UK use AWI lists to assess 

woodland quality.  Several quoted using thresholds of 8-12 for ‘very good’ quality ancient 
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woodlands, 4-8 for ‘good’, and less than 4 was considered ‘poor’. For woodlands under 2ha, 

five AWI species was considered as the ‘good’ quality threshold. However, these thresholds 

appear to have no evidenced research basis.  

Glaves et al. (2009) raised a number of inconsistencies in the way AWI lists are used. Some 

organisations use the lists to identify ancient woodland, others to assess woodland 

biodiversity value. Respondents to the Glaves et al. (2009) survey note valid criticisms of 

the current use of AWI lists, particularly in terms of recognising underlying environmental 

variation. One respondent questioned the use of a single AWI list across different NVC 

communities, as NVC communities that are less associated with AWI species may be 

overlooked for conservation despite ancient status using the threshold approach. Another 

applied a weighting to the AWI scores to counter-balance the influence of variation in 

geology, although no further details were given on the methodology used to establish the 

weightings. 

Although no one single species is known to be entirely restricted to ancient woodland 

(Schmidt et al. 2014; Glaves et al., 2009; Wulf, 2003; Rose, 1999), it may be that individual 

species could be weighted as more effective indicators (Webb and Goodenough, 2018). 

Rackham (2003: 54-55) ranked the affinity of species with ancient woodland in the East of 

England, classifying each as ‘strict, very strong, strong, moderate, weak, doubtful and 

none’. The best indicators are those with the strongest correlation with ancient woodland 

(Sciama et al., 2009) and/ or those identified as indicators in more than one study (Wulf, 

1997) (Table 1.5). In the UK, Paris quadrifolia has been noted for its near exclusivity to 

ancient woodland (Kirby and Morecroft, 2011; Spencer, 1990). Such particularly strong or 

recurrent indicators could be considered of higher ecological and indicator value than 
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others. Additionally, the recurrence of species in studies over a long period of time, adds 

weight to its value as an indicator. 

Scales covered by AWI lists vary from county up to supra-regional (Schmidt et al., 2014) 

Regional variation in the species associated with ancient woodland is well-recognised, with 

Kirby (2004) basing his regional lists on county data. However, there are gaps in coverage, 

for example Gloucestershire is not included in the most up-to-date list. Arguably, political 

county boundaries are not the most suitable basis for assessing preference of species for 

ancient woodlands: a combination of abiotic characteristics as used by the Forestry 

Commission’s Ecological Site Classification (Pyatt et al., 2001) would be more suitable and 

worthy of future research. The supra-regional study carried out by Schmidt et al. (2014) 

aimed to establish a list of ancient woodland indicators that could be employed over north-

western Germany. This scale of study could also be employed to understand the wider 

biogeography of AWI species, to assess their response to changing land use and climate. 

However, it is recognised that AWI species vary regionally according to climate and geology 

(Rose, 1999) and in support of this, Hermy et al. (1999) recommend the use of regional lists 

rather than any other scale. 

As recognised by Glaves et al. (2009) AWI species are only one tool amongst many others 

used in the identification of ancient woodland. It is important to recognise that they are 

used as indicators only. The literature reveals that methods used to create and use AWI 

lists are highly variable, but as a widely recognised grouping of species their research is 

well-justified. 



30 

 

1.3.4 An ecological approach  

Spencer (1990) presents an important critique of the ancient woodland indicator approach 

to woodland age identification. A strong case is presented for refocusing research onto the 

biology of ancient woodland plants and the ecological conditions of older woods rather 

than their management history.  Spencer (1990:91) cautions against the ‘circular logic’ that 

ancient woodland indicators must mean ancient woodland, therefore the plants found in 

ancient woodland must be ancient woodland indicators. It is important that the AWI 

concept is critiqued using ecological evidence. The unquestioning use of the AWI approach, 

may expose unidentified ancient woodlands to the threats against which they should be 

protected (Department for Communities and Local Government, 2012; Corney et al., 

2008b). This risk is enhanced by reliance placed on the ancient woodland concept in 

conservation (Goldberg et al., 2007). A focus on the species’ biology and environmental 

requirements of AWI species could recognise woodlands of the highest ecological value 

rather than age per se (Spencer, 1990). 

In agreement with Spencer (1990), Wright and Rotherham (2011) note that AWI species 

lists are more indicative of woodland conditions, than age. The lists contain early growing 

shade-evaders and later growing shade-tolerant species, but disregard light-tolerant 

species that may be found within meso-habitats, such as glades, streams and rock faces. 

They argue for AWI lists that better recognise the hetereogeneity of woodland habitats. 

Additionally, Wright and Rotherham (2011) observe that there is no consideration of AWI 

species’ abundance in the current methodology for identifying ancient woodlands, which 

is a pertinent consideration. 
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It is possible that changes in canopy species and abiotic characteristics may have altered 

understorey communities since the original lists were developed. A wide-scale study of 

ancient woodland plants in northern and central Germany by Hermy et al. (1999) used pre-

existing data sets from as early as 1952 up until 1994. Similarly, a recent AWI identification 

methodology developed by Schmidt et al. (2014) was based on data sets from between 

1961 and 2012.  

To evidence the need for updated lists, several important woodland species (including AWI 

species) experienced substantial shifts in abundance in Wytham Woods experimental plots 

between 1974-1999 (Kirby and Morecroft, 2011). Indicator species lists may require more 

frequent updating in response to concern over northwards range shift of species in 

response to climate change (Wesche et al., 2006; Skov and Svenning, 2004; Honnay et al., 

2002a) not only due to alteration in the distribution of AWI species, but also of supporting 

species such as pollinators or mycorrhizae. Several important ecological changes have 

taken place in UK woodlands since the inception of AWI lists: pests and pathogens such as 

Hymenoscyphus fraxineus (Chalara fraxinea) and potentially Agrilus planipennis (Thomas, 

2016); AWI competition with invasive species (e.g. Hyacinthoides hispanica and L. 

galaeobdolon subsp. argentatum (Rackham, 2008; Dines, 2005)); deer browsing damage 

(Kirby et al., 2016); coppice abandonment and restoration (Kirby et al., 2017; Kopecký et 

al., 2013: Vild et al., 2013); and biotic homogenisation (Naaf and Wulf, 2010; Keith et al., 

2009). 
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1.4 Community ecology and life traits of ancient woodland vegetation 

This section considers the community scale differences in the vegetation of ancient and 

recent woodland, in particular in terms of richness, abundance, and diversity. 

 

1.4.1 Richness, abundance, and diversity  

Floristic comparison between ASNW and recent woodlands is a well-established research 

area. Important aspects researched include: species richness (Kirby and Morecroft, 2011; 

Sciama et al., 2009; Graae, 2000; Hermy, 1985; Peterken and Game, 1984); woodland 

structure; community composition (Verheyen et al., 2003b; Dzwonko, 1993); dispersal 

(Dzwonko, 2001a); life traits (Sciama et al., 2009); affinity of species for ancient woodland 

(Schmidt et al., 2014; Graae, 2003; Hermy et al., 1999; Honnay et al., 1998; Peterken, 1974).  

The vegetation of ASNW woodland is generally considered distinct from that of recent 

woodland, in terms of diversity (Kelemen et al., 2014; Sciama et al., 2009), species presence 

and abundance (Kelemen et al., 2014; Hofmeister et al., 2013; Orczewska, 2009), 

community composition (Berges et al., 2017; Hermy et al., 1999), and life traits (Verheyen 

et al., 2003a; Hermy et al., 1999).  

However, until recently, very few studies had compared the vegetation of ASNW and ARW 

(Kirby, 1988).  The potential of ARW for restoration has led to an increasing focus of ASNW-

ARW vegetation comparison research in the UK (Berges et al., 2017; Atkinson et al., 2015; 

Brown et al., 2015), but publications are few compared to the longer-established research 
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on ASNW versus recent woodland. Therefore, further research on the ecology of ARW is 

justified to address knowledge gaps. 

A small number of studies have quantified the total plant species richness of ASNW in 

comparison to recently established woodlands. When plant species richness of canopy, 

shrub and herb layers is totalled and compared, results are not consistent in terms of any 

significant difference between ASNW and recent woodlands. An important Polish study in 

this field by Dzwonko (2001b) evidenced no significant difference in the mean richness of 

all species in ASNW and recent woodlands plots but found that the total number of species 

across all plots was significantly higher in ASNW. By contrast, in another Polish study, 

Sciama et al. (2009) found no significant difference in total species richness between ASNW 

and recent study sites.  

The majority of studies exclude trees from the richness count due to their potential 

placement or management by humans. The significant findings of studies that investigate 

one or two woodland strata seem to corroborate the arguments of both Peterken (1993) 

and Rackham (2003) who argue that the composition of the canopy and understorey have 

little correlation and should be treated as separate communities. When Sciama et al. (2009) 

separately analysed shrub and herb layer species between ASNW and recent woodland, 

they found significant (p<0.05) differences in herb richness and shrub richness, with ancient 

having higher mean herb richness (18.7 versus 15.0), and recent higher shrub richness (9.4 

versus 7.7). Supporting the findings of Sciama et al. (2009), Kelemen et al. (2014) found 

higher total herb richness in ASNW, compared to long-established recent forest. Likewise, 

excluding trees, Dumortier et al. (2002) identified a significantly higher species richness in 

older than younger woodland (p<0.001) but notes that degree of isolation may also be a 

contributory factor. 
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Basic richness counts are a simplistic measure of woodland biodiversity value. Instead, both 

Hermy et al. (1999) and Verheyen (2003a) promote the use of both qualitative (identity of 

species) and quantitative (number of species) when testing for difference in plant species 

composition between ASNW and recent woodland.  

When a qualitative measure, such as ‘woodland species’ is applied to richness counts, study 

results consistently show that ASNW is richer than recent woodland. Brunet et al. (2011), 

Jacquemen et al. (2001), and Peterken and Game (1984) all reported higher richness of 

woodland species in ASNW compared to recent woodland. Dzwonko (2001b) compared 

both the general herb layer richness and woodland specialist richness, with results showing 

a significantly higher number of woodland species in ASNW than recent woodland, but no 

significant difference in general herb layer species richness. These results suggest that 

woodland specialists comprise a greater proportion of an otherwise similar species 

richness.  

A further qualitative distinction is the richness of plants associated with ancient woodland 

specifically. Several studies show higher AWI richness in ASNW (Kelemen et al., 2014; 

Hofmeister et al., 2013; Orczewska, 2009), a pattern which holds true amongst countries. 

As another qualitative measure, Hofmeister et al. (2013) found a significantly higher 

number of red-list species in ASNW, which tallies with the concept of ancient woodland 

acting as refugia for rare species (Rose, 1999). 

A small number of studies have considered measures of species diversity other than 

richness, such as richness + evenness (Vellend et al., 2007) and a comparison of percentage 

cover and richness (Orczewska, 2009). Vellend et al. (2007) found significantly higher beta 

diversity in ASNW compared to recent woodlands in 7/11 regions (6 in Europe and 1 in N. 
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America), and Orczewska (2009) found both significantly higher richness and abundance in 

ASNW compared to recent woodland in three different canopy types.  

Where studies have involved a sequence of woodland ages instead of binary ancient/ 

recent classification, (ancient) woodland species richness (Brunet et al., 2011; Jacquemen 

et al., 2001) and abundance (Brunet et al., 2011; Bossuyt and Hermy, 2000) are shown to 

be significantly higher in older than younger woodlands. The studies do not necessarily 

show a perfect positive correlation between age and number of (ancient) woodland 

species, but the trend is clear, with significant differences between individual age 

categories. Brunet et al. (2011) tested both richness and abundance across age categories 

and by proximity to core older woodland. Richness and abundance measures produced 

conflicting results, demonstrating the need for both richness and abundance data 

collection to enhance understanding of ancient woodland species ecology: significantly 

higher abundance of woodland specialists was found across woodlands (13-82 years) in 

both isolated and proximate locations relative to old core (198-316 years) woodland, but 

richness was significantly higher only in recent woodlands in close proximity to old core 

woodland.  

 

1.4.2 Life traits of ancient woodland plants 

It has been established that plant species associated with closed canopy woodland have a 

distinct trait profile (Whigham, 2004; Bierzychudek, 1982) and that ASNW generally has a 

significantly higher richness of these species in comparison to recent woodlands (Kelemen 

et al., 2014; Hofmeister et al., 2013; Dzwonko, 2001b) AWI species have yet further 

distinctiveness of traits (Kimberley et al., 2013; Hermy et al., 1999). Hermy et al. (1999) 
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propose that such species be considered as a ‘guild’ due to their distinct ecological profile, 

summarised as: shade tolerant; avoiding very dry or wet soil; stress-tolerant; preferring 

weakly acid to neutral soils and intermediate soil nitrogen; regenerative form of geophytes 

and hemicryptophytes; summergreen; often myrmechorous; relatively large seeds; no 

persistent seed bank; specific germination requirements; clonal growth predominant; and 

limited fecundity. 

The long lifespan of woodland herbs adapted to continuous and undisturbed conditions 

may partly account for their low ability to colonise new habitats. Honnay et al. (2002a) and 

Hermy et al. (1999) note that such species are less able to persist in high disturbance 

environments. Endels et al. (2007) established that plants with greater longevity have later 

age of first flowering, lower seed bank viability and shorter flowering periods. Additionally, 

age at first flowering was found to correlate positively with seed weight. A notable species 

exhibiting these traits is P. quadrifolia, a clonal, rhizomatous herb, that is noted to be one 

of the plants most closely confined to ASNW (Kirby and Morecroft, 2011; Hermy et al., 

1999; Wulf, 1997; Spencer, 1990). P. quadrifolia can have a life span of hundreds of years 

(Kranczoch, 1997) and is slow to develop, with above ground growth only in the second 

year after germination and takes several decades to reach regenerative status (Jacquemen 

et al., 2006; 2005). Genets of A. nemorosa have been found to be greater than 200 years 

old (Honnay et al., 2005). These species seem to illustrate links between longevity, 

reproductive limitations, and adherence to ancient woodland.  

Low fecundity and reproductive effort of species associated with ancient woodland are 

considered significant factors in explaining their adherence to this habitat and slow 

colonisation of other woodland habitats (Kimberley et al., 2013; Endels et al., 2007; Kolb 

and Diekmann, 2005; Verheyen et al., 2003b; Graae and Sunde, 2000; Hermy et al., 1999). 
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In the seminal work by Bierzychudek (1982) woodland herbs are noted to produce heavier 

and fewer seeds per year compared to light-demanding species. In a comprehensive study 

of woodland plant species traits, Endels et al. (2007) distinguish spring-flowering species as 

having larger seeds with unassisted dispersal, which partly explains their reduced ability to 

colonise new habitats. In turn, this result is supported by findings that AWI species 

comprise a relatively high number of spring-flowering species (Brunet et al., 2011; Hermy 

et al., 1999) Woodland plants with heavier seeds and short-range dispersal mechanisms 

have been shown to have lower occupancy of woodland patches (Jacquemen et al., 2003a). 

Short-range seed dispersal mechanisms contribute to the restricted range of AWI species 

(Hermy et al., 1999). Studies of dispersal mechanisms of specialist woodland species have 

identified a high proportion of barochorous (gravity dispersed) (Whigham, 2004; 

Bierzychudek, 1982) and myrmechorous species (ant dispersed) (Kelemen et al., 2014; 

Hermy et al., 1999) compared to other woodland plants. Both of these are short range 

dispersal mechanisms. By contrast Honnay et al. (1998) found no difference in dispersal 

mechanisms between ancient and other woodland species. Likewise, Kimberley et al. 

(2013) found that dispersal vectors were not effective in distinguishing AWI and non-AWI 

species. 

The clonal reproduction of many ancient woodland herbs is considered an additional factor 

in accounting for slow dispersal and lack of new habitat colonisation (Hermy et al., 1999). 

Research by Verheyen et al. (2003a) established that annual and biennial woodland herbs 

display limited vegetative spread, and perennials with light seeds had intermediate 

vegetative spread, whereas perennials with heavy seeds demonstrated exhibited strong 

vegetative spread. Ancient woodland species are known to comprise more long-lived and 

seed-heavy species than recent woodland species (Bossuyt and Hermy, 2000; Hermy et al., 
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1999). Again using P. quadrifolia as an example, Jacquemen et al. (2005) note that its 

rhizomes grow slowly at 2cm - >8cm per year. However, other studies have shown that the 

migration rate and genetic variability of P. quadrifolia points to greater dispersal by seed 

than once thought (Jogaite et al., 2005; Brunet and Von Oheimb, 1998). To account for this 

apparent conflict, Thomas and Packham (2007) hypothesise that occasional long-distance 

dispersal events may explain faster or further dispersal of predominantly clonal woodland 

herbs. 

Colonisation rates of woodland species from ancient to recent woodland have been 

researched by Brunet and Von Oheimb (1998) in Sweden. The study concluded that c. 0.3-

0.5 m year-1 is the rate at which herb layer vegetation, comparable to that of adjacent 

ASNW, disperses to and establishes in recent woodland (age 30-74 years). Myrmechorous 

species were found to have the lowest migration rates when calculated from distance to 

highest cover plot in recent woodland (corroborating Hermy et al. (1999)), but no 

difference was found when calculated from distance to furthest individual.  

The relative contribution of dispersal and colonisation to the slow recruitment of AWI 

species in new woodlands has been questioned and tested. It is possible that even once 

dispersed, seedlings cannot easily establish a new population in a potentially sub-optimal 

habitat. The relative importance of seed dispersal limitation is thought to be higher than 

that of recruitment limitation in accounting for the restricted range of AWI species (Baeten 

et al. 2009; Hermy and Verheyen, 2007; Verheyen and Hermy, 2004). However, the 

processes of dispersal and recruitment are interdependent: Baeten et al. (2009) concluded 

that for AWI species to establish a significant population, a higher seed density would be 

required to compensate for poor recruitment at succeeding life stages, but woodland herbs 

tend to produce only low seed densities (Bierzychudek, 1982). Conditions in recent 
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woodland have been shown to be suitable for the establishment of (ancient) woodland 

species (Hermy and Verheyen, 2007; Butaye et al., 2001), which again indicates that 

dispersal rather than recruitment has the greatest influence. 

Assessing AWI status by life traits provides an objective basis for the identification of AWI 

species, as opposed to techniques based on presence in ASNW (Herault and Honnay, 2005; 

Spencer, 1990). This method enables researchers to understand the relative influence of 

species life traits and environmental influences in determining species distribution 

(Kelemen et al., 2014; Kimberley et al., 2013).  

 

1.4.3 Life traits community composition 

Community comparisons of ASNW and recent woodland via Grime’s (1977) life strategies 

for herbaceous plants (Fig. 1.3) show consistent results. Stress-tolerant (S) strategists are 

more closely associated with ancient and older woodland (Sciama et al., 2009; Bossuyt and 

Hermy, 2000; Hermy et al., 1999). Competitive (C) strategists are generally associated with 

recent woodland (Sciama et al., 2009; Hermy et al., 1999). Very few AWI species are C-

strategists (7.4%, compared to 39% S-strategists) (Hermy et al., 1999), which has 

implications for their ability to colonise new habitats. De Keersmaeker et al. (2004) proved 

a negative correlation between cover of fast colonisers and woodland age, in addition to 

an increase in AWI species in both number and cover with age. AWI species are considered 

to be slow colonisers (Hermy et al., 1999). 
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Competitive exclusion is thought to inhibit the colonisation of ancient woodland species in 

recent woodlands. The proportion of competitive strategy plant species in recent 

woodlands is generally proved to be higher than in ancient woodlands (Sciama et al., 2009; 

Bossuyt and Hermy, 2000; Hermy et al., 1999). Herb layer species with vigorous growth, 

such as Urtica dioica, Galium aparine and Poa trivialis contributed to the reduced number 

and cover of AWI species in recent woodland (Orczewska, 2009). Hermy et al. (1993) found 

a significant negative correlation between U. dioica cover and AWI diversity, and Hermy et 

al. (1999) noted the competitive ability of U. dioica and Pteridium aquilinum in preventing 

the growth and development of woodland species. However, De Keersmaeker et al. (2004) 

concluded that there was no evidence for the exclusion of AWI species due to fast-

Primary 
strategies 

C = competitive 

S = stress 
tolerant 

R = ruderal 

 

Secondary 
strategies 

C-R 

S-R 

C-S 

C-S-R 

 
 

Figure 1.3 Grime’s life history strategies for herbaceous plants (after Krebs, 
2008; Grime 2006; Grime, 1977) 
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colonisers, noting instead a significant negative correlation between the number of AWI 

species and total cover of light demanding species. Competition is not thought to act alone 

in restricting the establishment of AWI species in recent woodlands: competition, dispersal, 

and recruitment limitation have an aggregate effect as biological filters (Sciama et al., 

2009).  

Community composition by regenerative strategy can show distinction between ASNW and 

recent woodlands. Several studies have compared community composition according to 

Raunkiaer’s (1937) life forms (Table 1.6), with a trend of geophyte association with ancient 

woodland in most studies (Kelemen et al., 2014; Verheyen et al. 2003b; Hermy et al., 1999; 

Wulf, 1997). Verheyen et al., (2003b) demonstrated an increase in the number and 

abundance of geophytes in a sequence of woodland age categories. A significant difference 

in community composition by life form was detected between ASNW and recent woodland 

by Hermy et al. (1999). Wulf (1997) identified three geophytes significantly associated with 

coppiced ancient woodland (Anemone ranunculoides, Circaea lutetiana and P. quadrifolia). 

In contrast to the above studies, Sciama et al. (2009) found no significant difference in herb 

layer regenerative strategy composition. Geophyte regenerative strategy may also account 

for slow colonisation of new habitats due to slower spread by vegetative structures such as 

rhizomes, tubers, bulbs and corms, rather than seed dispersal (Verheyen et al., 2003a; 

Hermy et al., 1999). 
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1.5 Biotic, abiotic, and biogeographical factors 

This section aims to explain the dynamics of ancient woodland vegetation within 

woodlands of different continuity histories, edaphic and climatic conditions, and spatial 

configurations, including isolation, patch size and edge effects.  

 

Table 1.6  Raunkiaer’s (1937) life forms. 

Phanerophytes 

 

Megaphanerophytes 

Mesophanerophytes 

Microphanerophytes 

Nanonpherophytes 

Dormant buds on branches that project freely into the air eg. 

trees and shrubs 

>30m 

8-30m 

2-8m 

<2m 

Chamaephytes Buds or shoot-apices perennate on the ground or just above it 

up to 25cm 

Hemicryptophytes Dormant buds just beneath the soil surface, aerial parts are 

herbaceous. Many native woodland and hedgerow species and 

rosette species. 

Cryptophytes 

     Geophytes 

     Helophytes 

     Hydrophytes 

Dormant parts subterranean 

Bulbs, rhizomes, tubers and root buds subterranean. 

Semi-aquatic dormant buds bottom of water or subterranean 

Aquatic perennating rhizomes or winterbuds bottom of water. 

Therophytes Live through the unfavourable season as seeds – annual plants 
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1.5.1 Canopy characteristics 

The phytosociological approach to woodland classification, such as the National Vegetation 

Classification, has raised the question of degree of canopy species influence on understorey 

vegetation. Several studies omit a survey of tree species due to the likelihood of their being 

planted, and/ or considering that the canopy layer has little impact on the understorey 

(Vallet et al., 2010; Honnay et al., 2002b; Graae, 2000). Rackham (2003) and Peterken 

(1993) criticise the phytosociological approach, emphasising a weak or inconsistent 

correlation between the canopy and understorey layers, not least that they respond to 

their environment at very different scales.  

In support of Rackham’s (2003) argument, research shows that canopy composition has no 

consistent influence on presence of AWI species amongs studies conducted. The presence 

of AWI species in both ASNW and recent woodlands is not easily predicted by the canopy 

species (Orczewska, 2009). Thomaes et al. (2012) reported no effect of tree species on AWI 

species in Quercus and Populus post-agricultural plantations. When diversity is considered, 

two studies conducted in the ancient deciduous forest Hainich National Park, Germany, 

evidenced greater herb layer diversity under greater canopy diversity (Vockenhuber et al., 

2011; Mölder et al., 2008). This variation in results may be accounted for by differing 

localities and methods. 

Acidifying tree species in the canopy layer has been shown to indirectly influence herb layer 

species composition through soil pH. A field reintroduction experiment by Thomaes et al. 

(2014) showed that acid soil stands with acidifying trees species cover reduced the survival 

and abundance of Primula elatior, O. acetosella, A. nemorosa, M. perennis, and P. 

aquilinum compared to moderately acid stands. However, H. non-scripta was not affected. 
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Canopy percentage closure has a degree of direct influence on abundance of herb layer 

woodland species. A significant negative correlation was proved between total canopy 

closure (tree and shrub) and herb layer specialist species abundance in recent broadleaved 

woodlands in Sweden (Brunet et al., 2011). The same correlation was found for generalist 

species richness and total species richness. In contrast, Vockenhuber et al. (2011) 

concluded that the proportion of true woodland species increased with increasing canopy 

closure, but tallies with Brunet et al. (2011) in that general species richness and cover 

declined with increasing canopy closure. Kirby (1988) compared species richness under 

several canopy types in ARW and ASNW with a distinct trend towards higher herb layer 

species richness in open canopies than closed. However, the relative range of canopy 

closure varies among studies meaning they are not easily comparable. 

 

1.5.2 Soil and environmental variables 

Soil properties of ancient and recent woodland have been compared in order determine 

their contribution to limited AWI species colonisation in recent woodland. Several studies 

have concluded that soil properties, when considered in aggregate, provide a limited 

contribution to differences in ASNW versus recent woodland vegetation relative to other 

explanatory variables (Sciama et al., 2009; Herault and Hermy, 2005; Honnay et al., 1999b; 

Graae et al. 2004; Graae et al., 2003; Peterken and Game, 1984). However, the impact of 

individual soil properties on plant species have shown some significant results (Thomaes et 

al., 2014, 2013; Verstraeten et al., 2014; Orczewska, 2009; De Keersmaeker et al., 2004; 

Jacquemen et al., 2003a). 
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Weakly acid to neutral soils are preferred by AWI species, based on a synthesis of 22 

European studies by Hermy et al. (1999). De Keersmaeker et al. (2004) found a significant 

positive correlation between pH (range KCI 3.9 – 5.0) and species richness, and significant 

positive correlations between pH and AWI species richness, and AWI species abundance. 

In terms of individual species, acid soils were linked to lower survival rates of M. perennis, 

L. galeobdolon and P. elatior (Thomaes et al., 2013) and lower regenerative performance 

in G. odoratum and P. elatior (Verstraeten et al., 2014). Woodland plant species, whether 

assessed individually or grouped by life- or functional traits, show a decided preference for 

soil pH at the higher end of the range present. However, studies show little or no difference 

in pH between ASNW and recent woodland soils, despite the preferences of ancient 

woodland species (Sciama et al., 2009; De Keersmaeker et al., 2004; Graae et al., 2003; 

Graae, 2000). In a scarce study considering ARW, Brunet et al. (2011) found significantly 

higher pH in post-arable woodland compared to ARW. 

Soil phosphorous (P) has been found to significantly influence the colonisation of AWI 

species in recent woodland, but more likely due to indirect than direct effects. Honnay et 

al. (1999) proved a significant negative correlation between soil P and number of AWI 

species. High P levels have been shown to hinder establishments of AWI species in recent 

woodland due competitive exclusion by ruderal phosphateophiles such as U. dioica (Hermy 

et al., 1993). Studies have shown soil P to be higher in recent, particularly post-agricultural, 

woodlands than in ASNW (De Keersmaeker et al., 2004; Wilson et al., 1997). However, 

other studies show inconsistent or no significant differences in available P between ASNW 

and recent woodlands (Sciama et al., 2009; Orczewska, 2009; Graae et al., 2003). The 

differences in study outcomes could be explained by a number of factors, not least the 

quantity of prior P fertiliser input under different agricultural systems, but also other 
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physical soil or geological characteristics. It is thought that there is a 30-40 year lag time 

between woodland establishment and normalisation of P levels (Honnay et al., 1999b). 

Results of several studies suggest there is no consistent relationship between total nitrogen 

(N) and age or former land use (Sciama et al., 2009; Orczewska, 2009; De Keersmaeker et 

al., 2004). A small number of studies have tested for association between N and (ancient) 

woodland species /AWI diversity metrics. A study by Honnay et al. (1999) found no 

significant correlation between total N and number of ancient woodland species. 

Phosphate rather than nitrate has been found to more significantly affect the 

establishment of common and dominant woodland species, therefore causing competitive 

exclusion for ancient woodland species (Pigott, 1971). 

Soil carbon (C) has been shown to be higher in ASNW compared to recent woodland, but 

too few studies exist to fully inform any trend. Orczewska (2009) evidenced a significantly 

higher percentage of organic carbon in ASNW compared to recent woodland under three 

canopy types. De Keersmaeker et al. (2004) reported a positive significant correlation 

between total C and a sequence of woodland ages. However, Graae et al. (2003) found no 

difference in organic matter content between ASNW and recent woodland. Seemingly no 

studies have explicitly analysed the effect of C on AWI species diversity. Overall, C in ancient 

woodland soils is not a widely studied area and is worthy of further investigation. 

AWI and specialist woodland species are known to be shade-tolerant and adapted to shady 

environments (e.g. Whigham, 2004; Hermy et al., 1999; Bierzychudek, 1982). Sciama et al. 

(2009) found AWI species to have a higher specific leaf area than recent woodland species 

yet the same biomass, showing adaptation to shade. Richness and cover of woodland 

species have been found to be higher in plots with relative insolation < 8% (De Keersmaeker 
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et al., 2004). In agreement with this finding, the more specialist ancient woodland species 

are noted to prefer < 5% insolation (Hermy et al., 1999). However, indirect influence of light 

via competitive exclusion by light-demanding species appears to partly account for low 

presence of AWI species in recent woodlands: De Keersmaeker et al. (2004) evidenced a 

significant negative correlation between number of AWI species and percentage cover of 

light demanding species.  

 

1.5.3 Biogeographical factors 

Many studies have considered the response of ancient woodland flora to biogeographical 

variables (Kimberley et al., 2016, 2014; Hofmeister et al., 2013; Brunet et al., 2011; 

Vockenhuber et al., 2011; Corney et al., 2004; Petit et al., 2004; Bailey et al., 2002; Graae, 

2000; Peterken and Game, 1984). Biogeographical studies have researched how woodland 

species and their populations respond to processes such as fragmentation and 

connectivity, species-area-distance dynamics, edge effects and matrix impacts (Humphrey 

et al., 2013). 

Woodland fragmentation is a process whereby ‘a large expanse of habitat is transformed 

into a number of smaller patches of smaller total area, isolated from each other by a matrix 

of habitats unlike the original’ (Wilcove et al., 1986:237). Four distinct effects of 

fragmentation on habitat configuration have been identified by Fahrig (2003): (a) reduction 

in habitat amount; (b) increase in number of habitat patches; (c) decrease in habitat patch 

size; and (d) increase in patch isolation. Jaeger (2000) theorises six stages in the process of 

fragmentation within a landscape (Fig 1.4) and uses the term ‘fragmentation’ to encompass 

the whole sequence. Fragmentation is a multi-faceted issue: it is not only a quantitative 



48 

 

spatial problem, but also an issue of habitat quality reduction, which impacts on community 

composition (Bailey, 2007).  

 

Figure 1.4 Jaeger (2000: 116). Phases of the 

fragmentation process, distinguished according to 

geometric characteristics (modified and extended after 

Forman 1995: 407). 

 

The fragmented distribution of ancient woodland is considered a significant threat to the 

quantity, quality and distribution of its flora (Corney et al., 2008b, 2004; Rackham, 2008; 

Harris, 1984). In the earlier part of the 20th century, approximately 38% of ancient 

woodland was felled for conifer plantation and 7% for conversion to agriculture (Atkinson 

and Townsend, 2011). Additionally, 48% of ancient woodlands are smaller than 5ha in size 

(Corney et al., 2008b). Given that only patches over 2ha were mapped in the Ancient 

Woodland Inventory, this number could be higher (Thomas et al., 1997; Spencer and Kirby, 

1992) (Fig. 1.5). 
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Figure 1.5 Size categories (hectares) of ancient woodland in England from the 

Ancient Woodland Inventory (After Thomas et al., 1997:244) 

 

Two over-arching themes are researched in this discipline - the impact of fragmentation on 

species dispersal, and on abiotic conditions in remnant woodlands. Both are studied in 

order to establish how loss and geographical reconfiguration of woodlands impact on 

community composition and population dynamics, often with a view to policy change or to 

inform restoration practices. 

Reduced habitat continuity has been shown to cause an especially significant barrier to the 

dispersal and colonisation of ancient woodland species due to life traits such as few and 

heavy short-range dispersed seeds (Endels et al., 2007; Hermy et al., 1999; Bierzychudek, 

1982) and clonal spread (Verheyen et al., 2003a; Hermy et al., 1999). These traits cause 

populations of these species to be sensitive to habitat fragmentation and loss, and even to 

the point of extinction (Flinn and Vellend, 2005; Peterken, 1977). Such traits are considered 

to be incompatible with survival in a dynamic landscape (Johst et al., 2002), as alternative 

woodland habitats are not easily colonised. Frequency occurrence of woodland species in 

fragmented patches was linked to life form (which in turn relates to seed mass and 
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dispersal mechanism) by Jacquemen et al. (2003a). This outcome corroborated findings of 

an earlier study that evidenced significant spatial aggregation of woodland species, which 

is indicative of severe dispersal limitation (Jacquemen et al., 2001). 

The degree of isolation of recent woodlands from older or ancient woodlands has been 

shown to contribute to dispersal limitation of specialist or AWI species. Brunet et al. (2011) 

found significant negative correlations between distance from older core woodland and 

number and abundance of specialist woodland species (p<0.001 and p<0.05 respectively), 

and no correlation for generalist or open land species. These findings agree with an earlier 

study by Honnay et al. (2002a), where 85% of woodland species were identified as 

dispersal-limited and showed significantly decreasing colonisation ability with distance 

from source woodland. Isolation of recent woodland patches from ASNW had the strongest 

impact of a number of variables on the relative occurrence of spring flowering herbs with 

large seeds and unassisted dispersal (e.g. P. quadrifolia), and small, mainly vegetatively 

reproducing herbs (eg. A. nemorosa) (Endels et al., 2007). 

Considering connectivity instead of isolation, studies indicate that presence of specialist or 

AWI species correlated positively with degree of connectivity. Jacquemen et al. (2003a) 

demonstrated that patch occupancy of 35/59 woodland species was related to landscape 

connectivity. Likewise, AWI species richness in British lowlands was explained in a large 

part by length of hedgerows and lines of trees within the 1km square of a woodland plot, 

as well as the area of woodland within 500m of the plot (Petit et al., 2004). However, some 

hedgerows or tree lines may themselves be ASNW remnants (McCollin et al., 2000) and 

could potentially act as a source instead of, or as well as, a conduit for woodland species.  
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Conversely, Honnay et al. (1999a) discovered patch isolation to have negligible impact on 

woodland species richness, being of minor importance compared to internal habitat 

variables. Patch isolation has been demonstrated to be of varying importance for woodland 

species even when compared between landscapes in the same country: Graae (2000) 

assessed woodland species richness in response to isolation measures in two landscapes in 

Denmark, but only one site exhibited a significant decrease in woodland species richness 

with distance to large and ancient woodland. Similarly, Bailey et al. (2002) proved no link 

between the occurrence of four ancient woodland species and the distribution of ASNW 

woodlands at the regional scale, concluding that other factors must be more influential. 

Edge vegetation structure may be of greater importance than distance between woodlands 

in determining the permeability of edges for seeds (Cadenasso and Pickett, 2005). 

Isolation combined with patch size may account for conflicting results regarding dispersal 

of specialist or AWI species across space: as emphasised by Bailey (2007) fragmentation is 

not simply a geographical distance problem. Two notable studies provide clear evidence 

that the aggregate effect of isolation and patch size influence species richness. Honnay et 

al. (2005) note that smaller habitats equal smaller populations, but this is potentially only 

problematic if small habitats are also isolated, reducing migration and increasing risk of 

local extinction. Petit et al. (2004) found the highest number of species in the largest and 

least isolated (and most shaded) woodland patches, with these factors being more 

important for species richness than total area of woodland in the vicinity, which ranked as 

the next highest factor. 

Considering patch size alone, studies show conflicting results in terms of its impact on 

species richness. It would be expected that larger woodlands have higher species richness 

due to diversity of internal habitats (Honnay et al., 1999a) or that by being larger are more 
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likely to encounter propagules (Dumortier et al., 2002). The landscape context may explain 

conflicting results among studies (Fahrig, 2003). Whilst some studies have found positive 

correlations between understorey species richness and presence with patch size (Gonzalez 

et al., 2010; Jacquemen et al., 2003a; Peterken and Game, 1984), the majority have 

evidenced no significant increase or little impact (Hofmeister et al., 2013; Dupre and Ehrlen, 

2002; Graae, 2000; Honnay et al., 1999a). The ‘single large or several small’ debate 

(Diamond, 1975) was reviewed by Honnay et al. (1999a) with no evidence found that either 

a single large habitat or several smaller ones reduced species richness. Indeed, Graae 

(2000) found fewer species in large than in small woodlands in one study region, and vice-

versa in another.  

 

1.5.4 Edge effect 

The concept of edge effect may partly account for the variation in results produced by 

studies of patch size per se. The impact of adjacent landuse on environmental gradients 

was recognised by Clements in 1897 (Farina, 1998).  Edge effect is defined as the flux of 

matter, energy, and species directed from the landscape matrix into the habitat fragment 

(Ryszkowski, 1992). Small patch size combined with irregular shape resulting from 

landscape fragmentation is shown to cause a distinction in abiotic and consequently biotic 

variables in edge versus interior habitats. Smaller patches have a high perimeter to area 

ratio causing a proportionally higher area of edge habitat than in a larger woodland (Willi 

et al., 2005). The further the woodland patch deviates from the optimum circular shape, 

the more edge exists in proportion to interior (Laurance, 2008; Laurance and Yensen, 1991; 

Patton, 1975) (Fig. 1.6).  
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Figure 1.6 Woodland shape and edge effect. Two woodlands of the 

same area with markedly different proportion of ‘interior’ (after The 

Woodland Trust 2000:11). 

 

A small number of studies have considered edge effects specifically in ancient woodland or 

explicitly concerning ancient woodland vegetation in northern Europe (Hofmeister et al., 

2013; Willi et al., 2005; Honnay et al., 2002b) but generic woodland edge effects studies 

are well-established (e.g. Gonzalez et al., 2010; Vallet et al., 2010; Aune et al., 2005; Harper 

et al., 2005; Honnay et al., 2005; Ries and Sisk, 2004; Cadenasso and Pickett, 2001; Honnay 

et al., 1999a; Matlack, 1994). Woodland age (ASNW or recent) had no significant influence 

on the current edge width (Hofmeister et al., 2013), but there are seemingly no other 

studies with which to compare. Edge conditions are usually considered deleterious to 

populations of specialist species (Honnay et al., 2002b), which, when combined with small 

patch size, effectively become a form of habitat loss.  

Murcia (1995) identifies three main edge impacts a) abiotic, b) direct biological caused by 

abiotic changes, and c) indirect biological, for example species interactions. Edge effects 

can include a change in environmental gradients perpendicular to the edge, such as wind 

speed, light penetration, humidity, temperature, and biotic impact such as ingress of weedy 

or non-specialist species. Additionally, edges may experience direct anthropogenic impacts 
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such as pollution from agro-chemical spray-drift (Gove et al., 2007; Willi et al., 2005). 

Harper et al. (2005) theorise a sequence of edge impacts, being the primary response of 

the canopy structure to fragmentation, which then determines the abiotic gradients that 

cause secondary responses in terms of understorey processes, structure and composition. 

Edge effect studies often aim to determine edge width in order to assess the proportion of 

the habitat influenced by external inputs. Murcia (1995) collated results from edge effect 

studies with nearly all variables exhibiting a width of between 10-60m in temperate forests. 

Similarly, Gehlhausen et al., 2002) found edge widths of between 10-80m for the majority 

of biotic and abiotic variables, and Honnay et al. (2002b) recorded 0-23m edge widths for 

the penetration of weedy species into ancient woodland. However, Hofmeister et al. (2013) 

found edge effects up to 200m for some variables, which they acknowledge as an unusual 

distance. Consequently, they emphasise that edge effects should be viewed as continuous 

rather than discrete variables, as there is no precise distance at which they cease.  

Variation in edge width amongst studies may partly be accounted for by edge orientation, 

vegetation structure and the influence of multiple edges. Woodlands generally experience 

greater edge width on South and West than North facing edges in the northern hemisphere 

(Honnay et al. 2002b; Gehlhausen et al., 2000; Matlack, 1994). Hofmeister et al. (2013) 

recorded increasingly fewer ancient woodland species toward 150-200° orientation. This 

phenomenon is thought to be explained by the intensity of energy transfer between 

adjacent ecosystems (Harper et al., 2005; Ries and Sisk, 2004), which is influenced by solar 

radiation, light and wind energy inputs, often greater on South-facing edges and in the 

direction of the prevailing wind. Vegetation structure at the edge greatly influences edge 

width: sealed or high density vegetation structure at the edge reduced the magnitude and 

distance of edge width in comparison to edges with open vegetation (Harper et al., 2005).  



55 

 

An important but over-looked factor is the combined impact of effects caused by exposure 

of vegetation communities to multiple edges, for example in a woodland corner, and of 

these potentially being different matrix types. Ries and Sisk (2004) highlight that no studies 

have explicitly gathered primary data to investigate the effects of where multiple edge 

types converge, instead measuring linear distance to the closest edge only. In response, a 

recent study demonstrated the additive effect of dual-edge proximity on AWI richness in 

ASNW, which was lower in corner positions than near a single edge (Swallow and 

Goodenough, 2017). Specifically, presence of A. nemorosa, P. quadrifolia, L. galaeobdolon 

and H. non-scripta showed significant positive correlations with distance away from a single 

edge, and a stronger effect of proximity to dual-edges. 

 

1.5.5 Relative influence of variables 

To explain the phenomenon of distinctive ancient woodland vegetation, it is necessary to 

consider the relative contribution of variables that operate at different scales; from 

species-specific life traits, local environmental conditions, age and continuity, to the 

landscape scale geographical configuration of woodlands. 

Age and geographical configuration of woodland seem have a high relative influence on 

vegetation characteristics (Kimberley et al., 2016). For studies focusing on ASNW, patch age 

ranks higher than other explanatory variables in explaining woodland species composition 

(Kimberley et al., 2016; De Keersmaeker et al., 2004). Patch age also has a high relative 

influence on the presence of geophytes and perennials with poor dispersal ability (Herault 

and Honnay, 2005). Petit et al. (2004), who did not test for the contribution of age, as being 

a previously established phenomenon, found patch size and isolation together accounted 
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for 20% of the variation in AWI species richness in lowland British woodlands. Kimberley et 

al. (2016) concluded that management of the spatial configuration of woodland with 

suitable abiotic conditions would be the most effective method to influence woodland 

species diversity. 

When considered relative to other explanatory factors, soil characteristics in ASNW and 

recent woodlands have a lower relative influence on understorey vegetation differences. 

Lack of long distance dispersal abilities, low seed availability, recruitment limitations and 

competition have all been shown to contribute more strongly to ASNW-recent woodland 

vegetation differences than soil characteristics (Sciama et al., 2009; Graae et al., 2004, 

2003). Seemingly few studies have considered the relative influence of factors in ARW. 

However, in a national scale study across Britain, Corney et al., (2004) found pH to rank 

most highly in explaining vegetation composition.  

 

1.6 Study scope and rationale  

The ancient woodland concept is well-established internationally (Wirth et al., 2009b). The 

distinctiveness of ASNW plant communities is well-recognised in terms of richness, 

community composition, and presence of AWI species (Kelemen et al., 2014; Rackham, 

2008; Kirby, 2004; Honnay et al., 1998; Rose, 1999; Wulf, 1997). The majority of existing 

research focuses on comparison of ASNW and recent woodland plant communities (e.g. 

Kelemen et al., 2014; Kirby and Morecroft, 2011; Sciama et al., 2009; Orczewska, 2009; 

Graae et al., 2003).   
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In the UK, ancient woodland holds especial protection in the National Planning Policy 

framework, which has been extended to accord equal status to ANSW and ARW (Forestry 

Commission and Natural England, 2014). Following the change in policy, a small but 

increasing number of studies have compared vegetation composition and dynamics of 

ASNW with ARW for restoration purposes (Berges et al., 2017; Atkinson et al., 2015; Brown 

et al., 2015). 

Seemingly no previous study has drawn together the three woodland types (ASNW, ARW, 

and recent woodland) to understand the extent to which the vegetation of ASNW 

woodland may be supported in apparently sub-optimal habitats of semi-natural ARW and 

recent woodland. This thesis will address this gap in existing research. 

The current thesis also addresses a research gap relating to the impact of dual edge effects. 

Ries and Sisk (2004:511) note a ‘poor understanding’ of multiple edge effects in the 

literature and that no studies using primary data are known. A search of the literature has 

revealed no studies considering the impact of multiple edge proximity on woodland plants. 

Given the current policy focus on ASNW conservation, it was appropriate to apply this 

theoretical gap to ancient woodland indicator species, which would in turn inform both 

fragmentation theory and application of AWI lists.  

At the regional scale, the new Countryside Stewardship statement for the Cotswolds 

identifies ASNW and native woodland as priority habitats to maintain, and ARW for 

restoration and management (Natural England, Forestry Commission and DEFRA, 2015). 

The Cotswolds has twice as much ASNW cover than the average for England: 4.6% as 

opposed to 2.3% (Cotswold Conservation Board, 2018; Atkinson and Townsend, 2011). The 

Cotswolds is identified as an Ancient Woodland Priority Area for expansion and 
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connectivity (Cotswold Conservation Board, 2018; Forestry Commission, 2006a). A search 

of the literature reveals seemingly no recent empirical studies of ancient woodland 

vegetation in the Cotswolds. Both Rose (1999) and Spencer (1990) mention the Cotswolds 

in published work, as a habitat for rare AWI species. Extensive survey data and grey 

literature exist, but there is a gap in the research for recent primary data collection and 

analysis of drivers of ancient woodland vegetation distinctiveness in this nationally 

important region. 

 

1.6.1 Research aims and objectives 

Research aim:  

Using new primary data, to investigate the distinctiveness and community ecology of 

ancient woodland vegetation. 

 

Research objectives: 

1 To identify any distinctiveness in vegetation richness, diversity, and scarcity among 

ancient semi-natural, ancient replanted, and recent woodland. 

2 To test the affiliation of herb layer plant species to ancient semi-natural and recent 

woodland, using a range of metrics. 

3 To assess the degree to which the floristic community composition differs among 

ancient semi-natural, ancient replanted, and recent woodland. 
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4 To examine biotic influences on community composition in ancient semi-natural, 

ancient replanted, and recent woodland.  

5 To examine the response of ancient woodland indicator communities to environmental 

and biogeographical variables, relative to woodland continuity status. 

6 To assess the relative influence of single and dual-edge proximity on AWI species in a 

fragmented woodland. 

 

1.6.2 Thesis structure 

 

Chapter 1 

This combined introduction and literature review established the following fundamental 

principles of ancient woodland vegetation research and identified research trends and gaps 

in knowledge. This basis was used to inform the research objectives of the thesis, which are 

presented in section 1.6.1.  

• Woodland classification systems in Britain combine habitat continuity, naturalness 

and species composition. NVC is the current standard technique. 

• A significant emphasis is placed upon the ancient woodland concept (ASNW and 

ARW) both in terms of conservation practice and legislation (HM Government, 

2018; Forestry Commission and Natural England, 2014; Goldberg et al., 2007).   

• Ancient woodland covers just 2.3% of England’s land area in a highly fragmented 

configuration (Atkinson and Townsend, 2011).  
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• The ecological value of ASNW is primarily due to its distinctive vegetation in 

comparison to more recently established woodland (Kelemen et al., 2014; Sciama 

et al., 2009).  

• Prior studies have established differences between ASNW, ARW and/ or recent 

woodland in understorey richness, diversity, community composition, and/ or 

presence of AWI species, although outcomes among these metrics are inconsistent 

(e.g. Berges et al., 2017; Kelemen et al., 2014; Brunet et al., 2011; Sciama et al., 

2009; Hermy et al., 1999).  

• ARW vegetation (particularly that of semi-natural or mixed ARW, as opposed to 

coniferous or exotic) has been little studied relative to ASNW and recent woodland 

(Atkinson et al., 2015; Brown et al., 2013). 

• The use of AWI species to identify ancient woodland and to measure conservation 

value is a widely accepted practice by governmental and non-governmental 

organisations. However, the methods of AWI list creation and application have been 

criticised for lack of objectivity and standardisation (Glaves et al., 2009). An 

increasingly favoured approach to is assess the ecological conditions of a woodland 

or to use weighted indicators.  

• Several studies have concluded that woodland continuity and biogeographical 

factors, such as woodland connectivity, patch size and edge effects, are strong 

explanatory factors for the distinctive ecology of ancient woodland flora (Kimberley 

et al., 2016; Hofmeister et al., 2013; Petit et al., 2004). 
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Chapter 2 

 

This study site and methods chapter details the generic methods used in all subsequent 

data chapters. Firstly, the woodland history and biogeography of the Cotswold Hills study 

area is outlined to set the context of the data collection. Secondly this chapter describes 

and justifies the site selection, sampling strategy, and methods of vegetation data 

collection. To reduce repetition, these generic methods are referred to within the methods 

section of individual data chapters. 

 

Chapter 3 

This data chapter addresses the following research objectives: 

1. To identify any distinctiveness in vegetation richness, diversity, and scarcity among 

ancient semi-natural, ancient replanted, and recent woodland. 

2. To test the affiliation of herb layer plant species to ancient semi-natural and recent 

woodland, using a range of metrics. 

To underpin the later explanatory chapters, this first data chapter provides a baseline 

description of the relative distinctiveness of ASNW, ARW, and recent woodland vegetation. 

To establish whether there is any difference in the relative scarcity of herb layer species in 

ASNW, ARW and recent woodland, this chapter examines the frequency occurrence of 

species present in the three woodland continuity types within 10km squares in Britain (Hill 

et al., 2004). The literature review identified inconsistent outcomes among the metrics 

used to distinguish ASNW vegetation from that of ARW and/ or recent woodland (Naaf and 

Wulf, 2010). To address this issue, Chapter 3 tests the consistency of alpha scale richness 

and diversity measures that are commonly used to differentiate the canopy, shrub, herb, 
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AWI and terrestrial moss layer vegetation of ASNW, ARW, and recent woodland. Likewise, 

the literature highlighted inconsistencies in the creation of AWI lists (Kimberley et al., 

2013). Chapter 3 examines the consistency of AWI identification through the application of 

four indicator-identification metrics used in prior studies.  

 

Chapter 4 

This data chapter addresses the following research objectives: 

3. To assess the degree to which the floristic community composition differs among 

ancient semi-natural, ancient replanted, and recent woodland. 

4. To examine biotic influences on community composition in ancient semi-natural, 

ancient replanted, and recent woodland.  

This chapter is distinguished from Chapter 3 in focusing on the beta and gamma scales of 

plant community differentiation. Unlike at the alpha scale, beta scale community 

comparisons recognise the identity of individual species and their phytosociological 

associations (Berges et al., 2017; Atkinson et al., 2015). Vegetation community 

comparisons are conducted for the canopy, shrub, herb (and AWI and non-AWI), and 

terrestrial moss layers among ASNW, ARW and recent woodland. Biotic explanations for 

any community distinctiveness are analysed. To investigate any strata interactions, AWI 

alpha richness, and the richness of the corresponding canopy, shrub, non-AWI herb, and 

moss layers are tested for correlation. Likewise, Jaccard community similarity at the beta 

scale is also tested for correlation between AWI communities and the other layers. The 

literature identified a lack of consensus on which life traits best explain ASNW, ARW, and/or 
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recent woodland vegetation distinctiveness (Kimberley et al., 2014; 2013). Chapter 4 

compares the herb layer community composition of the three woodland types by life trait. 

 

Chapter 5 

This data chapter addresses the following research objective: 

5. To examine the response of ancient woodland indicator communities to 

environmental and biogeographical variables, relative to woodland continuity 

status. 

Chapter 5 uses a modelling approach to explain variation among ASNW, ARW and recent 

woodland for both alpha richness and beta community composition. Chapter 4 explains 

any biotic factors influencing community composition, whereas Chapter 5 focuses on 

abiotic environmental and biogeographical explanatory variables. The literature 

emphasised the importance of woodland continuity for AWI species presence, and 

identified a research trend towards ecological, rather than age-based, explanations for AWI 

presence (Barnes and Williamson, 2015; Wright and Rotherham, 2011; Spencer, 1990). 

Furthermore, biogeographical variables have been found to have significant influence on 

AWI communities in existing studies (Kimberley et al., 2016; Petit et al., 2004). Therefore 

Chapter 5 tests to what extent woodland continuity or habitat variables best account for 

the variation in AWI communities established in Chapter 4. 
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Chapter 6 

The chapter addresses the following research objective: 

6. To assess the relative influence of single and dual-edge proximity on AWI species in 

a fragmented woodland.  

To research any additive effect of proximity to two edges on AWI presence, Chapter 6 

focuses on a local scale, as opposed to the landscape scale of earlier chapters. The literature 

highlighted the influence of biogeographical variables resulting from fragmentation for 

AWI communities (Kimberley et al., 2016; Hofmeister et al., 2013; Petit et al., 2004), 

particularly the notable statistic of 48% of ancient woodlands being smaller than 5ha 

(Corney et al., 2008b). A search of the literature revealed few prior dual-edge effect studies 

for an ecological discipline (Fletcher, 2005; Ries and Sisk, 2004) and none in the context of 

ancient woodland vegetation. Chapter 6 tests for correlation between herb layer AWI 

species richness and individual AWI species presence with proximity to a single edge, and 

with combined proximity to two edges. Additionally, Chapter 6 describes the AWI 

community differences between a larger and smaller fragment at the local scale site. This 

chapter utilises primary data collected outside of the PhD but the analysis and write-up 

were completed entirely during, and as part of the thesis. 

 

Chapter 7 

 

This concluding chapter summarises the literature context of the thesis and provides a 

synopsis of each chapter. The original findings are presented in relation to individual 

research objectives, and the overarching conclusions of the thesis are summarised. This 
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chapter presents a critique of the research conducted and indicates the next steps for 

publication and potential avenues for future research arising from the thesis. 
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2. Study site and generic methods 

 

 

Mercurialis perennis dominated woodland. Castlett Wood, Guiting Strategic Nature Area  

25/07/13, Grid ref. SP 07934  26469 

Chapter scope: 

This chapter outlines and justifies the selection of study sites and vegetation sampling 

methods within those sites. For Chapters 3, 4, and 5 the generic methods are considered 

here. Specific vegetation, soil, and biogeographical factors and statistical methods, are 

detailed in the relevant research chapters. For Chapter 6, an outline of methods is given 

here, with further details in the relevant chapter. 
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2.1 Woodland context of The Cotswold Hills 

The Cotswold Hills region is located in southern England (Fig. 2.1), mainly within the county 

of Gloucestershire, centred on latitude 51.93N, longitude 1.96W. The region is categorised 

as hilly lowland with altitude of up to 300 metres above sea level. An area 78km in length 

and 2038km2 is designated as an Area of Outstanding Natural Beauty (Cotswold 

Conservation Board, no date). The geological substrate is predominantly oolitic limestone, 

with smaller patches of mudstone, sandstone and lias clay (BGS, 2016). Soil cover is 

predominantly 0343d Sherborne Association (shallow, well-drained brashy calcareous 

clayey soils over limestone) (Cranfield University, 2016). Annual rainfall is 806.3mm and 

mean annual temperature is 5.7°C (min) to 14.0°C (max) (MET office, 1981-2010). 

 

Figure 2.1. Cotswold Area of Outstanding 

Natural Beauty (Cotswold Conservation 

Board, undated)  

 



68 

 

The vegetative history of the area is complex. Circa 10,000 Cal. BP  Betula, Pinus and Corylus 

recolonised the Cotswolds under post-glaciation tundra conditions, followed by Quercus 

and Ulmus and then other tree species as the climate warmed (Regini et al., 1987). Early 

woodland clearance of the Cotswold plateau began c. 5500 Cal. BP (Bathe et al., 1981), 

followed by a decline in Ulmus sp. and Tilia sp. and an increase in Fraxinus excelsior due to 

shifting cultivation ground disturbance (Pennington, 1969). Circa 2500 Cal. BP, the 

Cotswold plateau became more extensively cleared for sheep farming with some woodland 

remaining for timber (Rackham, 1990). Clearance continued until the c1000 Cal BP, with 

coppice management being initiated c500-800 Cal. BP. In the year 1700 through into 1900s, 

plantations were created on the plateau, with parks and woodland formed on large estates, 

such as Stowell and Cirencester (Regini et al., 1987). The replanting of ASNW for timber 

dates to the early 20th century, creating ARW (Forestry Commission, 2012).  

The Countryside Stewardship agri-environment scheme identifies the Cotswolds as a 

priority region for ancient and native woodland (DEFRA, 2015). This is significant not only 

due to recognition of woodland habitats, but also due to the selection of the Cotswolds as 

a functioning landscape unit in which to administer habitat management strategies. As 

such, the present study is justified in researching ancient woodland in the Cotswold eco-

region, rather than over a wider area, or within an administrative boundary, such as a 

county. Woodland covers 10.1% of the Cotswold AONB area, which reflects the England 

average of 10% woodland cover (Forestry Commission, 2017). The wooded area comprises 

66%  broadleaf and 34% coniferous woodland (Forestry Commission, 2001). The dominant 

broadleaf woodland types are Fraxinus excelsior, Acer pseudoplatanus, Quercus robur, 

under National Vegetation Classification (NVC) categories W8 and W10 and Fagus sylvatica 

under NVC categories 12 and 14 (Cotswold Conservation Board, 2018).  
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The Cotswold region offers significant scope to research the distinctiveness and community 

ecology of ancient woodland vegetation. The Cotswolds has a relatively high density, 

including some large landscape patches, of ancient woodland (Table 2.1; Fig. 2.2). Ancient 

woodland is twice as abundant in the AONB area than for England on average. Within the 

AONB area, 4.6% (9292ha) of land cover is ancient woodland (comprising 2.9% (5940ha) 

ASNW and 1.7% (3352ha) ARW) (Cotswold Conservation Board, 2018), compared to 

national coverage of 2.3% of ancient woodland (1.35% ASNW and 0.95% ARW, calculated 

from data in Atkinson and Townsend (2011)). As a result, a large proportion of the Cotswold 

region has been identified as one of four Ancient Woodland Priority Areas with potential 

for restoration and connectivity in the South-West UK (Forestry Commission, 2006b) (Fig. 

2.1). Woodland patch size data for Gloucestershire shows a highly-fragmented landscape 

with dominance of small patch sizes, and only eight large landscape patches of woodland 

(Table 2.1) (Forestry Commission, 2001).  

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Woodland patch size distribution in 

Gloucestershire (Forestry Commission, 2001) 

Size class 
(hectares) 

Number of 
woodlands 

Percent of 
woodland 
area (%) 

Mean area 
(ha) 

<10 1083 15 4.1 

10 - <20 136 6 14.0 

20 - <50 94 10 30.6 

50 - <100 36 9 74.0 

100 - <500 31 19 178.5 

500+ 8 40 1475.1 

Total 1388 100 21.1 
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Extensive primary field surveys and secondary documentary and cartographic sources 

research mean that the identification of ancient woodland in the region is as robust as 

possible. The earliest full woodland survey with conservation in view was conducted by 

Gloucestershire Trust for Nature Conservation in 1977 (Regini et al., 1987). Later, The 

Nature Conservancy Council (Spencer and Kirby, 1992; Kirby et al., 1984) compiled a 

national inventory of ancient woodlands at county level, including detailed flora surveys. 

Ancient woodlands over 2ha were recorded based on primary vegetation survey data, 

historical documents, tithe and estate maps, Domesday and Saxon charters, woodland 

names, owner information, woodland shape, location, earthworks and boundaries (Kirby 

et al., 1984). A study of ancient woodland archaeology in Gloucestershire was published by 

Grundy (1936), which assisted in dating woodlands. 

More recently, The Forest Research Agency conducted a mapping exercise for ancient 

woodlands in South-West England under the Keepers of Time government policy for 

ancient woodland conservation (DEFRA and Forestry Commission, 2005). The exercise drew 

on published data sources such as the National Forest Inventory, National Biodiversity 

Network Habitat Inventories, the Ancient Woodland Inventory and Ordnance survey 

(Forestry Commission, no date). Significant woodland areas were identified as Strategic 

Nature Areas (SNA) for the South-West in order to address requirements of the Natural 

Environment and Rural Communities (NERC) Act (2006) (section 41). Smaller woodlands 

under 2ha are now also included in the Gloucestershire Nature Map.  

The DEFRA MAGIC map provides definitive mapping of woodlands from the national to 

local scale. All ASNW, ARW and recent woodland sites surveyed in this thesis were 

identified by this standard and nationally accepted cartographic resource. Dedicated GIS 

layers for ASNW and ARW were superimposed upon Ordnance Survey base maps to 
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identify the three woodland types. Using this standardised resource to identify ASNW and 

ARW, reduced the ‘circular logic’ of ancient woodland and AWI identification cautioned 

against by Spencer (1990). This means the research basis is as robust as possible and is 

comparable to other studies using MAGIC map at the national scale. 

However, little empirical ancient woodland vegetation research has been published on the 

Cotswolds specifically. The region is mentioned by Rose (1999) as habitat for rarer ancient 

woodland plants, and Gloucestershire is noted for abundance of Paris quadrifolia in both 

ancient and plantation woodlands (Spencer, 1990).  

 

2.2 Site selection, sampling and vegetation data collection 

2.2.1 Selection of study locations 

For all research chapters, study locations were located within the Cotswold Ancient 

Woodland Priority Area, and within the Cotswold Area of Outstanding Natural Beauty (Fig. 

2.2).  
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Figure 2.2. Cotswold Ancient Woodland Priority Area showing research locations: Strategic 

Nature Areas (SNA) of Chedworth, Cirencester, Guiting, Sapperton and Woodchester (Chapters 

3, 4, and 5), and Arle Grove (Chapter 6) (After Forestry Commission and Cotswold Conservation 

Board (undated: 2). 
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To research the distinctiveness and diversity of ancient woodland flora, forty-five woodland 

sites were selected for study within five Strategic Nature Areas (SNAs) (Fig. 2.2), as 

identified by Gloucestershire Local Nature Partnership (2016). The study of sites within 

SNAs enables a practical application of the research outcomes. The rationale for selecting 

woodland site within SNAs, was that such landscapes have been identified as having 

potential for increased connectivity and ancient and native woodland management, such 

that the findings of this research will usefully contribute towards practical management. 

The selected SNAs spanned from the North to South Cotswolds (Fig. 2.2) being, Guiting, 

Chedworth, Cirencester, Sapperton, and Woodchester.  

 

2.2.2 Sampling of woodland sites for Chapters 3, 4, and 5 

A sample of forty-five woodland sites was split equally among the five SNAs, within 

categories of ASNW (n = 15), ARW (n = 15) and recent woodland (n = 15). To mitigate any 

effects of spatial autocorrelation (Legendre, 1993), three ASNW, three ARW and three 

Recent woodland sites were selected in each of the five SNAs (Fig. 2.3). The ASNW/ ARW / 

recent status of each site was ascertained by the definitive MAGIC map (DEFRA et al., 2016). 

The number of sites selected was informed by prior studies of similar scope (Hofmeister et 

al., 2013; Brunet et al., 2011; Graae et al., 2003; Honnay et al., 1999b). 
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Figure 2.3. Example selection of study sites. Selection of 3x each ASNW, ARW and recent 

woodland sites within Guiting SNA. Sites surveyed indicated by black outlines (after DEFRA, 

2016). 

 

Variation in broad-scale environmental parameters was minimised through site selection. 

All sites were located on limestone geology, which was determined via layering the 

following Geographical Information System (GIS) layers: DEFRA (2016) MAGIC map ancient 

woodland dataset; Biodiversity Southwest SNA boundaries; geology maps; Ordnance 

survey base layer. Altitude was initially determined using Google Earth and later verified in 

the field using Geographical Positioning System (GPS). All sites were located between 170 

and 270 m.a.s.l. Landowner permission was a further determining factor in site selection. 

A site was delineated by either being an isolated woodland patch surrounded by another 
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land-use, or a compartment within a larger woodland separated from other compartments 

by a track. 

To reduce bias in site selection, a random number generator was used to select grid co-

ordinates from the GIS layers within each SNA. Numbers were generated until enough 

ASNW, ARW, and recent sites were selected within the permitted and suitable areas 

identified by GIS. Further selection was completed via ground-truthing to ensure 

accessibility of sites. Where a randomly selected site was inaccessible or unsuitable (for 

example unsafe, or recently felled) the next on the list was chosen until a suitable 

compartment was selected (Honnay et al., 1999a). The random sampling of study sites 

avoids any systematic bias.  

All sites represent small habitat patches with each having a homogenous canopy cover of 

between 0.70ha and 20ha (Brunet et al., 2011). All sites selected were entirely or 

predominantly broadleaf, but due to scarcity of purely native deciduous canopy 

composition in ARW and some recent woodland, a degree of tolerance was permitted of 

up to 30% intermixed conifers (Kolk and Naaf, 2015; Kelemen et al., 2014), which was 

established during desk-based GIS assessment and ground truthing. 

To ensure comparability among study sites, National Vegetation Classification was 

conducted for all sites (Hall et al., 2004; Rodwell, 1991). MAVIS software (Smart, 2000) and 

manual keying-out were used to identify the correct classifications. Where possible, these 

were verified against existing site surveys. For Chapters 3, 4, and 5, all sites were classified 

as W8, except one W12 (which had a close secondary classification of W8 using the MAVIS 

system). The matrix environment surrounding each site varied among woodland, arable, 

pasture, equine sport ground, parkland and semi-natural grassland. ASNW were largely 
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managed as coppice and/or for conservation/ game purposes, whereas ARW, and most 

recent woodlands, were managed for timber (Brunet and Von Oheimb, 1998).  

 

2.2.3 Plot-level sampling strategy and vegetation data collection for Chapters 3, 4 and 5 

To achieve representative vegetation data, five plots were systematically located in each 

of the forty-five woodland sites. In total 225 plots were surveyed, equally divided among 

ASNW (n=75), ARW (n=75) and recent woodland (n=75). The plot-level sampling of canopy, 

shrub, herb and ground layers was based on the nested quadrat system of NVC centred on 

the smallest quadrat layer. Nested quadrats allow direct analysis of associations between 

vegetation strata and take account of the differing ecological scales at which the canopy 

and understorey layers function. Therefore, nested quadrats address Rackham’s (2003) 

criticism of incomparable vegetation scales with phytosociological classification. For this 

reason, nested quadrats are commonly used in woodland studies (Kelemen, et al., 2014; 

Brunet et al., 2012; Graae et al., 2003). 

To focus time and resources on the herb layer (which contains the majority of ancient 

woodland species), the NVC survey protocol was adapted. There was no detriment to the 

NVC classification, as Hall et al. (2004) explain that woodlands can be accurately classified 

using a range of quadrat sizes. Five plots, each containing nested quadrats, were surveyed 

within each woodland site (Hall et al., 2004). To avoid overlap of plots (and therefore 

samples that were not independent) canopy quadrat size was 30x30m (Hall et al., 2004) 

rather than the 50x50m initially recommended by Rodwell (1991. Shrub and herb layer 

quadrat sizes followed Rodwell (2006), 10x10m and 4x4m respectively. For efficiency, 
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terrestrial moss ground layer vegetation was also surveyed within the herb layer quadrat 

(Hall et al., 2004), rather than the 2x2m quadrat recommended by Rodwell (2006).  

The area of canopy and herb layer surveyed per site exceeded that of similar published 

studies, enabling a robust and detailed analysis of vegetation composition among 

woodland sites (Hofmeister et al., 2013; Brunet et al., 2012, 2011; Coote et al., 2012; 

Sciama et al., 1999). 

To ensure evenness in sampling across parcels of different size and shape, the five NVC 

plots were systematically located (Harmer and Morgan, 2009). Depending on the shape of 

each site, a plot was located in the most central position of each site and the remaining 

four positioned at equal distances from the central plot, or equally spaced from the nearest 

plot in a linear arrangement (Fig. 2.4). Distance between plots was proportional to the site 

size. The size of the site was assessed using Google Earth and spacing of plots planned a 

priori. The plot area surveyed was independent of site size, as per the majority of published 

studies (e.g. Kelemen, et al., 2014; Brunet et al., 2012; Petit et al., 2004; Graae et al., 2003).  

  

Figure 2.4. Plot location examples in a square and linear parcel 

of differing area. Black outline = homogenous site area. White 

outline = 30x30m plot. 
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In the smallest woodlands, to minimise sampling non-representative vegetation at the 

woodland edge, a buffer of at least 2m was left around the woodland boundary before 

placement of the 30x30m canopy quadrat (Harmer et al., 2001), and therefore the shrub 

layer quadrat within was never less than 12m from the edge, and the herb layer quadrat 

never less than 15m. For larger woodlands, when systematic sampling indicated an internal 

microhabitat (e.g. stream, footpath or disturbance feature) for plot location, then an 

adjacent area was selected instead (Honnay et al., 1998), again with a 2m buffer around 

the feature before the 30x30m quadrat was placed (Hofmeister et al., 2013; Vockenhuber 

et al., 2011). 

As NVC does not specify vegetation height to be surveyed in each stratum of a nested 

quadrat, these were classified in part by height, and in part by life traits or functional group 

(Hofmeister et al., 2013; Brunet et al., 2012, 2011; Van Calster et al., 2008): 

• Canopy 30x30m: Woody species ≥7.0m high.  

• Shrub layer 10x10m: Woody and semi-woody species 1.3-6.9m (woody shrubs, 

saplings, semi-woody climbers. Corylus avellana, Rubus fructicosus and Hedera helix 

at any height were included in the shrub layer). 

• Field, herb and ground layer 4x4m: Vascular plant species (herbaceous, graminoids, 

pteridophytes, and semi-woody species) and terrestrial mosses ≤1.2m. Tree 

seedlings and liverworts excluded).  

All vascular woody, semi-woody and non-woody plant species were surveyed, but tree 

seedlings were excluded (Kolk and Naaf, 2015; Mölder et al., 2008). In the present study 

canopy layer trees were surveyed both for NVC and strata-interaction analysis, but in other 

studies they are often omitted due to the likelihood of being planted and therefore not 



79 

 

reflective of ecological conditions (Vallet et al., 2010; Gilliam, 2007; Honnay et al., 2002; 

Graae, 2000). In the present study, alien, planted or hybrid plants were surveyed, although 

some prior studies specifically exclude these (Jacquemen et al., 2001; Honnay et al., 1999a), 

and the majority do not specify. In terms of bryophytes, only terrestrial mosses were 

surveyed; epiphytic mosses and all liverworts were excluded. Bryophytes are recognised 

reliable indicators of woodland age and continuity (Mölder et al., 2015; Coote et al., 2012), 

and moss is an important element of NVC classification (Rodwell, 1991). 

As Gloucestershire has no published AWI list (Glaves et al., 2009), AWI species used for 

Chapters 3, 4, and 5 are those defined by Rose (1999) for South-West and South England, 

plus any additional from Kirby’s (2004) list for Worcestershire, and the Avon, North 

Somerset and South Gloucestershire list submitted to Glaves et al. (2009) (Table 2.2). 

Table 2.2 Ancient Woodland Indicator (AWI) species list for Chapters 3, 4, and 5.  

These species are those found during surveys of sample sites. They are classified as AWIs in 

published lists for South and South-West England by Rose (1999), Kirby’s (2004) list for 

Worcestershire, and from the list for Avon, North Somerset and South Gloucestershire (Glaves 

et al., 2009). 

Acer campestre  

Adoxa moschatellina 

Allium ursinum  

Anemone nemorosa  

Carex pendula  

Carex sylvatica  

Colchicum autumnale  

Conopodium majus  

Convallaria majalis 

Daphne laureola  

Dryopteris carthusiana  

Epipactis helleborine  

Euphorbia amygdaloides  

Galium odoratum  

Hyacinthoides non-scripta  

Ilex aquifolium  

Lamiastrum galaeobdolon  

Malus sylvestris 

Mercurialis perennis  

Orchis mascula  

Oxalis acetosella  

Paris quadrifolia  

Platanthera chlorantha  

Poa nemoralis  

Polygonatum multiflorum  

Polypodium vulgare  

Polystichum setiferum  

Primula vulgaris  

Prunus avium  

Rosa arvensis  

Sanicula europaea  

Tamus communis 

Ulmus glabra  

Viola reichenbachiana  

Viola riviniana 
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For ease of identification, multiple season surveys were conducted (e.g. Kolk and Naaf, 

2015; Kelemen et al., 2014; Brunet et al., 2011; Van Calster et al., 2008; Herault and Hermy, 

2005; Graae, 2000; Wulf, 1997). Tree and shrub layer surveys were completed in full leaf 

July-August 2013. During April-May 2014, plots were surveyed for field, herb and ground 

layer vegetation, and identification verified again in April-May 2015, then a full summer re-

survey July-August 2015. Spring and summer repeat surveys are justified by the phenology 

and life traits of woodland species. Woodland species comprise a high number of vernal 

species e.g. A. nemorosa, which complete flowering and leafing in the spring and wilt 

before summer (Brunet et al., 2011) whereas other woodland species are summergreen 

e.g. Circaea lutetiana. Plots were checked again during autumn and winter 2015 for any 

additional species e.g. C. autumnale, and bryophtyes.  

To avoid bias during a time of rapid vegetation development for the spring surveys a 

systematic sampling rotation was followed: one each of ASNW, ARW and recent sites were 

surveyed in each SNA in turn and repeated until all 45 were complete. Highest species 

percentage cover values were taken from the full spring and summer surveys (Brunet et 

al., 2011; De Keersmaeker et al., 2004) or, for a very few species eg. C. autumnale, added 

from the autumn or winter plot checks. Vegetation data were recorded using the standard 

NVC recording form (Rodwell, 2006).  

Tree (≥7.0m) and shrub (1.3-6.9m) species percentage cover was visually estimated with 

DOMIN classes as a vertical projection of the canopy onto the ground. This was for woody 

plants rooted within the 30x30m and 10x10m plots respectively (Palo et al., 2013; Brunet 

et al., 2011).  
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For plant species ≤1.2m, actual percentage cover was recorded within 16 1x1m subplots 

within the 4x4m plots. Only plants rooted within the quadrat were included (Graae et al., 

2003). A 1x1m grid quadrat (each grid square = 1%) enabled a precise record of percentage 

cover, and the plot mean was calculated from all 16 subplots. However, in previous studies 

visual estimates of percentage cover are widely employed (Coote et al., 2012; Brunet et al., 

2011; Vockenhuber et al., 2011; Mölder et al., 2008; Van Calster et al., 2008). Percentage 

cover data was necessary to assess the relative abundance of individual species among 

ASNW, ARW, and recent woodland, was therefore more appropriate than presence/ 

absence records alone (Graae et al., 2003; Jacquemen et al., 2001). Abundance scales (e.g. 

Hofmeister et al., 2013; Vallet et al., 2010; De Keersmaeker et al., 2004) were not used for 

vegetation ≤1.2m as the grid quadrat facilitated precise data collection. Additionally, 

DOMIN numbered categories were not suitable for statistical analysis, and choosing the 

median value would lead to many tied data. 

2.2.4 Selection of study location for Chapter 6 

To research the influence of edge effects on ancient woodland flora, an isolated and 

fragmented ASNW of approximately rectangular shape was selected. This was a single-site 

study based at Arle Grove, an AWI-rich reserve, situated centrally among the Strategic 

Nature Areas studied for Chapters 3, 4, and 5 (Fig, 2.2). Arle Grove is not within an SNA but 

met the environmental standardisation criteria as for the sites surveyed for prior chapters, 

being 256 m.a.s.l and with parent material of Jurassic limestone. Being a fragmented 

woodland, the size was 4.8ha plus a smaller remnant of 0.6ha (Fig. 2.5). As for sites in 

chapters 3, 4, and 5, Arle Grove classified as W8 in the National Vegetation Classification. 
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Figure 2.5 Arle Grove and fragment. Ancient semi-

natural woodland. 

 

 

 

2.2.5 Plot-level sampling strategy and vegetation data collection for Chapter 6 

To assess any additive effect of single and dual woodland edges on herbaceous forb AWI 

richness (Brunet et al., 2011), plots were systematically located in transects at 0, 5, 10, 20, 

30, 40 and 60m perpendicular to the East and West edges of Arle Grove and at 0, 5, 10, 20 

and 30m for the remnant. Inter-transect distance was 10m, except at the edges where it 

was 5m. Plots were 2x2m. Fieldwork was carried out in May 2011. Both plot size and 

spacing was informed by earlier studies (Vallet et al., 2010; Honnay et al., 2002b; 

Gehlhausen et al., 2000; Murcia, 1995). For this chapter AWI species were defined by the 

South-West UK list (Rose, 1999). In each plot presence of herbaceous forb AWI species 

were recorded (Table 2.3). 
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Table 2.3 Ancient Woodland Indicator (AWI) species list for Chapter 6.  

These species are those found during surveys of sample sites. They are herbaceous forbs 
classified as AWIs in published lists for South-West England by Rose (1999). 

Anemone nemorosa 

Hyacinthoides non-scripta 

Allium ursinum 

Lamiastrum galaeobdolon 

Galium odoratum 

Paris quadrifolia 

Viola reichenbachiana 

Conopodium majus 

Primula vulgaris 

Euphorbia amygdaloides 

Orchis mascula 

Veronica montana 

Sanicula europaea 
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 3. Distinctiveness of ancient woodland vegetation according to a 

range of diversity and indicator metrics. 

 

Outputs arising from this chapter: 

Swallow, K., Wood, M., and Goodenough, A. (2015) Biodiversity value of ancient woodland 

flora: not quite as it seems. British Ecological Society Annual Meeting. Edinburgh. 13-16 

December 

Swallow, K. (2015) Woodland moss species richness in the Cotswolds: a pilot study. 

Postgraduate conference. University of Worcester. 26 June. 

 

Thuidium tamarisinum. Overley Wood. Cirencester Strategic Nature Area 

27/04/2014. Grid ref: SO 97579 04644 
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3.1 Chapter scope 

The literature review (Chapter 1) identified the scarcity, diversity, and distinctiveness of 

ancient woodland vegetation as strong justifications for its conservation. In response, the 

current chapter establishes the relative scarcity of species present in ASNW, ARW, and 

recent woodlands. A range of diversity metrics and methods of indicator species 

identification is employed in ancient woodland studies, but such methods have rarely been 

compared for consistency in outcomes. To address this, Chapter 3 evaluates the 

consistency of diversity metrics and indicator-identification techniques used in existing 

ancient woodland vegetation research. To inform development of the thesis in later 

chapters, the current chapter describes and compares baseline alpha richness and diversity 

among ASNW, ARW and recent woodland. Chapter 4 will compare gamma scale richness 

with the alpha richness established in the present chapter. AWI richness outcomes 

established in the present chapter will also form the basis of explanatory variable testing 

in Chapter 5. 

  

3.2 Introduction 

The distinctiveness and high biodiversity value of ancient woodland are long-established 

concepts and are widely used to justify its conservation (Honnay et al., 1999a; Wulf, 1997; 

Peterken, 1974). Ancient woodland in England is defined as land that has been continuously 

wooded since at least the year 1600 (Goldberg et al., 2007). This definition includes both 

Ancient Semi-Natural Woodland (ASNW) and Ancient Replanted Woodland (ARW), which 

are equally protected under UK planning law (Forestry Commission and Natural England, 
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2014) and woodland management policy (DEFRA, 2013). Recent woodland is any wooded 

area established since the 1600 threshold date. 

However, there is little consistency in the choice of diversity metrics among studies that 

aim to compare the vegetation of ancient and recent woodland. Most studies apply one or 

two diversity metrics. The application of more than this has been considered poor practice, 

being indicative of unconsidered research design (Magurran, 2004). However, this view has 

been contested: the application of multiple indices has been commended for yielding 

greater insight into plant communities (Naaf and Wulf, 2010; Onaindia et al., 2004).  

Richness, evenness and diversity metrics are frequently used to measure the alpha (α) 

diversity (sensu. Whittaker, 1972) of individual woodland sites (Heip et al., 1998). It is 

important to distinguish between the terms richness, evenness and diversity: diversity and 

richness in particular are employed differently and interchangeably among studies. 

Richness is defined as a count of species within a given area (Magurran, 2004). Evenness 

(equitability) measures show how equitably species abundance or cover is distributed 

among species (Morris et al., 2014). Diversity is often used as an overarching term but has 

a specific meaning: it is a compound measure of both richness and evenness (Morris et al., 

2014; Tuomisto, 2012; Magurran, 2004; Smith and Wilson, 1996; Pielou, 1975). However, 

there is little consensus as to the interdependence of evenness and diversity, and the 

relative contributions of richness and evenness to diversity (Tuomisto, 2012; Jost, 2010; 

Magurran, 2004). As a result, a range of quantitative metrics are available that place 

different degrees of emphasis on richness and evenness.   
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Richness 

Richness is defined as ‘the number of species or attributes present at a specific site or 

sample area’ (Morris et al., 2014:3515). Richness-based indices exist (such as Margalef’s 

(1958) index and Menhinick’s (1964) index) but are not commonly used in vegetation 

studies because they account for both the number of species and number of individuals of 

those species. The indices were originally developed for faunal studies where individuals 

are distinguishable, whereas individuals of clonal plant species are difficult to define 

(Magurran, 2004).  

A number of ancient woodland studies have used richness as a method of distinguishing 

ancient from recent woodlands (e.g. Hermy and Verheyen, 2007; Borschsenius et al., 2004; 

De Keersmaeker et al., 2004). A simple count of species within a sample area is the most 

common richness measure employed in ancient woodland studies (e.g. Kelemen et al., 

2014; Gotelli and Chao, 2013; Sciama et al., 2009; De Keersmaeker et al., 2004).  

Measures of total species richness in all strata from canopy to ground layer show conflicting 

results as to whether ASNW flora is significantly richer than that of ARW or recent 

woodland (Sciama et al., 2009; Dzwonko, 2001b). Variation in outcomes may be due, in 

part, to the inclusion of trees in total plant species richness studies, which are potentially 

placed or managed by humans and therefore not reflective of the ecological capacity of the 

site (Vallet et al., 2010; Rackham, 2003; Honnay et al., 2002b). However, Kirby et al., (2016) 

advocate the inclusion of trees as an intrinsic element of a woodland’s biodiversity. 

Additionally, studies vary in terms of moss species inclusion within total plant species 

richness: Dzwonko (2001b) and Sciama et al. (2009) surveyed only vascular plant species, 

whilst Matuszkiewicz et al. (2013) included mosses, but excluded liverworts. Few studies 

stipulate whether epiphytic, as well as terrestrial, mosses are surveyed, which has 
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implications for the richness total as epiphytes are dependent on presence of woody 

species. Lichens tend to be studied separately (e.g. Ellis, 2015; Whittet and Ellis; 2013; 

Coppins and Coppins, 2002; Rose, 1993). 

As a result of the difficulties identified in the total species richness approach, a more 

common approach is to restrict richness comparisons to the understorey vascular plant 

layers (Kelemen et al., 2014; Baeten et al., 2010; Dumortier et al., 2002). Sciama et al., 

(2009) compared outcomes between the total species approach and a separate shrub and 

herb layer count in ASNW and recent woodland. The total species count showed no 

significant difference in richness. However, the shrub layer was found to be significantly 

richer in recent woodland, whilst the herb layer was significantly richer in ASNW.  

Evenness 

Evenness measures show how evenly abundance or cover of a sample area is divided 

among the species that are present (Morris et al., 2014). A range of evenness indices are 

available (Magurran, 2004), each with attributes that might be viewed as strengths or 

weaknesses depending on the proposed application. Shannon’s evenness (hereafter 

referred to as Shannon’s E) (1949) is considered not to be sufficiently independent of 

richness, although is widely used in the literature (Magurran, 2004; Smith and Wilson, 

1996). By contrast, Simpson’s evenness (Simpson’s E) (1949) is not sensitive to species 

richness (Magurran, 2004; Smith and Wilson, 1996). The emphasis placed on dominance or 

rarity by different indices may be useful in different environments and applications (Smith 

and Wilson, 1996). Smith and Wilson (1996) tested eight evenness indices, including their 

own, against four essential and ten desirable attributes. The Smith and Wilson (1996) 

evenness index fulfils a range of criteria that other indices lack, but requires a known 

number of individuals, which is difficult to apply to clonal plant species. However, 
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Simpson’s E, which does not require known numbers of individuals, ranks highly and is well-

regarded, as it fulfils all the essential criteria and all but two of the desirable criteria (Smith 

and Wilson, 1996). 

In the context of ancient woodland, evenness indices have been rarely applied, but despite 

this evenness appears to be a distinguishing factor between ASNW and recent woodland 

in this small number of studies (Baeten et al., 2010; Vellend, 2004; Verheyen et al., 2003a). 

Primary woodland was shown to have a significantly more even plant community than 

secondary woodland using Simpson’s evenness index (Vellend, 2004). Post-agricultural 

recent woodlands were shown to have significantly decreased Simpson’s E compared to 

ASNW between two timepoints (1980-2009) (Baeten et al., 2010). However, Verheyen et 

al. (2003a) found no significant difference across four age categories of ASNW and recent 

woodland using Shannon’s E. 

Diversity 

Compound indices that integrate both richness and abundance/ cover of each species are 

widely used to distinguish the biodiversity value of habitats (Magurran, 2004). The different 

emphases placed on richness, rarity and abundance among indices means that none can 

be identified as the ‘best’ for all applications (Tuomisto, 2012). Onaindia et al. (2004) found 

Simpson’s diversity index (hereafter Simpson’s D) to be more effective than Shannon’s 

diversity index (hereafter Shannon’s H) in highlighting differences between old-growth 

woodland and recent woodlands with different levels of disturbance in Spain. Shannon’s H 

has been shown to have many benefits: unlike alternatives, it is uninfluenced by uneven 

species richness among sites (Magurran, 2004), and if sufficient sites are sampled, it forms 

a normal distribution suitable for parametric statistical analysis (Taylor, 1978). However, 

Shannon’s H is criticised for difficulty in distinguishing the extent to which a lower or higher 
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value is the outcome of a change in richness versus evenness, which makes interpretation 

challenging (Magurran, 2004).  

Despite the above issues, a small number of comparative ASNW-recent woodland 

vegetation studies have used compound diversity indices. Shannon’s H was employed by 

Bossuyt et al. (1999) who found comparable diversity outcomes in adjacent ancient and 

recent woodland. Verheyen et al. (2003a) compared outcomes for Shannon’s H and 

Shannon’s E indices, finding no significant differences using either method across four age 

categories of ASNW and recent woodland.  

Ancient Woodland Indicator species 

Richness and/or cover of Ancient Woodland Indicator (AWI) species are accepted measures 

used to distinguish ASNW from recent woodland (Kirby, 2004; Rose, 1999). AWI species are 

a subset of herb (and some shrub) layer species particularly, but not exclusively, associated 

with ancient woodland on a regional scale (Glaves et al., 2009). They are likely to be slow-

colonisers, and indicative of woodland interiors, habitat continuity, and potentially original 

woodland conditions (Hermy et al., 1999). The presence of a given number of AWI species 

contributes to the evidence used to designate a woodland as ‘ancient’ (Glaves et al., 2009), 

which lends it protection under UK law (Forestry Commission and Natural England, 2014; 

Communities and Local Government, 2012). 

Studies consistently show that ASNW is significantly richer in those species more closely 

associated with older woodland, compared to recent woodland (Kelemen et al., 2014; 

Hofmeister et al., 2013; Brunet et al., 2011; Orczewska, 2009; Dzwonko, 2001b; Jacquemen 

et al., 2001; Peterken and Game, 1984). Total cover of AWI or woodland specialist species 

has also been shown to be significantly greater in ASNW compared to recent woodland 
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(Orczewska, 2009; Willi et al., 2005; De Keersmaeker et al., 2004). Orczewska (2009) 

analysed both richness and total cover of ‘true woodland species’ in ASNW and recent 

woodland, with the results of each metric corroborating the other.  

The methods used to determine which species hold AWI status vary among studies. Initial 

UK lists were based on expert opinion and observation (Rose, 1999). However, European 

lists have used indices or proportion of occurrences in ancient versus recent woodland 

(Schmidt et al., 2014; Thompson et al., 2003a), statistical testing (Schmidt et al., 2014; 

Baeten et al., 2010; Thompson et al., 2003a; Verheyen et al., 2003b; Wulf, 1997; Honnay 

et al., 1998) and specific indicator analysis techniques, such as Dufrene and Legendre’s 

Indicator Analysis (Kelemen et al., 2014).  

Research gap 

The designation, protection, and conservation management of ASNW and ARW is informed 

in part by vegetative assessment (Glaves et al., 2009). However, lack of consistency in 

metrics used among studies is unhelpful for conservation decision-making, as it is difficult 

to establish overarching recommendations when it is unknown to what extent contrasting 

outcomes may be due to the metrics used and strata studied. Comparative studies of 

ASNW, ARW, and recent woodland some show significant differences in diversity while 

others show comparable outcomes (Sciama et al., 2009; Verheyen et al., 2003a; Brunet et 

al., 1999). Richness in particular is used to differentiate ancient woodland from recent 

woodland, especially in conjunction with AWI lists. Diversity and evenness metrics have 

been applied in research in order to take account of abundance, as well as presence. 

Despite the important conservation implications of metric choice few studies have 

empirically tested their outcomes in the context of ancient woodland vegetation (Onaindia 
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et al., 2004; Verheyen et al., 2003a) and seemingly none in the UK. Moreover, very few 

studies have explicitly compared the diversity of ARW to ASNW or recent woodland, 

particularly of broadleaf or mixed ARW (Atkinson et al., 2015; Onaindia et al., 2013; Brunet 

et al., 2011; Kirby, 1988). Finally, although the metrics by which AWI species are identified 

have been criticised (e.g. Kimberley et al., 2013; Spencer, 1990) seemingly no studies have 

empirically tested the consistency of AWI identification among these metrics. 

The research objectives for this thesis chapter are: 

1. To identify any distinctiveness in vegetation richness, diversity, and scarcity among 

ancient semi-natural, ancient replanted, and recent woodland. 

2. To test the affiliation of herb layer plant species to ancient semi-natural and recent 

woodland, using a range of metrics. 

 

3.3 Methods 

3.3.1 Study location 

Cross-reference to sections 2.2.1 and 2.2.2. 

3.3.2 Field methods and AWI definition 

Cross reference to sections 2.2.3 and 2.2.4. 
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3.3.3 Statistical methods 

Relative national prevalence of herb layer plant species in ASNW, ARW, and recent 

woodland was calculated from PLANTATT data (Hill et al., 2004). For each species recorded 

as part of this thesis, prevalence was taken to be the number of 10km squares in Britain in 

which the species is present (Hill et al., 2004). The mean prevalence was calculated across 

all vascular species (forbs, graminoids and pteridophytes) to give a value for the community 

of each woodland site (n=45). As data met assumptions for parametric testing, an 

independent t-test was used to test difference in mean species’ prevalence between 

ASNW-ARW, ASNW-recent, and ARW-recent woodland.  

To test for variation in diversity metric outcomes among ASNW, ARW, and recent 

woodlands, richness, evenness and diversity indices were calculated for plant communities 

in each woodland site (ASNW n=15, ARW n=15, recent n=15).  

Richness was considered the baseline against which other diversity metrics would be 

compared, as it is the most commonly-used diversity measure. Richness was measured as 

a count of species within sample plots for: (a) all strata (canopy, shrub, herb, and moss) 

combined (Sciama et al., 2009): (b) canopy, shrub, herb and terrestrial moss strata 

separately; and (c) AWI species. AWI species richness (Orczewska, 2009; Willi et al., 2005; 

De Keersmaeker et al., 2004) was calculated for all (shrub+herb layer) AWI species and for 

herb layer AWI species only. 

To compare the outcomes of evenness indices with richness and diversity metrics, 

Simpson’s E (using the 1-D method) (Baeten et al., 2010; Smith and Wilson, 1996) and 

Shannon’s E (Mölder et al., 2008; Verheyen et al., 2003a) were calculated for each 

woodland site. To compare diversity indices against other metrics, Simpson’s D (also using 



94 

 

the 1-D method) (Vellend, 2004) and Shannon’s H (Mölder et al., 2008; Bossuyt et al., 1999) 

were also calculated for each woodland site. The choice of metrics was based on those used 

in prior studies and those that were appropriate for vegetation data including clonal 

species. 

Due to the different scales of vegetation and ecological processes in woodland strata 

(Peterken, 1993), it was not logical to calculate a ‘total’ evenness or diversity indices across 

strata, as recognised in prior studies (e.g. Baeten et al., 2010; Vellend, 2004; Verheyen et 

al., 2003a; Bossuyt et al., 1999). Neither is there any precedent of calculating evenness or 

diversity indices for the subset of AWI species, so this was not performed in the present 

study. 

For the evenness and diversity indices, transformations were conducted before analysis. 

DOMIN values for the tree and shrub layers were transformed to percentages using 

Currall’s 2.6 rule (van der Maarel; 2007; Currall, 1987). For the herb and ground layer 

species all percentage cover data were transformed +1 because some values were <1%, 

which would have resulted in a lower rather than higher number when squared as part of 

index calculations. Simpson’s E was calculated using percentage cover data normalised out 

of 1 (Baeten et al., 2010; Vellend et al., 2005) within the Species Richness and Diversity 

programme (Seaby and Henderson, 2006). Shannon’s E, Simpson’s D and Shannon’s H were 

calculated with the Diversity Excel add-in (University of Reading, 2010). 

To investigate the distinctiveness of vegetation among ASNW, ARW and recent woodland, 

two-way multivariate comparative tests were applied for each metric to show interactions 

between strata and continuity (canopy, shrub, herb, and moss). A total richness value (the 

sum of all four strata) was also tested for difference among the three woodland types as 



95 

 

part of the same test. Post-hoc analyses tested for pairwise differences between ASNW-

ARW, ASNW-recent, and ARW-recent in each stratum separately, and for richness, AWI (all) 

and AWI (herb). Richness data was log transformed and subsequently met the assumptions 

for testing via two-way ANOVA with post-hoc Bonferroni correction to mitigate family-wise 

error. For the evenness and diversity metrics, the non-paremetric Scheirer-Ray-Hare tested 

for difference among the three woodland continuity types, with post-hoc Mann-Whitney 

U with Bonferroni correction.  

To assess consistency among techniques used to identify indicator plants of ASNW, four 

established techniques were applied individually to herb layer species present in ≥20% of 

ASNW (n=15) plus recent woodland sites (n=15) (Schmidt et al., 2014). The same indicator 

techniques were also used to identify potential negative indicators of ASNW (or positive 

indicators of recent woodland). ARW sites are not usually used when creating woodland 

indicator lists.  

To examine consistency of results among different indicator identification metrics, four 

indicator metrics tested for higher species abundance/ frequency occurrence using 

different critieria. Firstly, the Kruskal-Wallis H non-parametric test tested for difference in 

the abundance of each species between ASNW and recent woodland sites (Matuszkiewicz 

et al., 2013). Secondly, difference in frequency occurrence between ASNW and recent sites 

compared to the overall number of occurrences was assessed via Fisher’s exact test (Wulf, 

1997). Thirdly, the well-established Indicator Analysis Technique combines both 

abundance and frequency occurrence data to detect difference via a Monte Carlo test 

(Kelemen et   al., 2014; Dufrene and Legendre, 1997). The Indicator Analysis Technique was 

performed using the Indval function in the ‘labsdsv’ package for R (Roberts, 2016). Lastly, 

the percentage threshold frequency occurence technique was set at ≥75% of occurrences 
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being in either ASNW or recent woodland sites (Schmidt et al., 2014) to register a species 

as an indicator, although this is not an inferential test. Due to multiple testing, the 

Bonferroni calculation was applied across the three interferential tests. Species with 

significant associations in at least one metric were tabulated, and those previously 

identified as AWI species (Kirby, 2004) were indicated with an asterisk. Those with ≥20% 

frequency occurrence in ASNW and recent woodland but were not significant, were listed. 

 

3.4 Results  

At the national scale, herb layer vascular species recorded in this thesis were found to be 

significantly less prevalent within ASNW than the species recorded in recent woodlands 

(p=0.030) (Fig. 3.3) (being present in significantly fewer 10km squares in Britain (Hill et al. 

(2004)). Mean species prevalence in ASNW was not significantly different to that of ARW 

(p=0.067). ARW versus recent woodland species showed no trend (p=0.570). 

 



97 

 

 

Figure 3.3. Mean national prevalence of the herb 

layer species recorded in this study in Ancient 

Semi-Natural Woodland (n=15), Ancient 

Replanted Woodland (n=15), and recent 

woodland (n=15). National data showing 

presence in 10km squares in Britain from 

PLANTATT (Hill et al., 2004). Standard deviation. 

Independent t-test. ASNW/ ARW (p=0.067), 

ASNW/ recent (p=0.030), ARW/ recent 

(p=0.570). Different letters indicate significant 

difference. 

 

The richness metric detected some significant differences among the woodland types (Fig. 

3.4 and Table 3.1). ASNW exhibited significantly higher herb layer richness than ARW 

(p=0.028), and significantly higher richness of combined shrub and herb layer AWI species 

(p=0.039). Notably, the richness of herb layer AWI species was significantly higher in ASNW 

than in recent woodland. ASNW had a median of eight AWI herb layer species, ARW six and 

recent five. There were no significant differences in AWI species richness between ARW 

and recent woodland. In addition to Table 3.1, the total richness of canopy, shrub, herb, 
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and moss layers combined, showed no significant difference among ASNW, ARW, and 

recent woodland (p=0.385). 

Of the calculated indices, Shannon’s E revealed a significant difference in evenness among 

the three woodland continuity types when all strata were considered. However, when 

multiple testing was conducted for each stratum separately, none was significant after 

correction for family-wise error. However, moss species evenness may be worthy of 

investigation in future research (p = 0.064). Simpson’s E showed no significant differences. 

Neither of the diversity indices exposed any significant differences in any of the strata 

between any of the woodland types.   
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           Ancient Semi-
Natural Woodland 
(ASNW)           

 

           Ancient 
Replanted Woodland 
(ARW) 

 

          Recent 
woodland 

               
 

   

  

Figure 3.4. Alpha diversity metrics. Range, IQR, median. (a) Richness; (b) Simpson’s E; (c) 
Shannon’s E; (d) Simpsons D; (e) Shannon’s H indices in ASNW (n=15), ARW (n=15) and Recent 
woodland (n=15). Outliers indicated as dot markers. See Table 3.1 for inferential test results. 

(a) 

(b) (c) 

(d) (e)  
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Table 3.1. Metric choice influences interpretation of vegetation distinctiveness in woodlands 

with different continuity histories: Ancient Semi-Natural Woodland (ASNW) (n=15), Ancient 

Replanted Woodland (n=15) (ARW), and recent woodland (n=15). For richness only, overall 

difference in continuity among ASNW, ARW and recent woodland comprising canopy, shrub, 

herb and moss strata combined. For richness and all other metrics, difference in 

strata*continuity interaction among ASNW, ARW, and recent woodland. Pairwise tests 

between woodland continuity types separately for canopy, shrub, herb, moss. For richness 

only, pairwise tests for Ancient Woodland Indicators (AWI) (all = shrub and herb) and AWI 

(herb). Richness tested via two-way ANOVA with post-hoc Bonferroni correction. Evenness and 

diversity metrics tested via Scheirer-Ray-Hare with post-hoc pairwise Mann-Whitney U and 

Bonferroni correction Bold text p ≤ 0.05. 

 

 

 

 

 

Richness 

 

 

 

Simpson’s E 

 

 

 

Shannon’s E 

 

 

 

Simpson’s D 

 

 

 

Shannon’s H 

  

 

All:       

Strata* 

Cont.          

                                  

0.421 

 

 

 

0.040 

 

 

 

0.140 

 

 

 

0.310 

 

 

 

0.910 

 

Pairwise: continuity 

                        Canopy   Shrub   Herb     Moss       AWI     AWI  

                                                                                    (all)    (herb) 

 

ASNW-ARW    1.000    1.000    0.028    1.000     0.039     0.128 

ASNW-recent 1.000    1.000    0.970     1.000     0.062     0.010 

ARW-recent    1.000    1.000    0.313     1.000    1.000     1.000 

 

ASNW-ARW    0.608    0.272    1.000    1.000 

ASNW-recent 1.000    0.372    0.206     0.064 

ARW-recent    0.440    0.884    0.372    0.284 

 

ASNW-ARW    1.000    1.000     0.176   1.000 

ASNW-recent 1.000    1.000     0.084    0.520 

ARW-recent    1.000    1.000    0.884    1.000 

 

ASNW-ARW    1.000    1.000     1.000    0.764   

ASNW-recent 1.000    1.000     0.884    1.000    

ARW-recent    1.000    1.000     1.000    0.340   

 

ASNW-ARW     1.000    0.764    1.000    1.000     

ASNW-recent  1.000    1.000    1.000    1.000                                 

ARW-recent     1.000    0.564    1.000    1.000                    

 

 

Several species were identified as being significantly associated with ASNW or recent 

woodland according to one or more of the indicator metrics. Previously identified AWI 

species (Kirby, 2004) dominate the ASNW affiliation list, although several other AWI species 

showed no significant association with ASNW (Table 3.2). The Kruskal-Wallis test on 



101 

 

species’ abundance showed four species to be significantly associated with ASNW 

(Brachypodium sylvaticum, Viola reichenbachiana, Carex sylvatica, Deschampsia 

cespitosa,) (Table 3.2). Fisher’s exact test on abundance showed only V. reichenbachiana 

to be significantly associated with ASNW. Dufrene and Legendre (1997) Indicator Species 

Analysis also showed three species to be associated with ASNW (C. sylvatica, D. cespitosa 

and Hyacinthoides non-scripta). Three species were also identified by ≥75% occurrence in 

ASNW method (V. reichenbachiana, Primula vulgaris and Poa nemoralis). 

Some species are potentially acting as negative indicators of ASNW by exhibiting significant 

association with recent woodland. Asplenium scolopenrium was significant for all four tests. 

The Kruskal-Wallis test, Fisher’s exact test, and the 75% threshold all identified Urtica 

dioica. The 75% threshold alone identified Galium aparine and Geranium robertianum. 
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Table 3.2. Species association/ indicator value between Ancient Semi-Natural 
Woodland (ASNW) (n=15) and recent woodland (n=15).  Comparison of indicator 
metrics for species with p<0.05 or sufficient % in any category. (bracketed 
number indicates a negative correlation). Bonferroni correction applied across 
the three inferential tests. Species marked with * are previously identified 
Ancient Woodland Indicator (AWI) species (Kirby, 2004). Species with ≥20% 
frequency occurrence across both woodland types were tested. Additionally, 
those species with ≥20% frequency occurrence that were not significantly 
associated with either woodland type are listed for further information. 

 Abundance. 
Kruskal-
Wallis H 
(Matuszkie
wicz et al., 
2013) 

Frequency 
occurrence. 
Fisher’s 
exact test 
(Wulf 1997)  

Indicator 
Analysis. 
Dufrene 
and 
Legendre 
(1997)  

75% 
frequency 
occurrence 
threshold. 
Schmidt et 
al. (2014)  

Species with significantly higher abundance/ frequency occurrence in ASNW 

B. sylvaticum 

C. sylvatica * 

D. cespitosa 

H. non-scripta * 

P. quadrifolia* 

P. nemoralis* 

P. vulgaris* 

V. reichenbachiana* 

0.014 

0.015 

0.021 

0.060 

0.123 

0.210 

0.141 

0.012 

0.075 

0.198 

0.081 

0.645 

0.645 

0.240 

0.240 

0.042 

1.000 

0.024 

0.048 

0.030 

0.252 

0.972 

0.501 

(0.561) 

71% 

68% 

73% 

59% 

75% 

86% 

86% 

82% 

Species with significantly higher abundance/ frequency occurrence in recent 
woodland 

A. scolopendrium 

G. aparine 

G. robertianum 

U. dioica 

0.009 

0.069 

0.108 

0.003 

0.018 

0.240 

0.327 

0.006 

0.021 

0.192 

0.531 

0.543 

100% 

86% 

78% 

91% 

Species with ≥20% frequency occurrence with no significantly higher abundance/ 
frequency in either woodland type: Allium ursinum*; Anemone nemorosa*; 
Arum maculatum; Circaea lutetiana; Euphorbia amygdaloides*; Fragaria vesca; 
Galium odoratum*; Geum urbanum; Glechoma hederacea; Lamiastrum 
galaeobdolon*; Mercurialis perennis*; Oxalis acetosella*; Sanicula europaea*; 
Vicia sativa; Viola riviniana*; Dryopteris filix-mas.  
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3.5 Discussion 

The application of a range of quantitative diversity metrics has given greater insight into 

the structure of plant communities in ASNW, ARW, and recent woodland, as well as 

identifying the most and least useful indices for differentiating the woodland types. 

The mean national prevalence of herb layer species recorded in ASNW in the present 

research was significantly lower than for recent woodland (p=0.030) (Fig. 3.3). This 

indicates greater scarcity of the species present in ASNW, possibly as a result of limited 

habitat availability due to loss and fragmentation processes. Some species associated with 

ancient woodland hold conservation designations due to their threatened status, for 

example P. vulgaris and H. non-scripta, both of which were shown to be significantly more 

associated with ASNW than recent woodland using a range of indicator metrics (Table 3.2) 

(JNCC, 2010). This relative scarcity further justifies research of ASNW plant communities. 

ARW is generally considered to be worthy of restoration due to its potential to recover the 

flora of ASNW (Thompson et al., 2003b; Pryor et al., 2002). However, the results of this 

study showed no significant differences between ARW and recent woodland communities 

across the metrics (Table 3.1). The richness metric identified two significant differences 

between the strata of ASNW-ARW, and only one between ASNW-recent woodland. 

Notably, there was no significant difference in number of AWI species between ARW-

recent. These are important findings as so few studies have compared richness of ASNW 

and predominantly broadleaf ARW: many studies focus on ASNW-recent comparisons, and 

a very few on ASNW-ARW (Atkinson et al., 2015; Brown et al., 2015; Kirby, 1988).   

AWI richness clearly differentiated ASNW from both ARW and recent woodland. ASNW was 

significantly richer in shrub+herb AWI species than ARW, and significantly richer in herb 
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AWI species than recent woodland. The significantly higher richness of shrub+herb AWI 

species in ASNW compared to ARW has possibly been influenced by management of the 

shrub layer in ARW. If AWI lists are used to identify ARW, a lower threshold allowance could 

be given to compensate for fewer woody AWI species. 

The present study shows ASNW to have a median of eight shrub+herb layer AWI species 

(Fig. 3.4a). According to AWI thresholds used by some organisations to assess woodland 

quality (Glaves et al., 2009) 8-12 is considered ‘very good’; 4-8 ‘good’; < 4 ‘poor’, which 

means all ASNW woodland sites in this study would be rated as ‘good’ or ‘very good’. 

However, thresholds vary: in other organisations, 10 or even 12 AWI species were required 

to classify an ancient woodland (Glaves et al., 2009), which exceeds the number found in 

many ASNW in the present study (Fig. 3.4a). 

Nonetheless, both ARW and recent woodlands in the present study are considered to have 

a ‘good’ (Glaves et al., 2009) number of AWI species when compared to the thresholds 

outlined above. For the purposes of biodiversity evaluation, their actual AWI richness is 

more important than their richness relative to ASNW. In a study of pine-dominated ARW, 

it was noted that half of sites (n=39) contained three or fewer AWI species (Brown et al., 

2015). By contrast, in the present study the relatively high AWI richness in predominantly 

broadleaf ARW (median = 6) and recent woodland (median = 5) possibly reflects ease of 

colonisation due to the proximity and connectivity of ASNW, ARW, and recent woodland 

(Dumortier et al., 2002). within the densely wooded Strategic Nature Areas. As such, the 

purpose of the SNAs (conservation and restoration of priority ancient woodland habitat) is 

validated, as both ARW and recent woodland have potential for restoration or 

enhancement. 
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Of the two evenness metrics, Shannon’s E was partially effective in distinguishing the 

woodland types in detecting a significant differences among the three woodland continuity 

categories when all strata were combined (Figure 3.4c; Table 3.1). Simpson’s E detected no 

differences. Conversely, in a prior study, Simpson’s E detected difference between ASNW 

and recent woodland (Vellend, 2004), but with higher evenness in ASNW (Fig. 3.4b). 

Another study using Shannon’s E failed to detect difference across four woodland age 

categories (Verheyen et al., 2003a).  

Of the two diversity indices, neither Simpson’s D nor Shannon’s H could be considered at 

all effective in differentiating ASNW, ARW, and recent woodland communities (Fig. 3.4d; 

3.4e; Table 3.1). This outcome corroborates the findings of Bossuyt et al. (1999) who found 

no significant difference in Shannon’s H between ASNW and recent woodland. 

The lack of consistency in the methods used to create AWI lists may lead to different 

interpretations of the value of ASNW and indeed whether it is identified at all. When the 

results of all four metrics are viewed as a whole, many species identified as indicators by 

Rose (1999) and Kirby (2004) were shown to be significantly associated with ASNW in most 

cases (Table 3.2). However, when each metric is viewed individually, different species were 

identified and there was great variation in how many species were found to be significantly 

associated with ASNW or recent woodland. The Kruskal-Wallis test, based on abundance 

data, identified over twice as many species as being affiliated with ASNW, compared to 

Fisher’s exact test, which is based on frequency occurrence. The Dufrene and Legendre 

(1997) analysis combines abundance and frequency occurrence but only identified three 

ASNW indicator species. V. rechenbachiana had significant associations with ASNW 

according to three metrics (more than any other species) but was found to be slightly 

associated with recent woodland (p=0.561) according to the Dufrene and Legendre 
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Indicator Analysis technique. The results suggest that one metric is unlikely to be sufficient 

when creating AWI lists. 

Negative indicators (species significantly associated with recent woodland) could be further 

considered as a tool to distinguish ASNW and recent woodland. Prior studies have also 

found significant negative indicator results (Kelemen et al., 2014; Kirby and Morecroft, 

2011), and as reported by Glaves et al. (2009) some local authorities already employ 

negative indicators. The only species to demonstrate a consistently significant affiliation 

across all metrics was A. scolopendrium in recent woodland. Seemingly no prior list exists 

of species associated with ARW, which may impact on correct identification.  

  

3.6 Conclusions and recommendations 

Each diversity metric led to contrasting conclusions as to the distinctiveness of ASNW, 

ARW, and recent woodland. Richness most effectively distinguished between the 

woodland types, showing ASNW to have greater herb layer and shrub+herb AWI species 

richness than ARW, but not recent woodland. However, ASNW exhibited significantly 

higher richness in herb layer only AWI species than recent woodland. Simpson’s E and 

provided a potentially informative additional dimension, indicating an overall significant 

difference in diversity through strata*continuity interactions. Diversity metrics Simpson’s 

D and Shannon’s H were ineffective in identifying differences among the woodlands.  

Allowance or recalibration of AWI thresholds could be considered when AWI richness is 

used to identify or measure the biodiversity value of ARW. The lack of distinction between 

ARW and recent woodland across all metrics has potential implications for restoration of 
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ARW within the SNA: future chapters will address the qualitative differences in community 

composition in terms of actual species present.  

Established metrics used to identify AWI species classified different species, and different 

number of species, as indicators of ASNW, and of recent woodland. Inconsistency among 

the metrics has implications for the synthesis of studies based on AWI lists achieved by 

different means. 

Outcomes of indicator species metrics indicate that a purely statistical approach may be 

inappropriate, and the integration of observation in the compilation of lists (as done for 

early lists) may be beneficial. More than one index, in addition to expert observation, is 

recommended, which would also permit scarce species to be included in AWI lists.  

The metrics used to create AWI lists may lead to different interpretations of the ancient 

status of a woodland, which has policy and management implications. Greater consistency 

of metrics, where appropriate, could assist in formulating a more robust rationale for 

protection of ASNW and ARW, as well as for recent woodland sharing similar plant 

community characteristics. 
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4. Plant community differentiation and strata interactions among 

ancient semi-natural, ancient replanted, and recent woodlands 

 

Outputs arising from this chapter: 

Swallow, K., Wood, M. and Goodenough, A. (2018) Plant community differentiation 

among ancient semi-natural, ancient replanted, and recent woodland. Royal Agricultural 

University research seminar. Cirencester, 25 January 

Swallow, K. (2015) Phytosociology of ancient woodland indicator species in the 

Cotswolds. Postgraduate Research Student Conference. University of Gloucestershire. 22 

June 

 

Primula vulgaris, Middleton Hill Plantation, Sapperton Strategic Nature Area  

07/04/2015 Grid ref: SO 93777 02372 
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4.1 Chapter scope 

The distinctiveness of ancient woodland vegetation is a well-established concept that 

provides a strong rationale for conservation. The previous chapter has shown ASNW to 

have significantly higher total species richness than ARW, and a significantly higher AWI 

species richness than recent woodland. Chapter 3 focused on alpha richness, whereas 

Chapter 4 shifts to consider gamma richness, and beta-scale community composition. The 

present chapter researches, for the first time, beta-scale plant community similarity for the 

canopy, shrub, herb (and subsets of AWI and non-AWI species), and terrestrial moss layers 

among ASNW, ARW, and recent woodland. Beta-scale AWI community analysis contributes 

substantially to Chapter 5, where explanatory variables are tested for their relative 

influence on AWI community composition. The present chapter assesses biotic 

explanations for AWI richness and similarity in the form of inter-strata interactions. Herb 

layer community composition by life trait is analysed among the three woodland types.  

 

4.2 Introduction 

When measured at the alpha diversity scale (sensu. Whittaker, 1972) it is well-established 

that woodlands with long continuity have a more distinctive and specialised flora than 

recent woodlands (Kelemen et al., 2014; Rackham, 2008; Honnay et al., 1998; Peterken and 

Game; 1984). As such, they are important refugia for the conservation of specialist and 

protected plant species (Corney et al., 2008b), and are a source for dispersal of these to 

other areas (Brunet et al., 2011; Petit et al., 2004; Jacquemen et al., 2003a). 
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Alpha, beta and gamma diversity 

Since the seminal work by Whittaker (1972), biodiversity is often measured at three major 

scales: alpha, beta, and gamma. Alpha diversity is a richness measure at the individual 

ecosystem scale (Magurran, 2004; Whittaker, 2001; Whittaker, 1972). Beta diversity 

measures spatial and/ or temporal difference in community composition between two or 

more ecosystems (Magurran, 2004; Whittaker, 2001; Whittaker, 1972). Beta diversity is 

increasingly recognised as comprising two components: (a) the mean difference in species 

composition; and (b) the within group variance in species present among communities at 

the beta scale (Baslega, 2010). Gamma diversity is the richness of species within a 

landscape or region, a wider scale measure than alpha diversity. 

A common approach to floristic comparison among woodlands with different continuity 

histories is to compare alpha richness of species classified as woodland specialists, and/or 

AWI species (e.g. Stefanska-Krzeczek et al., 2016; Brown et al., 2015; Kelemen et al., 2014; 

Hofmeister et al., 2013; Brunet et al., 2011; Orczewska, 2009; Hermy et al., 1999). However, 

the alpha richness measure does not fully recognise the role of individual species in 

community composition: two ecosystems with very different species within their 

communities could have similar richness. 

In response, beta community composition is attracting increasingly more research 

attention in the wider field of ecology (Anderson et al., 2011), and further progress in this 

area could be beneficial for ancient woodland restoration and connectivity in Britain. 

Globally, an increasing number of studies employ species-based ordination techniques to 

compare plant communities of woodlands with contrasting land-use histories at the beta 

landscape scale (Berges et al., 2017; Vukov et al., 2016; Atkinson et al., 2015; Coote et al., 
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2012; Naaf and Wulf, 2010; Keith et al., 2009; Vellend et al., 2007). However, only a small 

proportion of this research has been conducted on British woodlands: Vellend et al. (2007) 

incorporated one British data set from Peterken and Game (1984), while Atkinson et al. 

(2015) compared the effects of ARW restoration techniques on understorey communities.  

Very few studies have compared alpha, beta and gamma measures for the same data set 

in the context of comparing ancient and recent woodland. A notable study by Baeten et al. 

(2010) found ASNW to have significantly higher richness of woodland herbs at the 

landscape-scale than post-agricultural woodland, but no significant difference in alpha 

species richness. Naaf and Wulf (2010) combined both alpha and beta measures to assess 

biotic homogenisation across 175 woodlands over 200 years old, finding no strong evidence 

of biotic impoverishment (alpha) but a trend towards increasing similarity among woodland 

communities (beta). Seemingly no studies have compared gamma richness of ASNW, ARW, 

and recent woodland at the landscape or regional scale. 

 

Species-based community composition 

Community comparison of ASNW, ARW, and recent woodland at the species level is 

especially relevant to ancient woodland restoration and connectivity (Vukov et al., 2016; 

Brown et al., 2015; Palo et al., 2013; Thompson et al., 2003b). Assessment of the existing 

community differentiation between these woodland types informs conservation 

management and resource prioritisation (Palo et al., 2013). Additionally, species-based 

community analysis is employed to assess biotic homogenisation (Naaf and Wulf, 2010; 

Vellend et al., 2007; Vellend, 2004), and to compare restoration or management influence 

on the understorey strata (Atkinson et al., 2015). Abiotic characteristics that may 
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determine variation in community composition are increasingly studied and will be 

researched in a later chapter. 

Studies of species-based community composition consistently report significant 

differences in the herb or understorey strata between woodlands of different ages, and/ 

or canopy structures. For example, significant differences in the understorey community 

composition were found between Quercus-dominated and Fraxinus-dominated ASNW, and 

between these and Fraxinus sp., Larix sp., Picea stichensis and Picea abies plantations 

(Coote et al., 2012). Likewise, significant differences were found in the herbaceous 

community pairwise among old ancient woodland, young ancient woodland and historical 

woodland cores (Kelemen et al., 2014). In a British study a significant difference was found 

in ground flora composition among native, thinned, clearfelled, and plantation woodlands 

(Atkinson et al., 2015). Although pairwise testing was not undertaken, Non-Metric 

Multidimensional Scaling (NMDS) plots showed considerable distance in woodland species 

communities on the ordination plot between native (ASNW) and the three other woodland 

management types. 

Prevalence of AWI species has been proven to be associated with richness of other 

woodland species. Rose (1999) described the positive correlation between the number of 

AWI species and other woodland plants in southern England. A recent study by Stefanska-

Krzaczek et al. (2016) tests the oft-cited belief that AWI prevalence is linked to higher 

species richness. Using a synecological grouping system of AWI species, they found that 

woodlands with an AWI group present had a highly significant greater number of 

herbaceous species than those without. Additionally, the higher the number of groups 

present, the higher the average richness of herbaceous species, shrubs and trees, ancient 

woodland species and closed woodland species.  
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Life traits community composition 

To further understand community differentiation between ancient and recent woodland, 

herb layer community composition is often studied in relation to the proportion of species 

with different life strategies. Community comparisons of ASNW and recent woodlands via 

Grime’s (1977) life strategies for herbaceous plants show consistent results in prior studies. 

The time required for colonisation is a differentiating factor in the community composition 

of ancient versus recent woodland. S-strategists appear to be associated with ancient 

woodland (Sciama et al., 2009; Hermy et al., 1999), and with increasing sequential 

categories of woodland age (Bossuyt and Hermy, 2000). Conversely, C- and R-strategists 

appear to be associated with recent woodland (Berges et al., 2017; Sciama et al., 2009; 

Hermy et al., 1999). To date, ARW has seemingly not been studied in this respect. 

Dispersal mechanisms have been found to partly explain woodland species community 

composition. In particular, prior studies have shown an association between myrmechory 

(ant-dispersed - short-range dispersal vector) and AWI status (Kelemen et al., 2014; Hermy 

et al., 1999). Several studies have assessed the proportion of AWI or woodland species that 

are ant-dispersed (Kelemen et al., 2014; Kimberley et al., 2013; Hermy et al., 1999), but 

very few have conducted a community comparison. However, Kimberley et al. (2013) found 

that dispersal vectors were not a distinguishing factor between AWI species and other 

woodland plants. 

There are few phenological studies of ancient versus recent woodland flora, but there is 

seemingly a link between vernal species (spring flowering and leafing, wilting before 

summer) and older woodland. In core woodland of 198-316 years continuous cover, Brunet 

et al. (2011) reported a significantly higher mean cover of vernal plants than in recent post-
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agricultural woodland. Vernal and wintergreen species are more frequent among AWI 

species than general woodland species (Brunet et al., 2011; Hermy et al., 1999). Vernal 

species tend to be geophytes (perennation from underground storage organ, such as a 

bulb), which in turn are associated with ASNW (Brunet et al., 2011). Again, comparisons 

with ARW are unavailable. 

The regenerative life forms of woodland species can show distinction between ancient and 

other woodlands. Several studies have compared community composition according to 

Raunkiaer’s (1937) life forms, with a clear trend of geophyte association with ancient 

woodland in most studies (Kelemen et al., 2014; Verheyen et al. 2003b; Hermy et al., 1999; 

Wulf, 1997). This regenerative strategy may also account for slow colonisation of new 

habitats due to slower spread by vegetative structures such as rhizomes, tubers, bulbs and 

corms, rather than seed dispersal (Verheyen et al, 2003a; Hermy et al. 1999). 

Strata interactions 

The phytosociology (plant community composition and relationships) of woodland flora is 

a debated concept, due to the stratification of vegetation and potential human 

intervention in some of those layers. Several studies omit a survey of tree species due to 

the likelihood of their being planted, and/ or considering that the canopy layer has little 

impact on the understorey (Vallet et al., 2010; Honnay et al., 2002; Graae, 2000). Peterken 

(1993) and Rackham (2003) critique the phytosociological approach, emphasising a weak 

or inconsistent correlation between the tree and understorey layers, not least that they 

respond to their environment at very different spatial and temporal scales.  

Where analyses of strata interactions have been conducted, canopy richness and 

composition have been shown to have an inconsistent influence on understorey 
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communities. When all herb layer species are considered, canopy richness has been shown 

to correlate positively and significantly with herb layer richness (Brunet et al., 2011; 

Vockenhuber et al., 2011; Mölder et al., 2008). However, when herb layer AWI or specialist 

species are considered, there is no consensus among studies. Orczewska (2009) concluded 

that both ancient and recent Fraxinus-Alnus carr had a significantly higher abundance, but 

not number, of AWI species, than ancient or recent Quercus-Carpinus and wet Alnus 

woodland. However, Thomaes et al. (2012) found no effect of tree species on strict 

woodland species nor AWI in ash and poplar post-agricultural plantations. This variation in 

results may be accounted for by differing localities and methods. Additionally, the 

capability of AWI species to survive under sub-optimal conditions has been noted by 

Honnay et al. (2005).   

The influence of the understorey community on AWI or specialist woodland plant species 

has been considered by very few studies. When tree + shrub layer percentage cover was 

combined, no significant correlation with herb layer specialist nor generalist species 

richness was identified (Brunet et al., 2011). However, tree + shrub cover correlated 

significantly and negatively with herb layer specialist cover (Brunet et al., 2011). 

 

Research gap 

Beta and gamma diversity of ancient woodland receive comparatively little attention 

compared to alpha diversity, yet both are important in ancient woodland conservation: 

alpha diversity for correct designation of ancient woodland sites in order to protect them; 

and beta and gamma diversity for enhancing understanding of dispersal processes of 

specialist woodland species.  
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Seemingly no studies have conducted a comparison of community differentiation across all 

three of ASNW, ARW, and recent woodlands. Of studies that have researched some 

combination of these woodland types, very few have tested the within-woodland-type 

community variance relative to that of other woodland types (Coote et al., 2012). Likewise, 

there are seemingly no prior studies of ARW community differentiation by life traits.  

A subset of AWI species or woodland specialists, rather than the whole plant community, 

is commonly surveyed in ancient woodland studies (e.g. Kelemen et al., 2014; Hofmeister 

et al., 2013; Brunet et al., 2011; Orczewska, 2009; Brunet et al., 1999; Dzwonko 2001b; 

Jacquemen et al., 2001). Fewer studies assess all woodland herbs or the flora of other strata 

in addition to woodland specialists (Atkinson et al., 2015; Coote et al., 2012; Orczewska, 

2009; Sciama et al., 2009). 

 

 

This chapter fulfils the following overarching research objectives: 

1. To assess the degree to which the floristic community composition differs among 

ancient semi-natural, ancient replanted, and recent woodland. 

 

2. To examine biotic influences on community composition in ancient semi-natural, 

ancient replanted, and recent woodland.  

Within the above objectives, this chapter addressed the following research questions: 

a. How distinct is ancient woodland flora at the alpha, beta and gamma scales? 
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b. How does the composition (including mean variance) of canopy, shrub, herb, and 

moss layer communities, vary among ancient semi-natural, ancient replanted, and 

recent woodland sites? 

c. Is AWI richness and composition influenced by canopy, shrub, non-AWI or moss 

communities? 

d. Is there is a difference in community composition by life traits among ancient semi-

natural, ancient replanted, and recent woodland? 

 

4.3 Methods  

4.3.1 Study location 

Cross reference to sections 2.2.1 and 2.2.2 for an extended description. 

 

4.3.2 Field methods and AWI definition 

Cross reference to sections 2.2.3 and 2.2.4. 

NB: For this chapter all vegetation data was presence/absence, not percentage cover. 
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4.3.3. Statistical methods 

All data analyses used presence-absence count data. Such data are commonly used to 

assess alpha richness, and constitute the most standard measure of beta community 

composition (Legendre et al., 2005; Koleff et al., 2003). 

To assess alpha richness of ASNW (n=15), ARW (n=15), and recent woodland (n=15), 

richness was measured as a count of species per woodland site (Baeten et al. 2010)  for: (a) 

all strata (canopy, shrub, herb, moss) combined (Sciama et al., 2009); and (b) canopy, shrub, 

herb, moss, and subset of AWI (herb layer) communities separately. Richness data was log 

transformed to meet assumptions for parametric testing. To test for any difference in alpha 

richness pairwise between ASNW-ARW, ASNW-recent, and ARW-recent woodland for all, 

and for separate strata a two-way ANOVA was used with post-hoc Bonferroni correction to 

mitigate family-wise error. Means reported are based on raw data for clarity. 

To calculate gamma richness, presence of individual species was recorded per woodland 

site (Jamoneau et al., 2012; Naaf and Wulf, 2010; Vellend et al., 2007). The number of 

species present across all sites of each woodland type were tested for difference against 

total species richness of all woodland types via Fisher’s exact test for: (1) all strata; and (2) 

for each stratum separately. These were pairwise tests between ASNW-ARW, ASNW-

recent, and ARW-recent. Bonferroni was again applied to mitigate family-wise error. 

Beta scale community difference was tested within ASNW, ARW, and recent woodland 

strata using Non-metric Multi Dimensional Scaling (NMDS) (Atkinson et al., 2015; Onaindia 

et al., 2013; Verheyen et al., 2003b). This test used matrices of pairwise Jaccard distances 

between all permutations of each of the 45 woodland sites. Strata were separately tested 

as canopy, shrub, herb, and terrestrial mosses. As AWI species are recognised to function 
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as a guild (Hermy et al., 1999), the herb layer was subdivided and tested as AWI and non-

AWI communities.  

NMDS was the preferred test because it allows choice of distance measure, whereas 

alternatives of Principal Components Analysis or Canonical Correspondence Analysis use 

Euclidean distance. The Jaccard distance measure was selected (as per Oksanen, 2015; Naaf 

and Wulf, 2010; Jaccard, 1912), as the objective was to test community difference by 

presence of species, rather than abundance. Anderson et al. (2011) note that species 

presence is often preferred because species themselves are the usual units used in 

biodiversity conservation. These elements are appropriate in the present study, because 

the presence, rather than abundance, of particular species is an important factor in 

determining the ancient status of a woodland (Rackham, 2008; Kirby, 2004; Rose, 1999). 

NMDS analysis was conducted using the ‘metaMDS’ function in the Vegan and MASS 

packages for R (Oksanen et al., 2017; Gardener, 2014; Hovanes, 2013), and plotted via the 

‘ordiplot’ function in BiodiversityR (Oksanen et al., 2017; Kindt and Kindt, 2017; Gardener, 

2014; Hovanes, 2013; Kindt and Coe, 2005). Stress was maintained <0.20 by using 3 

dimensions (Gardener, 2014; Clarke and Warwick, 2001). Inferential testing for community 

difference was conducted pairwise between ASNW-ARW, ASNW-recent, and ARW-recent 

via PERMANOVA in the ‘Adonis’ (Analysis of Dissimilarity) function in Vegan for R (Oksanen 

et al., 2017; Atkinson et al., 2015; Hovanes, 2013; Thomaes et al., 2012; Baeten et al., 2010).  

It is recognised that significant differences in community data tested via distance-based 

analysis (such as NMDS with PERMANOVA) may be influenced by within-group variance of 

the similarity scores, as well as different mean values (Warton et al., 2012; Anderson 2006). 

Beta diversity is considered to comprise both elements: the mean reflects the species 
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composition, while the variance reflects the within-group variation in community 

composition at the beta scale. The variance is sometimes ignored, leading to 

misinterpretation of results (Warton et al., 2012). To establish whether significant results 

from distance-based analyses are the result of the mean or turnover, the variance must be 

tested separately. 

In this chapter, the potentially confounding effects of variance were considered as 

informative rather than undesirable (Anderson et al., 2011). Variance was tested using the 

‘betadisper’ function in the Vegan package for R with Jaccard distance measure (Oksanen 

et al., 2017; Anderson 2006). Pairwise testing for significant beta community difference 

among equal numbers of ASNW, ARW and recent woodland communities was conducted 

using the Tukey’s HSD wrapper within the ‘betadisper’ function (Oksanen et al., 2017).  

To detect any inter-strata influence on the AWI community within each woodland type, 

alpha richness and Jaccard similarity scores of the AWI community were correlated with 

the same factors for the canopy, shrub, non-AWI and moss communities for ASNW, ARW 

and recent woodland separately. It was important to include the non-AWI herb stratum 

community to understand the relative influence of each species grouping. Unlike the 

woody or moss strata, the non-AWI community functions at a similar spatial and temporal 

scale as the AWI grouping, and any influence provides a baseline against which to assess 

the influence of the other strata. The ARW canopy and non-AWI data were transformed 

(lg10), and raw mean values are reported. For richness, a paired t test was applied between 

each stratum and the corresponding AWI community for that site (n=45). SPSS was used to 

perform this analysis. To assess whether similarity of AWI communities was reflected in 

other strata, a two-tailed Mantel test with Pearson’s correlation (randomisation method 

with 10,000 permutations) (McCune and Grace, 2002) was applied to Jaccard similarity 
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matrix of the AWI community in each woodland type against canopy, shrub, non-AWI and 

moss matrices in XLSTAT (Addinsoft, 2017). 

Community composition by life traits were compared pairwise among ASNW, ARW, and 

recent woodland for Grime’s (1977) life strategies, Raunkiaer’s life forms (1937), dispersal 

vectors, earliest flowering month, mean seed weight, and specific leaf area. Trait data was 

sourced from: LEDA database (Kleyer et al., 2008); Grime (1988), PLANTATT (Hill et al., 

2005); Ecological Flora Database (Fitter and Peat, 1994). Where there were data gaps in 

these sources, a small number of species traits were found in Smith (2012), Tamis et al., 

(2004) and Chaideftou (2009). Grime’s life strategies were condensed into seven major 

categories following Hermy et al. (1999). Categorical data were tested via a chi-squared 

contingency table, and continuous data were tested with independent t-tests where 

parametric assumptions were met (earliest flowering month, and specific leaf area), and by 

Mann-Whitney U where assumptions were not met (mean seed weight).  

 4.4 Results 

The total number of species recorded in all plots across all sites was 131: 17 were canopy 

species; 19 shrub layer species; 71 herb layer species (of which 25 were AWI species); 25 

terrestrial moss species.  

Alpha richness (Table 4.1) of AWI species was significantly higher in ASNW than in recent 

woodland. The herb layer was significantly richer in ASNW than in ARW (Table 4.1) 

Gamma richness indicated that ASNW was overall significantly less species rich across all 

woodland sites than both ARW and recent woodland (Table 4.1). For individual strata, there 

were no significant differences in any of the pairwise comparisons for each stratum, 
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although herb layer gamma richness ASNW-recent (p=0.053) may be worthy of further 

investigation (Table 4.1). 

 

Community analysis showed significant difference in the mean canopy composition of 

ASNW and ARW, while recent woodland shared elements of both (Fig. 4.1a). The status of 

ASNW versus ARW explained 16% of the difference in community composition. There was 

no significant difference of species variance for the canopy among the woodland types (Fig. 

4.1a), therefore difference between ASNW and ARW can be attributed to the mean 

difference in species composition.  

For the shrub layer ARW and recent woodland were significantly different in terms of mean 

species composition, and not significantly different in terms of variance (Fig. 4.1b). 

ARW/recent status explained 7% of the difference in community composition. 

Alpha All strata Canopy Shrub Herb Moss AWI (herb) 

ASNW 

ARW 

Recent 

29.87 ± 1.56 a 

26.67 ± 1.97 a 

28.92 ± 2.04 a 

4.20 ± 0.38 a 

4.47 ± 0.49 a 

4.47 ± 0.41 a 

4.80 ± 0.46 a 

3.47 ± 0.48 a 

5.67 ± 0.68 a 

15.00 ± 0.33 a 

12.27 ± 1.45 b 

14.07 ± 1.49 ab 

5.87 ± 0.50 a 

5.47 ± 0.70 a 

4.73 ± 0.63 a 

8.33 ± 0.85 a 

6.00 ± 0.54 ab 

4.92 ± 0.83 b 

 

Gamma All strata 

131 species 

Canopy 

17 species 

Shrub 

19 species 

Herb 

70 species 

Moss 

25 species 

AWI (herb) 

25 species 

ASNW 

ARW 

Recent 

82 a 

99 b 

106 b 

9 a 

14 a 

12 a 

14 a 

14 a 

19 a 

43 a 

51 a 

57 a 

17 a 

21 a 

18 a 

21 a 

20 a 

19 a 

Table. 4.1. Mean alpha richness of Ancient Semi-Natural Woodland (ASNW) (n=15), Ancient Replanted 

Woodland (ARW) (n=15) and recent woodland (n=15) ± s.e. tested with two way ANOVA with Bonferroni 

correction. Gamma richness of species of the total present across all sites tested with Fisher’s Exact test. Shared 

lettering indicates no significant difference pairwise between ASNW, ARW and recent woodland (p<0.05). 
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The herb layer showed significant community difference among all woodland types, 

although for ASNW-ARW and ASNW-recent, this significant difference is influenced by 

species variance and cannot be solely attributed to difference of mean (Fig. 4.2a). For 

ASNW-ARW 6% of the community variation was explained by woodland continuity status, 

11% for ASNW-recent and 8% for ARW-recent. 

When the subset of AWI communities was tested, recent woodland was significantly 

differently composed and more varied in its herb layer composition than either ASNW and 

ARW. There was no significantly different variance for AWI species suggesting that each 

woodland type contains AWI species drawn from largely the same group of species 

(although p=0.053 between ASNW and recent woodland suggesting this avenue may be 

worthy of further research) (Fig. 4.3a). The percentage of community variance explained 

by continuity status was 7% between ASNW-ARW, 9% ASNW-recent, and 6% ARW-recent. 

The subset of non-AWI species showed significant differences in mean composition 

between ASNW-Recent, explaining 7% of the variation, but this may be partly attributable 

to a significant difference in variance (Fig. 4.3b). For the non-AWI community ARW-recent 

showed a significantly different mean, explaining 6% of the variation, and no significant 

result for variance (Fig. 4.3b). Non-AWI species between ASNW-ARW showed no significant 

difference of the mean, but did exhibit significantly different variance (Fig. 4.3b). 

The terrestrial moss community exhibited significant differences in the mean composition 

of Recent woodland compared to both ASNW and ARW, none of which differed significantly 

for variance (Fig. 4.2b). For mosses, woodland continuity explained 10% of ASNW-recent 

10%, and 7% of ARW community variation. 
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Mean 

Variance 

ASNW-ARW 

p = 0.001, R2 = 0.159 

p = 0.508  

ASNW-Recent  

p = 0.128  R2 = 0.060 

p = 0.771 

ARW-Recent  

p = 0.161 R2 = 0.057 

p = 0.903 

ASNW-ARW  

p = 0.104,  R2 = 0.058 

p = 0.069  

ASNW-Recent  

p = 0.127,  R2 = 0.051 

p = 0.081  

ARW-Recent  

p = 0.049, R2 = 0.066 

p = 0.996 

Figure. 4.1 (a) canopy and (b) shrub layer community composition by woodland type by Jaccard distance. Ancient Semi-Natural Woodland (ASNW) (n=15); Ancient Replanted 
Woodland (ARW) (n=15); recent woodland (n=15). Canopy (17 species) (stress = 0.094). Shrub layer (19 species) (stress = 0.010). Mean community composition is the central point 
within standard deviation ellipse. Pairwise woodland types analysed with Non-metric Multi Dimensional Scaling. Difference in means tested using PERMANOVA with ‘adonis’ 
function in R. Variance tested with ‘betadisper’ function in R. 

(a) (b) 
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Mean 

Variance 

ASNW-ARW  

p = 0.014,  R2 = 0.064 

p = 0.015  

ASNW-Recent  

p = 0.001,  R2= 0.106 

p = 0.008  

ARW-Recent  

p = 0.002,  R2 = 0.076 

p = 0.962 

ASNW-ARW 

P = 0.864, R2 = 0.018 

p = 0.352 

ASNW-Recent  

p = 0.002, R2 = 0.105 

p = 0.669 

ARW-Recent  

p = 0.032,  R2 = 0.067 

p = 0.837 

Figure 4.2 (a) Herb and (b) moss layer community composition by woodland type by Jaccard distance. Ancient Semi-Natural Woodland (ASNW) (n=15); Ancient Replanted 
Woodland (ARW) (n=15); Recent woodland (n=15).  Mean community composition is the central point within standard deviation ellipse. Herb layer (70 species) (stress = 0.167). 
Terrestrial moss (25 species) (stress = 0.126). Pairwise woodland types analysed with Non-metric Multi Dimensional Scaling. Difference in means tested using PERMANOVA with 
‘adonis’ function in R. Variance tested with ‘betadisper’ function in R. 

 

(b) (a) 
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Mean 

Variance 

ASNW-ARW  

 p = 0.021,  R2 = 0.069 

 p = 0.332 

ASNW-Recent  

p = 0.005,  R2 = 0.089 

p = 0.053  

ARW-Recent  

p = 0.049,   R2 = 0.059 

p = 0.603  

ASNW-ARW 

p = 0.618, R2 = 0.029 

p = 0.028  

ASNW-Recent 

p = 0.004, R2 = 0.074 

p = 0.042 

ARW-Recent 

p = 0.004, R2 = 0.062 

p = 0.986  

Figure 4.3 (a) Herb layer AWI and (b) non-AWI community composition by woodland type by Jaccard distance. Ancient Semi-Natural Woodland (ASNW) (n=15); Ancient Replanted 
Woodland (ARW); (n=15 Recent woodland (n=15).  Mean community composition is the central point within standard deviation ellipse. AWI community (25 species) (stress = 
0.164). Non-AWI community (40 species) (stress = 0.132). Pairwise woodland types analysed with Non-metric Multi Dimensional Scaling. Difference in means tested using 
PERMANOVA with ‘adonis’ function in R. Variance tested with ‘betadisper’ function in R. 

(a) (b) 
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Richness of ASNW canopy, shrub, and moss strata were significantly and negatively 

correlated with AWI richness (Table 4.2). For ARW, the canopy and shrub layer richness 

were significantly and negatively correlated with AWI richness. Recent woodland was the 

only type of woodland to show significant correlation between the non-AWI and AWI herb 

strata richness; this was a positive correlation (Table. 4.2). Jaccard similarity scores showed 

significant positive correlations between AWI and canopy, and shrub layer communities in 

ASNW (Table 4.2). For ARW AWI similarity correlated positively with non-AWI species 

(Table 4.2). Recent woodland exhibited no significant correlations.  

Table 4.2. Strata interactions between AWI communities and canopy, shrub, herb layer non-AWI 

species and terrestrial moss communities in Ancient Semi-Natural Woodland (ASNW), Ancient 

Replanted Woodland  (ARW), and recent woodland. Richness tested via paired t-test (d.f 208 for 

all tests). t statistics, p values, and direction of correlation. Similarity tested via two-tailed Mantel 

test (Pearson’s) on matrices of Jaccard similarity (matrix 15x15 for all tests) (randomisation 10000 

permutations), r(A/B) statistic, p values, and direction of correlation. 

 

         AWI  

      Canopy                      Shrub                  Herb non-AWIs                Moss 

 t           P          Dir.       t          P       Dir.       t           P      Dir.       t           P      Dir.                               

ASNW richness 

ARW richness 

Recent richness 

 

 

ASNW similarity 

ARW similarity 

Recent similarity 

4.928   <0.0001   -      3.977   0.001   -       2.076   0.057  -        2.480   0.026  -         

3.301     0.009     -       4.461   0.001   -       0.249   0.807  -        0.597  0.560  +   

0.498     0.626     -       0.817   0.428  +       2.925   0.011 +        0.295   0.772  - 

 

 r           P        Dir.        r             P      Dir.           r           P     Dir.        r           P      Dir.   

0.205     0.033  +         0.225    0.022  +        0.025   0.791   -      0.063   0.510  -   

0.051     0.617   -         0.140    0.158  +        0.211   0.037  +      0.108   0.279  + 

0.177     0.073  +         0.098    0.321  +        0.064   0.505   -      0.169   0.081 + 
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Herb layer community composition by life traits showed significant differences among 

woodland continuity types for Grime’s (1977) life strategies and the dispersal vectors (Fig. 

4.4; Fig. 4.5). None of the other life traits showed significant differences. For the life 

strategies, both ASNW and ARW differed significantly from recent woodland (Fig. 4.4). 

Stress-tolerant (S) strategists comprised a greater proportion of the community in ASNW 

and ARW compared to recent woodland. Competitive (C) and Ruderal (R) - strategists 

comprised a greater proportion of the community in recent. Likewise, the community 

comprised more SR- and SC-strategists, and fewer CR-strategists in ASNW and ARW 

compared to recent woodland. For dispersal vectors, ASNW was significantly different to 

both ARW and recent woodland (Fig. 4.5). ASNW and ARW comprised notably more 

myrmechorous plants than recent woodland, and fewer epizoochores. A greater 

proportion of anemochores was evident in ASNW, and fewer species were classed as 

‘unspecialised’ than in recent woodland. ARW displayed some proportions intermediate 

between ASNW and recent woodland. 
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ASNW-
ARW 

p = 0.369 

Chi = 6.50   

ASNW-
recent 

p < 0.0001 

Chi= 24.8   

ARW-
Recent 

p = 0.023 

Chi = 14.7 

Figure 4.4. Herb layer community composition by percentage frequency occurrence of the major 
plant life strategies at the gamma scale in Ancient Semi-Natural Woodland (ASNW), Ancient 
Replanted Woodland (ARW), and recent woodland. ASNW n=185 occurences in n=45 woodland, 
ARW n=158 occurences in n=45 woodlands, recent n=185 occurences in n=45 woodland) (Grime, 
1977). C = Competitive, S = Stress-tolerant, R = Ruderal. Strategy types available for 58 of 70 species. 
Intermediate strategies were interpreted as C/CR=C; C/CSR=C; C/SC=C; CR/CSR=CR; R/CR=R; R/ 
CSR=R; R/SR=R; S/CSR=S; S/SC=S; S/SR=S; SC/CSR=SC; SR/CSR=SR (Hermy et al., 1999). Chi-squared 
χ2 d.f 6. 

 

 

ASNW-
ARW 

p = 0.045  

Chi =11.3 

ASNW-
Recent 

p = 0.029 

Chi = 12.5   

ARW-
Recent 

p = 0.176 

Chi =7.66 

Figure 4.5. Herb layer community composition by percentage frequency occurrence of the major 
dispersal strategies at the gamma scale. Ancient Semi-Natural Woodland (ASNW), Ancient 
Replanted Woodland (ARW), and recent woodland. (ASNW n=190 occurences in n=45 woodland, 
ARW n=130 occurences in n=45 woodlands, recent n=176 occurences in n=45 woodland). Dispersal 
mechanisms available for 56 of 70 species. Chi-squared χ2 d.f 5. 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recent

ARW

ASNW

CSR C S R CR SR SC

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recent

ARW

ASNW

Anemochores Endozoochores Epizoochores

Hydrochores Myrmechores Unspecialised
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4.5 Discussion 

Results show that the biodiversity value of ASNW is not as straightforward as being simply 

richer than other woodland categories: although higher in alpha richness for some strata, 

ASNW exhibits no significant differences in gamma richness for the separate strata, and is 

significantly less rich when all strata are combined (Table. 4.1). This is in contrast to the 

small number of previous studies where ASNW was found to generally have higher richness 

at the landscape scale, or no significant difference with recent woodland (Baeten et al., 

2010; Vellend, 2004). Plant community differentiation is evident among ASNW, ARW and/ 

or recent woodland. This is consistent with findings of previous studies where ancient/ 

plantation/ recent woodlands have been compared (Berges et al., 2017; Coote et al., 2012; 

Hermy et al., 1999). Additionally, the community composition of ASNW cannot simply be 

said to be ‘different’ to ARW or recent woodland: it is more complex due to the influence 

community variance on community differentiation. 

The canopy stratum is considered the most influenced by management (Rackham, 2003; 

Peterken, 1993), and here ASNW-ARW showed significant community differentiation, 

whereas recent woodland was not significantly different to either ASNW or ARW (Fig. 4.1a). 

The deliberate planting of canopy species in ARW would account for the difference to 

ASNW. However, the mode of establishment of recent woodland, as plantation or via 

secondary succession, may explain its non-significantly different position relative to ASNW 

and ARW (Fig. 4.1a). Variance measures showed no significant difference in within-group 

consistency among the canopy strata of the three woodland types, indicating that the 

species present are largely the same species, but in a significantly different combination 

between ASNW-ARW. 
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The shrub stratum of ARW showed no significant differences at the alpha level. At the 

gamma scale, all of the shrub species found in ANSW and ARW were also found in recent 

woodland. As such, the lack of any significant differences in community variance (Fig. 4.1b) 

is not surprising; ASNW and recent can only exhibit the mean difference in community 

composition, with no scope for species variance. Kirby et al. (2016) note the strong effects 

of the shrub species composition and structure on other organisms, further justifying the 

importance of their inclusion in this study. 

The herb stratum is less likely to be deliberately planted or managed than the canopy or 

shrub strata, and is therefore a truer reflection of environmental conditions and processes. 

The herb layer community is the most frequently studied stratum as an indicator of 

distinctiveness, difference, or change in habitat variables (e.g. Berges et al., 2017; 

Stefańska-Krzaczek et al., 2016; Kelemen et al,. 2014; Hofmeister et al., 2013; Brunet et al., 

2011; Kirby and Morecroft, 2011; Bossuyt and Hermy, 2000; Hermy et al., 1999). The 

present results of significant community differentiation among ASNW, ARW and recent 

woodland (Fig. 4.2a) seem to support the use of the herb layer community as a sensitive 

indicator of habitat change.  

The herb layer community was significantly different among all pairwise combinations of 

ASNW, ARW and recent woodland (Fig. 4.2a). However, the differentiation between ASNW-

ARW and ASNW-recent is strongly influenced by species variance, as indicated by the 

significant results for variances in addition to the significantly different mean results (Fig. 

4.2a). This indicates that the herb layer of ASNW has a significantly different group of 

species present compared to ARW or recent woodland, and larger standard deviation of 
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recent woodland communities shows far greater variation in the species present. In a 

previous study, no significant differences in variance were found among the herb layer 

communities of ancient, plantation, clear-felled and restored woodland (Atkinson et al., 

2011).  

Terrestrial moss communities of recent woodland differed significantly from both ASNW 

and ARW (Fig. 4.3b). There were no significant differences in variance, therefore any 

difference was due to mean community composition. Bryophyte communities are 

recognised as good indicators of ancient woodland, and of recent woodland (Mölder et al., 

2015). This is supported in the present study where there were no significant differences 

between ASNW and ARW, and the recent woodland moss community was significantly 

different to both categories of ancient woodland (Fig. 4.2b). There was no distinction 

among the woodland types in terms of moss alpha or gamma diversity (Table 4.1). 

Terrestrial moss communities are unlikely to be directly managed, and when studied in 

combination with herb layer AWI species, may provide a more robust identification of 

ancient woodland. 

Where strata communities were significantly different between pairs of woodland types, a 

modest proportion of the community variation was explained by the woodland continuity 

categories themselves. The highest proportion was 16% of the difference in community 

composition explained by ASNW/ARW status for the canopy. As such, future studies may 

seek to establish further explanatory factors for woodland community differentiation. 
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AWI and non-AWI communities 

The distinctive community of specialist woodland indicators in ancient woodland is a long-

established concept (e.g. Kelemen et al., 2014; Schmidt et al., 2014; Hofmeister et al., 2013; 

Kirby, 2004; Rose, 1999; Peterken, 1974), and holds true in the present study. All pairwise 

combinations of ASNW, ARW, and recent woodland showed significant differentiation in 

community composition, but no significant variance in species consistency was detected. 

These outcomes align with the established concept that no single AWI species is confined 

to ancient woodland, and may exist in more recently established woodland (Rose, 1999). 

In addition, the presence of an AWI does not indicate ancient woodland, it is only with 

sufficient richness counts (Glaves et al., 2009) that they are considered indicators. While 

ASNW was significantly richer in AWI species than recent woodland at the alpha scale, the 

gamma scale showed no significant difference in the number present. Importantly, ASNW 

has been shown to have a distinctive community of AWI species, which justifies their 

protected status. While recent woodland does not support the same AWI community as 

ASNW at the alpha scale, it can support largely the same species over the landscape scale, 

some of which are scarce and protected (JNCC, 2017). This, in addition to no significant 

difference between ASNW-ARW in AWI alpha richness, indicates a high restoration 

potential for the conservation of specialist woodland plant communities (Brown et al., 

2015; Palo et al., 2013; Pryor et al., 2002). 

Non-AWI communities exhibited marked differences in both mean community 

differentiation and variance across the three woodland types. ASNW was significantly less 

varied in its non-AWI community than both ARW and recent woodland. However, between 

ASNW and ARW there was no significant difference in mean community, suggesting that 

ASNW non-AWI species were those also present within the significantly greater variety of 
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species present in ARW. These findings show that the non-AWI community of ASNW 

deserves more research attention in terms of its unique consistency. The distinctiveness of 

ASNW non-AWI species is reflected in the gamma richness: 22 in ASNW; 31 in ARW; 38 in 

recent woodland. Prior research has shown that lack of AWI species in recent woodland is 

partly due to competitive exclusion (Sciama et al., 2009; Bossuyt and Hermy, 2000; Hermy 

et al., 1999). However, the present study raises the question of whether the narrow range 

of non-AWI species in ASNW is the result of a ‘reverse’ competitive exclusion process where 

efficient resource use by woodland specialist species hinders establishment of ruderals.   

 

Strata interactions and community composition 

Inter-strata correlations with AWI richness showed more significant relationships in ASNW 

compared to ARW and recent woodland, suggesting some degree of ecological interaction 

among the strata, which is less present in disturbed woodlands. A prior study found AWI 

presence to be associated with higher richness in all other strata (Stefanska-Krzaczek et al., 

2016). In direct contrast, the present study found significant negative correlations between 

AWI richness and the canopy and shrub richness in ASNW and in ARW, and moss strata in 

ASNW. The only significant positive correlation was with the non-AWI community in recent 

woodland. The similarity indices showed significant positive correlations between AWI 

species and the canopy and shrub layer. The non-AWI community similarity of ARW also 

correlated with AWI similarity. Overall, these results show some evidence of 

phytosociological links among the strata, although coinciding with the views of Peterken 

(1993) and Rackham (2003) in that any linkages are inconsistent. 
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Life traits community composition 

The significant difference in herb layer life strategies between ASNW and recent woodland, 

corresponds with findings of prior studies where S-strategist species are more commonly 

associated with ASNW, and C- and R-strategists are associated with recent woodland 

(Berges et al., 2017; Sciama et al., 2009; De Keersmaker et al., 2004; Hermy et al., 1999). 

The present study adds the extra dimension of ARW also exhibiting a significant difference 

to recent woodland in life strategy composition. The significant differences are likely to 

correspond with AWI richness: a large proportion of AWI species are S-strategists (39% 

stress-tolerant, compared to 7.4% competitive) (Hermy et al., 1999). De Keersmaeker et al. 

(2004) also proved a negative correlation between cover of fast colonisers and woodland 

age, in addition to an increase in ancient woodland specialists in both number and cover 

with age.  

Community composition by dispersal vectors was significantly different between ASNW 

and ARW, and between ASNW and recent woodland. In particular, the myrmechorous 

component contributed to the difference. Myrmechory has been shown to be associated 

with dispersal of woodland herbs generally (Whigham, 2004), and particularly with AWI 

species. AWI communities were found to comprise 24% ant-dispersed species in one study 

and 50% in another (respectively Kelemen et al., 2014; Hermy et al., 1999). However, 

Kimberley et al., (2013) found that dispersal vectors were not a distinguishing factor 

between AWI species and other woodland plants. Myrmechory is a short-range dispersal 

mechanism, and the implications of this are reduced colonisation capacity, which may in 

turn link to the influence of individual species on community differentiation. 
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4.6 Conclusions and recommendations 

This chapter finds that ASNW, ARW, and recent woodlands exhibit community 

differentiation in each of their strata, but in different pairwise combinations between the 

three woodland types. Both AWI and non-AWI communities are distinctive among the 

woodland types. Additionally, this chapter has demonstrated that any community 

differentiation among these woodland types may be in response to both the mean and 

variance aspects of beta community composition. The herb layer community composition 

of ASNW or ARW were significantly more varied in their composition than recent 

woodland. Herb layer community composition in terms of life strategies and dispersal 

mechanisms was significantly different between ASNW and recent woodland, and for life 

strategies also between ARW and recent woodland.  

These findings assist in explaining why herb layer communities may differ among the 

woodland types, as a result of potentially limited dispersal, or reduced colonisation ability 

due to competitive exclusion. ASNW exhibited more significant correlations between AWI 

richness and similarity, and richness and similarity of other strata. The implications for 

conservation are twofold. Firstly, both ASNW and ARW categories of ancient woodland are 

shown to have distinct herb layer communities compared to recent woodland, which 

justifies their conservation and existing legal protection. Secondly, despite differences 

between ancient and recent woodland plant communities, there was no significant 

difference in richness of AWI species at the gamma landscape level.  

The findings of this study will be of strong interest in the field of woodland connectivity and 

restoration, as it examines, for the first time, the community proximity of ASNW, ARW, and 

recent woodland. Further focus on the biodiversity value of the non-AWI species 
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component of woodland communities is recommended. Lastly this study supports the use 

of moss species as indicators of ancient woodland, as the moss community clearly 

differentiated between ancient and recent woodland in this study. 
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 5. Relative influence of habitat variables and continuity on 

ancient woodland indicator plant communities in ancient semi-

natural, ancient replanted, and recent woodlands.  

 

Outputs arising from this chapter: 

Swallow, K., Wood, M. and Goodenough, A. (2018) Ancient woodland indicator 

communities in ancient replanted woodland: a shadow plant community? European 

wood pastures. Sheffield, 5-8 September 

Swallow, K., Wood, M. and Goodenough, A. (2018) Plant community differentiation 

among ancient semi-natural, ancient replanted, and recent woodland. RAU research 

seminars. Cirencester, 25 January 

 

Oxalis acestosella, Farmcote Wood, Guiting Strategic Nature Area.  

03/08/14 Grid ref: SP: 06389 27190 
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5.1  Chapter scope 

A review of the literature (Chapter 1) established that woodland plant communities rich in 

AWI species are considered to have high biodiversity value and are indicative of long 

habitat continuity. However, the literature also indicated that use of Ancient Woodland 

Indicator (AWI) species richness as a single-value indicator to inform conservation decisions 

is increasingly questioned due to lack of focus on the underlying ecological conditions. The 

present chapter seeks to explain the AWI alpha richness and beta community composition 

variation among ASNW, ARW and recent woodland established in Chapter 4. Furthermore, 

Chapter 4 identified only modest explanatory effects of woodland continuity status on 

plant community composition. As a result, the present chapter considers the relative 

influence of habitat continuity, biogeographical, soil, and canopy variables on AWI richness, 

community composition, and individual species’ presence. The biogeographical elements 

of Chapter 5 inform the edge effect study conducted in Chapter 6.  

 

5.2  Introduction 

The herb layer vegetation of ASNW has been shown to be distinct from recent woodland 

in terms of specialist species richness (Kelemen et al., 2014; Hofmeister et al., 2013; Brunet 

et al., 2011; Orczewska, 2009), and in terms of community composition (Vukov et al., 2016; 

Brown et al., 2015; Palo et al., 2013). In Britain, ancient woodland comprises two 

categories: Ancient Semi-Natural Woodland (ASNW) and Ancient Replanted Woodland 

(ARW). They are accorded equal protection in the National Planning Policy Framework 

(Forestry Commission and Natural England, 2014), due, in part, to their distinctive ecology.  
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Ancient Woodland Indicator (AWI) species are woodland specialist vascular plant species 

particularly associated with, but not exclusive to, ancient woodland (Glaves et al., 2009). 

AWI species richness has long formed part of the assessment for woodland continuity 

(Rose, 1999; Rackham, 1980; Peterken, 1974), and has been increasingly used to gauge the 

biodiversity value of woodland (Glaves et al., 2009). Many AWI species have an intrinsic 

value beyond their indicator status, being relatively scarcer than woodland generalist 

species (Chapter 1), and in some cases endangered and protected under legislation (JNCC, 

2017). 

Increasingly, the binary ancient/ recent woodland explanation for floristic distinctiveness 

has come under scrutiny (Webb and Goodenough, 2018; Barnes and Williamson, 2015; 

Stone and Williamson, 2013; Wright and Rotherham, 2011; Spencer, 1990). Recent, 

interrupted and even felled woodlands have been found to have comparable AWI richness 

to known ancient woodlands (Webb and Goodenough, 2018; Stone and Williamson, 2013). 

There is a shift towards understanding the ecological conditions that determine the 

presence of AWI/ woodland specialist species (e.g. Kimberley et al., 2016; Kimberley et al., 

2014). Re-focusing on the ecology of woodland specialist species’ habitats enables a more 

objective assessment of the AWI approach, and may recognise the restoration or 

connectivity potential of recent woodlands (Palo et al., 2013). 

Soil variables 

Evidence presented in prior studies shows soil pH to be significantly associated with AWI 

presence (Orczewska, 2009; De Keersmaeker et al., 2004) and with woodland vegetation 

community differentiation (Corney et al., 2006). Significant positive correlations have been 

demonstrated between pH and both richness and abundance of AWI species (De 
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Keersmaeker et al., 2004; Kolb and Diekmann, 2004). Weakly acid to neutral soils, as 

opposed to strongly acidic, are preferred by AWI species, based on a synthesis of 22 

European studies of AWI species by Hermy et al. (1999).  

Plant available phosphorus has been shown to have a higher relative impact on woodland 

vegetation communities than other soil variables (De Keersmaeker et al., 2004). Significant 

negative correlations have been proven between soil phosphorus and AWI richness 

(Honnay et al., 1999). High phosphorus levels have been shown to indirectly hinder 

establishment of AWI species in recent woodland due to competitive exclusion by ruderal 

phosphateophiles such as Urtica dioica (De Keersmaeker et al., 2004; Hermy et al., 1993). 

Total nitrogen and organic carbon seem to have inconsistent correlation with AWI 

communities, although studies are few. After soil P and pH, nitrate had the third most 

significant influence on woodland flora communities (De Keersmaeker et al., 2004). Yet a 

study by Honnay et al. (1999) found no significant correlation between total N and number 

of AWI species. Few studies have explicitly analysed any association between soil carbon 

and AWI richness or community composition.  

Biogeographical variables 

Fragmented habitat configuration is known to cause a significant barrier to the dispersal 

and colonisation of ancient woodland species due to life traits such as few and heavy short-

range dispersed seeds (Endels et al., 2007; Hermy et al., 1999; Bierzychudek, 1982) and 

clonal spread (Verheyen et al., 2003a; Hermy et al., 1999). Increased connectivity has been 

shown to correlate with the presence of specialist or AWI species: AWI species richness in 

British lowlands was explained in a large part by length of hedgerows and lines of trees 
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within the 1km square of a woodland plot, as well as the area of woodland within 500m of 

the plot (Petit et al., 2004). Some hedgerows or tree lines may themselves be ancient 

woodland remnants (Smart et al., 2001; McCollin et al., 2000) and could potentially act as 

a source instead of, or as well as, a conduit for woodland species.  

Isolation of woodlands has been demonstrated to be of varying importance for woodland 

species relative to other factors. Distance from large core or ancient woodlands correlated 

negatively with richness of woodland plant species/ AWI species (Brunet et al., 2011; Petit 

et al., 2004; Honnay et al., 2002a). Isolation showed the strongest influence among several 

variables on AWI species richness (Petit et al., 2004), and on occurrence of individual 

species, specifically spring flowering herbs with large seeds and unassisted dispersal (e.g. 

Paris quadrifolia), and small, mainly vegetatively reproducing herbs (e.g. Anemone 

nemorosa) (Endels et al., 2007).  

Conversely, habitat configuration has been found to have negligible impact on woodland 

species richness compared to internal habitat variables (Kolb and Diekmann, 2004; Honnay 

et al., 1999a). Bailey et al. (2002) proved no link between the occurrence of A. nemorosa, 

Hyacinthoides non-scripta, Mercurialis perennis nor P. quadrifolia and the distribution of 

ASNW at the regional scale, concluding that other factors must be more influential. 

The influence of patch size on woodland species richness is inconsistent. It would be 

expected that larger woodlands have higher species richness due to diversity of internal 

habitats (Honnay et al., 1999a) or that by being larger are more likely to encounter 

propagules (Dumortier et al., 2002). Whilst some studies have found positive correlations 

between understorey species richness with patch size (Gonzalez et al., 2010; Jacquemen et 

al., 2003a; Peterken and Game, 1984), many have evidenced no significant correlation 
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(Hofmeister et al., 2013; Dupre and Ehrlen, 2002; Graae, 2000; Honnay et al., 1999a). The 

aggregate effect of isolation and patch size may account for conflicting results: as 

emphasised by Bailey (2007) fragmentation is not simply an issue of distance. Smaller 

habitats have been correlated with smaller populations, but this is potentially only 

problematic when they are also isolated, reducing dispersal and increasing risk of local 

extinction (Honnay et al., 2005). Petit et al. (2004) found the highest number of AWI species 

in the largest and least isolated woodland patches. 

Canopy variables: 

Specialist woodland species are known to be shade-tolerant and shade-adapted (e.g. 

Hermy et al., 1999; Whigham, 2004; Bierzychudek, 1982). Canopy closure has been found 

to have an inconsistent direct influence on presence of woodland flora (Vockenhuber et al., 

2011): a positive correlation between true woodland species and canopy closure versus a 

negative correlation between tree+shrub layer closure and woodland specialist abundance 

(Brunet et al., 2011). However, the relative range of canopy closure varies among studies 

meaning they are not easily comparable. Richness and cover of specialist woodland species 

have been found to be higher in plots with relative insolation <5% (Hermy et al., 1999) and 

<8% (De Keersmaeker et al., 2004). However, indirect influence of light via competitive 

exclusion by light-demanding species appears to partly account for low presence of AWI 

species in recent woodlands: De Keersmaeker et al. (2004) evidenced a significant negative 

correlation between number of AWI species and percentage cover of light demanding 

species.  
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Research gap: 

This thesis is the first study to explicitly compare woodland continuity versus ecological 

variables in explaining AWI richness and community composition across ASNW, ARW and 

recent woodland. An earlier study similarly applied a range of explanatory variables to the 

prediction of woodland species richness in plantations and native semi-natural (but not 

ancient) woodland, but the aim was not to compare these variables to continuity (Coote et 

al., 2012). Additionally, given the doubt cast over the use of AWI species to designate 

ancient woodland (Webb and Goodenough, 2018; Barnes and Williamson, 2015; Spencer, 

1990), this chapter considers whether any habitat ecological variable(s) proves a significant 

indicator of high AWI richness that might be used as a viable alternative to continuity. 

A very few studies have quantified the distinctiveness of ARW flora communities compared 

to ASNW or recent woodland (Atkinson et al., 2015; Palo et al., 2013; Corney et al., 2008b). 

Seemingly no prior study has examined all three categories of ASNW, ARW, and recent 

woodland in terms of the relative influence of continuity and ecological variables on AWI 

communities.  

The underlying ecology of floristic differentiation is particularly important in the context of 

woodland restoration and conservation (Atkinson et al., 2015; Brown et al., 2015; Palo et 

al., 2013). Prior assessment of variables may be indicative of potential habitats to support 

the vegetation of ancient woodland (Coote et al., 2012), and therefore assist in site 

selection and resource allocation for restoration or conservation purposes.  

This chapter fulfils the following overarching research objective: 
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5. To examine the response of ancient woodland indicator communities to environmental 

and biogeographical variables, relative to woodland continuity status. 

Within the above objective, the following research questions are addressed: 

a. Can habitat variables predict AWI richness as effectively as ancient semi-natural, 

ancient replanted, and recent woodland classification? 

b. Can habitat variables predict AWI community composition as effectively as 

woodland continuity? 

c. Can individual AWI species presence be predicted by habitat variables? 

 

5.3 Methods  

5.3.1 Study location 

Cross reference to sections 2.2.1 and 2.2.2 for an extended description. 

 

5.3.2 Field vegetation methods and AWI definition 

Cross reference to sections 2.2.3 and 2.2.4. 

NB: For this chapter all vegetation data was presence/absence, not percentage cover. 

NB: This chapter employs AWI species data only. 
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5.3.3 Explanatory variables: field and laboratory methods 

To explain any variation in AWI richness and community composition, a range of continuity, 

biogeographical and soil variables were measured for each woodland site (Table 5.1). To 

focus on the novel research question, and to avoid an excessive number of variables to 

cases, a list of variables was refined from a range of factors potentially influencing AWI 

communities. To assess, for the first time, whether any other variables could predict AWI 

communities equally or more effectively than a woodland’s continuity status, it was logical 

to select variables that had previously been shown to influence AWI communities. In some 

cases, variables were not selected for other reasons. Management, for example, has been 

shown to influence AWI communities, but it was not selected because it was reflected in 

the continuity status of each woodland, with ASNW being predominantly coppice with 

standards and managed for conservation, whereas ARW and recent woodland were high 

forest managed for timber. It is recognised that many potentially interesting factors, such 

as deer browsing intensity, internal habitat heterogeneity, and surrounding non-woodland 

land-use are unexplored and therefore limitations of this chapter. However, once the 

seemingly most likely predictive variables have been tested in this novel analysis, future 

research could seek to extend the variables for inclusion. 
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Table 5.1. Explanatory variables tested for relative influence on Ancient 

Semi-Natural Woodland (ASNW), Ancient Replanted Woodland (ARW), and 

recent woodland AWI plant communities. Data acquisition: FM = field 

measurement; LM = laboratory measurement; GIS = geographical 

information system; CI = computed index (Herault and Honnay, 2005) 

Data 

aquisition 

Continuous variables: 

‘Canopy’ – percentage canopy closure 

‘Wood’ - woodland percentage cover within 500m of site edge 

‘ASNW’ - ASNW percentage cover within 500m of site edge 

‘ARW’ - ARW percentage cover within 500m of site edge 

‘N’ - total nitrogen (%) 

‘C’ – total organic carbon (%) 

‘P’ – plant available phosphate (mg/l) 

‘Hedge’ - percentage hedgerow cover within 500m of site edge 

‘Area’ – area of woodland site (m2) 

‘Shape’ – shape of woodland site as departure from perfect circle of same area 

‘Size’ – area of woodland site (m2) 

 

Categorical/ ordinal variables: 

‘Continuity’ – classified as ASNW, ARW, and recent woodland (grouped 3, 2, 1 
respectively) 

 

FM/ CI 

GIS 

GIS 

GIS 

LM 

LM 

LM 

GIS 

GIS 

GIS/ CI 

GIS 

 

 

GIS 

 

 

Field and laboratory soil methods 

In the same manner as for herb layer vegetation surveys, 45 woodland sites were sampled 

for soil variables (ANSW n=15, ARW n=15, recent n=15). For representative vegetation and 

corresponding soil samples, five 4x4m quadrats were systematically located within each 

woodland site. Within each quadrat, five soil samples were taken at 0-10cm depth below 

the litter layer at the centre and each corner then mixed, yielding one soil sample for each 

of the five quadrats per woodland site (Brunet et al., 2011). These five samples were then 
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homogenised in equal weights to give one bulk sample per woodland site (Hofmeister et 

al., 2013). Five samples per site enabled a fair representation in any soil variation across 

the site. The homogenisation of samples was conducted to avoid pseudoreplication – as all 

other explanatory variables yielded one data point per site, for example continuity, patch 

size, or shape. 

To test for pH, total organic carbon (C), total nitrogen (N), and available phosphorous (P), 

samples were dried at 60°C (Graae, 2003). Samples were crushed in a mortar and sieved 

<2mm. For total organic C and total N a subsample was finely milled. 

To test for pH, the ISO standard 10390 1:5 H2O method was used: 5g of dried soil was added 

to 25ml deionised water and shaken for 12 hours (Herault and Honnay, 2005). The shaken 

sample was tested with a calibrated digital pH meter. 

To test for total N and total organic C, samples were analysed using a Costech CNS 

automated elemental analyser whereby samples are combusted and percentage N and C 

are determined from gases released (Hofmeister et al. 2013; Vockenhuber et al., 2011). For 

each sample, 50mg of finely milled soil, with 5mg of tungsten to aid combustion, was 

weighed into a tin container. Quality was controlled by testing three replicates of a 

reference soil prior to sample analysis, against which the samples are calibrated. To 

maintain calibration, sulfanilic acid (5mg) was weighed into tin containers and analysed at 

intervals of 10 samples. 

To test for available P, the Olsen sodium bicarbonate extraction method was used (Olsen, 

1954). This was appropriate for the pH range established in earlier testing. Quality was 
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controlled through analysis of a sequence of phosphorus standards, two reference soils and 

blanks. Available P was determined colourimetrically using a UV-visible spectrometer. 

Biogeographical GIS methods 

Patch size was measured in m2 using the polygon function in MAGIC map. To calculate 

patch shape, the perimeter of each patch was measured using the distance function in 

MAGIC map, which was then divided by the circumference of a circle of the same area (Petit 

et al., 2004; Patton, 1975). 

To establish connectivity of each woodland site, the percentage surrounding land use of 

ASNW, ARW, all woodland, and hedgerow were separately measured within 500m of the 

edge of the sampled site. To correct for site size, and therefore buffers of different sizes, it 

was important to measure land-use cover as a percentage of the 500m buffer. The polygon 

function in MAGIC map delineated the site area, and the buffer function was applied of a 

width of 500m around the site. The polygon function in MAGIC map was again used to 

measure the area of the 500m buffer surrounding the site, from which percentage cover of 

the landuse types was calculated. For hedgerows, length was first measured using a 

distance function in MAGIC map and then multiplied by a 2m width to give an area value 

that could be calculated as a percentage of the buffer area.  

Biotic field and software methods 

To measure canopy closure, the canopy immediately overhead was photographed in each 

of the five plots within each of the 45 woodland sites. To obtain a percentage canopy 

closure figure for each woodland site, photographs were processed using Canopydigi 

software (Goodenough and Goodenough, 2012), and the mean closure of the five plots was 
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calculated. Canopydigi has been shown to produce comparable results to a densiometer 

(Fergot, no date). 

 

5.3.4 Statistical methods 

To assess the relative influence of habitat variables on AWI richness, a series of Generalized 

Linear Models (GLMs) was constructed (Coote et al., 2012). GLM was selected due to its 

ability to handle data with a range of statistical properties (Buckley, 2015; Bolker et al., 

2009; Ripley and Venables, 2002). The dependent variable was count data (AWI richness in 

45 woodland sites) and the model used poisson error term with log link function. Buckley 

(2015) notes a limitation of GLMs, in that count data may not fulfil the poisson distribution 

due to overdispersion or clustering. Prior to analysis, a Q-Q plot was created to check that 

residuals did indeed conform to the Poisson distribution. Most independent variables were 

continuous but woodland age was categorical (Table 5.1). Prior to analysis, percentage data 

for N, C, ASNW, ARW and hedgerow were arcsine square root transformed to reduce any 

effects of non-normal distribution. Although this did not achieve an entirely normal 

distribution for all variables, distributions were improved such that normality was 

approximate. Multicollinearity was assessed using Variance Inflation Factors (VIFs) and was 

below the threshold of <10 (Myers, 1990). All analysis relating to GLM was undertaken in 

SPSS version 24. 

To test if any habitat variables were a stronger predictor of AWI richness than a woodland’s 

continuity status as ASNW, ARW, or recent woodland, a series of univariate GLMs was 
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created with each of the variables entered as a single predictor: continuity; area; shape; 

wood; ASNW; ARW; hedge; canopy; pH; P; C; N (Table 5.1).  

Multivariate GLMs were then constructed based on ecological knowledge to model specific 

scenarios. To test whether any multivariate model could predict AWI richness as effectively 

as the univariate continuity model, variables were tested in multiple combinations. To 

understand which aspects of habitat ecology influenced AWI richness, GLMs were also 

constructed for subgroups of variables: connectivity (wood; ASNW; ARW; hedge); habitat 

configuration (area, shape); soil variables (pH; P, C, N). Canopy could not be logically 

grouped into these categories. For all multivariate models, interactions were only included 

where there was ecological justification.  

Univariate and multivariate GLMs were compared for model fit and parsimony in terms of 

Akaike’s Information Criterion (Burnham and Anderson, 2002). The lowest AIC was 

considered as  AIC = 0. AIC continuity = relative to univariate continuity model. AIC 

non-continuity = relative to best non-continuity model. The contribution of each model 

relative to the best univariate and/ multivariate model was interpreted using AIC criteria 

established by Burnham and Anderson (2002:70), whereby the lowest AIC is the best 

model, and AIC < 2 shows substantial support for the model, 4-7 has considerably less 

support for the model, and > 10 means that the model essentially has no support. 

To support model interpretation, scatterplots with trend line and R2 values were created 

for each continuous variable with AWI richness. For continuity as a categorical variable, the 

mean AWI richness for each category was bar-graphed with the range. Additionally, an 

independent t-test determined the significance of any difference in mean AWI richness 

among the continuity categories. 
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To examine the relative influence of continuity and habitat variables on community 

composition (n=45), Non-Metric Multi Dimensional Scaling (NMDS) with Jaccard distance 

measure was conducted on the same variables as for richness. NMDS is recognised for its 

ability to handle a range of ecological data formats, with no requirement for a normal 

distribution (McCune & Grace 2002). Additionally, NMDS was selected because, unlike 

many ordination methods, it allows a choice of distance measure. The Jaccard distance 

measure (Atkinson et al., 2015; Naaf and Wulf, 2010; Jaccard, 1912), based on presence-

absence data, was selected because the presence or otherwise of AWI species makes an 

important contribution to the designation of ancient woodland for protection under UK 

legislation (Kirby, 2004; Rose 1999).  

NMDS output was plotted using the ‘metaMDS’ and ‘ordiplot’ functions in Vegan, MASS 

and BiodiversityR packages for R (Kindt and Kindt, 2017; Oksanen et al., 2017; Ripley et al., 

2017; Gardener, 2014; Hovanes, 2013; Kindt and Coe, 2005). Stress was maintained <0.20 

(0.164) by using 3 dimensions (Gardener, 2014; Clarke and Warwick, 2001). Significance 

was based on 999 permutations.  

To test the relative influence of variables on AWI communities, the ‘envfit’ function in 

Vegan for R was applied in addition to the NMDS with Jaccard distance procedure 

(Oksanen, 2017). ‘Envfit’ fitted vectors to the NMDS plot to indicate the strength and 

direction of each explanatory variable. Variables with p<0.05 were displayed graphically. 

The R2 values were used to assess the relative influence of variables on AWI communities. 

All variables comprised continuous data, except continuity which was entered as ordinal 

data and classified in descending order of continuity as 3 = ASNW, 2 = ARW, 1 = recent 

woodland. 
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To understand the response of individual AWI species to continuity and habitat variables, 

a series of binary logistic regression models was conducted for species present in ≥20% of 

the 45 woodland sites. Informed by the models generated for research question 1, Principal 

Components Analysis was used to condense area, shape (reciprocal), and surrounding 

ASNW, ARW, woodland and hedgerow data into one variable (PCA1 explained 41% of the 

variation), and the same was conducted for pH, P, N and C (PCA1 explained 70% of the 

variation). Continuity and canopy remained as single variables. Each variable was entered 

singly to test for correlation with presence of each AWI species. Continuity was entered as 

an ordinal variable. Wald chi-squared, p values and Nagelkerke pseudo R2 were used to 

assess the influence of variables relative to continuity. 

 

5.4  Results 

Twenty-five AWI species were identified within forty-five woodland sites. The mean AWI 

richness of ASNW was 8.33 (n=15), for ARW 6.00 (n=15) and for recent woodland 4.92 

(n=15) (Fig. 5.1a). AWI richness was strongly and significantly predicted by woodland 

continuity as a univariate variable (p=0.001 AIC=0). 

Following Akaike’s criterion of AIC <2.0, the multivariate model comprising all 

biogeographical variables could essentially be treated as equal to the univariate continuity 

model in explaining AWI richness (p=0.001, AIC=0.160) (Burnham and Anderson, 

2002:70).  

When biogeographical variables were subdivided into connectivity and habitat 

configuration variables, the connectivity variables did not provide strong support for the 
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model, but were significant in their own right (p=0.020) (Table 5.2). No other univariate or 

multivariate model supported the strongest model or was a significant predictor of AWI 

richness.  
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Table 5.2. Generalized linear models for explanatory variables of AWI richness. (a) univariate single predictors. (b) 

multivariate models, including best overall model, and best models separately for connectivity, habitat 

configuration, and soil variables. Delta Akaike’s Information Criterion scores are used to compare all models AIC 

= 0.  AIC continuity = relative to univariate continuity model; AIC non-continuity = relative to lowest non-

continuity model. ASNW = Ancient Semi-Natural Woodland; ARW = Ancient Replanted Woodland. 

 Model 
# 

(a) Univariate  χ2 d.f Sig. AIC 
continuity 

AIC non-
continuity 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Continuity 

P 

Hedge  

Area  

Canopy 

C 

ASNW  

Shape  

N  

ARW 

pH 

Wood  

ASNW/ARW/ recent site 

Soil available phosphate (mg/l) 

% land use within 500m of site 

Area of site m2 

% canopy closure 

Soil total organic carbon % 

% land use within 500m of site 

Deviation from circle of same area 

Soil total nitrogen % 

% land use within 500m of site 

Soil pH H2O 

% land use within 500m of site 

13.849 

3.456 

2.897 

2.981 

2.092 

0.720 

0.475 

0.332 

0.124 

0.114 

0.015 

0.001 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.001 

0.063 

0.084 

0.084 

0.148 

0.396 

0.491 

0.565 

0.725 

0.736 

0.904 

0.981 

0 

8.393 

8.862 

8.869 

9.757 

11.121 

11.375 

11.518 

11.725 

11.736 

11.835 

11.849 

n/a 

8.233 

8.702 

8.709 

9.597 

10.961 

11.215 

11.358 

11.565 

11.576 

11.675 

11.689 
   

                  (b) Multivariate models  

13              Optimal multivariate model across all non-continuity variables/ biogeographical variables 

 Hedge 

ARW  

Area 

ASNW 

Wood 

Shape 

Area*Shape 

ARW*Hedge 

Wood*Hedge 

Overall model 

12.076 

8.716 

7.177 

5.748 

4.105 

2.009 

4.872 

3.994 

0.010 

27.689 

1 

1 

1 

1 

1 

1 

1 

1 

1 

9 

0.001 

0.003 

0.007 

0.017 

0.043 

0.156 

0.027 

0.919 

0.046 

0.001 

 

 

 

 

 

 

 

 

 

0.160 

 

 

 

 

 

 

 

 

 

0 

14              Connectivity variables 

 Hedge 

ASNW 

ARW 

Wood 

Wood*hedge 

ARW*hedge 

ASNW*hedge 

Overall model 

6.234 

3.065 

0.710 

0.140 

2.761 

1.228 

0.394 

16.674 

1 

1 

1 

1 

1 

1 

1 

7 

0.013 

0.080 

0.399 

0.708 

0.097 

0.260 

0.530 

0.020 

 

 

 

 

 

 

 

7.175 

 

 

 

 

 

 

 

7.015 

15              Configuration variables 

 Area 

Shape 

Area*shape 

4.737 

1.306 

6.359 

1 

1 

3 

0.030 

0.253 

0.095 

 

 

9.491 

 

 

9.331 

16              Soil variables 

 P 

N 

C 

pH 

Overall model 

5.207 

0.366 

1.995 

0.345 

7.496 

1 

1 

1 

1 

4 

0.022 

0.545 

0.158 

0.577 

0.094 

 

 

 

 

11.873 

 

 

 

 

11.713 

 



157 

 

Graphical analysis showed AWI richness was significantly higher in ASNW than ARW or 

recent woodland (Fig. 5.1a). Graphical analysis of other explanatory variables showed no 

significant correlations between AWI richness any of the variables tested (Fig 5.1b-l). 
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Figure 5.1. Explanatory habitat variables for AWI richness in 45 woodland sites. Ancient Semi-Natural 
Woodland (ASNW) (n=15); Ancient Replanted Woodland (ARW) (n=15); recent woodland (n=15). For 
categorical variable bar chart with range and Independent t test. For continuous variables scatterplots with 
trend line and R2 value. 
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In contrast to AWI richness, community composition of AWI species was most strongly 

influenced by soil variables pH (p=0.001), N (p=0.003) and C (p=0.007) with R2 values higher 

than continuity (Fig. 5.2). These three variables more strongly influenced community 

composition than continuity (p=0.024). Area, surrounding woodland and surrounding ARW 

also showed significant influence, but R2 values were below that of continuity (Fig. 5.2). 

However, graphical analysis shows clustering of many AWI species around the continuity 

fitted variable, which corroborates the richness findings (Fig. 5.2). Indeed, the continuity 

variable occupies the same ordination space as the standard deviation of ASNW and ARW 

communities (Fig. 5.2). The soil variables appear in the same space as recent woodland 

communities, while connectivity variables occupy the same space as ARW communities. 

Sample size was too small to allow variable testing separately for ASNW, ARW and recent 

woodlands. 
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Species: Adoxa moschatellina; Allium ursinum; Anemone nemorosa; Carex pendula; Carex sylvatica; Colchicum 

autumnale; Conopodium majus; Convallaria majalis; Dryopteris carthusiana; Epipactis helleborine; Euphorbia 
amygdaloides; Galium odoratum; Hyacinthoides non-scripta; Lamiastrum galaeobdolon; Mercurialis perennis; 
Orchis mascula; Oxalis acetosella; Paris quadrifolia; Poa nemoralis; Primula vulgaris; Polypodium vulgare; 
Polystichum setiferum; Sanicula europaea; Viola riviniana; Viola reichenbachiana. 

                                                                  R2 (%)        P                                                                                             R2             P 

pH (soil, H2O) 

C (soil total organic carbon C %) 

N (total soil N %) 

Continuity (ASNW, ARW, recent) 

Area (of woodland site m2) 

ARW (% land-use within 500m) 

0.320 

0.274 

0.213 

0.163 

0.160 

0.156 

0.001 

0.003 

0.007 

0.024 

0.019 

0.038 

Wood (% land-use within 500m) 

P (plant available soil P mg/l) 

ASNW (% land-use within 500m) 

Hedge (% land-use within 500m) 

Canopy (% closure) 

Shape (deviation from circle of same area) 

0.135 

0.056 

0.053 

0.050 

0.047 

0.041 

0.046 

0.335 

0.339 

0.345 

0.389 

0.409 

Figure 5.2. AWI species community composition by Jaccard distance. Non-metric multidimensional scaling of AWI 

communities across all three woodland continuity types: Ancient Semi-Natural Woodland (ASNW) (n=15); Ancient 

Replanted Woodland (ARW) (n=15); recent woodland (n=15). 999 permutations. Dimensions = 3. Explanatory 

variables (p<0.05) fitted using ‘envfit’ function in R. 25 species. Stress = 0.164. Inset ellipses show s.d. of ASNW, 

ARW and recent woodland communities. 
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Individually, AWI species showed a range of responses to continuity, biogeographical, soil 

and canopy variables (Table 5.3). One third of the species (A. nemorosa, P. vulgaris. P. 

quadrifolia, V. reichenbachiana, C. sylvatica) correlated significantly and positively with 

greater continuity. In three cases biogeographical variables correlated significantly with 

species presence, positively for H. non-scripta, but negatively for M. perennis and S. 

europaea. Soil variables correlated significantly with A. ursinum and M. perennis. G. 

odoratum correlated significantly and positively with canopy closure. Three AWI species 

(M. perennis, O. acetosella and S. europaea) exhibited no correlation with continuity 

(p=1.000). Five species showed no significant correlations with any variable (E. 

amygdaloides, L. galaeobdolon, O. acetosella, V. riviniana and P. nemoralis). 
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Table 5.3. Influence of explanatory factors on AWI species presence (present in ≥20% of plots). Binary logistic regression. Continuity of site was 
measured as an ordinal variable (Ancient Semi-Natural Woodland (ASNW)= 3; Ancient Replanted Woodland (ARW) = 2; recent woodland = 1); 
connectivity; biogeographical comprises (PCA (40% var.) percentage of woodland, ASNW, ARW and hedgerow within 500m of the site and site area 
and reciprocal of shape; soil comprises (PCA (70% var.) P, N, C, pH; canopy closure of site (%). Wald chi squared, p value and Nagelkerke pseudo R2 
value. Bold indicates significant correlation p<0.05.  

Species (occurrence /45) Continuity (d.f. 1) Biogeographical (d.f. 1) Soil    (d.f. 1) Canopy   (d.f. 1) 

 Chi         P          R2 (%)  Dir.   Chi        P         R2 (%)  Dir. Chi        P           R2 (%)  Dir. Chi        P         R2 (%)  Dir. 

A. ursinum (14) 1.370   0.242        4.4 1.514   0.218    4.8  8.528   0.003    32.4     +   9.210   0.051    15.9 

A. nemorosa (20) 4.568    0.033     14.1    + 0.347   0.556    1.00 0.109   0.741      0.3 0.935   0.334      2.9 

E. amygdaloides (19) 0.543    0.461       1.6 3.193   0.074   10.0 0.462   0.497      1.4 0.820   0.365      2.9 

G. odoratum (16) 0.577    0.447       1.8 2.312   0.128     7.3    0.959   0.327      2.9 3.889   0.049    15.4   + 

H. non-scripta (35) 2.871    0.090     10.5 5.414   0.020   21.3    + 2.780   0.095      9.5 0.581   0.446      1.9 

L. galaeobdolon (13) 0.642    0.423       2.1 2.042   0.153     6.8 0.682   0.409      2.3 0.114   0.736      0.4 

M. perennis (39) <.0.001  1.000   <0.001 4.233   0.040   22.1    - 5.603   0.018    41.0    +   1.960   0.162      7.5 

O. acetosella (9) <.0.001  1.000   <0.001 0.568   0.451     2.0 3.342   0.068    14.8 0.007   0.934   <0.001 

P. quadrifolia (9) 4.447   0.034      18.4    + 1.048   0.306     3.8 0.203   0.653      0.7 0.014   0.907   <0.001 

P. vulgaris (9) 4.477   0.034      18.4    + 0.370   0.543     1.3 0.382   0.537      1.4 0.851   0.356       2.9 

S. europaea (9) <.0.001  1.000   <0.001 4.118   0.042   16.2    - 3.098   0.078    11.0 2.999   0.083     14.6 

V. reichenbachiana (19) 4.750   0.029      15.1    +  0.148   0.700      0.4 0.722   0.395      2.2 0.392   0.531       1.2 

V. riviniana (13) 0.712   0.399        2.4 0.016   0.898      0.1 0.105   0.745      0.3 0.028   0.866       0.1 

C. sylvatica (27) 4.637   0.031      14.7    + 0.164   0.685      0.5 0.012   0.991    <0.001 0.539   0.463       1.6 

P. nemoralis (11) 2.720   0.099        9.5 1.007   0.316      3.4 2.122   0.145      8.0 0.141   0.707       0.5 
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5.5  Discussion 

Fundamental to understanding the ecological basis for high AWI richness, was that some 

ARW and recent woodlands exhibited AWI counts comparable to ASNW. In some cases, up 

to 12 AWI species (Fig. 5.1a). Usually the long continuity of ASNW is necessary to support 

a distinctive community of AWI species (e.g. Kelemen et al., 2014; Orczewska, 2009; Graae 

et al., 2003; Honnay et al., 1999; Wulf, 1997). Thresholds of 10 or even 12 AWI species have 

been employed by some organisations to classify woodland as ancient, and between 8-12 

AWI species is considered an indicator of ‘very good’ woodland quality meriting 

conservation (Glaves et al., 2009). On this basis, there is strong rationale for understanding 

the ecological drivers of AWI richness to inform restoration of ARW, and for conservation 

of valuable recent woodland.  

The continuity status of a woodland (ASNW, ARW, and recent) was a significant predictor 

of AWI richness (Table 5.2). The highest mean AWI richness was observed in woodlands of 

longest continuity (ASNW), which supports findings of prior studies (e.g. Kelemen et al., 

2014; Sciama et al., 2009). Additionally, these findings suggest that AWI richness is, on 

average, a good indicator of ancient woodland status. However, as demonstrated by the 

high AWI counts of some recent woodlands there are exceptions, therefore AWI richness 

should be employed among other ecological and historic evidence bases for determination 

of ancient status. 

A combination of biogeographical variables and their interactions proved a significant and 

equally strong predictor of AWI richness as continuity (Table 5.2). Both temporal continuity 

and biogeographical variables have been correlated with AWI richness in prior studies 
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(Kelemen et al., 2014; Brunet et al., 2011; Sciama et al., 2009; Petit et al., 2004). However, 

to date, no previous study has assessed the degree to which these could be treated as equal 

explanations for the distinctiveness of AWI rich communities. Woodlands with greater 

landscape connectivity and more regular shape significantly correlated with higher AWI 

richness (Table 5.2; Fig. 5.1c, d, f, g, i, k). The converse of these conditions has long been 

considered a threat to specialist woodland flora such as AWI species (Brunet et al., 2011; 

Rackham, 2008; Corney et al., 2008, 2004; Petit et al., 2004). The low dispersal ability of 

many AWI species (such as vegetative spread, or having few or heavy seeds dispersed by 

short-range vectors) has been found to be incompatible with a fragmented landscape 

(Jacquemen et al., 2003a; Hermy et al., 1999). 

While biogeographical variables did not strongly contribute to the model as single 

predictors, when combined in multivariate models with appropriate interactions, they 

offered much stronger explanation of AWI richness (Table 5.2). Interactions between 

area*shape, and wood*hedge contributed particularly strongly. This is in line with prior 

studies where variables such as patch size and isolation were meaningful explanations of 

richness only when aggregate effects were tested (Bailey, 2007; Honnay et al., 2005; Petit 

et al., 2004). 

Unlike a richness count, AWI community analysis recognises the identity of individual 

species and enables greater insight into the community ecology of AWI species. Soil 

variables (pH, C, and N) exhibited the strongest significant influences on AWI community 

composition (Fig. 5.2). Higher pH, C and N nutrient status diverged from the cluster of AWI 

species towards the ordination space of recent woodland AWI communities (Fig. 5.2). pH 

was the strongest significant determinant of community composition, explaining 32% of 

the community variation, which reflects the co-occurrence of species with the similar range 
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of tolerance. N was found to be a significant explanatory variable in a similar community 

study (De Keersmaeker et al., 2004). In additional support of the findings of the present 

study, Hofmeister et al., (2013) found N enrichment to lead to competitive exclusion of 

woodland species by nitrophiles. Several studies have found soil C to be higher in ancient 

woodland soils (Brunet et al., 2011; Orczewska, 2009; De Keermaeker et al., 2004), but 

none have conducted comparable community analysis. 

Continuity was again a significant predictor of AWI community composition, explaining 16% 

of community variation, and the majority of AWI species were clustered around the 

variable’s trajectory and within the ordination space of ASNW communities (Fig. 5.2). As 

shown in Fig 5.1a, AWI species are more prevalent in ASNW, which accounts for the 

position of many AWI species in the ordination space. Numerous prior studies have found 

distinctive community composition in ancient woodlands (Atkinson et al., 2015; Kelemen 

et al., 2014; Coote et al., 2012; Chapter 4). 

Similarly to the richness models, some biogeographical variables exhibited strong 

explanatory effects on AWI community composition. Area of surrounding woodland and 

surrounding ARW were associated with the AWI communities found in the ordination space 

overlapping ASNW and recent communities (Fig. 5.2).  

The relative positioning of species in the ordination space gives insight into AWI community 

dynamics. The majority of AWI species such as P. quadrifolia, Carex sp., L. galaeobdolon, 

M. perennis and H. non-scripta are commonly co-occuring and occupy overlaps in three 

woodland continuity categories (Fig. 5.2). Two fern species, D. carthusiana and P. 

setiferum, are strongly disassociated from the majority of AWI species, occurring in the 

ordination space of ARW. The community composition of fern species, not only those that 
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are AWI species, has previously been shown to indicate understorey succession in 

plantations (Onaindia et al., 2013). A. ursinum is positioned at a distance from the central 

cluster of AWIs in the same ordination space as the soil variables.  

Analysis of variables influencing the presence of individual AWI species confirmed that the 

majority of individual AWI species are not significantly associated with long continuity 

(Table 5.3). For this reason, the current practice of treating them as a guild and with a 

certain richness threshold is appropriate when assessing woodland ancient status (Hermy 

et al., 1999; Rose, 1999). Habitat conditions other than continuity are significantly 

associated with the presence of several species (Table 5.3). These results enhance 

understanding of the ecological requirements of AWI species, which can be factored into 

interpretation of AWI studies, and have a practical management application.  

Individual species’ analysis enabled clearer understanding of their contribution to the AWI 

richness count under the different scenarios modelled in Table 5.2. Biogeographical factors 

were important for some species. H. non-scripta presence required high connectivity, while 

M. perennis and S. europaea were significantly and negatively correlated with connectivity. 

Although all three are recognised AWI species, the opposing preferences may be accounted 

for by different degrees of specialism/ generalisms: as noted by Brown et al., (2015), just 

over half of AWI species are in fact woodland generalists rather than specialists.  

High soil factor values were significant (p=0.003) predictors of A. ursinum presence, which 

tallies with Ellenberg values of 7 for N (prefers richly fertile places) and 7 for reaction 

(weakly acid to weakly basic condition, never found on very acidic soils) (Hill et al., 1999). 

The ordination plot (Fig. 5.2) also associates A. ursinum with higher nutrient status. M. 

perennis was also marginally significantly associated with higher soil variables.  
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Only G. odoratum was marginally significantly associated with greater canopy closure. 

Canopy closure was shown to have no significant influence on either richness or community 

composition, but as there was low variation in this variable (Fig. 5.1e), this is not surprising.   

5.6  Conclusions and recommendations 

This chapter has provided novel contributions to the understanding of AWI community 

ecology. Individual ARW and recent woodlands have been shown to support equally rich 

AWI communities as ASNW. This holds important implications for the conservation of AWI 

rich recent woodlands, particularly as they are not as robustly protected as ASNW and 

ARW. With several AWI species of threatened status, an individual woodland scale 

approach may be worthwhile. However, mean AWI richness was highest in ASNW, which 

lends support to the continued use of AWI lists to identify them when supported by historic 

evidence. Additionally, the findings of this study support the use of AWI thresholds, as 

analysis of individual AWI species showed that only one third of those tested were 

significantly influenced by continuity. Instead, the presence of others was influenced 

significantly by biogeographical, soil or canopy factors.  

An important outcome of this study is that biogeographical factors and woodland 

continuity are equally effective, significant, and positive predictors of AWI richness. To 

date, seemingly no study has tested alternative explanations of AWI richness relative to 

continuity. Woodland connectivity and restoration are currently important aspects of 

conservation management. This outcome strongly supports the implementation of greater 

landscape connectivity to support distinctive AWI communities whether in ASNW, ARW or 

recent woodlands. In terms of community composition, soil variables were a stronger 

predictor than woodland continuity.  
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Overall, the study has demonstrated significant responses of AWI species to a range of 

habitat ecological variables in addition to the single measure of continuity. Continuity 

remains a useful guide to locating the habitats of greatest biodiversity value, which can be 

supplemented with biogeographical and soil data to provide effective conservation of 

valuable AWI communities.  
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6. Impact of dual edge proximity on the distribution of ancient 

woodland indicator plant species in a fragmented habitat 

 

This chapter is a replication of a paper forming part of this research that was published in 

Community Ecology. Referencing conventions have been changed to meet University 

requirements, and an appendix to the original paper has been incorporated into the results 

section. The original paper is available in Appendix II. 

 

Outputs arising from this chapter: 

Swallow, K. and Goodenough, A. (2017). Double-edged effect? Impact of dual edge 

proximity on the distribution of ancient woodland indicator plant species in a fragmented 

habitat. Community Ecology, 18(1), pp.31-36. 

Swallow, K. and Goodenough, A. (2016) Double-edged effect? Impact of dual edge 

proximity on the distribution of ancient woodland indicator plant species in a fragmented 

habitat. RAU research seminars. Cirencester, 1 November 

 

 

Woodland-arable interface. Arle Grove. 
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6.5 Abstract 

The influence of edge proximity on woodland plants is a well-established research area, yet 

the influence of dual edge exposure has rarely been investigated. This novel research aims 

to establish whether proximity to two edges has any additive influence on Ancient 

Woodland Indicator (AWI) species presence relative to proximity to a single edge. Several 

AWI species are threatened and thus specific conservation priorities, while Ancient Semi-

Natural Woodland (ASNW) itself is often highly fragmented: almost half of remnant patches 

are less than 5ha, which increases the potential for dual edge effects. Here, systematic 

mapping of herbaceous AWI species was conducted in 310 vegetation plots in two 

formerly-connected ASNW fragments in South-West England. Linear regression modelling 

revealed that distance to nearest edge and distance to second nearest edge were both 

univariately positively correlated with AWI species richness. After distance from nearest 

edge was entered into a multivariate model first, distance from second edge was entered 

in a second optional step after meeting stepwise criteria. The resultant multivariate model 

was more significant, and explained more variance, than either variable in isolation, 

indicating an additive effect of dual edge exposure. Likewise, binary logistic regression 

modelling showed presence of individual AWI species (Anemone nemorosa, Hyacinthoides 

non-scripta, Lamiastrum galaeobdolon and Paris quadrifolia) was significantly related not 

only to distance from the nearest and second nearest edges in isolation, but significantly 

more strongly by the additive effect of distance from both edges in a single model. We 

discuss the implications of these findings from community ecology and conservation 

perspectives. 
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Abbreviations: AWI – Ancient Woodland Indicator, ASNW – Ancient Semi-Natural 

Woodland 

Nomenclature: IPNI (2015) The International Plant Names Index http://www.ipni.org/  

 

6.2 Introduction  

The presence of scarce and range-restricted flora in Ancient Semi-Natural Woodland 

(ASNW) (Palo et al., 2013; Honnay et al., 1999b; Wulf, 1997; Peterken 1974) contributes to 

its status as an ecosystem of high conservation value (Goldberg et al., 2007; Rackham, 

2003; Peterken, 1983). The ancient woodland concept is well-integrated into forest 

research and conservation practice, although definitions and date thresholds vary amongst 

countries (Wirth et al., 2009b; Hermy et al., 1999). In England, ASNW is defined as 

predominantly a native broadleaf canopy established through natural regeneration 

(Rackham, 2008) on land that has remained continuously woodland since at least the year 

1600 (Goldberg et al., 2007). 

Ancient woodland indicator (AWI) species are vascular plants that are particularly, but not 

exclusively, associated with ASNW (Glaves et al., 2009; Rose, 1999). Regional AWI lists were 

developed to assist in determining ancient woodland status and are additionally used to 

assess habitat quality (Glaves et al., 2009). AWI species are considered to have low 

colonisation potential due to poor seed production, low dispersal capability and short-term 

persistence in the seed bank (Honnay et al., 1998). As such, AWI species may not be able 

to colonise alternative woodland habitats if ASNWs are lost or conditions become sub-

optimal (Hermy et al., 1999). The limited distribution of AWI species and their specific 

http://www.ipni.org/
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ecology has promoted extensive use in woodland research (Stefańska-Krzaczek et al., 2016; 

Kimberley et al., 2014; Kirby and Morecroft, 2011; Rackham, 2003; Kirby and Goldberg, 

2002; Hermy et al., 1999; Rose, 1999; Honnay et al., 1998; Wulf, 1997; Spencer, 1990; 

Peterken, 1974).  

Landscape fragmentation is a significant threat to ASNW plant communities (Corney et al., 

2008b; Rackham, 2008), not only due to reduction in dispersal potential of AWI species, 

but also due to increased edge effects. Edge width is defined as the outer part of a 

woodland compartment where environmental conditions differ significantly from the 

interior (Honnay et al., 2002b). Corney et al., (2008b) report that 48% of ancient woodlands 

are under 5 ha, which means they have a high edge: interior ratio and a large edge width, 

especially if they deviate from an optimum circular shape (Laurance, 2008). Edge 

environmental conditions are generally considered to be less favourable for persistence of 

specialist flora, including many AWI species, due to altered abiotic and biotic variables 

(Tinya and Odor, 2016; Hofmeister et al., 2013; Willi et al., 2005; Honnay et al., 2002b; 

Murcia, 1995; Matlack, 1993), as well as anthropogenic influences (Corney et al., 2008b).  

Abiotic and biotic variables commonly exhibit an edge width of between 10-60m in 

temperate forests (Honnay et al., 2002b; Gehlhausen et al., 2000; Palik and Murphy, 1990; 

Matlack, 1994; Matlack, 1993). Additionally, studies seeking to avoid edge influence, have 

situated sample plots at >20m from the edge (Bossuyt and Hermy, 2000), >30m (Brunet et 

al., 2012), and >50m (Coote et al., 2012; Gehlhausen et al., 2000). Exceptionally, edge 

effects have been evidenced over 100m from the edge (Hofmeister et al., 2013; Pellissier 

et al., 2013) but such findings are not comparable to small ancient woodland fragments in 

the UK. Land use in the matrix (Gove et al., 2007), prevailing wind direction (Smithers, 2000) 
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and aspect (Honnay et al., 2002b; Murcia, 1995) influence the extent to which edge effects 

permeate woodland. 

This is the first study to investigate multiple edge effects in relation to AWI species and 

ancient woodland. The impact of multiple edges is an important but overlooked factor (Ries 

and Sisk, 2004). Few studies have explicitly gathered primary data to analyse this in relation 

to any species or ecosystem (Fletcher, 2005), instead measuring linear distance to the 

closest edge only. A small number of studies have been completed with explicit focus on 

AWI response to nearest edge proximity (Kimberley et al., 2014; Hofmeister et al., 2013; 

Pellissier et al., 2013; Willi et al., 2005). Despite the potential importance of edge effects 

on AWI species, both in their own right as specialist species, and in terms of their efficacy 

of indicators, a search of the literature revealed no studies relating to multiple edge effects 

on these species. This is surprising given that the highly-fragmented nature of ANSW means 

that the potential for exposure to multiple edge effects is considerable. 

We test for relationship with the nearest edge, as well as any additional contribution of the 

second edge to take account of double exposure within fragment corners. We 

hypothesised that (1) AWI richness will increase with distance from any edge; (2) the 

second nearest edge would also correlate with AWI richness so that a multivariate model 

with both distances would be superior to a univariate model using either in isolation; (3) 

the patterns for AWI species richness would also hold true for specific AWI species analysed 

on a presence/ absence basis. 
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6.3 Methods 

The study site was a fragmented species-rich ASNW in the South-West UK. The two discrete 

fragments comprising the site were situated near Cheltenham on the Cotswold Hills 

escarpment of Jurassic oolitic limestone, at 265m above sea level and centred on 

51°53’35.5’’N, 2°00’34.60’’W (Fig. 6.1). The mean diurnal temperature was 8.6-14.7°C and 

annual precipitation was 843mm (MET office, 1981-2010). The fragments have comparable 

geology, edaphic variables and topography. The coppice-with-standards woodland 

classifies as National Vegetation Classification W8b (Rodwell, 1991), with a canopy 

dominated by Fraxinus excelsior and Quercus robur. 

 

 

 

Figure 6.1. Study site location of the 

Cotswold Hills, UK. 
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Both fragments, henceforth referred to as Fragment 1a and 1b were located within an 

agricultural (arable and equine) matrix. Fragment 1a was 4.8ha and of approximately 

rectangular dimension (190x255m). Fragment 1b was a remnant of 0.6ha located 25m from 

the eastern edge of Fragment 1a. Historic map evidence showed that both fragments 

formed a single woodland until c1965. Both fragments are classified by DEFRA (2016) as 

ASNW.  

In order to assess any influence of dual-edge effect in Fragment 1a, presence of AWI species 

was mapped and recorded via a total of 256 2x2m plots. Plots were located in the corners 

of Fragment 1a within 60m of both the nearest edge (Edge 1) and second nearest edge 

(Edge 2). The distance of 60m was deemed a conservative upper limit for detection of edge 

effects based on previous studies (Vallet et al., 2010; Honnay et al., 2002b; Gehlhausen et 

al., 2000; Murcia, 1995). Plots were located at 0, 5, 10, 20, 30, 40, 50 and 60m on transects 

perpendicular to the Western and Eastern edges, with 0m defined as the commencement 

of woody species’ stems (Murcia, 1995). Changing the sampling distance from 10m to 5m 

at the edges of the fragment allowed small-scale change to be better detected (Honnay et 

al., 2002b). Recorded species were restricted to herbaceous and semi-woody plants 

(Brunet et al., 2011) identified as Ancient Woodland Indicators in the South-West UK (Rose, 

1999). To complement analysis of the larger fragment and demonstrate any difference in 

species richness and presence between the two fragments, Fragment 1b was surveyed on 

the same system with plots at 0, 5, 10 and 20m from the Eastern and Western edges (n=54). 

All statistical analyses apply to Fragment 1a. 

To predict the influence of Edge 1 and Edge 2 on AWI richness, separate univariate linear 

regression analyses were performed (n=256). To test any additive influence of both edges, 

a hierarchical multivariate model was created where Edge 1 was entered via forced entry 
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and Edge 2 was available as a candidate variable in a second step using a stepwise approach 

(entry criterion α = 0.05, except L. galaeobdolon α = 0.1) (De Keersmaeker et al., 2004). 

Normality assumptions were met, and collinearity was within accepted limits: VIF < 10 

(Myers, 1990) and tolerance >0.2 (Menard, 1995). The same principles were followed using 

binary logistic regression to test the influence of Edge 1 and Edge 2, separately and 

additively, on the presence AWI species (those found in >10% of plots) (n=256). The R2 

(linear regression) and Nagelkerke pseudo R2 (logistic regression) statistics were calculated 

to measure the relative influence of single and additive edges on, respectively, AWI 

richness and species presence.  

6.4 Results and analysis 

Mapping of Fragment 1a showed clear spatial patterns in AWI richness in relation to edge 

proximity (Fig. 6.2). AWI richness was very low at the edge, and increased gradually up to 

60m; this effect was most pronounced at the corners where a distinct edge effect was 

apparent up to 20-30m, rather than 5-10m on transects located mid-edge. Within the very 

small Fragment 1b, AWI richness is lower throughout than in Fragment 1a, with no clear 

edge or corner pattern (Fig. 6.2). 

Regression analysis showed significant positive directional relationships between AWI 

richness and distance from the edge in Fragment 1a (Table 6.1). When tested 

independently, Edge 1 and Edge 2 were both shown to be significantly positively related to 

AWI richness, but Edge 1 was related more strongly than Edge 2. Used in a hierarchical 

framework, Edge 2 met the stepwise criteria for entry as a second variable into a 

multivariate model after Edge 1 had already been entered. This, together with the resultant 
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multivariate model being more significant and explaining more variance than either Edge 1 

or Edge 2 in isolation, strongly suggests dual-edge exposure is important for AWI richness. 

Repeating the above analytical framework using hierarchical multiple logistic regression for 

the seven most prevalent species (those present in >10% of plots) showed that the 

presence of four species increased significantly with increasing distance from edge (Table 

6.1). For each of these species (A. nemorosa, H. non-scripta, L. galaeobdolon and P. 

quadrifolia) Edge 1 and Edge 2 were both significant when analysed separately and again 

the R2 statistic for Edge 2 was slightly lower than Edge 1. In all four cases, running a stepwise 

model with Edge 2 available as a candidate variable resulted in a multivariate model being 

created that had a substantially lower P value and substantially higher R2 value than either 

edge tested alone. For where species Edge 2 was not entered using standard stepwise 

criteria (α = 0.05 or 0.10), forcing this variable into the model did not improve it relative to 

using Edge 1 alone and all models were non-significant.  

Thirteen AWI species were recorded within Fragment 1a sample plots and eight within 

Fragment 1b (Table 6.2). The four species significantly associated with distance showed 

clear reductions in prevalence in Fragment 1b, in comparison to 1a (Table 6.2). Presence of 

A. nemorosa and H. non-scripta in Fragment 1b was half of that in 1a, while L. galaeobdolon 

and P. quadrifolia were absent from Fragment 1b. Of prevalent species not significantly 

associated with distance, only A. ursinum occurred considerably more frequently in 

Fragment 1b than in Fragment 1a. 
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Figure 6.2. Richness of Ancient Woodland Indicator species in a total of 310 2x2m plots within 

two fragments of ancient semi-natural woodland. 
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Table 6.1. AWI richness (all species) and species presence (most 
frequently occurring species in >10% of plots) relationship with 
distance from Edge 1, Edge 2, and both edges together. In all cases, the 
additive model was a hierarchical one whereby Edge 1 was entered first 
and then Edge 2 was available as a candidate variable for inclusion 
following a stepwise approach; the model was not calculated if the 
addition of Edge 2 into the model did not significantly improve it. 

     P                R2          Dir. 

AWI richness 

 

Edge 1 

Edge 2 

Additive 

 <0.001         0.099     + 

 <0.001         0.069     + 

 <0.001         0.115     + 

 

Species   Chi (df)        p              R2          Dir. 

A. ursinum 

 

 

 

A. nemorosa 

 

 

 

G. odoratum 

 

 

 

H. non-scripta 

 

 

 

L. galaeobdolon 

 

 

 

P. quadrifolia 

 

 

 

V. reichenbachiana 

 

Edge 1 

Edge 2           

Additive    

 

Edge 1 

Edge 2 

Additive 

 

Edge 1 

Edge 2 

Additive 

 

Edge 1 

Edge 2 

Additive 

 

Edge 1 

Edge 2 

Additive 

 

Edge 1 

Edge 2 

Additive 

 

Edge 1 

Edge 2 

Both 

 0.357 (1)      0.425      0.030     

 0.187 (1)      0.666      0.080 

Model not calculated 

 

23.117 (1)    <0.001     0.126     + 

19.572 (1)    <0.001     0.107     + 

29.292 (2)    <0.001     0.158     + 

 

 0.077 (1)      0.781      0.000        

 0.002 (1)      0.968      0.000 

Model not calculated 

 

27.550 (1)     <0.001    0.141     + 

20.323 (1)     <0.001    0.105     + 

33.100 (2)     <0.001    0.168     + 

 

11.866 (1)      0.001     0.064     + 

  9.321 (1)      0.002     0.036     + 

14.417 (2)      0.001     0.077     + 

 

16.698 (1)     <0.001    0.095     + 

16.117 (1)     <0.001    0.092     + 

22.287 (2)     <0.001    0.126     + 

 

 0.699 (1)        0.403    0.005 

 2.044 (1)        0.153    0.014 

Model not calculated 

Dir. – direction of relationship for significant models. R2 – Nagelkerke 

 

Species present with conservation designations: Hyacinthoides non-
scripta – Wildlife and Countryside Act, schedule 8; Lamiastrum 
galaebdolon – Vascular Plant Red List for Great Britain nationally 
scarce, vulnerable. Vascular Plant Red List for England, vulnerable; 
Viola reichenbachiana – Scottish Biodiversity List. Primula vulgaris 
(Wildlife Order Northern Ireland schedule 8); Sanicula europaea 
(Vascular Plant Red List for Great Britain, near threatened) 
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Table 6.2 Comparative frequency occurrence of AWI 
species in Fragments 1a and 1b. Total herbaceous AWI 
count of both fragments. 

 Fragment 1a Fragment 1b 

Frequency occurrence 

A. nemorosa 

H. non-scripta 

A. ursinum 

L. galaeobdolon 

G. odoratum 

P. quadrifolia 

V. reichenbachiana 

Conopodium majus 

P. vulgaris 

Euphorbia amygdaloides 

Orchis mascula 

Veronica montana 

S. europaea 

 

73% 

66% 

51% 

31% 

25% 

22% 

15% 

4% 

2% 

1% 

1% 

1% 

<1% 

 

35% 

33% 

96% 

Absent 

Absent 

Absent 

2% 

2% 

7% 

Absent 

2% 

2% 

Absent 

Total AWI count 13 8 

 

 

6.5 Discussion 

The above results show that not only are edge conditions less suitable for the majority of 

AWI species present, but the AWI community is vulnerable to a dual-edge effect whereby 

the combined influence of two edges is amplified and permeates further into a woodland 

near corners. The distance to the nearest two edges combined explained 11% of the 

variation in AWI richness and up to 17% of the variation in the presence/ absence of specific 

AWI species (Table 6.1). Dual-edge exposure explained a significant, and consistent, 

additional 1-3% of the variation in AWI richness and presence of some species than the 

single nearest edge alone (Table 6.1). The findings reinforce the need to protect ancient 

woodlands from fragmentation. Two species with conservation designations, H. non-
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scripta and L. galaeobdolon, were especially adversely affected by edge proximity (Table 

6.1). At 4.8ha, Fragment 1a is among the larger of the 48% of ancient woodlands that are 

smaller than 5ha (Corney et al., 2008b), with a considerable area exposed to single and 

dual-edge effects. Fragment 1b is smaller still, and mapping suggests is influenced in its 

entirety by edge conditions (Fig. 6.2; Table 6.2).  

Both woodlands reinforce the edge: interior ratio theory proposed by Laurance (2008). For 

this reason, some AWI species might not be appropriate indicators in small fragments 

where there is a high proportion of edge habitat, as they may be absent even from small 

ancient woodlands. Our findings show a lower richness count and predominantly lower 

prevalence of AWI species in Fragment 1b despite its adjacent position and history of 

connectivity with 1a. However, both fragments have what is considered to be an acceptable 

AWI score (Fragment 1a = 13; Fragment 1b = 8). Thresholds of 10-12 AWI species (including 

woody species, forbs and ferns) are used by organisations for allocating conservation 

priority, while ASNWs under 2ha with >5 AWI species were recommended for inclusion in 

a county ancient woodland inventory (Glaves et al., 2009). If AWI species counts are used 

in small fragments, consideration should be given to only using the subset of species that 

are not seemingly affected by edge effects. 

AWI species have been considered as a guild (Hermy et al., 1999), but in this study the 

response of the community and individual species in relation to edge proximity indicates 

variation in niche requirements. Of the species significantly influenced by edge proximity, 

all increased in prevalence with distance from the edge (Table 6.1). The preference of P. 

quadrifolia for woodland interior may be accounted for by its adaptation for vegetative 

growth during low light periods (Bjerketvedt et al., 2003). Similarly to this study, Honnay et 

al. (2002b) found A. nemorosa to have a positive edge-distance distribution in ancient 
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woodland study sites in Belgium. Of those not exhibiting significant relationships with edge, 

only V. reichenbachiana decreased in prevalence with distance from either and both edges, 

possibly accounted for by its greater light requirement for a summer second leafing period 

(Rackham, 2003). 

 

6.6 Conclusion and recommendations 

This study has demonstrated dual-edge proximity has a substantial effect on AWI 

community composition, and has highlighted the species-specific nature of the response to 

different plants to the edge. It has also emphasised the effects of edge orientation and 

woodland size on floral response to edge conditions. Future research on the influence on 

multiple-edge biotic and abiotic variables in small ASNWs would be beneficial in further 

explaining spatial distribution of AWI species and for development of conservation 

management practices. 
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7. Conclusions and review of the research 

 

 

Paris quadrifolia, Farmcote Wood, Guiting Strategic Nature Area.  

03/08/14 Grid ref: SP: 06389 27190 

Chapter scope: 

The  scope of the preceeding chapters is reiterated to provide a synthesis of the findings 

of the thesis. Original contributions are outlined in detail. The chapter also highlights 

avenues for future investigation. 
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7.1 Summary of the research context 

This research considered the distinctiveness and community ecology of ancient woodland 

vegetation, and the implications for its conservation. The thesis was informed by the 

literature context summarised below. 

The ancient woodland concept is recognised internationally (Wirth et al., 2009a) and holds 

an important place in conservation, policy and legislation. In England, ancient woodland is 

defined as an area of land that has been continuously wooded since at least the year 1600 

(Kirby and Goldberg, 2002), and comprises both Ancient Semi-Natural Woodland and 

Ancient Replanted Woodland. These are both protected under planning law (Forestry 

Commission and Natural England, 2014), and their protection is reinforced in the recently 

published 25 year Environment Plan (HM Government, 2018). In England 2.3% of land area 

is ancient woodland (all woodland types comprise 10%) (Atkinson and Townsend, 2011). 

ASNW is valued as the habitat nearest to natural climatic climax vegetation, which provides 

a baseline against which environmental changes can be measured (Corney et al., 2008b). 

The floristic biodiversity value of ASNW is widely considered to be higher than that of more 

recently established woodlands, providing further rationale for their protection (Honnay et 

al., 1999a; Wulf, 1997; Peterken, 1974). The vegetation of ASNW has long been considered 

distinctive to that of recent woodland (Kelemen et al., 2014; Rackham, 2008; Rose, 1999; 

Peterken, 1974). Very few studies have been completed on the vegetation of ARW 

(Atkinson et al., 2015). 

Ancient woodlands are particularly valued as habitat for specialist AWI species, some of 

which are designated as protected species in their own right (JNCC, 2010; Kirby, 2004; Rose, 



186 

 

1999). They are particularly, but not exclusively, associated with ancient woodland (Glaves 

et al., 2009). There is a degree of debate over the use of AWI species lists in the 

identification of ancient woodland, with some studies finding that a focus on ecological 

conditions or use of weighted indicators would be more logical (Webb and Goodenough, 

2018; Rotherham, 2011; Spencer, 1990). 

The distinctiveness of ASNW vegetation is due, in part, to the life traits of woodland-

adapted plants, which tend to limit dispersal. A number of biotic factors such as poor 

dispersal, competitive exclusion, and poor recruitment are thought to have an aggregate 

effect in explaining the distinct communities of ASNW (Sciama et al., 2009). 

In the UK 48% of ancient woodlands are smaller than 5ha in size (Corney et al., 2008b). Low 

habitat spatial continuity, combined with the life traits outlined above, is a contributing 

factor to the distinctiveness of ASNW flora (Brunet et al., 2011). The small size of many 

ancient woodlands means they are prone to edge effects (Tinya and Odor, 2016; 

Hofmeister et al., 2013), where altered environmental conditions mean a sub-optimum 

habitat for ancient woodland plant communities. 

Habitat ecological conditions in ASNW have been found to be distinct from those in recent 

woodland, but findings are not consistent among studies. Ancient woodland plants are 

associated with higher pH (De Keersmaeker et al., 2004; Hermy et al., 1999) and with lower 

plant available phosphorous (De Keersmaeker et al., 2004). Soil total nitrogen and carbon 

have not shown consistent results among studies (De Keersmaeker et al., 2004; Graae et 

al., 2003). Canopy closure and light factors also show varied results among studies (Brunet 

et al., 2011; De Keersmaeker et al., 2004). 
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7.2 Synopsis of the research 

A combined introduction and literature review (Chapter 1) identified current issues in 

ancient woodland vegetation research and guided the aim and objectives of this study. 

Ancient woodland vegetation research currently demands a greater focus on the 

underlying ecological explanations for distinctive plant communities beyond the simple 

long-continuity reasoning (Barnes and Williamson, 2015; Wright and Rotherham, 2011). 

The impact of fragmentation on plant communities is a topical issue (e.g. Kimberley et al., 

2016, 2014; Brunet et al., 2011), following extensive ASNW loss and conversion to ARW 

prior to late 20th century conservation measures (Glaves et al., 2009). AWI species have 

been shown to be poorly adapted to fragmentation and disturbance, being generally poor 

dispersers and colonisers due to vegetative reproduction, few and heavy seeds, with short 

range dispersal mechanisms (Berges et al., 2017; Hermy et al., 1999). Consequently, 

restoration of ARW and increased woodland connectivity are high profile research areas in 

the field (Atkinson et al., 2015; Brown et al., 2015; Sutherland et al., 2006).  

Chapter 2 outlined the overarching site selection and vegetation data collection methods 

used to address the thesis and chapter research aims and objectives. The study was 

conducted in the under-researched region of the Cotswold Hills. This is an Ancient 

Woodland Priority Area, with twice the land cover of ancient woodland than England on 

average (4.6% compared to 2.3%, calculated from data in Atkinson and Townsend (2011)). 

Current standard woodland survey techniques were evaluated and adapted to the research 

project. These techniques included the industry standard National Vegetation Classification 

(Hall et al., 2004; Rodwell, 1991), use of the DEFRA and Natural England MAGIC map 

ancient woodland inventory mapping layers, and application of currently accepted AWI lists 

(Kirby, 2004; Rose, 1999). Use of nationally recognised techniques gives the research wider 
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applicability and facilitates comparisons with other studies. More specific methods were 

detailed in individual data chapters. 

Chapter 3 tested for the relative scarcity of herb layer speies among ASNW, ARW and 

recent woodland. Community distinctiveness in ASNW, ARW and recent woodland was 

tested according to a range of diversity metrics. There is debate in the literature relating to 

which, and how many, measures of diversity should be used to determine difference 

between ecological communities (Naaf and Wulf, 2010; Magurran, 2004; Onaindia et al., 

2004). Richness, diversity and evenness indices were applied to canopy, shrub, herb (and 

AWI species separately) and terrestrial moss layer plant communities to establish any 

quantitative differences among the three woodland continuity types. The literature review 

established a lack of consistency in how AWI species are identified (Kimberley et al., 2013). 

To test any impact of this variation, four indicator analysis metrics were applied to herb 

layer plant species in ASNW and recent woodland. It was important to establish any basic 

quantitative differences among ASNW, ARW, and recent woodland study sites early in the 

research process to provide a baseline for subsequent chapters. 

Chapter 4 extended the preliminary analysis of Chapter 3 by assessing species richness at 

the beta and gamma scales in addition to the alpha scale. This provided a landscape level 

interpretation of ancient woodland distinctiveness, which has applicability to connectivity 

projects (Berges et al., 2015; Anderson et al., 2011). In addition to simple richness 

measures, it was important to apply community analyses that recognise individual species’ 

identities. Chapter 4 compared the relative community composition of ASNW, ARW, and 

recent woodlands, for all woodland layers. Moving away from descriptive towards 

explanatory analysis, biotic influences on community composition were investigated. AWI 

richness and AWI community similarity were tested for correlation with richness and 
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community similarity of the canopy, shrub, non-AWI herb layer, and moss communities. 

Informed by the literature (Berges et al., 2017; Kimberley et al., 2014, 2013), community 

composition was compared by life traits to determine any differences between the 

woodland continuity categories.  

Having identified differences in richness and community composition in the previous 

chapters, Chapter 5 focused specifically on the response of AWI species to biogeographical 

and environmental variables. An increasing body of literature calls for greater focus on 

ecological processes underpinning AWI community ecology, rather than reliance on the 

binary ancient/ recent woodland classification to account for any distinctiveness (Barnes 

and Williamson, 2015; Stone and Williamson, 2013; Wright and Rotherham, 2011). In 

response to this shift, Chapter 5 investigated whether any other variable or group of 

variables could predict AWI richness, community composition or individual species 

presence as effectively as woodland continuity status of ASNW, ARW or recent woodland.  

Informed by the importance of biogeographical variables for AWI communities evident in 

the literature (Hofmeister et al., 2013) and the outcomes of the previous chapter, Chapter 

6 investigated AWI community response to edge effects and fragmentation. This was 

conducted on a small isolated, fragmented woodland, which was located near to, but did 

not form one of the sites analysed for Chapters 3, 4 or 5. The objectives here were to: (a) 

test the relative and additive influence of proximity to a single or dual-edges on herbaceous 

AWI richness and (b) compare AWI richness in a larger woodland fragment of 4.8ha and an 

adjacent remnant of 0.6ha. Sampling units for this study were individual plots, whereas for 

earlier chapters, each woodland site formed a unit of study. The research conducted for 

Chapter 6 also enabled analysis of edge effect influence on individual AWI species, which 
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further enhanced the understanding of individual AWI ecology developed in earlier 

chapters. 

The present Chapter 7 outlined the broad context of the study and gave a synopsis of each 

chapter. Links between the chapter sequence and increasing specificity of the research was 

outlined. The original contributions of the research project were discussed relative to the 

research objectives. A critique of the research identified how the process of research could 

be refined and improved. Chapter 7 also detailed the practical implications of the research 

findings and recommendations for future conservation practice. Lastly, the thesis 

concluded by identifying questions for future research arising from the present study, and 

suggesting additional ways the new primary data set could be used for future research 

projects.  

 

7.3 Conclusions and original contributions  

7.3.1 Thesis aim  

Thesis aim:  

• Using new primary data, to investigate the distinctiveness and community ecology 

of ancient woodland vegetation. 

 

The overall aim of the research has been met through the collection of new primary data, 

subsequently applied to research questions in four data chapters.  
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For Chapters 3, 4 and 5, vegetation data were collected in a total of 225 plots within 45 

woodland sites spanning the Cotswold Ancient Woodland Priority Area. These sites were 

also situated within Strategic Nature Areas – landscape areas that have been identified as 

having potential for greater habitat connectivity. Within each site, five nested NVC plots 

per site (canopy 30x30m, shrub 10x10m, herb 4x4m, moss 4x4m) were used to record plant 

species presence and abundance. Likewise, soil samples were collected within each plot 

and were homogenised to create one sample for each of the 45 sites. Samples were tested 

for pH (H20), plant available phosphorus, total nitrogen and total organic carbon. For each 

of the 45 woodland sites, biogeographical characteristics of area, shape, and surrounding 

woodland and hedgerow connectivity were measured using GIS tools.  

For Chapter 6 high granularity herbaceous AWI presence data was collected in 256 2x2m 

plots in an isolated fragmented woodland. 

The new datasets collected for this study are in themselves an original contribution to 

knowledge of woodland ecology in the under-researched region of the Cotswolds. To the 

author’s knowledge no recent published study has collected extensive and high granularity 

descriptive and explanatory data for this region. The data have application to future 

conservation management of woodlands, particularly ancient woodlands, not only in this 

region, but also nationally, and potentially within other temperate regions at the 

international scale.  

The overarching research aim and original contributions to knowledge were met through 

the research objectives discussed in sections 7.2.2, 7.2,3, 7.2.4 and 7.2.5 below. 
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7.3.2 Research objectives 1 and 2 

Chapter 3 fulfilled these research objectives: 

RO1. To identify any distinctiveness in vegetation richness, diversity, and scarcity among 

ancient semi-natural, ancient replanted, and recent woodland. 

RO2. To test the affiliation of herb layer plant species to ancient semi-natural and recent 

woodland, using a range of metrics. 

 

Chapter 3 summary of findings: 

Of the four diversity metrics applied to woodland strata communities in Chapter 3, richness 

identified the most significant differences. ASNW exhibited higher richness than ARW for 

herb layer species, and herb+shrub layer AWI species. Importantly, ASNW exhibited 

significantly higher richness of herb layer AWI species than recent woodland. This result 

corroborates numerous earlier studies that identified the distinctiveness of ASNW in this 

respect (Kelemen et al., 2014; Hofmeister et al., 2013; Orczewska, 2009).  

ASNW herb layer species occupied on average significantly fewer 10km squares in Britain 

than herb layer species found in recent woodland ARW herb layer species, showed an 

intermediate prevalence and were not significantly different to either woodland category. 

To conduct this analysis, secondary data was used from PLANTATT (Hill et al., 2004). 

The range of indicator metrics applied to herb layer species present in ASNW and recent 

woodland, all yielded different outcomes. The Kruskal-Wallis test on species abundance 
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(Schmidt et al., 2014) and the 75% frequency occurrence threshold identified more 

indicators than Fisher’s Exact test and Indicator Analysis (Dufrene and Legendre, 1997). 

Original contributions - Chapter 3: 

Original contribution Prior to this study Application of findings 

Of richness, diversity 
and evenness 
indices, richness was 
the most effective in 
identifying 
differences among 
ASNW, ARW, and 
recent woodland. 

Few prior studies have 
empirically tested 
diversity metrics in 
relation to ancient 
woodland flora 
(Onaindia et al., 2004; 
Verheyen et al., 2003a), 
and seemingly none in 
the UK. 

The intensity of plant species abundance 
data collection required for diversity and 
evenness indices detected very few 
differences among the woodland 
continuity categories. Richness, 
therefore, is recommended as the most 
efficient metric when distinguishing 
ancient woodlands.  

The mean national 
prevalence of herb 
layer species in 
ASNW was 
significantly lower 
than for recent 
woodland. 

To the author’s 
knowledge, no prior 
study has conducted 
this analysis. 

Essentially, the herb layer species found 
in ASNW within this region are relatively 
scarce at the national scale. This adds 
weight to the justification of ASNW 
protection. There is also scope for ARW 
restoration to encourage communities of 
these species.  

Metrics currently 
used to identify AWI 
species for research 
and policy yield 
contrasting 
outcomes. 

Although some studies 
have critiqued the 
variation in 
quantitative and expert 
opinion approaches to 
indicator identification 
(Kimberley et al., 2013; 
Spencer, 1990), very 
few have explicitly 
compared outcomes of 
a range of metrics 
(Schmidt et al., 2014). 

Based on the current findings, caution is 
recommended when comparing AWI 
studies or using lists to inform policy. It is 
important to fully appreciate the 
methods that were used to create the 
AWI lists on which research is based 
before comparing or making 
conservation decisions. Although, the 
use of expert opinion to identify AWI 
species has been questioned, this has a 
valuable role particularly in the 
identification of scarce AWI species with 
insufficient prevalence for empirical 
testing. 
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7.3.3 Research objectives 3 and 4 

Chapter 4 fulfilled these research objectives: 

RO3. To assess the degree to which the floristic community composition differs among 

ancient semi-natural, ancient replanted, and recent woodland. 

RO4. To examine biotic influences on community composition in ancient semi-natural, 

ancient replanted, and recent woodland.  

 

Chapter 4 summary of findings 

AWI richness at the gamma scale (where the landscape is the study unit) revealed 

contrasting results to alpha scale (woodland scale study unit) richness measures. 

Importantly, there was no significant difference in the gamma richness of herb layer AWI 

species found in ASNW, ARW, or recent woodland sites. Recent woodland was significantly 

richer than ASNW and ARW when species in all strata were taken into account. 

Community composition comparisons were conducted at the beta scale (the degree of 

change or difference between woodland sites). For canopy, shrub, herb, non-AWI and 

terrestrial moss communities there was always at least one pairwise significant difference 

among the three continuity categories. For AWI species, all three woodland categories 

exhibited significantly different community composition. An additional measure of 

community variance was carried out simultaneously with compositional analysis. This 

measure found a significantly more varied herb layer (and subset of non-AWI species) in 
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recent woodland compared to both categories of ancient woodland. Therefore, in some 

respects the flora of ancient woodlands is more consistent among sites than in recent 

woodlands  

In terms of biotic explanations for community differences, results show more inter-strata 

interactions in ASNW (which have the longest continuity), and progressively fewer 

interactions in ARW and then recent woodlands (with shorter continuity). The richness of 

AWI species was found to be significantly and negatively correlated with the richness of 

canopy, shrub and moss layers in ASNW. In ARW this decreased to two significant results, 

and in recent woodland only once significant interaction. Likewise, where AWI 

communities had high similarity in ASNW, then they correlated significantly and positively 

with the similarity of the canopy and shrub layers in ASNW. For ARW, there was only one 

significant interaction and none for recent woodland.  

When herb layer plant species were grouped by life trait, significant differences were found 

in Grime’s life strategies between ASNW and recent woodland. Community composition by 

dispersal strategy was significantly different between and ASNW and recent woodland. No 

significant differences were found for life forms, dispersal vectors, earliest flowering 

month, mean seed weight, nor specific leaf area. However, the significant result for 

dispersal strategies was not surprising based on several prior studies with similar results. 

The life strategy results showed more stress-tolerant species in ancient woodland, again 

corroborating the existing theory.  
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Original contributions - Chapter 4 

 

Original contribution Prior to this study Application of findings 

AWI richness is 
significantly higher in 
ASNW than recent 
woodland at the alpha 
(site) scale but not at 
the gamma 
(landscape) scale. 

To the author’s 
knowledge no prior 
study has compared 
alpha and gamma 
richness among ancient 
and recent woodlands. 

These results show that ARW and 
recent woodland sites have the 
potential to support a valuable AWI 
community among them at the 
landscape (gamma) scale. These are 
positive outcomes that justify 
restoration of ARW or creation of 
valuable new woodlands that are 
capable of supporting scarce AWI 
species. 

The within group 
variation of ASNW 
herb layer community 
composition is 
significantly more 
consistent than for 
ARW or recent 
woodland. 

  

Coote et al., (2012) 
compared within group 
community 
composition in 
plantation study sites, 
and semi-natural sites. 
However seemingly no 
study has tested 
within-woodland 
category community 
variation across all 
three of ASNW, ARW 
and recent woodland 
categories. 

The finding provides new supporting 
evidence relating to the distinctiveness 
of ancient woodland plant 
communities. ASNW plant communities 
are more consistent in their 
composition than sites with short 
continuity, such as ARW or recent 
woodland. This suggests a degree of 
community development that is not 
easily replicated in other woodland 
types and adds weight to the 
justification for conservation. 

ASNW, ARW, and 
recent woodland 
exhibit differences in 
canopy, shrub, herb, 
and moss layer 
community among 
the three continuity 
categories. 

A small number of 
studies have 
established differences 
in community 
composition between 
(ancient) semi-natural 
woodlands and 
plantations (Berges et 
al., 2017; Atkinson et 
al., 2015; Coote et al., 
2012). However, the 
analysis of all three 
woodland categories 
has not previously been 
conducted, nor any 
division between AWI 
and non-AWI 
communities. 

This detailed analysis of community 
composition could be applied to 
monitoring of restoration and 
connectivity projects to assess 
vegetation progress towards 
communities found in ASNW. 
Additionally, community composition 
analysis may further inform species 
dispersal and colonisation dynamics.  
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AWI communities in 
ASNW exhibit more 
correlations with 
communities in other 
layers, compared to 
ARW and recent 
woodland. 

 

A small number of 
studies have tested 
richness interactions 
among strata (Thomaes 
et al., 2012; Orczewska, 
2009) of ancient and 
recent woodlands, but 
seemingly none have 
included ARW. 

An area worthy of further research, as 
there are potential implications for the 
use of phytosociological classifications 
such as NVC. This initial analysis 
suggests the layers of ASNW may 
function more as one community, 
whereas for ARW, and recent 
woodland this is less likely to be the 
case.  

Community 
composition by life 
strategies and 
dispersal mechanisms 
differed among 
ASNW, ARW, and 
recent woodland, 
which in part may 
account for ancient 
woodland 
distinctiveness. 

Life traits have been 
well-studied in relation 
to ancient woodlands 
and their flora (eg. 
Kimberley et al., 2016, 
2014, 2013; Kelemen et 
al., 2014; Brunet et al., 
2011). However, no 
prior study has 
encompassed all three 
woodland categories of 
ASNW, ARW, and 
recent woodland. 

This finding tested and supported 
existing theory. The ARW element is 
novel and shows an intermediate 
position between ASNW and recent 
woodland. 

 

 

7.3.4 Research objective 5 

Chapter 5 fulfilled this research objective: 

RO5. To examine the response of ancient woodland indicator communities to 

environmental and biogeographical variables, relative to woodland continuity status. 

 

Chapter 5 summary of findings 

Woodland continuity was found to be the strongest univariate predictor of AWI richness. 

However, a multivariate model of biogeographical factors and their appropriate 
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interactions (including surrounding woodland, surrounding ASNW, surrounding ARW, 

surrounding hedgerow, site area and site shape) were found to be equally good predictors 

of AWI richness. A multivariate model of soil factors was found to be the least effective 

predictor. 

When explanatory variables were fitted to AWI community composition across all three 

categories of ASNW, ARW, and recent woodland, soil pH was the strongest predictor, along 

with total nitrogen and total organic carbon. Continuity was the fourth strongest predictor 

and, linking to the richness models described above, was associated with a cluster of 

commonly co-occurring AWI species. Several biogeographical factors were also significant 

predictors, but less strong than continuity. 

The presence of only one third (5/15) of the individual AWI species tested were significantly 

and positively predicted by woodland continuity (Anemone nemorosa, Primula vulgaris. 

Paris quadrifolia, Viola reichenbachiana, Carex sylvatica). Biogeographical variables 

accounted for three species, then soil variables for two and finally canopy for one. Four 

species had no significant predictor, and Mercurialis perennis had two. These findings give 

a detailed insight into the ecology of AWI species and reinforce that they should be treated 

as a group or guild when used to identify ancient woodland, as there was great variation in 

the degree of association with continuity. This chapter also found that some recent 

woodlands are capable of supporting equal AWI community richness as some ASNW, which 

is supported by the 10/15 AWI species that were not significantly associated with 

continuity. 
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Original contributions - Chapter 5 

Original contribution Prior to this study Application of findings 

Combined 
biogeographical 
factors are equally 
effective as 
predictors of AWI 
richness as 
woodland 
continuity. 

Earlier studies have 
tested the relative 
influence of ecological 
habitat variables on 
AWI richness (e.g. 
Coote et al., 2012; 
Brunet et al., 2011; 
Petit et al., 2004) but 
seemingly none have 
explicitly tested for 
alternative predictors 
to woodland continuity.  

Woodland connectivity and site 
configuration factors have been 
confirmed as significantly important for 
AWI species richness. This outcome can 
be used to inform woodland connectivity 
projects. Literature has cast some doubt 
on the accuracy of ancient woodland 
identification (Webb and Goodenough, 
2018; Barnes and Williamson, 2015; 
Stone and Williamson, 2013; Wright and 
Rotherham, 2011), so biogeographical 
assessment may provide support, or an 
alternative, to using continuity alone. 

Individually, only 
one third of AWI 
species tested were 
significantly 
associated with 
woodland 
continuity, either 
being associated 
instead with 
biogeographical, 
soil, canopy, or no 
specific variables. 

Various prior studies 
have identified lack of 
weighted value for AWI 
species (e.g. Webb and 
Goodenough, 2018; 
Kelemen et al., 2014; 
Wulf, 1997). However, 
seemingly none has 
identified the relative 
contribution of 
explanatory variables 
to AWI presence across 
ASNW, ARW, and 
recent woodland. 

Overall AWI richness was significantly 
and positively predicted by woodland 
continuity but this did not hold true 
when AWI species were analysed 
individually. Therefore, this lends 
support to the continued use of AWI 
richness, rather than presence of 
individual species, as an indicator of 
ancient woodland. Additionally, the 
results suggest that many populations of 
AWI species, including scarce or 
protected species, may be conserved not 
only in ancient woodland, but also in 
woodlands with a shorter continuity 
history. Conservation and protection of 
AWI-rich recent woodlands is therefore 
recommended. 

 

7.3.5 Research objective 6 

Chapter 6 fulfilled this research objective: 

RO6. To assess the relative influence of single and dual-edge proximity on AWI species in a 

fragmented woodland. 
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Chapter 6 summary of findings 

Mapping of AWI richness across a small, isolated woodland showed low AWI richness at 

the edges compared to the woodland core, with low AWI richness extending further into 

the woodland in corners. The descriptive map outcomes were empirically supported by 

modelling, which showed positive and significant correlations between herbaceous AWI 

richness and distance from the nearest edge and second nearest edge when tested 

separately. Importantly, an additive effect of proximity to both edges was shown to affect 

AWI richness more strongly than either edge individually. For small woodlands in a matrix 

of contrasting land-use, edge effects are therefore stronger than previously thought. 

Individual AWI species responded differently to distance from a single or dual-edge 

position. A. nemorosa, Hyacinthoides non-scripta, Lamiastrum galeobdolon, and P. 

quadrifolia all showed significant and increased presence with distance from both the 

nearest and second nearest edges, and with a stronger response to both edges combined. 

Allium ursinum, Galium odoratum and V. reichenbachiana exhibited no significant 

response. Additionally, the 4.8ha fragment supported greater AWI richness that the 0.6ha 

remnant (13 compared to 8 species respectively). Mapping showed low AWI richness 

throughout the remnant, which was effectively all edge habitat comparable to the corners 

of the larger fragment. 
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Original contributions - Chapter 6 

 

Original contribution Prior to this study Application of findings 

AWI richness was 
significantly reduced 
by proximity to dual-
edge exposure, 
compared to a single 
edge. 

This is the first study to 
consider dual-edge 
effects for AWI species 
specifically, and one of 
very few dual-edge 
studies that have been 
conducted in any 
ecological context 
(Fletcher, 2005; Ries 
and Sisk, 2004). 

48% of ancient woodlands in the UK are 
<5ha in size (Corney et al., 2008b), 
therefore this study has significant 
implications for understanding the 
detrimental effect of fragmentation and 
can inform future woodland protection 
and conservation measures.  

Individual AWI 
species responded 
differently to edge 
proximity. 

Prior studies have 
researched individual 
woodland species’ 
responses to edge 
effects (eg.  Vallet et 
al., 2010; Willi et al., 
2005), but none have 
assessed the influence 
of dual-edges. 

AWI species that were less influenced by 
edge effects (single and dual) are 
recommended as better indicators for 
small ancient woodlands. This is 
especially relevant as ancient woodlands 
of <2ha are now identified and mapped 
as part of the ancient woodland 
inventory. AWI species that are greatly 
affected by edge, may be entirely absent 
from very small woodlands. This finding 
lends support to the threshold of 5 AWI 
species used by some organisations to 
determine the ancient status of a small 
woodland (Glaves et al., 2009).  
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7.4 Overarching findings 

Based on the findings and original contributions of individual chapters above, the following 

overarching conclusions have been drawn from the research: 

 

➢ ASNW, ARW, and recent woodlands frequently exhibit distinct plant communities 

in each of their strata in terms of richness and community composition, but diversity 

and evenness metrics were not effective in differentiating between the woodland 

categories. 

 

➢ Individual ARW, and often recent, woodlands are capable of supporting AWI 

richness equal to some ASNWs, and this is accounted for by differing habitat 

preference of individual AWI species, some of which are more affiliated with 

biogeographical or environmental conditions than the continuity of a woodland.  

 

➢ The mean alpha AWI richness of all three categories of woodland is considered a 

reflection of ‘very good’ or ‘good’ woodland biodiversity value according to 

thresholds currently used by some organisations, which justifies conservation 

within the Strategic Nature Areas studied. 

 

➢ Gamma richness showed no significant differences between ASNW-ARW, ASNW-

recent, and ARW-recent for any of the individual strata. This outcomes suggests 

good restoration potential of ARW and recent at the landscape scale. 

 

➢ The metrics by which AWI species are identified yield widely varying results, and a 

combination of metrics as well as expert opinion is recommended for determining 
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appropriate regional lists (the latter particularly for rare species with too low 

occurrence for statistical testing). 

 

➢ The herb layer species of ASNW have a significantly lower mean prevalence at the 

national scale, than those found in recent woodlands, adding weight to the 

justification for conservation of ancient woodlands.  

 

➢ Biotic explanations for the distinctiveness of AWI communities among ASNW, ARW, 

and recent woodlands are inter-strata interactions, and some life traits (life strategy 

and dispersal mechanisms). 

 

➢ AWI richness and community composition is significantly influenced by 

biogeographical and environmental factors, which, given some existing criticism of 

the way ancient woodlands are identified, could provide a substitute or additional 

measure in identifying woodland with distinct and valuable plant communities. 

 

➢ ARW commonly exhibits an intermediate status between ASNW and recent 

woodland for measures of distinctiveness. 

 

➢ For very small woodlands, AWI species less prone to edge effects could be weighted 

as more appropriate indicators. 

 

➢ Dual-edge effects have been shown to significantly influence AWI distribution, 

which for small woodlands potentially means a higher edge:interior ratio than 

previously thought. 
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7.5 Recommendations for policy and practice 

The research findings led to several recommendations for conservation policy and practice:  

 

Policy recommendations: 

 

For use of Ancient Woodland Indicators: 

➢ AWI list generation using a standardised statistical method, supplemented with 

expert opinion to identify rare or regionally distinct AWIs is recommended. Current 

AWI lists vary considerably in terms of the balance of statistical methods and expert 

opinion used to create them. Even where statistical testing is applied to address the 

concerns surrounding the use of expert opinion (Kimberley et al., 2013; Rolstad et 

al., 2002), the tests applied are not comparable among studies. Chapter 3 

demonstrated notable variability in the species identified as AWIs according to a 

range of statistical techniques.  

 

➢ AWI lists for ecological regions rather than political county boundaries are 

recommended. Currently Gloucestershire has no list, and the lists of many other 

counties are based on now historic data. This provides opportunity to re-examine 

the geographical parameters of AWI list creation, basing them within biogeoclimatic 

regions, for example the Forestry Commission’s Ecological Site Classification (Pyatt 

et al., 2001). Linked to this, recalibration of the AWI count thresholds to suit 

National Vegetation Classification communities is also recommended within the 

broader regional list. This practice would reduce under-representation, and 



205 

 

therefore lack of protection, of communities that, whilst ancient, do not naturally 

feature as many AWI species as other NVC categories. 

 

➢ The use of negative or reverse indicators is recommended in conjunction with 

standard AWI lists. Chapter 3 demonstrated that several species are as strongly 

affiliated with recent woodland, as others are with ancient woodland. 

 

➢ For small woodlands or those with high edge: interior ratio, AWI thresholds could 

be lowered to take account of AWI species that are susceptible to edge effects and 

many not be found in a woodland that is predominantly edge habitat, as shown in 

Chapter 6. Some regions already use a threshold of five AWI species (as opposed to 

8-12) as evidence for long continuity (Glaves et al., 2009); a similar practice could 

be applied through all regions. 

 

For management of the landscape and matrix: 

➢ To conserve population of woodland specialist species, particularly those with 

conservation designations such as H. non-scripta, protection of recent woodland 

with high botanical quality is recommended. Chapter 3 showed than some recent 

woodlands are capable of supporting equal AWI richness as some ancient 

woodlands. 

 

➢ Development within 500m of an ancient woodland are already considered within 

the National Planning Policy framework. It is recommended to extend this to 
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protection of all woodland and hedges within 500m of an ancient woodland. 

Chapter 5 demonstrated that proportion of woody habitats within 500m of a 

woodland were as strong a predictor of AWI richness as the continuity of the central 

habitat. 

 

 

Practice recommendations: 

➢ Herb layer and AWI richness is recommended over abundance for distinguishing 

ancient woodland. Chapter 3 showed that richness was more effective than 

abundance-based diversity measures in differentiating ancient woodlands and is 

more efficient in data collection, requiring only presence data. 

 

➢ Small ancient woodlands, or those with high edge: interior ratios could be managed 

with a soft edge buffer within the surrounding land use to conserve populations of 

woodland specialist species. Chapter 6 showed increased edge effects on such 

species in woodland corners, meaning reduced core woodland area. An external 

buffer could mitigate how far these effects permeate a small woodland. Where 

possible, avoid hard edges or strongly contrasting matrix land-use. 

 

➢ When assessing habitat quality, the area of core woodland should take into account 

the greater edge effect in woodland corners. Chapter 6 showed that the area of 

core woodland may be less than previously thought due to increased influence of 

dual edges. 
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➢ When determining the ancient status of woodland, surveyors should continue to 

triangulate evidence from historical sources and archaeological evidence in addition 

to AWI lists (Glaves et al., 2009). The research has shown that AWI lists do indeed 

distinguish ancient woodland, but some individual recent woodlands can support a 

high richness of AWI species. As noted by Spencer (1990) the ‘indicator’ aspect of 

AWI species should be emphasised: they are indicators to be used in context with 

further information, they are not a stand-alone measure. 

 

➢ Restoration and connectivity of ARW is recommended the wider landscape scale of 

the Cotswolds and the smaller landscape of the Strategic Nature Areas. Chapter 4 

showed that gamma richness of ASNW, ARW, and recent woodlands was not 

significantly different for individual woodland layers, including a subset of AWI 

species. This means that at the gamma landscape scale, woodlands that are 

generally considered individually sub-optimum for AWI populations, can in fact 

support equal richness of AWI species when they are combined. Restoration of 

ARW, and a general increase in connectivity among all broadleaf woodland types, 

could enable the already present species to disperse into restored woodlands, 

increasing population viability.  

 

7.6 Critique of the research 

In terms of the research conducted, a lower granularity and greater breadth of data could 

have been collected by reducing the number of nested plots per woodland site (x5) to a 

single nested plot for canopy and shrub layers, with up to five 4x4m plots for the herb and 
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ground layers within it. However, this would not have been compatible with the NVC 

procedure, which was also required for each woodland site in order to standardise the 

study sites. Should prior NVC classification be available for any future studies, an adapted 

vegetation data collection would be advised in order to increase number of woodland 

surveyed. Alternatively, the high granularity data that has been collected could be further 

tested for within-site variation.   

Although study sites were as standardised as far as possible, even more stringent 

standardisation, or even use of experimental sites, could be recommended to fully test the 

ecological processes underpinning vegetation distinctiveness in ancient woodland. 

However, the purpose of the study was to examine woodland vegetation as it exists in the 

working landscape within the Ancient Woodland Priority Area of the Cotswolds. This usage 

has more application for practical intervention, whereas a more experimental approach 

would be more effectively used to generate theory. 

Finally, determining the specific age of each study site, rather than categorising as ASNW, 

ARW, or recent woodland could have been beneficial. There are several criticisms of the 

year 1600 threshold for ancient woodland, as detailed in the literature review. However, it 

was not feasible to research the history of each woodland over several hundred years. 

Additionally, The National Planning and Policy framework recognises these categories of 

woodland, with both of the ancient categories being equally protected by law. Nationally, 

conservation strategies and management advice are directed particularly at ancient 

woodlands according to their categorisation rather than specific age. Therefore, the 

research was justified in taking the categorical approach to woodland continuity. 
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7.7 Future research avenues 

The short to medium term plan is for publication or conference presentation of the 

chapters presented in this thesis. Additionally, several further research avenues have been 

identified with a view to future original contributions: 

➢ The distinctiveness of the non-AWI herb layer community among ASNW, ARW, and 

recent woodland, in terms of national prevalence and community composition. 

➢ Within-site scale analysis of variation in species presence and abundance – are 

ASNWs more consistent in their community composition within-site as between-

sites, relative to ARWs and recent woodlands? 

➢ Dual-edge effects on the vegetation of isolated ASNW in an agricultural matrix, and 

environmental and life trait explanatory variables. This would be a new study scaling 

up Chapter 6 to a larger sample size to further test the existing findings.  

➢ What determines AWI rich flora in recent woodlands? This would require additional 

data collection for a larger sample size of recent woodlands suitable for testing with 

several explanatory variables.  
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