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Abstract: The influence of cardiorespiratory fitness (CRF) on arterial stiffness in 
young adults remains equivocal. Beyond conventional measures of arterial stiffness, 
2D strain imaging of the common carotid artery (CCA) provides novel information 
related to the intrinsic properties of the arterial wall. Therefore, this study aimed to 
assess the effect of CRF on both conventional indices of CCA stiffness and 2D strain 
parameters, at rest andfollowing about of aerobic exercise inyoung healthy males. 
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(PCS),and peak systolic and diastolic strain rates (S-SR, D-SR). Heart rate (HR), 
systolic and diastolic blood pressure (SBP, DBP) were simultaneously assessed 
and Petersons' elastic modulus (Ep) and Beta stiffness (β1) were calculated. 
Participants were separated post hoc into moderate and high fitness groups 
[VO2max: 48.9ml.kg-1min-1 (95%CI, 44.7-53.2) vs 65.6ml.kg-1min- 1 (95%CI, 
63.1-68.1); P<0.001]. Ep and β1 were similar between groups at baseline 
(P>0.13) but were elevated in the moderate-fitness group post-exercise 
(P<0.04). PCS and S-SR were elevated in the high-fitness group at both time- 
points [3.0% (95%CI=1.2, 4.9); P=0.002; 0.401/s (95%CI =0.085, 0.72); 
P=0.02, respectively]. No group differences were observed in diameter, HR, SBP, 
DBP or D-SR throughout the protocol (P>0.05). High-fit individuals exhibit 
elevated CCA PCS and S-SR, which may reflect training-induced adaptations that 
help tobuffer the rise in pulse-pressure andstroke volume during exercise. 

 

New Findings: Common carotid artery (CCA) 2D strain imaging detects intrinsic 
arterial wall properties beyond conventional measures of arterial stiffness, 
however the effect of cardiorespiratory fitness (CRF) on 2D strain derived indices 
of CCA stiffness is unknown. 2D strain imaging of the CCA revealed greater peak 
circumferential strain (PCS) and systolic strain rate (S-SR) in high fit males 
compared to their less fit counterparts. Altered CCA wall mechanics may reflect 
intrinsic training-induced adaptations that help to buffer the rise in pulse- 
pressure andstroke volume during exercise. 
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What is the central question of this study? 

Common carotid artery (CCA) 2D strain imaging detects intrinsic arterial wall properties 

beyond conventional measures of arterial stiffness, however the effect of cardiorespiratory 

fitness (CRF) on 2D strain derived indices of CCA stiffness is unknown. 

 

What is the main finding and its importance? 

2D strain imaging of the CCA revealed greater peak circumferential strain (PCS) and systolic 

strain rate (S-SR) in high fit males compared to their less fit counterparts. Altered CCA wall 

mechanics may reflect intrinsic training-induced adaptations that help to buffer the rise in 

pulse-pressure and stroke volume during exercise. 

 

Abstract 

The influence of cardiorespiratory fitness (CRF) on arterial stiffness in young adults remains 

equivocal. Beyond conventional measures of arterial stiffness, 2D strain imaging of the 

common carotid artery (CCA) provides novel information related to the intrinsic properties of 

the arterial wall. Therefore, this study aimed to assess the effect of CRF on both conventional 

indices of CCA stiffness and 2D strain parameters, at rest and following a bout of aerobic 

exercise in young healthy males. Short-axis ultrasound images of the CCA were recorded in 

34 healthy men [22years (95%CI, 19-22)] before, and immediately after 5-minutes of aerobic 

exercise (40% VO2max). Images were analysed for arterial diameter, peak circumferential 

strain (PCS), and peak systolic and diastolic strain rates (S-SR, D-SR). Heart rate (HR), 

systolic and diastolic blood pressure (SBP, DBP) were simultaneously assessed  and 

Petersons' elastic modulus (Ep) and Beta stiffness (β1) were calculated. Participants were 

separated post hoc into moderate and high fitness groups [VO2max: 48.9ml.kg-1min-1 

(95%CI, 44.7-53.2)  vs 65.6ml.kg-1min-1 (95%CI, 63.1-68.1);  P<0.001]. Ep and  β1     were 

similar between groups at baseline (P>0.13) but were elevated in the moderate-fitness group 

post-exercise (P<0.04). PCS and S-SR were elevated in the high-fitness group at both time- 

points   [3.0%   (95%CI   =1.2,   4.9);   P=0.002;   0.401/s   (95%CI   =0.085,   0.72);  P=0.02, 

respectively]. No group differences were observed in diameter, HR, SBP, DBP or D-SR 

throughout the protocol (P>0.05). High-fit individuals exhibit elevated CCA PCS and S-SR, 

which may reflect training-induced adaptations that help to buffer the rise in pulse-pressure 

and stroke volume during exercise. 



Introduction 
 
Large central arteries such as the common carotid artery (CCA) act as low resistance conduits 

and buffer the rise in blood pressure during cardiac systole. The ability of these elastic 

arteries to distend and recoil in response to the pulsatile ejection is essential in order to ensure 

myocardial efficiency and smooth consistent blood flow to the periphery (Greenwald, 2007; 

Nichols, 2011). However, advanced ageing and/or the presence of cardiovascular disease can 

alter the elastic composition of the arterial wall matrix, which causes large central arteries to 

stiffen. As a consequence, increased arterial stiffness can elevate systolic blood pressure and 

cardiac afterload as well as reduce coronary perfusion (Greenwald, 2007; Nichols, 2011) and 

is associated with microvessel and target organ damage (O'Rourke & Safar, 2005). 

Accordingly, arterial stiffness is an important independent predictor of CVD risk and all- 

cause mortality (Laurent et al., 2006). 

 

Due to its clinical significance, several non-invasive indices of arterial stiffness have 

emerged, and interventions capable of preventing or reversing arterial stiffness have become 

highly desirable. Regular exercise training has been shown to reduce arterial stiffness in both 

healthy and diseased populations (Ashor et al., 2014). Indeed, several studies have reported 

an inverse relationship between cardiorespiratory fitness (CRF) and conventional measures of 

arterial stiffness; including aortic pulse wave velocity (aPWV) (Vaitkevicius et al., 1993; 

Tanaka et al., 1998), augmentation index (AIx) (Binder et al., 2006), beta stiffness index (β1) 

(Tanaka et al., 2000) and Peterson’s elastic modulus (Ep) of the CCA (Ferreira et al., 2005). 

However, despite it being well accepted that regular exercise training can attenuate the age- 

related increase in arterial stiffness (Seals et al., 2009), the influence of CRF in young 

individuals is less clear. Some studies report CRF to be positively associated with CCA 

distensibility and compliance (Ferreira et al., 2002; Ferreira et al., 2005), and inversely 

associated with aPWV (Eugene et al., 1986; Boreham et al., 2004), whereas, others report 

that CCA compliance (Tanaka et al., 2000) and AIx (Gando et al., 2010) are not are not 

influenced by CRF in young adults. Interestingly, these studies have principally assessed 

arterial stiffness at rest, however, little is known about the influence of CRF on arterial 

stiffness in response to physiological stress. 

 

Exercise may be a valuable tool to examine the influence of CRF on central arterial stiffness. 

Compared to resting conditions, arterial stiffness plays a greater role in determining    cardiac 



afterload, and thus myocardial performance, during physiological stress (Kingwell, 2002; 

Otsuki et al., 2006). While CRF may only have a modest influence on  central arterial 

stiffness at rest in young adults (Tanaka et al., 2000; Rakobowchuk et al., 2008; Gando et al., 

2010; Montero et al., 2017), it is possible that in response to an exercise challenge, high fit 

individuals may display differential arterial characteristics in comparison with their low-fit 

counterparts. Reduced central artery stiffness during physiological stress may help buffer the 

dynamic rise in blood flow and pressure required to meet increased oxygen demand, whilst 

protecting the smaller down-stream vessels from the significant rise in pulsatile flow and 

pressure (Kingwell, 2002). 

 

Conventional measures of arterial stiffness, including aPWV, AIx, β1 and Ep assume vascular 

homogeneity and tell us very little about the localised deformation characteristics of the 

arterial wall. Nevertheless, these measures have frequently been used when attempting to 

reveal the influence of CRF on arterial stiffness in the young (Tanaka et al., 2000; Ferreira et 

al., 2002; Ferreira et al., 2003; Ferreira et al., 2005; Rakobowchuk et al., 2008; Montero et 

al., 2017). In contrast, two-dimensional speckle-tracking strain (2D strain) imaging detects 

heterogeneous motion pattern and local variations in arterial wall compliance, which likely 

provide a superior index of whole artery wall stress (Bjallmark et al., 2010). Indeed, this 

technique allows for the assessment of intrinsic arterial wall characteristics, including 

circumferential strain (extent of arterial wall deformation) and strain rate (rate of arterial wall 

deformation), which are more sensitive at detecting age-related alterations in the elastic 

properties of the CCA than conventional measures (Bjallmark et al., 2010). Accordingly, 2D 

strain imaging may be a valuable tool when attempting to unmask the influence of CRF on 

central arterial stiffness in the young. Therefore, we aimed to recruit participants across a 

wide range of aerobic fitness in order to examine the effect of CRF on CCA stiffness at rest 

and immediately following a brief bout of aerobic exercise in young healthy males using both 

conventional and 2D strain imaging derived parameters. It was hypothesised that (i) 2D strain 

imaging would be more sensitive at detecting fitness-induced differences in CCA stiffness 

than conventional methods at rest; and (ii) a brief bout of aerobic exercise would augment 

resting differences in 2D strain parameters and cause differences in conventional measures of 

CCA stiffness to emerge. 



Methods 

Ethical Approval 

The study conformed to the Declaration of Helsinki, except for registration in a database, and 

was approved by the Cardiff Metropolitan University School of Sport Research Ethics 

Committee (15-7-02S). Participants were informed of the methods and study design verbally 

and in writing before providing written informed consent. 

 

Participants 

Thirty-four male participants were recruited to the study (age; 22 ± 3 yr, body mass index; 

23.6 ±2.0 kg/m2). All participants were normotensive, non-smokers with no history of 

cardiovascular, musculoskeletal, or metabolic disease or any contraindications to exercise. 

None of the participants reported taking any prescribed medication. Participants were 

recruited across a wide range of aerobic fitness with the aim of determining whether aerobic 

capacity influences carotid artery stiffness in a general young population. The thirty-four 

participants were split post hoc by the median [58.4 (IQR: 17.5) ml kg-1min-1] into  a 
moderate and high VO2max group [48.9 ml kg-1min-1 (95% CI, 44.7–53.2) vs 65.6 ml  kg-1min- 

1 (95% CI, 63.1–68.1); P < 0.001; Table 2]. 

 
Experimental Procedures 

Participants reported to the laboratory on two separate occasions separated by 7 days, and 

were asked to abstain from alcohol, caffeine and strenuous exercise for 24 hours prior to each 

visit. During visit one, maximal oxygen consumption (VO2max) and peak power output (PPO) 

were assessed using a standardised incremental ramp exercise test on an upright cycle 

ergometer (Lode Excalibur, Groningen, Netherlands). Workload was initially set at 120W 

and continuously increased at a rate of 20W per minute. VO2max was measured using a breath-

by-breath analyser (Oxycon Pro, Jaeger, Hoechberg, Germany) and calculated as   the 

highest 30 second average of oxygen uptake prior to volitional exhaustion. Criteria for the 
attainment of V̇ O2max  included two of the following: a respiratory exchange ratio (RER) 
≥1.15, maximal heart rate within 10 beats/minute of age-predicted maximum, or a V̇ 

O2 plateau with an increase in power output. 
 

During visit two, following ten minutes of rest on a supine cycle ergometer, brachial blood 

pressure (BP) and heart rate (HR) were assessed and ultrasound images of the right common 

carotid artery (CCA) were recorded on a commercially available ultrasound system (Vivid Q, 



GE Healthcare, Amersham, UK). In addition, conventional measures of CCA stiffness and 

wave reflection (aPWV and AIx), were also assessed (SphygmoCor, AtCor Medical, Sydney, 

Austrailia). BP was obtained with standard auscultation and HR was recorded continuously 

from a 3-lead ECG inherent to the ultrasound system. Following resting measurements, 

participants completed a 5 minute bout of supine cycling exercise at an intensity of 40% of 

the peak power achieved during the VO2max test, at a fixed cadence of 60 rpm. The brief low 

intensity exercise stimulus was chosen to minimise the influence of changes in systemic 

factors upon arterial stiffness (Sugawara et al., 2003). Following the completion of exercise, 

conventional indices of CCA stiffness and 2D strain parameters were repeated within 2 

minutes of exercise cessation. 

 

Vascular Ultrasonography and 2D-Strain Imaging 

Two-dimensional short-axis gray-scale cine loops of the right CCA were recorded 1–2 cm 

below the carotid bulb over a minimum of three consecutive cardiac cycles using a 

commercially available ultrasound system with a 12-MHz linear array transducer (Vivid Q, 

GE Medical Systems Israel Ltd., Tirat Carmel, Israel). Image acquisition was performed by a 

trained sonographer; frame rate, imaging depth and probe position were kept constant within 

subjects throughout the protocol to ensure the same section of the CCA was imaged at both 

time points. Images were stored for subsequent offline analysis using dedicated speckle- 

tracking 2D-strain software (EchoPac Version 112, GE Vingmed Ultrasound, Horten 

Norway). Two-dimensional strain software quantifies vascular tissue motion by automatically 

identifying speckles in the ultrasound image, which are subsequently tracked across the 

cardiac cycle (Bjallmark et al., 2010). For quantification of strain and strain rates, a region of 

interest (ROI) was manually placed over the cross-sectional area of the CCA ensuring 

accurate alignment with the posterior wall (Figure 1A). Within this ROI, movement of 

speckles were tracked frame by frame throughout systole and diastole using a speckle- 

tracking algorithm inherent to the software which generated strain and strain rate curves 

(Figure 1A). Appropriate tracking of the vessel wall was verified automatically by the 

software and visually confirmed by the operator who manually adjusted the ROI if necessary. 

Peak circumferential strain (%), systolic strain rate (1/s) and diastolic strain rate (1/s) were 

measured ‘globally’, reflecting the averaged values obtained from the entire circumference of 

the arterial wall. Systolic strain rate was defined as the first positive peak in the strain rate 

curve that occurred after the QRS complex, whilst diastolic strain rate was defined as the first 

negative peak in the strain rate curve after the T-wave of the ECG (Bjallmark et al., 2010). 



Vessel diameters were measured by obtaining an M-mode trace through the centre of the 

short-axis image. Systolic and diastolic diameters were defined as the maximum and 

minimum diameters during the cardiac cycle, respectively, and were measured from the 

leading edge of the intima-lumen interface of the anterior wall to the leading edge of the 

lumen-intima interface of the posterior wall (Oishi et al., 2008). 

 
Figure 1. The region of interest identifying the cross-sectional area of the common carotid 
artery on a short-axis image (A) and typical global peak circumferential strain (B) and strain 
rate (C) curves generated using two-dimensional strain imaging. 

 
 

To characterise local CCA stiffness, Peterson’s elastic modulus (Ep), β1 stiffness index, β2 

stiffness index and distensibility (the inverse of Ep) were calculated. Ep, β1 and distensibility 

are conventional measures of arterial stiffness and adjust changes in arterial diameter during 

the cardiac cycle for changes in pulse pressure (Laurent et al., 2006). β2 relates peak 

circumferential strain to distending pulse pressure (Oishi et al., 2008). An increase in Ep, β1 

and β2 stiffness indices indicate an increase in arterial stiffness, whereas, an increase in 

distensibility indicates a greater magnitude of arterial distension per unit of pressure (Laurent 
et al., 2006). Stiffness indices were calculated as follows: 



Distensibility = [(Ds – Dd) / (SBP – DBP)]/ Dd in mmHg×10-3 

Ep = (SBP – DBP) / ((Ds – Dd) / Dd)) in kPa 

β1 = ln (SBP / DBP) / ((Ds – Dd) / Dd)  in mm2/kPa 

β2 = ln (SBP / DBP/ PCS) in AU 

Where SBP and DBP indicate brachial systolic and diastolic pressures, respectively, Ds and 

Dd indicate maximal systolic and minimum diastolic CCA diameters, respectively and PCS 

indicates peak circumferential strain. The reproducibility of the 2D strain imaging and 

conventional arterial stiffness variables was determined in 10 participants and intra-observer 

variability was assessed by calculating coefficients of variation (CV) (Table 1). Intra- 

observer reliability was assessed by performing two ultrasound assessments one hour apart, 

following a 20 minute period of quiet supine rest. The variability of the 2D strain variables 

agreed well with previously reported data from our lab (Black et al., 2016) and was 

considerably lower than the variability reported elsewhere (Bjallmark et al., 2010; Yuda et 

al., 2011; Charwat-Resl et al., 2016). 

 
 
Table 1. The intra-observer variability of 2D strain and conventional local arterial 
stiffness variables. 

 

Measured Variable Mean SD Intra-observer CV (%) 
 

Global circumferential variables 
Peak strain (%) 

 
11 

 
2.3 

 
4.9 

Peak systolic strain rate (1/s) 1.1 0.2 3.4 
Peak diastolic strain rate (1/s) - 0.3 0.1 9.7 
β2 stiffness index 16.1 3 4.9 

CCA diameters 
Systolic (mm) 

 
6.7 

 
0.6 

 
1.0 

Diastolic (mm) 5.6 0.5 1.3 
Conventional variables 

Ep (kPa) 
 

34.7 
 

4.5 
 

5.7 
β1 stiffness index 2.8 0.4 5.7 

 

CV: coefficient of variation; CCA: common carotid artery. Ep: Peterson’s elastic modulus. 



Aortic Pulse Wave Velocity (aPWV) and Augmentation Index (AIx) 

aPWV and AIx were assessed by an experienced operator using a high fidelity 

micromanometer tipped probe (SphygmoCor, AtCor Medical, Sydney, AUS) in  accordance 

to applanation tonometry guidelines (Townsend et al., 2015). For the assessment of aPWV, 

the probe was used to obtain sequential ECG-gated pressure waveforms of the right carotid 

and femoral artery, at the site of maximal arterial pulsation. Using the R-wave of the ECG  as 

a reference frame, pulse-wave transit time was determined automatically by the SphygmoCor 

system as the time delay between the carotid and femoral “foot” waveforms. Pulse wave path 

length was measured as the distance from the femoral sampling site to the sternal notch 

minus the distance from the carotid sampling site to the sternal notch. aPWV was thereafter 

calculated as the distance to transit time ratio, expressed in metres per second and normalised 

to mean arterial pressure (Townsend et al., 2015). 

 

Central AIx was determined by pulse wave analysis by placing the micromanometer tipped 

probe on the radial artery, just proximal of the radial-ulnar joint. From the radial pressure 

waveforms obtained, a corresponding central pressure waveform and thus AIx  were 

calculated using a previously validated generalised transfer function inherent to the 

SphygmoCor system (Chen et al., 1996; Pauca et al., 2001; Sharman et al., 2006). AIx was 

defined as the difference between the first and second peaks of the central arterial waveform, 

expressed as a percentage of pulse pressure (Townsend et al., 2015). Measurements of aPWV 

and AIx were obtained in duplicates with eight to ten cardiac cycles being recorded for each 

assessment. 

 

Statistical Analysis 

Differences in participant characteristics between moderate and high fit groups at rest were 

assessed using independent samples t-tests. A two-factor ANOVA (group vs time) was used 

to identify group differences in arterial stiffness at rest and immediately following exercise. If 

group differences were observed at rest, additional analysis of post-exercise data was 

performed, whereby delta (∆) change from rest was calculated and analysed using analysis of 

covariance (ANCOVA) with resting data as a covariate. Analyses were performed using the 

Statistics Package for Social Sciences for Windows, version 21.0 (SPSS Chicago, IL). Data 

are presented as means (95% confidence intervals), unless otherwise stated. All data were 

analysed for distribution and logarithmically transformed where appropriate. Logarithmically 

transformed data were back-transformed to the original units for presentation in the text, and 



statistical significance was set a priori to P<0.05 (P values of “0.000” provided by the 

statistics package are reported as “<0.001”). 

Results 

Participant characteristics 

All participant characteristics are listed in Table 2. There were no significant differences 

between the two groups for age, height, body mass or body mass index (P > 0.05). By study 

design,  the high  fitness  group  displayed  a  significantly higher  VO2max than  the  moderate 

fitness group [16.6ml kg-1min-1 (95% CI = 11.9, 21.4); P < 0.001] and subsequently   achieved 

a higher PPO [65W (95% CI = 18, 112); P = 0.008]. aPWV was not different between groups 

(P > 0.05), however, AIx was significantly lower in the high fitness group [-13.8% (95%   CI 

= -4.8, -22.8); P = 0.004]. 

Table 2. Baseline characteristics of study participants. 

Characteristics Moderate Fitness (n =17) High Fitness (n =17) 

Age (y) 21 (20, 22) 21 (19, 22) 
Height (cm) 181.1 (176.7, 185.4) 178.0 (174.2, 181.8) 
Body mass (kg) 76.6 (71.8, 84.4) 72.6  (69.2, 76.1) 
BMI (kg/m2) 23.3(22.6, 24.0) 22.9 (21.8, 24.1) 
VO (ml∙kg-1∙min-1) 

2max 49.2 (43.8, 54.5) 66.7 (63.3, 70.1)* 

40% PPO (W) 138 (122, 153) 164 (152. 176)*
 

aPWV (m∙s-1) 5.4 (4.9, 6.0) 5.1 (4.7, 5.4) 

Central AIx (%) 8.5 (-0.65, 17.6) -5.0 (-0.23, -9.7,)*
 

VO2max: Maximal oxygen consumption; PPO: Peak power output; aPWV: aortic pulse wave velocity adjusted 
for mean arterial pressure; AIx: central augmentation index;*: P < 0.05 vs. moderate fitness; Data are presented 
as means (95% CI). 



Resting Comparisons 

There were no differences in HR, SBP, DBP, PP or MAP between the moderate fitness and 

high fitness groups, nor were there any group differences in systolic, diastolic or mean CCA 

diameter (P >0.05; Table 3). Similarly, conventional parameters of CCA stiffness; Ep, β1 and 

distensibility did not differ between groups (P >0.05; Table 3). 

 

PCS [2.3% (95% CI = 0.43, 4.2); P = 0.02; Figure 2A] and S-SR [0.251/s (95% CI = 0.038, 

0.46); P = 0.02; Figure 2B] were significantly higher in the high fitness group compared to 

the moderate fitness group, whereas, β2 was significantly lower in the high fitness group [-1.1 

(95% CI = -0.02, -2.2); P = 0.05; Figure 2D]. There was no difference in D-SR between the 

high fitness and moderate fitness groups (Figure 2C). 

 

Post-Exercise Comparisons 

There were no group differences in systolic, diastolic or mean CCA diameter or any 

haemodynamic parameter post-exercise (P >0.05; Table 3). Ep and β1 were significantly 

higher in the moderate fitness group post-exercise when compared to the high fitness group 

[18.3  (95%  CI  =  1.0,  40.0);  P  =  0.04;  1.2mm2/kPa  (95%  CI  =  0.6,  2.4);  P  = 0.04 
respectively]. In addition, distensibility tended towards being greater (P = 0.07; Table 3) in 

the high fitness group following exercise. 

 

PCS was elevated in the high fitness group post-exercise when compared with the moderate 

fitness group [3.7% (95% CI = 1.6, 5.9); P = 0.001; Figure 2A]. Similarly, S-SR was 

significantly greater [0.551/s (95% CI = 0.10, 1.01); P = 0.02; Figure 2B] and β2 significantly 

lower [-1.6 (95% CI = -0.21, -2.9); P = 0.03; Figure 2D] in the high fitness group following 

exercise. No group differences in D-SR were observed following exercise (Figure 2C). 



Figure 2. Peak circumferential strain (A; group effect: P = 0.002), systolic strain rate (B; 
group effect: P = 0.02), diastolic strain rate (C; group effect: P = 0.18) and Beta stiffness 
index II (D; group effect: P = 0.02) of the common carotid artery (CCA) at rest and 
immediately following 5-min of moderate intensity cycling in moderate and high fitness 
groups. *: P < .05 after ANOVA post-hoc analysis; Values are means ± SD. 



Table 3. Haemodynamic variables and common carotid artery (CCA) diameters 
and conventional stiffness indices at rest and following 5-min of moderate   
intensity cycling.  

Measured variable Moderate fitness (n = 17) High fitness 
(n = 17) 

Rest Post Exercise Rest Post Exercise 
Haemodynamics 
HR (bpm) 59 (55 62) 76 (70, 82)† 54 (48,57) 68 (62,74)† 
SBP (mmHg) 123 (120,129) 141 (133,149)† 120 (116,125) 144 (136,151)† 
DBP (mmHg) 78 (73,83) 75 (69, 80) 73 (67,79) 70 (65,77) 
PP (mmHg) 45 (42,51) 68 (60,76)† 47 (43,52) 73 (65,81)† 
MAP (mmHg) 92 (86,96) 96 (90,101)† 89 (84,93) 94 (90,101) † 

CCA diameters 
Systolic (mm) 6.7 (6.15, 6.74) 6.56 (6.26, 6.86) 6.4 (6.1, 6.69) 6.55 (6.27, 6.82) 
Diastolic (mm) 5.63 (5.36, 5.9) 5.64 (5.38, 5.9) 5.45 (5.18, 5.72) 5.38 (5.13, 5.64) 
Mean (mm) 6.04 (5.76,6.33) 6.1 (5.81, 6.4) 5.92 (5.65, 6.2) 6.0 (5.68, 6.22) 

Stiffness variables 
Ep (kPa) 40 (37, 50) 64 (45, 83)† 38 (34, 40) 46 (41, 50)* 
β1 (mm2/kPa) 3.1 (2.9, 3.8) 4.6 (3.4, 5.7)† 3.0 (2.7, 3.3) 3.4 (3.0, 3.7)* 
Distensibility (mmHg x10-3) 3.3 (2.9, 3.8) 2.5 (2.0, 3.0)† 3.7 (3.4, 4.0) 3.1 (2.7, 3.4)† 

HR: heart rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure; MAP: 
mean arterial pressure; Ep: Peterson’s elastic modulus; β1 Beta stiffness index. †: Significantly different to 
resting value (P <0.05); * Significant difference between moderate and high fitness groups (P <0.05). Data  are 
presented as means (95% CI). 

Analysis of Covariance 

Post-exercise group differences in S-SR and β2 disappeared following covariate adjustment 

for resting data (P > 0.19; Figure 3), however, PCS remained elevated following covariate 

adjustment in the high fitness group when compared with the moderate fitness group [1.8 

(95% CI = 0.25, 3.4); P = 0.03; Figure 3]. 



Figure 3. Delta (∆) change in peak circumferential strain (A; group effect: P = 0.03), systolic 
strain rate (B; group effect: P = 0.39) and Beta stiffness index II (C; group effect: P = 0.19) 
of the common carotid artery (CCA) from rest to post-exercise in moderate and high fitness 
groups. Data presented following covariate-adjustment (ANCOVA) for resting data. *: P < 
.05 after post-hoc analysis; Values are means ± SD. 

Discussion 

The aim of this study was to assess the effect of high CRF on conventional and 2D strain 

derived indices of CCA stiffness at rest and immediately following a brief bout of aerobic 

exercise. In line with our hypothesis, no differences in conventional measures of CCA stiffness 

were observed between high and moderately fit males at rest, however, 2D strain imaging of 



the CCA revealed greater resting PCS and S-SR in high fit males when compared with their less 

fit counterparts. Immediately following exercise, the magnitude of difference in PCS between 

groups increased and differences in conventional measures of CCA stiffness emerged, with 

moderately fit males displaying an elevated Ep and β1 stiffness  compared  to high fit males. 

Taken together, our findings suggest that high fit individuals exhibit elevated PCS and S-SR, 

which may reflect intrinsic adaptations to the composition of the CCA. 

The influence of cardiorespiratory fitness on conventional measures of arterial stiffness at 

rest 

It is well established that normal healthy ageing is associated with stiffening of large elastic 

arteries (Lakatta & Levy, 2003; Greenwald, 2007). An abundance of data indicates that regular 

exercise training can attenuate the age-related increase in  arterial  stiffness  (Seals  et  al., 

2009), however, the influence of CRF on arterial stiffness in young individuals is less clear. In 

the present study, there was no influence of CRF on conventional measures of local CCA 

stiffness in young males at rest. These findings are consistent with those from Tanaka et al. 

(Tanaka et al., 2000) who also report no difference in resting  CCA  stiffness  between 

sedentary, recreationally active and endurance trained young men, despite significant 

differences in VO2max. However, our data conflict with the findings of the Amsterdam Growth 

and Health Longitudinal Study, which reported CRF to be positively associated with both the 

distensibility and compliance of the CCA in young individuals (Ferreira et al., 2002; Ferreira 

et al., 2005). Similarly, a recent meta-analysis has demonstrated that aerobic exercise improves 

regional central arterial stiffness (aPWV and AIx) in young and old individuals, but is most 

effective in those with greater arterial stiffness at baseline (aPWV >8.0 m∙s-1) (Ashor et al., 

2014). In the present study, our pooled cohort of healthy young males exhibited relatively low 

arterial stiffness (aPWV 5.2±0.7m∙s-1), therefore it is perhaps unsurprising that no group 

differences in aPWV were observed between high- and moderately-fit individuals. 

Nevertheless, similar to previous research (Edwards & Lang, 2005), the high fit males in the 

present study did display a significantly lower central AIx than the lower fitness group. AIx has 

been shown to be a more sensitive measure of arterial stiffness in younger individuals than 

aPWV (McEniery et al., 2005), which may account for the disparity between these 

measures in the present study. However, AIx is a derived measure which  is  reliant  on a 

transfer function to predict the central waveform from a peripheral waveform and is 

independently influenced by gender, age, height, heart rate and diastolic blood pressure (Hope 

et  al.,  2003;  Williams,  2004).  Nevertheless,  as  the present  participants  were well 



matched, we suggest that the difference in AIx between the high and moderately fit groups is 

likely related to the difference in CRF. 

The influence of cardiorespiratory fitness on 2D strain measures of arterial stiffness at rest 

Although numerous studies have reported that exercise training can attenuate the age-related 

increase in local and regional arterial stiffness (Seals et al., 2009), the limited number of 

studies 

investigating the effect of exercise in young healthy individuals suggest that conventional 

measures of CCA stiffness remain unaltered following training (Tanaka et al., 2000; 

Rakobowchuk et al., 2008; Montero et al., 2017). These findings have lead some authors to 

propose the notion of a ceiling effect, which implies that further improvement  of  young 

healthy elastic arteries is not achievable (Montero  et  al.,  2017).  However,  as  the  arterial 

wall is not homogeneous, conventional stiffness measures such as Ep, β1 and distensibility that 

assume homogeneity and are limited to 1D measurement of lumen distension may  be 

inaccurate, as they cannot reflect whole arterial wall stress. Furthermore,  conventional 

measures only tell us about the magnitude of change in arterial wall diameter in relation to 

distension pressure, and nothing about the rate of change. In contrast, the speckle tracking 

method allows for 2D detection of heterogeneous motion pattern and local variations in arterial 

wall mechanics, which likely provide a superior index of whole artery wall stress (Bjallmark 

et al., 2010). In support of this, it  has  recently  been  reported  that  2D  strain  imaging  is 

more sensitive at detecting age-related alterations in CCA elastic properties than Ep and β1

(Bjallmark et al., 2010). 

In the present study, resting differences in conventional measures of arterial stiffness were 

not observed between groups, whereas, PCS and S-SR were elevated and β2 lower in high fit 

males compared to their less fit counterparts. To our knowledge, this is the first study to 

investigate the effect of CRF status on 2D circumferential strain and strain rate of the CCA. 

However, previous research has shown that healthy ageing is associated with reductions  in 

PCS, S-SR and D-SR of the CCA (Kawasaki et al., 2009; Bjallmark et al., 2010), which may 

reflect age-related degeneration of elastin fibres and compensatory increases in collagen within 

the extracellular matrix of the arterial wall (Lakatta & Levy, 2003; Greenwald, 2007). 

Moreover, in the presence of coronary artery disease, PCS and S-SR are further reduced 

compared to age-matched healthy controls (Kawasaki et al., 2009) and a strong inverse 

correlation between PCS and Framingham Risk Scores has been observed in asymptomatic 

individuals (Park et al., 2012). Whilst pathological alterations to intrinsic arterial  wall 

properties may, in part, explain the reduction in CCA PCS and S-SR in older and diseased 



populations, it is possible that exercise-induced improvements in the relative proportion of 

elastin and collagen explain the differences in PCS and S-SR between the high- and 

moderately-fit young males in the present study. Indeed, animal studies have reported that 

exercise training increases elastin content within central arterial walls and reduces the 

percentage of collagen, frayed elastin fibers and the calcium content of elastin within the 

extracellular matrix tissue (Matsuda et al., 1993; Koutsis et al., 1995). Alternatively, resting 

PCS and S-SR may be elevated in high fit individuals due to training-induced alterations in 

systemic vascular tone. A combination of enhanced endothelial  function,  increased  basal 

levels of nitric oxide, reduced oxidative stress and alterations in sympathetic tone are frequently 

observed following exercise training (Green et  al.,  2011;  Green  et  al.,  2017),  which may 

also contribute to reductions in arterial stiffness. 

 
The value of exercise in the assessment of local arterial stiffness 

PCS and S-SR remained elevated in the high fit group immediately following the acute bout of 

moderate intensity exercise. In addition, PCS increased in response to exercise in the high fit 

group but  remained  unaltered  in  the  moderate-fitness  group.  Importantly,  this  was 

observed following covariate adjustment for group differences in resting PCS and despite 

comparable changes in heart rate, blood pressure, MAP and arterial diameter between the 

groups. In contrast, post-exercise group differences in S-SR and β2 disappeared following 

covariate adjustment for resting data. It is likely that a superior magnitude and rate of artery 

deformation during cardiac systole will facilitate an enhanced ability to buffer the exercise- 

induced elevation in blood pressure and blood flow in the high fit individuals and  may 

represent a training-induced adaptation. An enhanced ability to buffer this dynamic pulsation is 

likely to provide a smooth consistent blood flow to the periphery and improve myocardial 

efficiency (Kingwell, 2002), ultimately facilitating  an  enhanced  fitness  level. Furthermore, 

the efficient buffering of the dynamic elevation in blood pressure and flow may also prevent 

microvessel and target organ damage further down the arterial tree (O'Rourke & Safar, 2005). 

Given that a primary role of the CCA is to aid the regulation of cerebral blood flow (Hirata et 

al., 2006), a reduced ability to buffer blood pressure and flow elevations may have significant 

pathological consequences, including increased risk of stroke (Mattace-Raso et  al.,  2006; 

Yang et al., 2012). Consequently, the association between CRF and carotid artery 

characteristics may have greater importance with advancing age, especially as circumferential 

strain and strain rate have been shown to reduce with healthy aging (Bjallmark et al., 2010). 



Central arterial stiffness has previously been shown to not change (Munir et al., 2008) or to 

be reduced (Kingwell et al., 1997; Sugawara et al., 2003) during recovery from brief, 

low/moderate-intensity cycling. In the present study, we did not observe any group differences 

in Ep and β1 at rest, however, both parameters increased in response to exercise in the moderate 

fitness group but remained unaltered in the high fitness group. These observations may reflect 

an enhanced capacity to modulate acute exercise-induced alterations in sympathetic adrenergic 

vasoconstrictor tone, endothelial function, humeral vasoconstrictor  release  and  oxidative 

stress in high fit individuals (Green et al., 2011; Green et al., 2017).  Importantly,  these 

findings indicates that exercise is a valuable stimulus capable of revealing fitness-induced 

differences in conventional measures of arterial stiffness that were unidentified under resting 

conditions. Additionally, this finding also supports the observation of superior PCS and S-SR 

following exercise in high fit individuals, which together may reflect  a  greater  ability to 

buffer exercise-induced increases in pulse-pressure than their less fit  counterparts. 

Limitations and Future Research 

We acknowledge that the present findings were obtained in healthy young males and that 

female, elderly and diseased populations may demonstrate a different interaction between 

aerobic fitness and 2D strain derived parameters of CCA stiffness. We also recognise that 

not collecting data during exercise is a limitation of present study. It was felt that  the 

movement associated with exercise would have compromised the ability to collect acceptable 

2D ultrasound images. In future studies, with practice and appropriate participant 

familiarisation, it may be possible to collect these data during exercise. Comparisons between 

fitness groups at higher absolute and relative exercise intensities may also help to further 

unmask the influence of CRF on CCA properties in the young. Applanation tonometry of the 

CCA would have provided a more accurate representation of central arterial pressure and we 

also acknowledge that our findings are restricted to the CCA and therefore cannot be applied 

systemically. Future studies should also measure 2D strain indices within peripheral arteries to 

compare the impact of CRF on the intrinsic arterial wall mechanics of both elastic  and 

muscular arteries. Finally, it is important to acknowledge that whilst we assessed CRF, we 

did not record training history of the participants nor did we recruit a sedentary control group. 

As such, we are not able to delineate between the influence of intrinsic CRF and the influence 

of exercise training-induced adaptation or the independent deleterious effect of sedentary 

behaviour on arterial stiffness. Future studies should investigate the independent impact of 

sedentary behaviour on CCA stiffness and examine the possible interaction between sedentary 

behaviour and CRF on arterial health. 



Conclusion 

This is the first study to demonstrate that high fit individuals exhibit distinct CCA wall 

mechanics to their less fit counterparts. Elevated PCS and S-SR may reflect training-induced 

adaptations that help to buffer the significant rise in pulse-pressure and stroke volume  that 

occur during exercise. Longitudinal studies that adopt 2D strain imaging techniques  are 

required to further investigate the influence of exercise training on intrinsic arterial wall 

mechanics. 
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