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Abstract

A physiological signal must have a certain level of randomness inside
it to be a good source of randomness for generating cryptographic key.
Dependency to the history is one of the measures to examine the strength
of a randomness source. In dependency to the history, the adversary has
infinite access to the history of generated random bits from the source and
wants to predict the next random number based on that. Although many
physiological signals have been proposed in literature as good source of
randomness, no dependency to history analysis has been carried out to
examine this fact. In this paper, using a large dataset of physiological
signals collected from PhysioNet, the dependency to history of Interpuls
Interval (IPI), QRS Complex, and EEG signals (including Alpha, Beta,
Delta, Gamma and Theta waves) were examined. The results showed that
despite the general assumption that the physiological signals are random,
all of them are weak sources of randomness with high dependency to their
history. Among them, Alpha wave of EEG signal shows a much better
randomness and is a good candidate for post-processing and randomness
extraction algorithm.

1 Introduction

The problem of secure communication between Implantable Medical Devices
(IMDs) inside the body and the outside world is one of the emerging areas of
research in cybersecurity of IoT devices. There are many real-world case studies
on vulnerabilities of IMDs to attacks, as they are usually using a single perma-
nent symmetric key for communication with outside world. Hackable insulin
pumps [1], brain neural implants [2] and pacemakers [3] are a few examples of
the most recent attacks reported in the news and literature. As usage of public
key cryptography is not applicable in IMDs due to very limited resources [4, 5],
a series of solutions have been proposed in the science community to solve the
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problem. Among these solutions, proximity based algorithms are the most suc-
cessful one with this assumption that if a device gets very close to the body,
it is safe to consider that we can trust the device [6]. In order to start the
communication, the device outside the body and the IMD need to read a phys-
iological signal of the body at the same time and generate the communication
key from that. With this solution, there would be no need to have a permanent
key saved inside the IMD nor to have a key exchange process. Although, this
solution received high attention from scientific community, one problem is still
remained unsolved and that is whether or not the physiological signal could
provide strong cryptographic key.

A physiological signal must have a certain level of randomness inside it to
be a good candidate for generating cryptographic key from that. Entropy of
a source is usually a tool to examine the strength of that source to generate
random numbers. In addition to Entropy, dependency to history is another tool
to examine the strength of randomness which is usually missed in the literature.
Dependency to the history is a measure where the adversary has infinite access
to the history of generated random bits from the source and wants to predict
the next random number based on that. Dependency is measured using Santha-
Vazirani method. Although, many physiological signals have been claimed to
be a good source of randomness in the literature, no extensive study till now
examined the strength of those sources against dependency to history. In this
paper, using a large dataset of physiological signals collected from PhysioNet,
the dependency to history of Interpuls Interval, QRS Complex and EEG signals
are examined.

2 Related Works

Several physiological signals have been proposed in the literatures to be used as
the source of randomness for generating secret key such as Brain waves or elec-
troencephalograms (EEG) [7], electrocardiogram (EKG) [8] and Photoplethys-
mogram (PPG) [9], Electrocardiography (ECG) [10] and InterPulse Intervals
(IPI) [6]. IPI is the time difference between two peaks of an ECG signal. ECG
signal has three peaks for every heart beat named as Q, R and S. So, three
IPI values could be extracted from the time difference between each two cor-
responding peaks (Q-Q, R-R, S-S). Among these, R has the highest peak and
the easiest one to detect. In the rest of this paper, whenever we refer to IPI, it
is the R-R time difference. QRS is another physiological measure which is the
time difference between the peak of Q signal and the peak of S signal. Since the
peak of R signal is between these two, this physiological feature is called QRS
Complex.

While there are only few works using EEG as the source of randomness (e.g.
[7]), IPI is the most popular one. The idea of using IPI as a source of random-
ness has been proposed by [6], where a random extraction algorithm is needed
to convert IPI value to a random number. Several randomness extractor algo-
rithms from IPI have been proposed in the literature. Proposed methods are
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including using XOR function [11], gray-coding [12] and using frequency domain
[13, 14, 15]. In some studies a combinations of algorithms are used for random-
ness extraction. For instance, [16, 17, 18] used accumulation, modulo, contract
mapping and gray-coding for the extractor and [19] proposed a combination of
concatenation, quantization and gray-coding as the randomness extractor from
IPI.

Whatever the extraction method is, it needs to be evaluated for the quality
of generated randomness. There are several physiological randomness extraction
methods which did not perform any randomness test to examine the quality of
proposed algorithm (e.g. [20, 21, 13, 14, 22, 23, 15]). To evaluate the quality
of a randomness extractor, there are two aspects to consider: the dataset and
the methodology of evaluation. Till now for all proposed randomness extraction
methods, these two aspects are somehow ignored. For instance, [12] evaluated
the randomness property of the output by 5 minutes ECG data of 10 subject
by NIST Statistical Test Suite (STS) [24] randomness test. [16, 17, 18] tested
the algorithm using 5 minutes ECG signal of 40 subjects with NIST STS. In
another work, [10] used histogram analysis on 1500 consecutive IPI values. [25]
tested their proposed method with 100 subjects ECG data with Entropy test.
[19], to evaluate the randomness of proposed algorithm, used Temporal Ratio
[26] method over 5 minutes ECG data of 50 subjects. Nevertheless, none of
aforementioned works, examined the dependency to the history of the proposed
physiological signal for randomness extraction.

3 Data Collection

In this work, using PhysioNet [27], we have created a dataset of IPI, QRS and
EEG signals. The dataset contains 202,569,491 QRS values, 895,621,566 IPI
values and 597,931,520 EEG values. We used 8 bit coding for both IPI and
QRS. For EEG signals, as proposed by [7], we extracted the five frequencies of
brain (Alpha, Beta, Delta, Gamma and Theta) using the EEGLab developed
by [28]. In order to extract the brain waves, EEGLab transfers the signal from
time domain to frequency domain. Then, using Table , based on the level of
the frequency of the wave they will be extracted from the main signal. Finally,
the value of signal is multiplied by 1000 and we used the three least significant
digits of it as a 10 bit coded number.

Table 1: Characteristics of EEG rhythms (from [29])

State Unconscious Conscious

Rhythm Delta Theta Alpha Beta Gamma

Frequency
(Hz)

0.5-4 4-8 8-13 13-30 >30

Amplitude
(µV)

20-200 10 20-200 5-10 5-10
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Figure 1: Dependency analysis for all ECG signals

4 Statistical Analysis

A randomness source is called Santha-Vazirani (SV-source) [30] where the out-
come of last generated bit is related to the previous outcomes. In another word,
the source is not independent. Let consider for source X and δ ∈ [0, 1], then we
have:

∀i ∈ n, ∀xi ∈ {0, 1} → (1)

1− δ
2
≤ Pr[Xi = xi|∀xi−1] ≤ 1 + δ

2

δ is the bias for the new bit xi, which it has some dependencies to the previous
bits in the source {0, 1}i−1. In a simpler form we have:

∀x, y ∈ {0, 1}n → Pr[X = x]

Pr[Y = y]
≤ 1 + δ

1− δ
(2)

The best possible δ value is zero for any string length which demonstrates
that the source is not Santha-Vazirani. If δ is equal to zero, the probability of
having zero or one is always 0.5, no matter how much of the history of data is
available. More importantly, it has been shown [31, 32] that even slightly biased
SV-sources, (i.e. sources with low δ), are not suitable for many cryptographic
purposes. To evaluate the predictiveness of source X from Eq. 2, we calculated
the maximum (Pr[X = x]) and the minimum (Pr[X = x]) distribution value.
Then, δ can be calculated as:

δ =
Pr[X = x]− Pr[X = x]

Pr[X = x] + Pr[X = x]
(3)

for ∀x, y ∈ {0, 1}n where n = 1..24.
To examine the dependency to history, from each signal, we selected a series

of bits. For instance, in QRS, firstly we selected the first least significant bit
and applied the analysis on it. Then, we selected the first two bits of every QRS
value and applied the analysis on it. This goes until the 8 bits of QRS, since the
QRS has originally 8 bits. For IPI also, since it consists of 8 bits, we examined
the dependency to history analysis on 8 series of data, starting from only one
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(c) Delta Wave
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Figure 2: Dependency analysis for all EEG signals

least significant bit as the first series till the 8 least significant bit (or complete
IPI) as the 8th series. For all EEG waves, since in coding we used 10 bits, 10
series of values are extractable for each wave.

The next concept in this methodology is the string size. In order to measure
the dependency to history, we must calculate the distribution histogram of the
bits in each data series. This distribution could be based on the strings with
size one (s1 = {0, 1}). This histogram is simply counting the number of zeros
and ones in the data series. For string size 2, we have s2 = {00, 01, 10, 11}. In
theory the analysis should be applied to all possible string size (s∞), however,
in practical, due to the limitations of database sizes, there is a limit to s.

5 Results and Discussion

We applied the dependency analysis for all featured physiological signals for
string sizes up to 24 (1 ≤ s ≤ 24). Figures 1 and 2 show the dependency
analysis results over EEG signals of Alpha, Beta, Delta, Gamma, Theta and
ECG signals of IPI and QRS. As shown, despite as what has been advised in
current works, IPI and QRS have the highest dependency to the history.

In QRS (Fig. 1b, the best combination of bits are when the 5 least signif-
icant bits (out of 8 bits) are selected. In this QRS series of Data up to string
size of seven the SV-Delta value is less than 0.5 (s = 7 and δ = 0.41522364).
Moreover, for string sizes up to 18 the SV-Delta is less than one (s = 18 and
δ = 0.999947422). If SV-Delta is equal to one, it means that at one of the bars
in the distribution histogram of the series is zero. In IPI series (Fig. 1a), less
dependency to history has been observed compared to QRS when only the two
least significant bits of IPI are selected as the source of randomness. In IPI, the
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SV-Delta is less than 0.5 for string sizes up to 9 (s = 9 and δ = 0.460185251).
Moreover, no zero distribution has been found in IPI distribution until the string
size of 21 (s = 20 and δ = 0.99923426). Although IPI showed lower dependency
to history compared to QRS, both of them suffers from this problem.

EEG signals in overall show better quality compared to ECG signals. Among
EEG signals, Delta wave has the highest dependency to history (Fig. 2c). In
Delta wave itself, the best combination of bits is when 9 least significant bits of
Delta Wave value is selected. The value of SV-Delta, in Delta wave, is lower than
0.5 up to string size of 15 (s = 15 and δ = 0.47886351). The SV-Delta is lower
than one up to string size of 22 (s = 22 and δ = 0.99851962). Next is Theta wave
where the 7 least significant bits of its coding provide the least dependability
to history for it. Alpha, Beta and Gamma showed more randomness compared
to Delta and Theta. Interestingly, all these three waves belong to conscious
operation of the brain, while Delta and Theta are waves of unconscious mind.

Among the conscious mind waves, Alpha provides the least dependency to
the history. The best combination of bits to achieve this is the seven least
significant bits. In Alpha wave, the SV-Delta value is less than 0.5 for string
sizes up to 17 (s = 17 and δ = 0.450936539). Moreover, the SV-Delta value is
less than 1 for string sizes up to 23 (s = 23 and δ = 0.998452611). Another
interesting point regarding the Alpha wave is that for string size up to 15 the
SV-Delta value is less than 0.287290776. The reason for this very big jump from
0.287 in string size of 16 to 0.754 in string size of 19 and afterwards could be
interpreted as the sample size error. This is related to the problem of sample
size.

The necessary sample size to measure the dependency to history is increasing
by the 2 with the power of string size. In order to have 95% confident interval,
considering than the sample size is uniform (best case scenario), for string size
of s = n, the number values needed in the series is 1000 ∗ 2n. For instance, in
string size of s = 24, the sample size should consists of at least 16,777,216,000
values. But, as represented above, the number of samples for each physiological
signal is much lower than this. A meaningful boundary for string size could be
s = 18, where the sample size should consists of at least 262,144,000 values.
Considering the maximum value of s = 18, still ECG physiological signals (IPI
and QRS) show high dependency to history. Meanwhile, in EEG signals, Alpha
Wave has the lowest dependency to history, but still even that small amount of
dependency makes it not a very good candidate for randomness extraction.

6 Conclusion

A physiological signal must have a certain level of randomness inside it to be a
good candidate for generating cryptographic key from that. A strong random
source should have many features including independency to history. Depen-
dency to the history is a measure where the adversary has infinite access to
the history of generated random bits from the source and wants to predict the
next random number based on that. In this paper, using a large dataset of
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physiological signals collected from PhysioNet, the dependency to history of
Interpuls Interval (IPI), QRS Complex, and EEG signals were examined. The
results showed that despite the general assumption that the physiological signals
are random, all of them are weak sources of randomness with high dependency
to their history. Among them, Alpha wave of EEG signal shows a much better
randomness and is a good candidate for post-processing and randomness extrac-
tion algorithm. The results of this paper have a great impact on the security of
IMDs, where till now the quality of randomness of physiological signals consid-
ered to be high. With this result, a new set of researches is needed to investigate
the randomness extraction algorithms from body physiological signals for secure
communication between IMD inside the body and its outside world.
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