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Abstract 

This study investigated the effects of leucine or leucine + glutamine supplementation on 

recovery from eccentric exercise. In a double-blind independent groups design, 23 men were 

randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 

0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets 

of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, 

counter-movement jump (CMJ) height, delayed onset muscle soreness (DOMS) and creatine 

kinase (CK) were measured at baseline, 1 h, 24 h, 48 h and 72 h post-exercise. There was a 

time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences 

between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d 

= 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 

24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher 

strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d 

= 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate 

of recovery compared to placebo after eccentric exercise. These findings highlight potential 

benefits of co-ingesting these amino acids to ameliorate recovery.  

 

Key words: Amino Acids, muscle damage, recovery, supplementation, exercise. 
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Introduction  

Specific forms of exercise require eccentric muscle loading patterns, such as plyometric 

training (Twist et al., 2008), which increase the amount of mechanical stress on the muscle. 

During eccentrically-biased exercise, the external forces applied to muscle groups overcome 

their internal resistance, resulting in the muscle lengthening under tension (Howatson and van 

Someron 2008). During eccentric contractions, lower muscle activation and preferential 

recruitment of fast-twitch fibres leads to greater tension per muscle fibre and a bias toward type 

II muscle fibre damage (Shepstone et al., 2005). Loading the lengthening muscle under-tension 

causes greater myofibrillar damage and so-called sarcomere popping, indicating mechanical 

damage to the cellular structures (Leiber and Friden, 1999). As a result, exercise–induced 

muscle damage (EIMD) is typically observed after resistance exercise but is exacerbated when 

eccentric exercise is performed, relative to concentric exercise at the same intensity (Proske 

and Morgan, 2001). This can be intended by the athlete to promote muscle growth by inducing 

greater mechanical tension, thus disturbing the integrity of skeletal muscle and promoting 

microdamage in muscle fibres (Schoenfeld, 2010; 2012).  

 

In the days (24-72 h) following eccentrically-biased exercise, EIMD is manifested by a 

transient decrease in force production, delayed-onset muscle soreness (DOMS) and leakage of 

intramuscular proteins into the circulation (i.e. creatine kinase; CK) (Sorichter et al., 1999). 

The derangement of intracellular Ca2+ homeostasis, caused by the insult of heavy resistance 

exercise, initiates a cascade of intra-cellular events that lead to the activation of proteolytic and 

lipolytic pathways, thus damaging cellular structures (Gissel and Clausen 2001). These 

processes give rise to a secondary inflammatory phase, whereby protein uptake is increased for 

use as an energy substrate or to mediate cell signalling pathways that are necessary for muscle 

and connective tissue remodelling (Nicastro et al., 2012).  

 

Given the demands of frequent resistance training, full and rapid recovery between bouts of 

exercise is desirable. Therefore, interventions that help to attenuate the effects of muscle 

damage are beneficial to the athlete by reducing the decline in physical function and permitting 

greater engagement with training in the days following exercise (Cheung et al., 2003; Proske 

and Morgan, 2001; Howatson and van Someren, 2008). One type of branched-chain amino acid 

(BCAA), namely leucine, can be prophylactically ingested to attenuate symptoms of muscle 

damage (da Luz et al., 2011). Supplementation of leucine has been suggested to suppress 

muscle proteolysis (Zanchi et al., 2008) and reduce protein oxidation (Shimomura et al., 2009) 

after muscle-damaging exercise, thus helping to balance protein turnover in the cell, as well as 

maintaining the integrity of the muscle cell membrane. Indeed, muscle protein synthesis is 

directed toward the repair or remodelling of structural and contractile proteins in the days after 

muscle-damaging exercise (McGlory et al., 2017). This is relevant because skeletal muscle 

proteins, such as CK, lactate dehydrogenase (LDH) or myoglobin (Mb), are known to exit the 

cell and indirectly infer cellular damage, acting as surrogate markers of muscle damage. For 

example, Kirby et al. (2012) reported reductions in serum Mb and CK concentration 24 h 

following eccentrically-biased exercise after subjects were supplemented with 250 mg/kg body 

mass of leucine 30 min before, during and immediately post-exercise and the morning of each 

recovery day.  

 

Whist leucine is an effective recovery supplement when co-ingested with other BCAAs 

(Howatson et al., 2012; Waldron et al., 2017), it is possible that leucine is more effective for 
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cellular recovery when it is not mixed with BCAA solutions. This may be due to the reported 

competition between leucine, isoleucine and valine for cellular transport (Cynober, 2002). 

Indeed, the combination of leucine with other amino acids (AA), such as glutamine, has greater 

theoretical support. This relates to the putative roles of leucine during the acute inflammatory 

phase of muscle damage (see Rowlands et al., 2016), which relies upon the known 

transamination of leucine into glutamate. This process effectively contributes to the glutamate-

glutamine pool (Golden et al. 1982), which is a substrate for inflammatory cells (Gleeson, 

2008). Indeed, given the numerous cellular interactions between glutamine and leucine 

(Nicastro et al., 2012), it is possible that optimal combinations of leucine and glutamine would 

ameliorate recovery through anti-inflammatory processes. Glutamine, ingested alone, has also 

been shown to reduce strength losses following eccentric exercise (Street et al., 2011). 

However, there is no study examining the effects of leucine, in combination with other anti-

inflammatory amino acids, on the recovery from muscle damaging exercise. 

 

Therefore, the aim of this study was to investigate the effects of acute body-mass dependent 

leucine or leucine + glutamine supplementation on recovery from eccentrically-biased exercise 

among recreational athletes. It was hypothesized that the leucine or leucine + glutamine 

supplementation would attenuate symptoms of muscle damage compared to the placebo group, 

but that the co-ingestion group would have the largest effects on recovery.  

Methods 

Participants 

Twenty three males (mean ± SD age 21 ± 1 years, stature 180.2 ± 6.1 cm, body mass 86.5 ± 

7.9 kg) consented to take part in this study. A total sample of 18 was required, based on an 

effect size of 0.5 and statistical power of 0.95. Informed consent was obtained from all 

individual participants included in the study. All participants were recreationally resistance-

trained athletes, with a minimum of one year training history. To be included in this study, the 

participants had to be injury-free and train on a weekly basis using a mixture of resistance 

exercises. Participants were initially screened for any recent injuries or movement 

compensations that may cause pain or discomfort when performing the movements to be 

included in the study (i.e. drop-jumps). Ethical approval was granted for this study by the 

Institutional ethics committee. All procedures were performed in accordance with the ethical 

standards of the institutional research committee and with the 1964 Helsinki declaration and 

its later amendments or comparable ethical standards. 

 

Design 

Two weeks prior to testing, participants were told to cease any use of nutritional supplements, 

additional to their normal diet, such as protein supplements, creatine and AA. The participants 

were advised to avoid any drugs with anti-inflammatory properties and not to use compression 

garments or seek therapeutic intervention, such as hydrotherapy treatments or forms of 

massage. Participants were also provided with daily diet suggestions to follow from 48 h before 

the study until their final testing day. This comprised a macronutrient composition of 50% 

carbohydrate, 15% protein (of similar amino acid content) and 35% fat. The participants visited 

the laboratory at the same time of day on five separate days, approximately 2 h after eating 

breakfast. During visit 1, the participants were familiarized with the testing procedures and 

were weighed for subsequent calculation of the leucine supplement. The participants were also 

familiarised with the muscle soreness scale and muscle function test, as well as the specific 

instructions for how to perform a drop jump, including intensity and technique, as this would 
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be the mode of muscle-damage during the study. Familiarization was deemed to be sufficient 

after one visit as the participants were consistent in their performance on all tests and indicated 

that they were comfortable in performing them.  

 

After visit 1, the participants were assigned to one of the three conditions by an independent 

laboratory technician (leucine, leucine + glutamine or placebo) in a double-blind, independent 

groups design. The participants were matched on their counter-movement jump height to 

ensure a baseline similarity in a functional measure of physical fitness, which was determined 

at familiarisation. The randomisation was carried out by assigning each participant a number 

and using publicly available software to allocate their group (http://www.randomization.com/). 

  

Visit 2 was carried out 72 hours after visit 1, with no other exercise performed in between. At 

visit 2, the participants had capillary blood samples drawn from the finger for the measurement 

of baseline CK and then performed a battery of baseline tests in the following order: perceived 

soreness, lower-limb isometric strength and countermovement jumping. After the baseline 

testing, participants were given the supplement and 30 min later they were supervised through 

the muscle-damage protocol. Following this, a second supplement was ingested and 30 min 

later the battery of tests were repeated. Visits 3, 4 and 5, took place at 24 h, 48 h and 72 h, 

respectively, after the initial muscle damage protocol. At each of these visits the same battery 

of tests was performed before and after the muscle damage protocol. At visits 3 and 4, 

supplements were provided 30 mins before and 30 min after the muscle damage protocol. At 

visit 5, a morning supplement was provided, as well as the final supplement, 30 min prior to 

the muscle damage protocol.  

 

Procedure 

Knee-extensor isometric strength  

To test the maximal isometric strength of the knee-extensor muscles, each participant sat on a 

custom made, adaptable strength chair, with their back and knees fully supported. Their knee 

was firmly fixed at 100˚ and their hips at 110˚, which was verified using a goniometer. Their 

right leg was firmly strapped to the chair across the mid-thigh, whilst their ankle (immediately 

above malleoli) was fixed to a strain gauge (Interface SSM-AJ-500 Force Transducer; 

Interface, Scottsdale, AZ; 0.05% maximum error), sampling at 1000 Hz. The strain gauge 

recorded force as alteration in voltage. Calibration of the strain gauge with a known mass 

demonstrated the relationship between voltage and Newtons as linear, allowing determination 

of a regression formula to convert voltage to Newtons. A second calibration was performed 

with the same weights at the completion of testing, producing an ICC of 0.99. The strain gauge 

was attached to the participant using a high tension belt. The chair set-up was replicated for 

each participant in subsequent trials. The participants’ upper-body was also tightly fitted to the 

chair with two stabilisation straps across each shoulder, which they were instructed to grip with 

their hands throughout the testing. A command of ‘3-2-1-GO’ was given, after which the 

participants performed a maximal isometric knee extension for 5 s. Non-specific verbal 

encouragement was provided to the participants for motivation. Participants performed three 

maximal tests, separated by 2 min. A maximal voluntary contraction was determined as the 

highest of three values and recorded for analysis. If the peak force (N) produced by participants 

systematically increased across the three tests, a fourth test was conducted. The reliability of 

this procedure was 2% (coefficient of variation; CV). 

http://www.randomization.com/
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Counter-movement jumping (CMJ) 

Participants performed a CMJ on a jump mat (Probiotics Inc, Huntsville, AL, USA) by standing 

with their feet at shoulder width, hands on hips and descending to ~90˚ before propelling 

themselves vertically to the highest possible height, keeping their legs fully extended. 

Standardised non-specific motivation and cues were provided to facilitate performance. The 

participants performed three jumps, separated by 2 min and the highest jump height (cm) was 

recorded. If the values systematically increased across the three tests, a fourth test was 

conducted. The test re-test reliability of this procedure was 1.2% (CV).  

 

Blood sampling and analysis 

The index fingertip of the subject was cleaned using a sterile alcohol swab and allowed to dry. 

Capillary blood was drawn from the finger and a sample of whole blood (30 μL) was collected 

into a heparinised capillary tube. The whole blood was centrifuged at 3000 rpm (4 °C) for 5 

min, and the resultant plasma was removed and stored at -80°C until subsequent analysis. 

Plasma CK was measured using a chemistry analyser (Rx Monza, Randox Laboratories Ltd., 

Crumlin, Antrim, UK). The intra-sample CV of the analyser is < 4% CV at high and low 

concentrations and the expected baseline sample range is 37-2755 IU/L for CK, according to 

manufacturer’s guidelines. To eliminate inter-assay variance, all samples were analysed in the 

same assay run. 

 

Perceived soreness 

The participants were asked to rate their perceived muscle soreness in the lower-limbs from 0-

10 on a 200 mm Visual Analogue Scale (VAS). The numbers were concealed from the 

participant on the reverse of the scale, whilst the verbal anchors of no muscle soreness (0 on 

reverse), soreness upon movement (5 on reverse) and too sore to move (10 on reverse) were 

observed from the front of the scale. To do this, the participants performed a 5 s isometric 

squat, with their ankles, knees and hips at 90˚ and, after 5 s, moved a sliding scale to the number 

which they perceived to correspond to their level of soreness (Howatson et al., 2012).  

 

Supplementation 

All supplements were sourced from the same company (Myprotein, Cheshire, UK). Each 

participant was supplemented with one of three supplements: a placebo, a leucine beverage or 

a leucine + glutamine beverage, all of which contained 0.3 g/kg body mass of maltodextrin 

dissolved into 300 ml of water. This ensured that the drinks were indistinguishable in taste. 

The leucine drink was provided at a high dose of 0.087 g/kg (87 mg/kg) body mass (Børsheim 

et al., 2002). This dosage of AA has been shown to promote recovery from resistance exercise 

(Børsheim et al., 2002) and is between the dosages provided in previous studies, which range 

between 22.5 mg/kg and 250 mg/kg of body mass (Stock et al., 2010; Kirby et al., 2012). The 

highest doses were not chosen so that the leucine + glutamine group could comfortably co-

ingest with an additional 0.3 g/kg body mass of glutamine (Street et al., 2011) and without 

noticing the taste or difference in the drinks consistency. Drinks were consumed 30 min before 

and after the muscle damage protocol (Jackman et al., 2010). Over the following 72 h, the 

supplements were provided 30 min before and after re-testing. On the final day, the supplement 

was taken with breakfast and 30 min before testing to provide two doses. The supplements 

were prepared by an independent laboratory technician. 
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Muscle-damage protocol 

A standardised warm-up was performed on the day, comprising walking, jogging and dynamic 

stretching. The participants then performed 5 sets of drop jumps from a 60 cm box, with each 

set comprising 20 repetitions (100 repetitions total) (Howatson et al., 2012). Participants were 

provided with 10 s between each jump, with 2 min rest between sets. All of the participants 

were able to complete the protocol.  

 

Statistical analyses 

After checks for sphericity, a two-way within and between analysis of variance was performed 

to evaluate the main effects of time (baseline, immediately post, 24 h, 48 h and 72 h post-

exercise) and group (placebo, leucine and leucine + glutamine) and their interactions on the 

dependent variables. If tests of Sphericity were violated, the Greenhouse-Giesser correction 

was used. In the event a statistical difference was identified, a post-hoc Bonferroni test was 

used to identify differences. The dependent variables were isometric strength, CK 

concentration, delayed onset muscle soreness and countermovement jump height (each 

expressed relative to baseline; %). Effect sizes (Cohen’s d) were also performed on pairwise 

comparisons and defined as; trivial = 0.2; small = 0.21–0.6; moderate = 0.61–1.2; large = 1.21–

1.99; very large > 2.0 (Batterham and Hopkins, 2006). An alpha level of P  0.05 was set for 

all analyses. Statistical analysis was conducted through IBM SPSS (Software V22.0, IBM, 

New York, USA). 

 

Results 

All absolute changes (unit-specific) are presented in Table 1. All relative changes (% baseline) 

are presented in Figures 1-4. 
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Table 1  

         Baseline Post-exercise 24 h    48 h 72 h 

Isometric strength (N) Leucine + Glutamine 743.0 ± 147.7 699.0 ± 150.8 681.8 ± 150.2 656.9 ± 146.6 760.3 ± 140.2 

 Placebo 635.4 ± 95.8 597.0 ± 99.2 567.7 ± 102 539.6 ± 102.9 614.2 ± 92.6 

 Leucine 672.4 ± 94.7 634.0 ± 85.5 605.3 ± 89.2 572.1 ± 83.9 675.1 ± 92.6 

                 

CMJ (cm) Leucine + Glutamine 32.7 ± 5.1 32.7 ± 6.2 30.9 ± 5.1 32.5 ± 5.9 34.1 ± 5.9 

 Placebo 30.1 ± 2.1 28.2 ± 2.1 27.5 ± 2.6 27.2 ± 2.7 28.6 ± 2.8 

 Leucine 33.9 ± 5.3 33.0 ± 4.9 31.9 ± 4.1 32.1 ± 3.8 33.6 ± 4.7 

                 

DOMS (0-10) Leucine + Glutamine 1.5 ± 0.5 5.3 ± 0.5 5.4 ± 0.7 4.6 ± 0.9 2.1 ± 0.6 

 Placebo 1.4 ± 0.5 5.4 ± 0.5 6.1 ± 0.4 6.0 ± 0.4 4.0 ± 0.0 

 Leucine 1.5 ± 0.5 5.4 ± 0.5 5.5 ± 0.8 5.1 ± 0.4 2.4 ± 0.5 

                 

CK (IU/L) Leucine + Glutamine 131.8 ± 54.0 298.4 ± 121.2 607.5 ± 345.2 229.6 ± 107.0 192.0 ± 100.2 

 Placebo 94.1 ± 35.6 217.7 ± 73.5 431.1 ± 128.0 245.1 ± 116.0 189.0 ± 100.8 

  Leucine 98.7 ± 26.2 230.4 ± 67.9 412.3 ± 117.2 191.6 ± 80.1 192.1 ± 108.7 

Absolute values of isometric strength (N), countermovement jump (CMJ) height (cm), delayed onset muscle soreness (DOMS; 0-10) and creatine 

kinase (CK) concentration (UI/L) at baseline, post-exercise, 24 h, 48 h and 72 h after exercise among recreationally trained participants (n = 23). 

Statistical interpretations are included on relative data in Figures 1-4.  
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Changes in isometric force (% baseline) are presented in Figure 1 (mean ± SD). There were 

main effects of time for isometric strength (F (4,80) = 135.3; P < 0.001), with post-hoc tests 

demonstrating differences between baseline and all subsequent time points (P < 0.001) apart 

from 72 h, where strength returned to baseline (P = 1.000). There was a time × group 

interaction (F (8,80) = 2.161; P = 0.039), with post-hoc tests identifying differences between the 

leucine + glutamine and the placebo group at 24 h (91.4 ± 3.4 % vs. 87.5 ± 3.2 %; P = 0.045; 

d = 1.09), at 48 h (88.1 ± 3.2 % vs. 82.6 ± 2.9 %; P = 0.013; d = 1.43) and at 72 h (102.7 ± 3.0 

% vs. 96.2 ± 3.8 %; P < 0.001; d = 2.06). The leucine group also demonstrated higher strength 

at 72 h compared to the placebo group (100.4 ± 1.2 % vs. 96.2 ± 3.8 %; P = 0.007; d = 1.65). 

 

Figure 1. Isometric knee extensor force (% baseline) at baseline, immediately post-exercise 

and 24 h, 48 h and 72 h post-exercise in placebo (n = 7), leucine (n = 8) and leucine + glutamine 

(n = 8) groups. Note: Leu = leucine; Glu = glutamine and * = sig. different between Leu+Glu 

and placebo; † = sig. different between leucine and placebo. SD bars removed for clarity. 

 

Changes in CMJ height (% baseline) are presented in Figure 2. There were main effects of time 

for CMJ height (F (4,80) = 9.538; P < 0.001), with post-hoc tests demonstrating differences 

between baseline and all subsequent time points (P < 0.001), apart from 72 h, where CMJ 

height returned to baseline (P = 1.000). There was a time × group interaction (F (8,80) = 2.734; 

P = 0.05), with post-hoc tests identifying differences between the leucine + glutamine and the 

placebo group post-exercise (99.6 ± 5.6 % vs. 93.6 ± 2.3 %; P = 0.007; d = 1.47), at 48 h (99.5 

± 7.6 % vs. 90.3 ± 5.1 %; P = 0.008; d = 0.87) and at 72 h (104.6 ± 11.0 % vs. 94.7 ± 6.2 %; P 

= 0.019; d = 1.17). There were no pairwise differences (P > 0.05) between the leucine and 

placebo group for CMJ height.   
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Figure 2. Countermovement jump height (CMJ % baseline) at baseline, immediately post-

exercise and 24 h, 48 h and 72 h post-exercise in placebo (n = 7), leucine (n = 8) and leucine + 

glutamine (n = 8) groups. Note: * = sig. different between Leu+Glu and placebo. SD bars 

removed for clarity.     

 

Changes in DOMS (% baseline) are presented in Figure 3. There were main effects of time for 

DOMS (F (4,80) = 84.114; P < 0.001), with post-hoc tests demonstrating differences between 

baseline and all subsequent time points, including 72 h (P < 0.001). There was no time × group 

interaction (F (8,80) = 1.473; P = 0.181) but effect size estimates demonstrated large differences 

between the leucine + glutamine and placebo groups (d = 1.31 and d = 1.40) and leucine and 

placebo groups (d = 1.21 and d = 1.38) at 24 h and 48 h, respectively.    
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Figure 3. Delayed onset muscle soreness (DOMS % baseline) at baseline, immediately post-

exercise and 24 h, 48 h and 72 h post-exercise in placebo (n = 7), leucine (n = 8) and leucine + 

glutamine (n = 8) groups. SD bars removed for clarity. 

 

Changes in CK (% baseline) are presented in Figure 4. There were main effects of time for CK 

(F (4,80) = 4.616; P = 0.009), with post-hoc tests demonstrating differences between baseline 

and 24 h (P < 0.001). There were interactions between group and time (F (4,80) = 2.319; P = 

0.046), with post-hoc tests revealing differences between the leucine + glutamine and the 

placebo group at 24 h (437.6 ± 86.4 % vs. 501.6 ± 161.8 %; P = 0.012; d = 0.54) and 48 h 

(171.2 ± 31.7 % vs. 281.3 ± 122.0 %; P = 0.010; d = 1.37), as well as the leucine and placebo 

group at 24 h (426.8 ± 89.6 % vs. 501.6 ± 161.8 %; P = 0.039; d = 0.63) and 48 h (193.5 ± 54.4 

% vs. 281.3 ± 122.0 %; P = 0.022; d = 1.03). 
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Figure 4. Creatine kinase concentration (CK % baseline) at baseline, immediately post-

exercise and 24 h, 48 h and 72 h post-exercise in placebo (n = 7), leucine (n = 8) and leucine + 

glutamine (n = 8) groups. * = sig. different between Leu+Glu and placebo; † = sig. different 

between leucine and placebo. SD bars removed for clarity. 

 

Discussion 

All of the participants exhibited signs of muscle damage in this study and, in support of our 

hypothesis, co-ingestion of leucine and glutamine improved the rate of recovery after 

eccentrically-biased exercise more than placebo and leucine alone. The effects of co-ingested 

leucine and glutamine were such that all of the functional variables (i.e. isometric strength, 

CMJ) returned to baseline at the greatest rate. The leucine group also recovered faster than the 

placebo group but not by the same magnitude as the co-ingestion group. This was particularly 

notable for measures of isometric strength and CMJ, which are established measures of the 

time-course and magnitude of recovery after muscle damaging exercise (Byrne et al., 2004). 

The differences between groups were predominantly noted at the 24-48 h period, with the 

leucine + glutamine group demonstrating ‘moderate-large’ improvements in strength, CMJ, 

DOMS and CK compared to placebo (Figures 1-4). These findings demonstrate a faster return 

to baseline values and indicate that the combination of a well-known proteinogenic amino acid 

(leucine), with an anti-inflammatory amino acid (glutamine), confers the greatest effects on 

recovery. 

 

Acute supplementation of isolated leucine at doses of 22.5 mg/kg (Stock et al., 2010) and 250 

mg/kg of body mass (Kirby et al., 2012) has been shown to ameliorate recovery from muscle 

damaging exercise. For example, Kirby et al. (2012) reported an improvement in recovery of 

isometric strength (~ 5 %) after muscle damage, using a short-term (beginning 30 min prior to 

exercise) leucine supplementation regime, similar in timing to the current study. In 

combination with other BCAAs, leucine has been repeatedly shown to increase the rate of 

recovery from muscle damaging exercise (Howatson et al., 2012; Jackman et al., 2010; 
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Matsumoto et al., 2009; Waldron et al., 2017). While some have reported no change in muscle 

damage markers following BCAA supplementation (Kephart et al., 2016; Ra et al., 2013), this 

could be related to the relatively small doses (~ 3-5 g) provided compared to other studies (15-

20 g; Waldron et al., 2017; Howatson et al., 2012). Whilst there are putative roles for all 

BCAAs in muscle protein synthesis (Blomstrand et al., 2006), leucine is known to confer the 

most potent anabolic signalling effects, whereas isoleucine and valine have negligible 

contributions (Atherton et al., 2010). This is most likely worsened by the reported competition 

between leucine, isoleucine and valine for cellular transport, following co-ingestion (Cynober, 

2002). Leucine is also known to inhibit muscle proteolysis, thus maintaining muscle protein 

balance (Baptista et al., 2010). Since both of the current supplements improved the recovery 

from eccentric exercise and each contained leucine, the role of leucine in reducing symptoms 

of muscle damage are apparent and support that of other studies (Kirby et al., 2012; Stock et 

al., 2010). Furthermore, the magnitude of change in isometric force production was similar, or 

greater, than previously reported with BCAA supplementation (Howatson et al., 2012; 

Waldron et al., 2017), providing further indirect support for the ergogenic effects of isolated 

leucine, relative to co-ingestion.   

 

Glutamine can be classified as an anabolic and immunostimulatory AA, owing to its 

participation in myogenic signalling pathways and role as a substrate for leukocytes, 

respectively (Gleeson, 2008). Oral glutamine supplementation (0.3g/kg body mass) reduces 

strength loss following an acute bout of eccentrically-biased exercise (Legault et al., 2014; 

Street et al., 2011), which was attributed to both its anti-inflammatory role and involvement 

with protein synthesis pathways. Indeed, both glutamine and leucine possess anti-inflammatory 

properties. For example, Cruzat et al. (2010) supplemented rats with 1.5 g/kg of glutamine for 

3 weeks, reporting lower post-exercise concentrations of pro-inflammatory cytokines. 

Administration of leucine-rich AA has also been shown to reduce the appearance of 

inflammatory cytokines, whilst increasing muscle protein synthesis after both eccentric 

exercise in rodents (Kato et al., 2016) and endurance exercise in athletes (Rowlands et al., 

2016). Rowlands et al. (2016) provided 15 g of leucine to athletes as part of a balanced 

macronutrient recovery meal. The authors demonstrated decreased leukocyte migration and 

connective tissue development, indicating the acute anti-inflammatory and proteinogenic 

properties of leucine rich supplementation. These processes provide a logical explanation for 

the descriptive reductions in DOMS herein (ES = large), as muscle soreness is partly related 

to local inflammation, whereby local swelling acts to sensitise nociceptors located in the 

muscle (Proske and Morgan, 2000). Therefore, whilst inflammation is a necessary part of the 

recovery process that follows acute mechanical damage of the myofibres (Howatson and van 

Someren, 2008), its reduction could reduce the perceived limb soreness of athletes and 

accelerate their recovery from eccentric exercise.   

 

Given that the co-ingestion of glutamine and leucine provided the greatest effect on recovery 

in this study, it is necessary to provide some speculation on their potential interaction in vivo. 

Leucine is an essential nitrogen donor in the synthesis of glutamine. Once inside the cell, 

leucine reversibly transaminates to glutamate, particularly during short periods of high-

intensity exercise (Henriksen, 1991), thus contributing to the glutamate-glutamine pool (Aoki 

et al., 1981; Golden et al 1981). The influx of leucine into the cell is also dependent on the 

efflux of glutamine, owing to the integrated transport systems of these AA (Nicastro et al., 

2012). Indeed, under certain physiological conditions, it has been shown that glutamine 

transport into the cell, via its transporter SLC1A5, is rapidly used to facilitate the influx of 
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extracellular leucine via an efflux of glutamine through a bidirectional SLC7A5/SLC3A2 

transporter, which can subsequently activate the mammalian target of rapamycin complex 

(mTOR) complex (Nicklin et al., 2009). Therefore, it is likely that the exogenous supply of 

glutamine, administered herein, might have provided a greater stimulus for leucine uptake into 

the cell, as it is known that oral supplementation of glutamine or leucine increases plasma 

concentrations (Churchward-Venne et al., 2014; Rowlands et al., 2016) and transport of leucine 

into the cell in the post-absorptive state. The transport of leucine into the muscle cell is 

necessary prior to its participation in protein synthesis or before contributing to the intracellular 

glutamine content. Therefore, co-ingesting leucine and glutamine could i) facilitate transport 

of leucine into the cell and ii) contribute to the glutamine-glutamate pool, thereby iii) sparing 

free leucine and increasing its availability.  

 

The current study is limited by the number of experimental groups that were included. It is 

possible that the effects we have observed are related to the higher energy or amino acid content 

of the leucine + glutamine group, rather than the specific combination of amino acids. 

Similarly, the placebo group did not ingest any additional amino acids outside of their normal 

diet. We opted to investigate a fixed dose of leucine, rather than an isocaloric dose, to establish 

whether the effects of the isolated leucine dose could be enhanced. This dose provided an 

average ~ 15/day of leucine in the current participants, which was deemed to be suitable, given 

that 5 g of leucine has been considered as ‘high’ and sufficient to increase muscle protein 

synthesis above higher doses of whey protein supplements (Churchward-Venne et al., 2014). 

Nevertheless, our results show that recovery from eccentric exercise, facilitated by acute doses 

of leucine, can be improved by adding glutamine or additional AA to the ingested supplement. 

Future research should consider adding additional energy- or AA-matched groups to the current 

research design to establish this.     

 

Conclusion 

Acute oral supplementation of leucine (0.087 g/kg) or leucine + glutamine (0.087 g/kg + 0.3 

g/kg) increased the rate of recovery in isometric strength, CMJ height, DOMS and CK 

compared to placebo after eccentrically-biased exercise. Based on a 100 kg athlete 

supplementing twice daily, 17.4 g of leucine, plus 30 g of glutamine would be necessary to 

accelerate recovery. However, further studies are required to understand whether the provision 

of an iso-caloric or iso-amino acid supplement would achieve the same effect.  
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