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General Summary 1 

 2 

As honey bees live in large colonies with central food reserves and developing brood, 3 

these crucial resources are protected by guards at the colony entrance.  Guards can 4 

discriminate between nestmate and non-nestmate honey bees, but little is known about 5 

the mechanisms underlying defence against predators.  In this study, we examined the 6 

role of guards in defending the colony against a commonly observed predator of honey 7 

and brood: the common wasp Vespula vulgaris.  In late summer, we transferred colony-8 

specific olfactory cues between nestmate honey bees and wasps, and vice versa (Bee 9 

carrying bee odour, bee carrying wasp odour, wasp carrying bee odour and wasp 10 

carrying wasp odour).  By observing the response of guard honey bees when these 11 

insects were introduced to the colony entrance, we aimed to determine whether predator 12 

olfactory cues influence honey bee guarding behaviour.  Odour cues were transferred by 13 

taking chilled, inactive insects and shaking them together gently in a glass tube.  After 14 

separating the insects, they were kept chilled before being revived and introduced to the 15 

colony entrance. Guarding behaviour was recorded on video and observed for 16 

aggressive attacking behaviour, eviction from the hive and antennation.  The insect 17 

carrying the odour was important in predicting guarding behaviour: nestmate honey 18 

bees were evicted less than wasps, attacked less and antennated more frequently.  19 

Honey bees or wasps carrying wasp odour were also evicted more frequently and 20 

treated more aggressively than those receiving bee odour.  Furthermore, introduced 21 

insects carrying an incongruous, allospecific odour (a conflicting cue) were antennated 22 

more than those carrying a conspecific odour.  The magnitude of some of these 23 

behavioural responses varied between colonies and trial days.  We clearly show that 24 

olfactory cues were transferred between honey bees and Vespula  with marked 25 



 
3 

consequence for guarding behaviour and discuss the potential importance of olfactory 1 

cues in predator recognition.   2 
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Abstract 1 

 2 

Guard honey bees patrol the entrance to the nest and are thought to recognise nestmates 3 

by cuticular hydrocarbons. We aimed to determine whether honey bee guards can 4 

recognise predatory common wasps Vespula vulgaris and nestmates by olfactory cues. 5 

Odours were transferred between both honey bees and wasps and the responses of 6 

guards to controlled introductions monitored. When controlling for the species of  7 

introduced insect, the transferred odour was a predictor of aggressive attacks on both 8 

bees and wasps. Carriers of incongruous, allospecific odours were antennated by more 9 

guards than conspecific odours. Olfactory cues were, therefore, transferred and guards 10 

responded not only to odour per se but also odour incongruity. Olfactory cues may 11 

therefore be important in predator recognition by honey bee guards. 12 

13 
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Introduction 1 

 2 

Guard honey bees Apis mellifera patrol the nest entrance and prevent entry by intruders 3 

(Butler and Free, 1952; Free, 1954).  Conspecific intruders - bees from other colonies - 4 

steal honey and this robbing can result in the total loss of honey stores and the death of 5 

the plundered colony (Winston, 1987).  Many other species also attack honey bee 6 

colonies.  Hornets Vespa spp. are large enough to kill adult honeybees and may enter 7 

the colony to carry off developing larvae and pupae (Futuyama, 1986; de Jong, 1990).  8 

Similarly, yellow-jacket wasps Vespula spp. frequently kill adult honey bees at the 9 

entrance and also steal honey from the colony, a particular problem in late summer and 10 

early autumn when the annual wasp colony reaches its peak population (Spradbery, 11 

1973; de Jong, 1990).  In Sheffield, common wasps Vespula vulgaris can become 12 

abundant and have been seen to enter hives to steal both brood and honey (N.S. 13 

Badcock, pers. comm.). 14 

 Allospecific intruders could be recognised by a variety of potential cues.  Honey 15 

bees have well developed vision (Giurfa et al., 1995; Lunau and Maier, 1995) and can 16 

discriminate between complex textures and patterns (Maddess et al., 1999).  Honey bees 17 

also have excellent olfaction (von Frisch 1967), which is important in nestmate 18 

discrimination based on genotype-specific cues (Getz and Smith, 1983; but see Downs 19 

and Ratnieks, 1999), comb wax hydrocarbons  (Breed et al., 1988a; Breed et al., 1995) 20 

and floral oil odours (Bowden et al., 1998; but see Downs et al,. 2000; Downs et al., 21 

2001). 22 

 Common wasps and honey bees are sympatric in Europe (Spradbery, 1973; 23 

Winston, 1987).  There exists, therefore, the potential for coevolution between predator 24 

and prey (Futuyama, 1986).  In Japan, for example, the Asian honey bee Apis cerana 25 
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japonica recognises the aggregation pheremone of a sympatric predator, the giant hornet 1 

Vespa mandarinia, forming a ball around the intruder until the temperature becomes 2 

high enough to kill the hornet, but not the bees. By contrast, European honeybees A. 3 

mellifera  introduced to Japan do not respond (Matsuura and Sakagami, 1973; Ono et 4 

al., 1995). 5 

In view of the sympatry of honey bees and common wasps and the potential 6 

ubiquity of cuticular hydrocarbons in insect recognition, the aim of this study was to 7 

examine the importance of olfactory cues in the recognition of Vespula vulgaris by 8 

honey bee guards, a sympatric wasp predator.  We transferred odours between honey 9 

bees and wasps and observed their treatment by honey bee guards at the colony 10 

entrance.  While guards always behaved more aggressively to wasps than bees, they 11 

were more aggressive to bees with wasp versus nestmate bee odour, and less aggressive 12 

to wasps with nestmate bee versus wasp odour.  Incongruous, allospecific odours (i.e. 13 

bee with wasp odour or wasp with bee odour) resulted in increased guard antennation.   14 

 15 

 16 

Methods 17 

 18 

Study species 19 

Three discriminator honey bee Apis. m. mellifera colonies were studied at the apiary of 20 

the Laboratory of Apiculture and Social Insects.  Colonies were situated 2m apart to 21 

minimise drifting between colonies, were queenright with approximately 20,000 22 

workers and brood and were housed in standard two-deep Langstroth hive bodies.  Each 23 

colony had a 3.5cm diameter entrance hole in the lower box immediately above a 15cm 24 

by 20cm wooden platform to facilitate both introductions and observations.  Introduced 25 
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bees or wasps were placed on the centre of this platform to be contacted by guards 1 

patrolling the platform and entrance. 2 

 Nests of the common wasp Vespula vulgaris were collected during pest control 3 

visits to houses in Sheffield, and relocated to the laboratory where they were housed in 4 

30×30×30cm polystyrene boxes with one 5cm diameter entrance hole.  5 

 6 

Odour transfer 7 

The following procedure was used to transfer odour within and among groups of honey 8 

bees and wasps.   Returning honey bee foragers from each of the three discriminator 9 

colonies, and foraging wasps returning to laboratory study nests were collected.  10 

Captured insects were separated into odour recipients and odour donors.  Recipients 11 

were chilled in a refrigerator at 5°C for 20 minutes to anaesthetise them and prevent 12 

fighting.  Donors were killed by placing them in a freezer at -19°C for 20 minutes, and 13 

then kept at 5°C until used for odour transfers within one hour.  For each odour 14 

treatment group, three recipients were place in a sealed, sterile 20ml plastic Universal 15 

tube containing four donors and lightly shaken for five minutes.  The recipients were 16 

then separated, placed in individual 2ml Eppendorf tubes, and labelled such that 17 

introductions were blind with respect to odour treatment.  Recipients were kept in an 18 

ice-box to await introduction to a discriminator colony within 30 minutes.  19 

All honey bees were introduced to their own colonies and, where appropriate, 20 

received nestmate honey bee odour.  This avoided the complicating factor of non-21 

nestmate honey bee olfactory cues.  Similarly, introductions to a discriminator colony 22 

involving wasps or wasp odour transfer were conducted using wasps from the same 23 

nest.  The four treatment groups were arranged thus, shown as ‘recipient insect (odour 24 

transferred)’: bee (bee), bee (wasp), wasp (bee), wasp (wasp).   25 
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 1 

Guarding assay 2 

The behaviour of guard honey bees was observed using a standard bioassay adapted 3 

from Breed (1983) (see Downs and Ratnieks, 1999; Downs and Ratnieks, 2000; Downs 4 

et al., 2000; Downs et al., 2001) in which the cooled introduced bees and wasps were 5 

allowed to warm up enough to walk but not to fly away.  Using forceps, the introduced 6 

insect was placed on the centre of the entrance platform, taking care not to disturb the 7 

guard bees.  To minimise the observer’s disturbance of the colony, each introduction 8 

was filmed (Sony Hi8 digital camcorder).   9 

 From video footage, each introduced insect was classified as rejected (when it 10 

was either bitten, held, carried away or stung by guards) or accepted (when no such 11 

aggressive approach was made for two minutes following introduction).  In addition, we 12 

also noted evictions – when the introduced insect was physically removed from the 13 

colony entrance by guards and thrown from the platform.  Eviction, therefore, is a more 14 

violent and aggressive sub-category of rejection.  At least five minutes was allowed 15 

between introductions, for the number of guards to return to normal.  We also 16 

determined from the video the number of approaches by guards to each introduced 17 

insect.  These were classified as either aggressive or non-aggressive (guard merely 18 

antennated the introduced insect before moving away).  Guard approach behaviour was 19 

not considered if the insect was evicted or entered the colony in less than 10 seconds, 20 

due to the difficulties in observing guard behaviour in such a short time   Thereafter, the 21 

behavioural observations over a maximum of two minutes were corrected to the mean 22 

number of approaches made per 10 seconds.   23 

Twelve insects were introduced into each discriminator colony on each trial day 24 

of the experiment – three insects from each of the four treatment groups: bee (bee), bee 25 
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(wasp), wasp (bee), wasp (wasp).  These twelve insects were introduced in a random 1 

order to each discriminator colony.  Introductions took place on three separate days in 2 

September 2001, giving a total of 108 introductions.   3 

     4 

Statistical Analysis 5 

The response variables considered were the rejection/acceptance and 6 

eviction/non-eviction of the introduced insect, and the numbers of aggressive and non-7 

aggressive guard approaches.  Guard approach data were normally distributed  8 

following √(x+½) transformation prior to analysis (Finney, 1973) (Kolmogorov-9 

Smirnov test, P>0.05).   10 

  Two predictor factors described the transferred odour: origin of the odour (bee 11 

or wasp) and its comparison with the recipient (conspecific or allospecific).  This allows 12 

a distinction to be made between the odour per se, and an introduced insect with an 13 

incongruous odour (i.e. bee with wasp odour and vice versa).  The sequence of 14 

introduction was included as a covariate (0-12) to control for the potential effect of an 15 

increased guard response as the introductions continue, for example in response to 16 

alarm pheromone (Morse, 1966; Morse et al., 1967).  The potential random effects of 17 

discriminator colony (1-3) and the trial day (1-3) were included as categorical variables. 18 

 The response variables, rejection (0/1) and eviction (0/1) were analysed using a 19 

binomial logistic regression, with a logit link and the backward stepwise elimination of 20 

non-significant variables.  Guard approach behaviour was analysed using a backward 21 

stepwise general linear model.  In the starting model, all predictor variables and their 22 

two-way interactions were entered.  At each step in model optimisation one variable 23 

was eliminated, being the variable making the least significant change in the variance 24 

explained by the model (if P>0.05), until arriving at the final model (all predictors 25 
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P<0.05) (Crawley, 1993).  All statistical tests were two-tailed and means are displayed -1 

± 1 s.e.  Analyses were conducted using S.P.S.S. version 11.0.1. 2 

 3 

Results 4 

 5 

Guard rejection and eviction 6 

All wasps were rejected by guards (Figure 1) as opposed to 35.2% of bees, so the 7 

statistical analysis of guard rejection was restricted to bees.  The transfer of wasp odour 8 

was a highly significant predictor of rejection (Table 1a); 59.3% of bees with wasp 9 

odour were rejected by guards compared to just 11.1% of bees with bee odour.  In this 10 

analysis, which is restricted to bee rejection, the origin of the odour (bee or wasp) and 11 

the incongruity of the odour (conspecific or allospecific) are equivalent.  No other 12 

predictors or interactions were retained in the final model (Table 1a). 13 

 In the case of the eviction of introduced insects, involving sustained aggressive 14 

attacks by guards, the species of the introduced insect could be entered as a predictor, 15 

and was retained in the model (Table 1b).  Furthermore, the species of the transferred 16 

odour (bee/wasp) was retained , as eviction rate was greater in bee (wasp) relative to bee 17 

(bee) and smaller in wasp (bee) relative to wasp (wasp), (Figure 1).  Eviction rate also 18 

varied between trial days and no further predictors or interactions were retained in the 19 

final model (Table 1b). 20 

 21 

Guard approaches: aggression and antennation 22 

The number of aggressive approaches by guards to introduced insects was significantly 23 

affected by the species of introduced insect and trial day (Table 2a).  In addition, the 24 

species of transferred odour was also retained in the final model.  As in the case of 25 
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eviction, aggression towards introductions was lower with transferred bee odour rather 1 

than wasp odour, whether the introduced insect was a bee or a wasp (Figure 2). 2 

 By contrast, the odour classification ‘conspecific/allospecific’ was retained as a 3 

significant predictor of non-aggressive guard approaches to introductions - those that 4 

involved antennation (Table 2b).  As Figure 2 shows, bees or wasps receiving an 5 

allospecific odour treatment were antennated more by guards than bees or wasps 6 

receiving a conspecific odour.  The recipient insect was a significant predictor of guard 7 

antennation, and guard antennation also varied between trial days and discriminator 8 

colony (Table 2b).  9 

 10 

 11 

Discussion 12 

 13 

Our guarding bioassay clearly showed that odours were transferred between bees and 14 

wasps, as demonstrated by their marked effects on guard behaviour.  The species of the 15 

transferred odour (i.e. bee or wasp) had a significant effect on eviction and aggression 16 

by guards.  Transferred wasp odour increased eviction rate and aggressive approaches, 17 

relative to the transfer of bee odour, whether or not the introduced insect was a bee or a 18 

wasp.  The species of introduced insect, bee or wasp, was always a highly significant 19 

predictor of eviction by guards, and both aggressive and non-aggressive approaches by 20 

guards.  This experiment clearly shows that honey bee guards can recognise an 21 

introduced insect using transferred olfactory cues, independent of the insect carrying the 22 

odour, and modify their behaviour accordingly.  Olfactory cues may therefore be of 23 

considerable importance in predator recognition by honey bee guards. 24 

The incongruity of the transferred odour (i.e. conspecific or allospecific) 25 
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remained as a significant predictor of non-aggressive approaches by guards: the 1 

presence of an incongruous odour on the recipient insect increased guard antennation.  2 

Downs et al. (2000) found that nestmate bees introduced to their natal colony carrying 3 

incongruous floral oil odours were examined for longer by guards than honey bees 4 

carrying only the colony floral odour; an increased guard decision effort with no effect 5 

on the eventual decision. 6 

The olfactory cues involved in honey bee nestmate recognition by guards may 7 

be derived from several sources.  No evidence for the use of floral oils has been found 8 

in field conditions (Bowden et al., 1998; Downs et al., 2000; Downs et al., 2001) and 9 

queen-derived chemicals (Moritz and Crewe, 1988; Breed and Stiller, 1992) are not 10 

present in detectable amounts on workers or the honeycomb (Breed et al., 1998).  11 

Endogenous heritable cues have been shown to be important in within-colony 12 

recognition, such as the aggression between sisters and half-sisters (Getz and Smith, 13 

1983). Comb-derived hydrocarbons are rapidly acquired by workers (Breed et al., 14 

1988a) and appear to override endogenous heritable cues in nestmate recognition (Breed 15 

et al., 1988b).  Honey bee cuticles are also rich in hydrocarbons (Francis et al., 1989), 16 

which accounts for the rapid cue transfer from comb to honey bee, so cuticular 17 

hydrocarbons are a likely candidate for the olfactory cues transferred from honey bee to 18 

wasp in this experiment.  The paper nests of some social wasps have been found to 19 

contain hydrocarbons, which are crucial for nestmate recognition (Singer and Espelie, 20 

1992; Butts and Espelie, 1995; Singer and Espelie, 1996).  Remarkably, Polistes social 21 

parasites avoid detection by host workers by mimicking the host’s colony-specific 22 

cuticular hydrocarbon profile (Bagneres et al., 1996; Sledge et al., 2001).  With the 23 

widespread occurrence of cuticular hydrocarbons in insects and their involvement in 24 

nestmate and kin recognition by Hymenoptera (Singer, 1998), common wasp olfactory 25 
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cues are surely available for recognition by honey bee guards, and may have been 1 

transferred from wasp to honey bee in our experiment.     2 

Should olfaction be revealed to be an important factor in predator recognition by 3 

guards, a number of questions arise.  Has coevolution between predator and prey 4 

resulted in European honey bees being particularly sensitive to the odours of common 5 

wasps, as Japanese honey bees are to giant hornets (Ono et al., 1995), or is the degree of 6 

unfamiliarity of the olfactory cue the crucial factor? The introduction of an unfamiliar 7 

wasp to guards, such as sand wasps Bembix spp., may be informative in the latter 8 

context. The reaction of guards to such a novel cue may reveal whether responses to 9 

olfactory cues are learned or innate. As honey bees can rapidly learn rewarding flower 10 

colorations and odours (Menzel et al., 1973) and also have innate flower preferences 11 

(Giurfa et al., 1995; Lunau and Maier, 1995), both mechanisms are plausible. 12 

 13 
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Figure 1. Rejection and eviction by honey bee guards of nestmate bees and

  common wasps introduced to colony entrances  
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Figure 2. Approaches by honey bee guards to nestmate bees and common

  wasps introduced to colony entrances  
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Table 1 

Results of a binary logistic regression, showing variables retained in the final model as 

significant predictors of rejection or eviction, following the stepwise backward 

elimination of non-significant variables.  The change in model deviance (G) and 

associated P-value caused by the removal of each variable retained in the final model 

are shown; G and P-values are also shown for the step prior to the exclusion of 

variables not included in the final model.  The analysis of rejection rate (Table 1a) is 

restricted to introduced nestmate bees, as 100% of wasps were rejected.  In this case, 

transferred odour classifications ‘species’ and ‘conspecific/allospecific’ are equivalent. 

 

a. Rejection of introduced nestmate honey bees by guards 

 

 

Variable 

 

 

G 

 

df 

 

  P 

    

RETAINED: 

 

   

Transferred odour: bee/wasp 

(conspecific/allospecific) 

 

15.7 1 <0.001 

EXCLUDED: 

 

   

Introduction sequence 

 

1.50 1   0.22 

Trial day 

 

1.61 2   0.45 

Discriminator colony 

 

1.67 2   0.44 

 

FINAL MODEL: G1=55.3, P<0.001 
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b. Eviction of introduced nestmate bees and common wasps  

 by honey bee guards 

 

 

Variable 

 

 

G 

 

 

df 

 

  P 

    

RETAINED: 

 

   

Introduced insect: species 

 

65.3 1 <0.001 

Transferred odour: species 

 

4.97 1   0.026 

Trial day 

 

5.70 2   0.017 

EXCLUDED: 

 

   

Introduction sequence 

 

3.25 1   0.072 

Transferred odour: 

conspecific/allospecific 

 

1.40 1   0.24 

Discriminator colony 

 

2.05 2   0.36 

 

FINAL MODEL: G4=78.2, P<0.001 
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Table 2. Results of a general linear model, showing the variables retained in the 

final model as significant predictors of the number of approaches by guards that were 

aggressive and non-aggressive (antennation), following the stepwise backward 

elimination of non-significant variables.  F-ratios and associated P-values are shown for 

the variables retained in the final model, and also for the contribution of each excluded 

non-significant variable in the step prior to its elimination.  Count data were √(x+½) 

transformed prior to analysis. 

a. Aggression by honey bee guards toward introduced nestmate bees 

 and common wasps 

 

Variable 

 

 

F 

 

df 

 

P 

    

RETAINED: 

 

   

Introduced insect: species 

 

132 1 <0.001 

Trial day  

 

6.02 2   0.0040 

Transferred odour: species 

 

4.67 1   0.033 

EXCLUDED: 

 

   

Discriminator colony 

 

1.85 2   0.16 

Introduction order 

 

0.58 1   0.45 

Transferred odour: 

conspecific/allospecific 

 

0.29 1   0.59 

 

FINAL MODEL: F4,89=201.3, P=0.001 
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b. Antennation of introduced nestmate bees and common wasps by 

 honey bee guards. 

 

Variable 

 

 

F 

 

df 

 

  P 

    

RETAINED: 

 

   

Introduced insect: species 

 

82.4 1 <0.001 

Transferred odour: 

conspecific/allospecific 

 

6.70 1   0.011 

Trial day  

 

4.31 2   0.016 

Discriminator colony 

 

3.25 2   0.043 

EXCLUDED: 

 

   

Introduction order 

 

0.91 1   0.35 

Transferred odour: species 

 

0.083 1   0.78 

 

FINAL MODEL: F6,91=224.4, P=0.001 

 

 

 

 



Legends:  1 

 2 

Figure 1: 3 

The percentage of introduced insects in each category rejected or evicted by honey bee 4 

guards is presented. Each category, n=27. 5 

 6 

Figure 2: 7 

Approaches over the observation period were classified as either aggressive or non-8 

aggressive and standardized as the number of approaches per 10 seconds. Each 9 

category, n=27.  Means displayed ± 1 s.e. 10 

   11 
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