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Abstract: Alluvial and fluvial fans are the most widespread depositional landforms bordering the
margins of long-lived highland regions and actively subsiding continental basins, across a broad
spectrum of tectonic and climatic settings. Their significance is relevant not only to the local mor-
phodynamics of mountain regions and proximal basinal sectors, but also to the long-term evolution
of sediment-routing systems, affecting the propagation of stratigraphic signals of environmental
change and the preservation potential of stratal successions over much larger spatial scales than
those they occupy. Subaerial fan systems archive information on the palaeoclimate, local tectonic
history and landscape response to various allogenic factors, although our ability to decipher such
information is still limited. Early recognition of alluvial fans dates from the late nineteenth century,
but a coordinated research community on these systems has been active only over the last few
decades and the full relevance of fluvial fan systems to the geomorphology of present day conti-
nental basins and to the interpretation of ancient stratigraphic successions has been convincingly
demonstrated only over the last decade. This introductory chapter summarizes advances in our
knowledge of alluvial and fluvial fans, identifies potential new lines of future inquiry, and presents
the contributions to this volume in the context of the current state of research.

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

Alluvial and fluvial fans represent the dominant
sedimentary systems developed along the margins
of modern continental sedimentary basins and on
tectonically stable highlands (except for pervasively
glaciated regions). Both of these depositional land-
forms stem from the areal distribution of large vol-
umes of clastic debris from point sources located
where drainage catchment outlets encounter a topo-
graphic transition from elevated mountain ranges or
plateaus to relatively subdued, open terrains (Bull
1977; Blair & McPherson 1994; Horton & DeCelles
2001; Weissmann et al. 2010). These alluvial sys-
tems currently occur worldwide in a variety of geo-
morphic settings, within or outside the boundaries of
actively subsiding sedimentary basins, and over a
complete range of climate settings, from hyper-arid
(tropical or polar) to humid temperate to seasonal/
monsoonal tropical. Stratigraphic records of subae-
rial fans have been identified in successions
aggraded in essentially all climatic conditions and
preserved in a broad variety of tectono-geomorphic
settings. However, although tectonic subsidence is
often cited as a precondition for the formation of
alluvial and fluvial fans, this factor is actually only
strictly relevant to the accumulation and long-term
preservation of thick stratigraphic records; in fact,

alluvial fans may also form at locations that are tec-
tonically stable over timescales comparable with the
time necessary for fan formation, as demonstrated
by modern fans aggrading at the margins of recently
deglaciated valleys (Ryder 1971; Church & Ryder
1972; Srivastava et al. 2009; Berger et al. 2011) or
by tributary junction fans growing in correspon-
dence with drainage network nodes in valley-
confined, net-degradational settings (Wells & Har-
vey 1987; Harvey 2002; Wang et al. 2008; Stokes
& Mather 2015).

A frequent misconception about the origin of
subaerial fan systems is that they are primarily trig-
gered by changes in substrate gradient from high-
lands to the immediately adjacent lowlands, the
latter being the site of preferential aggradation as a
result of the loss of competence in water flows or
sediment gravity flows at the transition to a lower
gradient topography. Whereas a reduction in bottom
shear stress is associated with those particular sys-
tems in which there is an actual transition from a
steep catchment drainage to a lower gradient basinal
topography, the ultimate reason underlying the con-
struction of fan-shaped alluvial landforms is the
transition from laterally confined catchments/val-
leys in source areas to more open plains or broader
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valleys, where the radial spreading of sediment
transport events through time is unobstructed. In
fact, the dynamics of subaerial fan systems are
inherently controlled by the progressive autogenic
switching of sediment transport pathways and
resulting depositional lobes. Following a process
of topographic compensation, aggradational events
raise the alluvial surface locally and induce succes-
sive events to take place at different, topographi-
cally lower positions or along different trajectories
radiating from an apical zone. From this stems the
characteristically fan-shaped, distributive plan
view architecture shared by these systems.

There is long-standing controversy regarding
the definition of alluvial and fluvial fans as either
fundamentally distinct depositional landforms or
as end-members along an idealized continuum of
subaerial fan types, each identified by a characteris-
tic set of sedimentary processes (Stanistreet &
McCarthy 1993; Blair & McPherson 1994; McCar-
thy & Cadle 1995; Kim 1995; Nakayama 1999;
Weissmann et al. 2010; Hartley et al. 2010). The ter-
minological usage followed here considers alluvial
fans to be landforms and sedimentary systems that
are distinct from fluvial fans, while the term mega-
fan, first adopted by Gohain & Parkash (1990),
loosely applies to fluvial fans attaining radii in
excess of c. 30 km and of large areal extent (up to
105 km2) (e.g. Leier et al. 2005; Hartley et al.
2010; Fontana et al. 2014).

In spite of this controversial issue, the two end-
member categories are clearly distinguishable
when examining both presently active systems and
Quaternary relict systems based on morphometric
parameters and on the hydrological and sedimento-
logical processes associated with primary depositio-
nal events in particular. Alluvial fans commonly
aggrade directly adjacent to (and abutting) their
source relief and are fed by areally restricted catch-
ments, often with high internal relief (Melton 1965;
Kostaschuk et al. 1986; Crosta & Frattini 2004),
developing shorter radii (rarely up to several kilo-
metres, typically from hundreds of metres to a few
kilometres; De Scally & Owens 2004; Davies &
McSaveney 2008) and higher gradients (especially
over proximal domains, where they can attain slopes
of up to several degrees). Their origin from rela-
tively small, poorly integrated catchments implies
that alluvial fans are mostly affected by hydrologi-
cal events of short duration and markedly peaked
hydrographs, irrespective of the climatic context in
which they develop. In sedimentological terms this
translates into a dominance of runoff events, uncon-
fined or poorly confined within shallow channels of
high aspect ratio, with highly concentrated bedloads
and suspended loads (debris flows and hyperconcen-
trated flows), frequently (when not dominantly)
within the spectrum of proper sediment gravity

flows in which the water is actually a secondary
phase by volume and sediment is mobilized in
bulk by the direct action of gravity over sufficiently
steep substrates (Hooke 1987; Whipple & Dunne
1992; Blair & McPherson 1994, 1998; Moscariello
et al. 2002; Welsh & Davies 2011).

By contrast, fluvial fans (also known as distribu-
tive fluvial systems; Hartley et al. 2010; Weissmann
et al. 2010) develop over much larger surfaces,
attaining radii of several tens of kilometres and up
to a few hundred kilometres (with a notable present
day maximum in the Pilcomayo River fan of central
South America, which reaches c. 700 km in radius)
but maintaining low gradients within restricted
ranges of fractions of a degree from the proximal
to distal sectors. These systems are commonly fed
by extensive and well-integrated catchments,
which develop over long time spans, occasionally
exceeding the age of the source relief (e.g. large ante-
cedent catchments in active orogenic belts; Parkash
et al. 1980; Damanti 1993; Friend et al. 1999; Horton
& DeCelles 2001), and giving rise to proper rivers
along whose courses a distinction between channels
(or channel belts) and overbank domains is unambig-
uous, unlike alluvial fans. The strongly avulsive
dynamics of such rivers (Slingerland & Smith
2004; Reitz et al. 2010; Fuller 2012) are probably
induced by excess sediment loads from highland
catchments and are at the origin of the distributive
planforms progressively attained by fluvial fans.

Alluvial and fluvial fans have long been the
object of geomorphological and sedimentological
research, but only a few books and article compila-
tions have been dedicated specifically to these sys-
tems (Rachocki & Church 1990; Harvey et al.
2005; Schneuwly-Bollschweiler et al. 2013), com-
pared with the many tens of publications devoted
to the analysis of fluvial, glacial, lacustrine and aeo-
lian environments. In part, this may result from the
deceptively simple configuration and small areal
extent of alluvial fans, covering limited distances
over their source to sink axes, and to their tradi-
tional, if erroneous, identification as significant geo-
morphic elements only within dryland landscapes
(hence the frequent occurrence of essays on alluvial
fan morphodynamics and sediments in compendia
dedicated to the geomorphology of arid regions;
e.g. Parsons & Abrahams 2009; Thomas 2011).

Explicit recognition of the potentially great im-
portance of fluvial fans to the geomorphic dynamics
of modern sedimentary basins and to interpretations
of ancient stratigraphic records dates only from the
last decade. Major gaps still exist in our knowledge
of these depositional systems in terms of basic
research and of their societal and geo-economic
applications. In addition, their recent recognition
on the surfaces of other planetary bodies within
the Solar System (Jerolmack et al. 2004; Moore &
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Howard 2005; Williams et al. 2006; Kraal et al.
2008) raises their importance to the understanding
of environments still inaccessible for direct study.
Most books devoted to alluvial fans (and tradition-
ally including work on fluvial fans) originate from
research presented at conferences. However, topical
meetings on the subject date only from slightly lon-
ger than 20 years ago (Death Valley, USA 1995;
Sorbas, Spain 2003; Alberta, Canada 2007; Ras
Al-Khaimah, United Arab Emirates 2012; Canter-
bury, New Zealand 2015), probably a sign that an
initially sparse research community only recently
succeeded in bringing together a critical volume of
data and working hypotheses. This Special Publica-
tion of the Geological Society, London aims to add
to the classic books and to follow in their multidis-
ciplinary approach, compiling thematic papers on
alluvial and fluvial fans that range in scope from
geomorphic and hydrological analyses of present
day systems to sedimentological studies of ancient
stratigraphic successions.

Alluvial fans: research progress and

perspectives

Alluvial fan systems have two modes of operation
that influence the processes operating on the fan sur-
face and its resultant morphology: aggradation,
where sediment is deposited on the fan; and degra-
dation, in which sediment is eroded from the fan sur-
face and out of the fan system. An erosional–
depositional threshold, termed the threshold of crit-
ical power by Bull (1991), separates these two
modes. These relationships are controlled by varia-
tions in flood discharge and sediment supply (Bull &
Schick 1979; Bull 1991). In the simplest sense,
excess sediment supply leads to local sediment dep-
osition and therefore fan aggradation, whereas
excess power will lead to erosion and fan degrada-
tion. This has been quantified using a number of
sediment models for alluvial fans that explore the
impact of sediment quantity and grain size on fan
growth (see Parker et al. 1998; Duller et al. 2010,
2012; Allen et al. 2013 for further details and for a
quantitative approach). These relationships can
vary over different timescales and even a minimal
change can have a significant effect as the fan sys-
tem approaches dynamic equilibrium following
the disturbance.One of the long-standing challenges
in alluvial fan research is to determine whether
changes in fan processes have been caused by allo-
genic factors influencing the fan environment
through sediment or water supply, or through some
process-driven threshold intrinsic to the fan system
(i.e. autogenic factors).

The fan morphology is often controlled by the
characteristics of the contributing catchment. A

number of early studies (Bull 1964, 1977; Denny
1965; Hooke 1968; Church & Mark 1980; Kosta-
schuk et al. 1986; Parker et al. 1998; Whipple &
Trayler 1996) explored the relationship between
the size of alluvial fans and the size of their contrib-
uting catchments to understand the mechanisms of
fan construction. The larger the area of the catch-
ment, the greater the potential to store sediment
within it and therefore the more likely a decrease
in the total amount of sediment delivered to the
fan per transport event. By contrast, smaller catch-
ments have less potential for sediment storage and
so are more likely to effectively deliver sediment
to the fan surface for any given transport event.
However, the increased potential for discharge in
larger catchments, given the larger surface area for
precipitation to fall over, can lead to the high deliv-
ery of sediment in some instances (Allen et al.
2013). Investigations into the morphology of allu-
vial fans and their catchments (Sorriso-Valvo et al.
1998; Harvey 2001, 2007, 2012; Crosta & Frattini
2004) have found that catchment area is the primary
control on fan area; however, other factors, such as
the geological setting and bedrock lithology, have
also been found to be important (e.g. Kostaschuk
et al. 1986; Blair 1999a; Webb & Fielding 1999;
Coe et al. 2003; Nichols & Thompson 2005;
Welsh & Davies 2011), which will now be explored.

In tectonically active settings, where the source
highlands are uplifting with respect to the adjacent
basin, alluvial fans tend to aggrade as accommoda-
tion is continuously created, resulting in fans with a
relatively small area with respect to their catchment
area (e.g. Ferrill et al. 1996; Viseras et al. 2003).
Therefore fan area–catchment area relationships
must be considered in the context of the local tec-
tonic setting (Whipple & Trayler 1996; Allen &
Densmore 2000). Although there does appear to
be a relationship between the size of alluvial fans
and that of the contributing drainage basins, this is
only evident in areas of limited tectonic activity.
In complex environmental settings (i.e. those that
have been affected by tectonics, base level changes
and climate change), other factors can often have a
more dominant control on alluvial fan development
and fan size may bear little direct relationship to the
physical characteristics of the drainage area (Allen
& Densmore 2000).

The lithology and mechanical properties of the
bedrock underlying the catchment also influence
the volume and quality of sediment produced. Bull
(1962) and Hooke (1968) reported that catchments
underlain by rock types that are less resistant to ero-
sion tend to produce alluvial fans that are larger in
area than those produced by basins with more resis-
tant rock types, the idea being that basins with less
resistant rocks produce more sediment per unit
area (i.e. sediment yield) and, because this material
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is finer, it can be transported further and therefore
produce larger fans. By contrast, Lecce (1991)
found that, in the White Mountains of California,
the larger fans are supplied by basins underlain by
more resistant rocks because these have feeder
channels that flow in steep, narrow canyons with lit-
tle sediment in storage, such that most of the sedi-
ment is ultimately delivered to the aggrading fan
surface. Mills (2000) surmised that it is probable
that these competing effects interact within most
catchments: where the sediment production factor
is dominant, catchments with relatively more erod-
ible lithologies may produce more extensive fans;
however, where the sediment storage factor is dom-
inant, basins with less erodible lithologies may pro-
duce smaller fans. In addition, the bedrock lithology
may have a direct influence on the sediment trans-
port processes responsible for fan aggradation; for
example, where catchments produce significant vol-
umes of clay- and silt-sized debris, sediment–water
mixtures will often reach the fan surface in the form
of debris flows (e.g. Blair 1999b; Levson & Rutter
2000; Moscariello et al. 2002) rather than uncon-
fined water flows, affecting not only the primary
architecture of the fan deposits, but also the overall
geometry of the system and its autogenic dynamics
(e.g. Whipple & Dunne 1992; De Haas et al. 2016).

Despite the various controls exerted by catch-
ment morphometry and geology, over long time-
scales these factors tend to be dominated by
allogenic controls, such as tectonics and changes
in base level and/or climate. Alluvial fans are
often located in tectonically active areas and tecton-
ics are often considered to be the primary control in
dictating the location and morphology of fans, pro-
ducing the setting, relief and accommodation space
necessary for alluvial fan growth (Denny 1965; Bull
1977; Silva et al. 1992; Whipple & Trayler 1996;
Allen & Hovius 1998). On an alluvial fan, periods
of rising base level generally lead to increasing
accommodation and deposition, whereas lowering
of the base level may lead to a reduction in the avail-
able accommodation space, resulting in erosion
and/or bypass at the fan surface (Harvey 2012,
2013). Conversely, climate change tends to act prin-
cipally on geomorphic processes within catchments,
controlling the spatial and temporal distribution of
erosion, responsible for the primary sediment sup-
ply to the fan, as well as modulating the hydrologi-
cal regime and therefore the discharge and stream
power (increasing erosion). Climate also affects
the vegetation cover in a catchment and on the fan
surface, which, in turn, exerts a strong influence
on the patterns of sediment yield and transport
(Dorn 1996).

Numerous studies on Quaternary fan systems,
which often have well-constrained chronological
and palaeogeomorphic and palaeoclimatic

information, have shown that the interplay between
varying discharge and sediment supply is responsi-
ble for driving either fan aggradation or entrench-
ment (e.g. Ritter et al. 1995; Reheis et al. 1996;
Pope & Millington 2000; Harvey & Wells 2003;
Sohn et al. 2007; Scardia et al. 2010). This is typi-
cally observed in settings affected by glacial–inter-
glacial cycles of geomorphic activity, where
regional extremes in temperature and rainfall distri-
bution favour fan sedimentation and growth at times
of reduced vegetation cover (such as glacial times
when temperatures cool) and/or enhanced sedi-
ment production, whereas fan dissection and lower
aggradation rates predominate in phases of more
widespread vegetation cover and/or increased
discharge frequency and intensity (e.g. Ritter &
Ten Brink 1986; Wells et al. 1987; Bull 1991; Har-
vey 1990, 2003; Harvey et al. 1999). Therefore in
environments subject to active allogenic forcing,
contextual factors such as catchment attributes
may exert a minimal impact on alluvial fan mor-
phology and development over the longer term (cen-
turies to millennia). Disentangling the respective
signals of autogenic processes and allogenic forcing
requires an understanding of the system being inves-
tigated, with the frequency of autogenic behaviour
related to the rate of change in allogenic forcing rel-
ative to the equilibrium time (Postma 2014). There-
fore slow changes in aggradation rate do not
significantly change autogenic behaviour, whereas
fast change does.

Allogenic controls alone have often been unable
to explain why, in some regions, landforms sub-
jected to the same, or similar, environmental condi-
tions during their evolution are not in the same stage
of geomorphic development and cannot adequately
explain certain details within landscapes (e.g. fan-
head trenching; Hooke & Rohrer 1979; Schumm
et al. 1987; Whipple et al. 1998). To account for
such variability, it can be assumed that the develop-
ment of landforms is influenced not only by external
factors, but also by autogenic controls (Ventra &
Nichols 2014). For example, both Ritter (1967)
and Schumm & Parker (1973) concluded that ter-
race formation on alluvial fans was the result of
dynamics internal to the fan system. Similarly, in
a field study of 13 alluvial fans developed under
constant climatic and tectonic conditions in the
Howgill Fells, NW England (Wells & Harvey
1987), the dominant depositional processes were
found to alternate between debris flows and stream
flows according to geomorphic thresholds intrinsic
to the fans. Complex interactions between forcing
factors during fan evolution and the often chaotic
and incomplete preservation of stratigraphic succes-
sions make it difficult to isolate the specific impact
of autogenic dynamics in field studies (Clarke
2015). However, the use of experimental physical
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models that eliminate the interference of extrinsic
factors under controlled boundary conditions has
shown that autogenic processes during fan evolution
can also induce alternating cycles of sheet flow and
channelized flow related to critical slope thresholds
on the aggrading surface (e.g. Schumm et al. 1987;
Whipple et al. 1998; van Dijk et al. 2009, 2012;
Clarke et al. 2010; Hamilton et al. 2013) on fans
dominated by debris flow (De Haas et al. 2016).

As a consequence of their high-relief catch-
ments, alluvial fans mostly tend to aggrade through
catastrophic sedimentary processes associated with
occasional flash flood events of relatively short
duration and debris flows with higher sediment to
water ratios. Many metropolitan areas throughout
the world have experienced the uninhibited expan-
sion of human settlements and infrastructure onto
alluvial fans (Scheinert et al. 2012). Alluvial fans
represent an ideal site for property owners because
they often provide cooler conditions, cheaper or
undesirable land in some regions, and/or a better
view of the landscape. However, the occupation
and urbanization of alluvial fan surfaces place
humans at greater risk of flood and debris flow haz-
ards (e.g. Wieczorek et al. 2001; Pelletier et al.
2005; Welsh & Davies 2011). Floods on alluvial
fans, although characterized by relatively shallow
depths, can strike with little warning, can travel at
extremely high speeds and may carry tremendous
amounts of coarse-grained sediment and debris,
with potentially devastating consequences for any
infrastructure developed along their path (Commit-
tee on Alluvial Fan Flooding 1996). There has been
much research investigating the flood hazards
posed by alluvial fans (e.g. Jackson et al. 1987;
Kellerhals & Church 1990; French 1992; FEMA
2003; Hurlimann et al. 2003; Pelletier et al. 2005;
Wolski & Murray-Hudson 2006). Thus far, the tim-
ing, location and occurrence of flooding on alluvial
fans cannot be adequately predicted and broad mar-
gins of uncertainty are still associated with these
predictions.

Debris flows are one of the most important for-
mative processes for alluvial fans, capable of trans-
porting large amounts of water and debris in very
short time periods, posing great hazards for people
and structures (D’Agostino et al. 2010). They can
result in significant modifications to alluvial fan
topography, both during and after an event (Schei-
nert et al. 2012). Topographic changes, in turn,
affect the magnitude, trajectory, inundation and run-
out length of subsequent sediment transport events
(Pelletier et al. 2005; Volker et al. 2007; De Haas
et al. 2016). These interactions are further compli-
cated when urbanized areas and built environments
are constructed on fan surfaces.

Given the reduced temporal frequency of the pri-
mary events responsible for the transportation of

sediment to the fan, secondary processes of weather-
ing, reworking and erosion assume a certain rele-
vance, directly affecting fan surfaces for most of
the time through the mobilization and modification
of surface sediments. Possible processes of fan sur-
face modification include reworking by water, aeo-
lian activity, bioturbation, groundwater activity,
weathering and pedogenesis (e.g. Blair & McPher-
son 1994; De Haas et al. 2014; Regmi et al. 2014)
and can differ in importance depending on the envi-
ronmental context, with climate being possibly the
most important factor. For example, Mills (2000)
found that fans dominated by debris flows in the
humid climate of the Appalachians (eastern USA)
are affected by chemical weathering and bioturba-
tion as a result of the natural presence of dense hard-
wood forest combined with low sediment deposition
rates. By contrast, Blair & McPherson (1998) noted
that wind, rains plash, overland flow and bioturba-
tion are prevalent on the Dolomite Fan in the much
drier climate of Owens Valley (SE California).

Research into alluvial fans has a long history, yet
there are still unknown factors for future work to
focus on. First, the link between geomorphological
and sedimentological research needs to be strength-
ened through more interdisciplinary discussions to
ensure that insights into processes observed and
quantified over contemporary timescales are applied
to inform the interpretation of stratigraphic succes-
sions, and vice versa. In particular, there is a need
for the language and tools from studies on modern
geomorphological investigations of alluvial fans to
be transferrable to sedimentological research under-
taken on much longer timescales. Second, experi-
mental physical modelling on alluvial fans has
shown the contribution of autogenic factors to fan
evolution; however, the range of scenarios and
boundary conditions applied in analogue modelling
needs to be expanded so that these represent the
range of environmental settings over which alluvial
fans occur and are scaled to be applicable to real-
world examples. In addition, new techniques need
to be devised to derive insights useful to field
researchers to better discriminate between the
effects of autogenic dynamics and allogenic forcing
through ancient successions. As Harvey et al. (2005)
surmised, there is no doubt that autogenic change
and fan ‘ageing’ occur in the absence of external
forcing, but there is also no doubt that major exter-
nally induced changes in sediment production have
a dramatic effect on fan processes. The challenge in
unravelling field evidence still lies in determining
the extent to which past changes in alluvial fan pro-
cesses (i.e. facies associations) and morphology
(i.e. stratigraphic architecture) reflect the concomi-
tant influence of intrinsic feedbacks (autogenic
factors) or environmental change (allogenic con-
trols). Third, we are probably undergoing a phase
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of changing climate which will affect alluvial fan
processes and potentially increase the probability
of flood and debris flow hazards on urbanized fan
systems. Major urban centres worldwide are located
on alluvial fans, such as Los Angeles, Denver and
Phoenix in the USA (Dorn 1994, 2009), and across
regions such as India (Chakraborty & Ghosh 2010;
Chakraborty et al. 2010) and Italy (Santangelo
et al. 2011; Scorpio et al. 2015). Further understand-
ing of the risk associated with climate change and an
ability to predict future hazards are necessary to mit-
igate the potential threats.

Fluvial fans: current research and open

questions

Fluvial fans are repeatedly presented as atypically
large, river-dominated depositional end-members
of an ideal continuum of alluvial fan processes
and forms (e.g. Galloway & Hobday 1996; Reading
1996; Bridge & Demicco 2008), with common ref-
erence to the Kosi Fan of northern India as the most
representative example (and probably the most pho-
togenically fan-shaped when imaged from an aerial
perspective). However, marked differences in
hydrology, general morphology, sediment transport
mechanisms and stratal architectures warrant a dis-
tinction from piedmont fans (Blair & McPherson
1994).

Fluvial systems affected by frequent avulsions
and with a tendency to spread alluvium over large
areas by continuous channel belt repositioning
and/or distal bifurcation have long been reported
from cratonic regions and from active sedimentary
basins (e.g. Gole & Chitale 1966; Twidale 1972;
Mukherji 1975; Jacobberger 1987). For many of
these systems, an excess of sediment load supplied
from hinterland catchments lies at the origin of the
avulsive instability of channel belts at decadal to
centennial timescales, and of the strong aggrada-
tional trends that, over longer timescales, build flu-
vial landforms markedly convex over transverse
cross-sections tens to hundreds of kilometres wide,
wedging out longitudinally downstream (i.e. basin-
wards) with a progressive loss of surface gradient.
This morphological configuration stands in great
contrast to the largely flat and locally even negative
topography of alluvium (Syvitski et al. 2012; Lewin
& Ashworth 2014; Lewin et al. 2017) in continental
domains affected by long-term net degradation
(with an exception for alluvial terraces, which may
present a complex topography with locally high
relief, but still relate to system-scale degradation,
rather than net aggradation; Archer et al. 2011;
Mather et al. 2017). Superposed on these general
morphological trends are other trends common to
most fluvial fans:

(1) active hydrographic networks and relict chan-
nel ridges that radiate down-fan from an apex
(for single-channel systems this trait is devel-
oped over time, as successive channel belts
avulse over the up-building fan surface);

(2) frequent superposition over the main fan sur-
face of second-order alluvial lobes with gently
convex, positive relief, kilometres to a few
tens of kilometres wide, representing net
aggradation in correspondence with individ-
ual channel belts during their time span of
activity over specific fan sectors;

(3) frequent down-fan transitions in channel plan-
form type, mostly from braided or wandering
patterns in the proximal domain to higher sin-
uousity, single or anabranching channels over
the lower gradient distal sector;

(4) a common (although not ubiquitous) down-
fan reduction in channel depth and width,
especially in arid or semi-arid climates where
transmission losses and evapotranspiration
strongly deplete discharge over significant
distances (so-called terminal fans);

(5) a down-fan reduction in the texture of channel
deposits and, less pronounced, of overbank
deposits;

(6) a down-fan increase in the relative surface
area of the overbank domain and its associated
morphosedimentary sub-environments (e.g.
swamps, ephemeral to semi-permanent ponds,
forested areas, peat mires, local aeolian dune
fields and sand sheets);

(7) down-fan shallowing (i.e. a reduction in depth
below the active depositional surface) of the
permanent or seasonal water table.

With an exception for points (4) and (7), in part con-
trolled by the regional climate and by the differen-
tial hydrology of catchment and basin regions, this
set of characteristics is generally encountered on
most distributive fluvial systems (Hartley et al.
2010; Davidson et al. 2013) irrespective of tectonic
context, climatic zone, fan radius or surface extent,
supporting the notion that these landforms are pro-
duced by drainage systems with dynamics funda-
mentally distinct from those of tributive fluvial
networks and associated valleys, which have been
the principal focus of attention in fluvial geomor-
phology and sedimentology for the longest part of
their multi-decadal history.

Considering modern systems, most fluvial fans
seem to originate from large catchments within tec-
tonically active regions or extensive highland
regions (isostatically uplifted or residual, inactive
intracratonic plateaus), where a conspicuous over-
load of clastic debris is produced and conveyed
towards the margins of adjacent lowlands. Contrary
to widespread opinion, the formation of fluvial fans
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(and, by analogy, alluvial fans) does not require pro-
tracted accumulation in areas subject to long-term
subsidence because the latter factor is a strict prereq-
uisite only to the preservation of stratigraphic
records for such landforms. A simple topographic
transition over tectonically stable substrates still
allows for the formation of distributive alluvial land-
forms over geologically short time spans, whether or
not amenable to preservation in the rock record, pro-
vided an input (apex) point or zone for runoff and
sediment remains fixed for long enough time.

Retro-arc foreland basins thus provide an ideal
tectono-geomorphic setting for generating large flu-
vial fans at the transition between tectonically active
relief, which provides abundant terrigenous supply,
and adjacent lowlands subject to long-term subsi-
dence (thus also allowing the stacking of thick fan
successions). At present, this is shown by the numer-
ous fluvial fans and megafans that occupy the vast
alluvial plains sloping down from the Andes (Dam-
anti 1993; Latrubesse et al. 2012; Rossetti et al.
2014; Assine et al. 2015), Himalaya (Wells &
Dorr 1987; Sinha & Friend 1994; Chakraborty &
Ghosh 2010), Alps–Pyrenees (Fontana et al. 2008,
2014; Mouchené et al. 2017), Zagros (Walstra
et al. 2010; Heyvaert & Walstra 2016) and other
active orogens (Weissmann et al. 2011, 2015).

Modern fluvial fans have also been recognized
within rift, strike-slip and back-arc basins (McCar-
thy et al. 1988, 2002; Mack et al. 1997; Gábris &
Nagy 2005; Fordham et al. 2010; Hartley et al.
2010; Weissmann et al. 2015; Galve et al. 2016),
where they often attain a reduced extent due to the
greater topographic restriction of such basin types.
In addition, fluvial fans also originate within tecton-
ically inactive, intracratonic settings as a result of
the downstream loss of confinement for rivers that
traverse plateaus or carve extensive valleys within
Neogene–Quaternary deposits (Aslan et al. 2003;
Rao et al. 2015; Sahu et al. 2015) or when rivers
fed from residual, long inactive highlands spread
over endorheic basins or terminate into shallow epi-
continental seaways (McIntosh 1983; Jones et al.
1993; McCarthy 1993; Lang et al. 2004; Brooks
et al. 2009; Cohen et al. 2010).

In other instances, short-range (a few kilometres
in radius) fluvial fans may originate in particular
geomorphic settings, such as ephemeral streams
issued by the Atlantic margin of the African Plateau.
These streams cross the Namibian dune fields
through narrow corridors and then avulse and
aggrade over the coastal plain (e.g. Krapf et al.
2005; Stollhofen et al. 2014), with drainage receiv-
ing excess sediment load from the volcanically
active relief (Galve et al. 2016) or point-sourced sec-
tors of proglacial outwash drainage (Boothroyd &
Nummedal 1978; Zielinski & Van Loon 2002).
Most such systems (erroneously identified as

alluvial fans by some researchers) are tied to geolog-
ically transient combinations of geomorphic ele-
ments and/or climate extremes that only trigger
particularly high sediment supplies on a local scale
and thus are scarcely representative analogues of
thick alluvial successions in the depositional record.

In this regard, major research interest on fluvial
fans has been inspired from a stratigraphic perspec-
tive following the work of G. Weissmann, A. Hart-
ley, G. Nichols and their co-workers, who proposed
the now widely adopted term distributive fluvial
systems (Nichols & Fisher 2007; Hartley et al.
2010; Weissmann et al. 2010, 2011, 2013, 2015;
Nichols et al. 2011). Central among their results
stands the observation that most geomorphic sur-
faces and elements in the aggradational sectors of
present day continental basins belong to distributive
fluvial systems of variable extent (but see Fielding
et al. 2012 for a different perspective), almost
always supplied from the basin margin with a strong
radial component transverse to the basin axis or,
more generally, to the marginal highlands. Consid-
ering that these drainage systems and the resulting
landforms are produced by dominant aggradation,
and applying this observation to interpretations of
alluvial architecture in ancient basin fills, it is likely
that large fractions of the continental stratigraphic
record were deposited by distributive fluvial sys-
tems (Weissmann et al. 2010). This fundamental
concept had been considered by previous research-
ers (e.g. Campbell 1976; Friend 1978; Rust &
Gibling 1990; Bentham et al. 1993; DeCelles &
Cavazza 1999), often just in passing, but not fully
backed by worldwide geomorphic and stratigraphic
evidence.

Most modern, large- and medium-scale river
systems providing the base for classical fluvial
facies and architectural models (especially of chan-
nel and channel belt deposits; e.g. Cant 1978; Crow-
ley 1983; Bristow 1987; Bridge & Gabel 1992;
Ashworth et al. 2000) belong almost invariably to
tributary drainage systems, for which downstream-
convergent runoff networks are associated with
long-term erosional and bypass dynamics from a
sediment-routing perspective and are thus less
prone to accumulate long-term sedimentary records
in most upstream (continental) segments of the sys-
tem. The most protracted depositional activity of
tributary networks is staged towards the down-
stream limits of their extent, where they meet base
level (usually marine shorelines), losing transport
efficiency, feeding major deltaic, estuarine or pro-
gradational coast–shelf systems and, in the limit,
supplying clastic debris for the construction of
large submarine fans (e.g. Shepard & Lankford
1959; Kolla & Coumes 1987; Blum & Hattier-
Womack 2009; Covault & Graham 2010; Walsh
et al. 2013).
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In passing, it is worth noting that deltas and sub-
marine fans, the ultimate repositories for fluvial
sediment at and below base level, respectively, are
characterized by distributive current and sedi-
ment–diffusion patterns, both in space and through
time (e.g. Damuth et al. 1983, 1988; Twichell et al.
1991; Posamentier & Kolla 2003; Olariu & Bhatta-
charya 2006; Hori & Saito 2007), essentially analo-
gous to those on aggrading fluvial fans. Over the last
few decades, incised valley fills have been the most
intensely studied stratigraphic systems associated
with tributary drainage networks (e.g. Martinsen
1994; Willis 1997; Plint & Wadsworth 2003; Garri-
son & Van Den Bergh 2006; Joeckel & Korus 2012),
not least owing to their economic interest. These
consist almost invariably of alluvial deposits, com-
monly accompanied by substantial volumes of par-
alic and shallow marine strata, the accumulation
and preservation of which have been sustained by
a rising base level curve (Zaitlin et al. 1994). This
stands in contrast with observations of modern dis-
tributive systems, which aggrade enormous vol-
umes of alluvial deposits at all positions along the
continental source to marine sink trajectory, from
isolated interior basins unaffected by base level con-
trols (McCarthy 1993; North & Warwick 2007;
Ralph & Hesse 2010) to basinal domains regularly
or at least intermittently connected to sediment-
routing networks downstream (e.g. Sinha & Friend
1994; Wilkinson et al. 2010; Assine et al. 2015),
to coastal areas fully subject to base level control
(Aslan et al. 2003; Browne & Naish 2003; Fontana
et al. 2014). This observational and conceptual
framework to the relevance of fluvial fans for mod-
ern continental geomorphology and ancient stratig-
raphy has been subject to vigorous debate (e.g.
Sambrook Smith et al. 2010; Ashworth & Lewin
2012; Fielding et al. 2012), but the exponential
increase over the last few years in the number of
publications dealing with these systems, their depo-
sitional records and their socio-economic impact
seems to confirm the significance of the basic obser-
vations synthesized here (e.g. Mikesell et al. 2010;
Ralph & Hesse 2010; Bernal et al. 2011; May
2011; Pati et al. 2012; Rossetti et al. 2012; Kukulski
et al. 2013; Assine et al. 2014; Lawton et al. 2014;
Goswami & Deopa 2015; Quartero et al. 2015;
Galve et al. 2016; Shellberg et al. 2016; Van Dijk
et al. 2016; Gulliford et al. 2017; Mouchené et al.
2017).

Research progress over the next few years will
be crucial to a better understanding of the dynamics
of fluvial fans and megafans and to an assessment of
their importance in the stratigraphic record. The
geomorphology, hydrology and active sedimentol-
ogy of these systems are as yet only sparsely known
compared with those of tributary drainage networks.
Analyses of avulsion timing and mechanisms

(Edmonds et al. 2016) should constrain the boun-
dary conditions responsible for triggering the aggra-
dation of fluvial fans, whereas detailed studies are
needed to unravel how such systems acquire their
radial zonation in terms of geomorphic attributes
(e.g. surface gradient and mesotopography; channel
morphometry, patterns and density) and sedimento-
logical features (e.g. down-system textural and
facies trends). Major flood events on fluvial fans
have catastrophic consequences for these densely
populated environments, especially in the tropics
(e.g. Arzani 2005; Sinha et al. 2008; Chakraborty
et al. 2010; Heyvaert & Walstra 2016), and studies
of centennial to millennial avulsion and flood histo-
ries may inform guidelines for the prevention and
mitigation of the related hazards. At the larger
scale of alluvial basins, the mutual influence of
modern fluvial fans and adjacent environments
(from aeolian to wetland over different climatic
zones) should be the object of integrated studies of
present day processes and Late Quaternary sedi-
mentary and palaeogeomorphic archives, providing
information on how distributive fluvial systems are
affected by environmental change and how, in
turn, they weigh on the evolution of nearby areas.
Perhaps more pressing in times of impending cli-
mate change, studies of geo-resource availability
on/within distributive fluvial landforms should
increasingly support socio-economic decisions on
such issues as aquifer exploitation, land develop-
ment and restoration, and infrastructure planning
(Weissmann & Fogg 1999; Weissmann et al.
2004; Assine & Silva 2009; Chakraborty et al.
2010; Walstra et al. 2010; Sahu et al. 2015; Hey-
vaert & Walstra 2016; Shellberg et al. 2016; Van
Dijk et al. 2016).

Research progress on the geology of fluvial fan
successions has benefited from the recognition of
an inherent pattern of architectural heterogeneity
vertically through their deposits, resulting from
long-term aggradation and progradation, in which
dominantly fine-grained overbank deposits consist-
ing of minor volumes of isolated, coarser channel
fills are progressively followed upwards in the strat-
igraphy by coarser, possibly larger, and increasingly
amalgamated channel bodies, with lesser volumes
of preserved mud-prone overbank strata (Weiss-
mann et al. 2013). This trend has been confirmed
by several studies, especially on thick infills of
continental foreland basins (e.g. Willis 1993;
Nakayama & Ulak 1999; Shukla et al. 2001; Uba
et al. 2005; Nichols & Fisher 2007; Wilson et al.
2014; Owen et al. 2017a, b) and, where not inter-
rupted by angular or progressive unconformities, it
can be explained by the basinwards progradation
of fans. Over time, proximal sectors dominated by
higher energy elements of the system come to
aggrade over areas previously occupied by distal,
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lower gradient sectors, characterized by a lesser
areal density of active channels and the higher pres-
ervation of finer floodplain deposits. In view of their
origin, such stratigraphic patterns should also be
recognizable as proximal–distal trends in the spatial
distribution of alluvial architecture across continen-
tal basins, which would form another robust crite-
rion for identifying ancient fluvial fan successions
(Singh et al. 1993; DeCelles & Cavazza 1999;
Nakayama & Ulak 1999; Martinius 2000; Klausen
et al. 2015; Owen et al. 2015).

The collection and analysis of field datasets have
been made more efficient by portable remote sens-
ing technologies, such as LiDAR (Light Imaging
Detection and Ranging), laser scanning and
unmanned aerial vehicles (Flener et al. 2013; Rarity
et al. 2014; Rittersbacher et al. 2014; Nieminski &
Graham 2017), increasing the ability to document
the geometries and distributions of facies associa-
tions over vast exposures, assessing large-scale
trends in fluvial depositional architecture. A major
priority for future research should be the establish-
ment of a suite of diagnostic criteria for the recogni-
tion of fluvial fan successions, as the supposed
dominance of these systems in continental strata
might have a significant influence on stratigraphic
prediction and palaeoenvironmental reconstruction
at the basin scale (Moscariello 2005; Owen et al.
2017a, b).

A further priority for research on ancient suc-
cessions should include unravelling fluvial fan
responses to allogenic forcing and to tectonic activ-
ity at basin margins in particular (e.g. temporal and
spatial changes in accommodation, signatures of
catchment reorganization, recognition of retrogra-
dational fan successions) and climate change (e.g.
responses to variable sediment supply and axial
incision and changing distal environments due to
basin hydrology). Perhaps most pressing, there
remains a need to identify the stratigraphic signa-
tures of the distributive fluvial systems that pro-
graded along epicontinental or open oceanic
coastlines, building thick clastic wedges that are
usually named fluvio-deltaic, but in which the actual
deltaic component is subordinate in terms of pre-
served sediment volume. The avulsive and aggrada-
tional dynamics of large portions of such systems
were linked to the same upstream controls that reg-
ulate fluvial fan aggradation in continental interiors,
such as topographic unconfinement of drainage
pathways, excess sediment supply and elevated
rates of repositioning for proximal channel belts.
By contrast, backwater effects and shallow marine
processes (waves, tides, inshore and longshore cur-
rents) would have affected sediment distribution
and aggradation along the most distal sectors. In
this sense, Quaternary and present day examples
of sea-facing distributive systems (e.g. Fontana

et al. 2014; Shellberg et al. 2016; Hartley et al.
2017) are readily comparable with well-known
ancient successions worldwide, such as the Devo-
nian Catskill Group of the northeastern USA (Gor-
don & Bridge 1987; Willis & Bridge 1988), the
Late Carboniferous Breathitt Group and Sydney
Mines Formation in the eastern USA and Canada
(Gibling & Bird 1994; Aitken & Flint 1995) and
coeval fluvial successions of the northern Variscan
foreland in the Dutch–German subsurface (Jones
& Glover 2005), the Triassic Snadd Formation from
the Norwegian Barents Sea (Klausen et al. 2014,
2015), and Cretaceous formations from the Western
Interior and Alberta foreland basins in North Amer-
ica (Fanti & Catuneanu 2010; Corbett et al. 2011;
Hampson et al. 2012; Kukulski et al. 2013).

A potential direction for future developments
consists in deriving information from presently
active, directly accessible fans, collating informa-
tion from different tectonic and climatic settings,
and integrating such evidence with stratigraphic
data from Quaternary successions, which are rela-
tively easily analysed within high-resolution chro-
nological and palaeoenvironmental frameworks.
Inferences on process and system-scale responses
to changing environmental conditions are crucial
in fine-tuning interpretations of ancient stratigraphic
successions. Although observations from past
records have inspired a renewed focus on present
fluvial fan systems, studies of present day systems
may represent the proverbial key to understanding
past basin-fill histories, which remain our sole win-
dow to constrain the dynamics of these widespread
alluvial systems over longer timescales and under
the influence of variously interacting allogenic
drives.

Volume overview

Alluvial fans

Novel and innovative techniques are increasingly
being used to monitor and investigate the processes
operating on alluvial fans and two papers in this
Special Publication cover such advances. Satellite
imagery from Google Earth was used by Giles
et al. (2016) to extract morphometric attributes
from fans interacting with axial river systems in
Yukon and Alaska. Measurements comparing the
length of profiles along the up-valley and down-
valley sides of the studied fans were used to calcu-
late the values of a fan morphology index. Fan
asymmetry and the direction of axial river flow
were found to be related, probably due to fan-toe
trimming by the river on the up-valley side and to
flow deflection enabling the down-valley sides to
extend further due to sheltered flow conditions.
This finding may stimulate new insights into the
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analysis of ancient alluvial fan successions and has
implications for the discrimination of fan sectors
subject to possibly different modes of evolution
under changing environmental conditions, as well
as for the interpretation of fan asymmetry in broad
valley settings.

The paper by Karymbalis et al. (2016) applies a
computational method to the clustering of 41 allu-
vial fans along the southern coast of the Gulf of Cor-
inth, Greece, providing geomorphic constraints to
models of the distribution of depositional systems
along the active margins of sedimentary basins
(e.g. Leeder et al. 1996; Gawthorpe & Leeder
2000). Fan and catchment morphologies were
expressed quantitatively through 12 morphometric
parameters and self-organizing maps were derived
to investigate the clustering tendency of fans
according to these parameters. Accommodation
space, partially controlled by relative rates of tec-
tonic uplift, determined the spatial distribution of
alluvial fans, with smaller fans located where the
uplift rates were higher and larger fan deltas distrib-
uted where uplift rates were lower.

Another basin-scale analysis of alluvial fan (and
fan delta) distribution is provided by Harvey et al.
(2016), who discuss the late Neogene to Quaternary
phases of alluvial fan activation in different sub-
basins of the Almerı́a region of SE Spain, which
are affected by a complex history of compression
and transpression that caused continuous local vari-
ability in the physiography, accommodation and
base level over timescales of millions of years.
The basins are also affected by high-frequency cli-
mate change, which triggered stages of fan incision,
terracing and aggradation, most evident in fans that
were active in the Quaternary. The study provides a
well-constrained example of how the regional tec-
tonic context drives the positioning of alluvial fans
and their long-term evolution, whereas superposed
interference by climatic change may modify fan
evolution over shorter timescales. The information
that such studies provide on relatively recent, well-
constrained relationships between fan development
and landscape history is reflected in the frequent
reliance on alluvial fan successions as indicators
of active tectonics and/or high-relief topography
(e.g. Frostick et al. 1992; López-Gamundi & Astini
2004; Charreau et al. 2009).

Leleu & Hartley (2016) provide one such exam-
ple from Triassic deposits of the extensional Fundy
Basin of Nova Scotia (SE Canada), associated with
the early opening of the northern Atlantic Ocean.
The onset of intrabasinal tectonics and associated
topographic highs, responsible for the compartmen-
talization of sediment transport patterns during
the successive basin history, can be determined by
the occurrence of alluvial fan successions, recogniz-
able by their facies signatures. The presence of an

intrabasinal horst is further inferred by the spatial
distribution of facies associations indicative of allu-
vial–aeolian interactions, where the accumulation
of aeolian sediments is partly controlled by topo-
graphic obstacle effects.

In addition to active tectonics, the specific posi-
tion of fan catchments along basin margins deter-
mines their geology and morphology, which affect
fan development. This aspect is examined in the
paper by Mather & Stokes (2017), who examine
bedrock structural controls on catchment-scale con-
nectivity and processes on four young (,100-year-
old) alluvial fans in Morocco, showing a link
between increasing catchment area, decreasing
catchment gradient and decreasing sediment–water
ratios of primary depositional processes, which ulti-
mately result in variable facies associations in fan
stratigraphy. In particular, the tectonic altitude of
catchment bedrock reflects on the longitudinal and
transverse drainage connectivities within the catch-
ment, which, in turn, are reflected by the sediment–
water ratios of fan-formative flows.

Catchment response to climate change is dis-
cussed for a Miocene case study from central
Spain by Ventra et al. (2017), relying on repeated
patterns of stratigraphic contact between coarse-
grained, distal fan strata and a fine-grained basinal
section for which palaeoclimatic and chronological
information have been independently constrained.
The most extensive debris flow beds are regularly
interbedded with basinal facies that represent cli-
matic transitions from relatively arid to relatively
humid times, suggesting that the largest volumes
of clastic debris were mobilized at times when less
vegetated, more unstable catchment slopes were
increasingly subjected to an increase in sediment
transport potential. The distinctly organized stratal
architecture of sections through the medial fan
body also reflects the possible influence of a cyclic
allogenic factor, inferred here to be climate change
occurring at orbital (104–105 year) timescales.

Also based on Miocene fan successions of north-
ern Spain, Nichols (2017) proposes a stratigraphic
method to estimate the recurrence rates of deposi-
tional events from pre-Quaternary basin margin
deposits. Relying on the essential continuity of
sedimentation in continental basins of internal
drainage, the possibility to extract first-order chro-
nological information from basinal successions
(for example, by magnetostratigraphy or cyclostra-
tigraphy) can be applied to translate sedimentologi-
cal information from the stratigraphic depth domain
to the time domain for coeval fan strata, based on the
accurate correlation and determination of individual
depositional events from bedding structure and
architecture.

In an analysis of more recent Quaternary succes-
sions in northern Italy, Ghinassi & Ielpi (2016)
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reconstruct depositional processes and proximal to
distal architectural trends on alluvial fans aggraded
mostly by water flows rather than mass flows, devel-
oping textural and sedimentological attributes con-
siderably different from those commonly observed
in piedmont alluvial systems. The dominance of
fine-grained sediments is related to the production
of mostly sand-sized debris from the Cenozoic tur-
bidites that constitute the catchment bedrock,
whereas the distinctly fluvial character of facies
associations hinders their attribution to an alluvial
fan environment in the absence of context
information.

The paper by Deganutti et al. (2017) closes the
section on alluvial fans, providing a comparative
analysis on the potential of numerical models to
enhance the predictability of debris flow hazards.
Applying topographic and hydrographic boundary
conditions extracted from an active fan on the
Italian Alps, these researchers compare event sim-
ulations obtained from two different models, veri-
fying that one more accurately reproduces the
extent of the flooded area, whereas the other per-
forms better in predicting debris flow run-out dis-
tance and deposit thickness. The study confirms
the utility of numerical models to predict the vul-
nerability of different areas to debris flow hazards
on alluvial fans; however, it highlights discrepan-
cies between the outputs from different models as
well as the importance of taking into account
local morphometric and geological variables for
model set-up.

Fluvial fans

The distinction between alluvial and fluvial fans,
still the object of occasional debate, is summarized
in a review article by Moscariello (2017), who
starts from fundamental differences in catchment
nature and sediment transport mechanisms between
the two kinds of systems. This, in turn, reflects on
major differences in facies associations, architec-
tures and extent in stratigraphy. The implications
of recognizing the correct depositional system
from stratigraphic data are examined from the per-
spective of economic geology, where prediction
and decision-making are based on commonly scarce
subsurface data and the adoption of the fitting of
sedimentological models has important repercus-
sions for success in all phases from exploration
to production.

As for alluvial fans, the geology of drainage
basins may strongly affect the long-term evolution
and the dominant processes of fluvial fans, an aspect
explored by Arzani & Jones (2016) in their com-
parative analysis of three Quaternary fluvial fans
in an intermontane basin of the Iranian interior.
They report that fan development in their study

area has mainly been influenced by the different
bedrock lithologies and morphometric attributes of
their respective catchments, which resulted in dif-
ferent potentials for longitudinal incision or pro-
tracted aggradation through Quaternary phases of
climate change that altered the geomorphic equilib-
ria in the hinterland and, consequently, also the sedi-
ment–water ratios of floods, which reached and
effectively modified the fan surfaces.

Bilmes & Veiga (2016) further consider the pos-
sible role of catchment influence on the evolution of
four Quaternary fluvial fans in the Gastre Basin of
southern Argentina. Their analysis compares the
actual fan areas with those that could theoretically
be extrapolated from catchment areas and gradients,
showing that the extent of the fans is also controlled
by the horizontal accommodation space within the
basinal domain. This, in turn, is determined by the
occurrence and geomorphic state of adjacent depo-
sitional systems and geomorphic elements. The
study has implications for estimating the relation-
ships between the extent and position of ancient
alluvial systems and the size of their catchments
(e.g. Davidson & Hartley 2014), demonstrating
that depositional basins are not passive collectors
of debris shed from the surrounding highlands, but
redistribute sediment internally depending on the
morphology and dynamics of their landscape
elements.

Similar catchment–basin relationships are
inferred by Radebaugh et al. (2016) for the forma-
tion and distribution of alluvial and fluvial fans on
Titan, Saturn’s largest satellite. In spite of the
remoteness of this world, based on images obtained
by the Cassini spacecraft’s Synthetic Aperture
Radar, the morphologies, roughness, textural pat-
terns and other properties of fan-shaped depositio-
nal landforms can be described and compared with
Earth analogues. Evidence for a range of particle
sizes and their differential distribution across some
of the recognized landforms provides preliminary
indications of possible sedimentary processes,
enabling distinctions between alluvial and fluvial
fans and supporting recent hypotheses on the com-
plex, but substantially Earth-like, dynamics of
Titan’s surface environments (Lunine & Lorenz
2009; Savage et al. 2014). Fluvial fans aggrade by
avulsive repositioning of the main channel belts
over the alluvial surface on the occasion of major
floods, but little information is yet available on the
exact dynamics of such events and on the responses
of the drainage network due to their low predictabil-
ity and great hazard.

The paper by Majumder & Ghosh (2017)
describes the runoff pathways and immediate geo-
morphic consequences of the most recent cata-
strophic flood affecting the Kosi Megafan
(northern India). Inundation and depositional
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patterns on the affected fan sector are reconstructed
by time series of satellite imagery, showing that
most of the flood discharge was transferred
down-fan through a pre-existing portion of the
fan’s distributary network. Despite the scale of the
event, only limited modification to the fan’s mor-
phology and drainage network was evident in the
aftermath. These researchers show that the anteced-
ent history of the fan system is important in deter-
mining the morphological and hydraulic effects of
successive events, even extreme events. Among
the various applied perspectives of fluvial fan geo-
morphology and sedimentology, their importance
in terms of groundwater resources is prominent.

Burbery et al. (2017) use smoke and water dif-
fusion patterns as tracers to understand the spatial
organization and connectivity of open framework
gravels of the Rakaia Fan on the Canterbury coastal
plains of New Zealand, where permeable, coarse-
grained deposits constitute major aquifers and are
important for the transmission of groundwater and
possible contaminants. The findings will be part of
the knowledge base to improve hydrogeological
models for the Canterbury Plains and show that
fluid transport through the coarsest fraction of
deposits on these fans can be rapid, but non-
uniform, with a manifest anisotropy related to the
greater interconnectedness of gravelly facies along
a longitudinal (down-fan) direction.
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