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At South Georgia, the diet of Wilson's storm petrel was studied using the regurgitates of adults 

arriving to feed chicks. Feeding frequency and meal size were estimated by weighing chicks twice 

daily, or in some cases every 3 h during daytime. Crustaceans contributed 98% of the total 

number of individual items and 68% of the total weight consumed; fish, I% of the number of 

items and 28%, of the weight. The most abundant crustacean was the amphipod Thernisto 

gaudichaudii, which accounted for 90% of the total number but only 44% of the total weight of 

crustaceans eaten. Most (79%) of the Thernisto were juveniles. Euphausiids were much less 

numerous in the diet (5% by number) but were the main group by weight (55%); most (52%) were 

Antarctic krill, with juveniles and sub-adults (25-50 mm long) predominating. Mysids, copepods 

and barnacle larvae were also present. Fish were all myctophids (lanternfish), Protomyctophum 

normani and P. bolini being identified; specimens were 50-85 mm long and weighed 1-4 g. Meal 

sizes averaged 6·5-7·5 g (14-22% adult body mass); about 75% of chicks were fed each day 

(mainly at night), about 10% probably receiving meals from both parents. A review of storm 

petrel diets emphasizes the importance of fish to Oceanodrorna species and of crustaceans to 

Oceanites, Garrodia and Pelagodroma. Euphausiids and amphipods (chiefly Themisto and 

Hyperia) are the main crustacean prey and range from 5-50 mm and 0·005-0·7 g. Myctophids are 

the main fish prey and range from 20-100 mm and 1-5 g. Meal size ranges from 15-25% adult 

body mass and chicks are fed on 50-85% of days. This low delivery rate is mainly responsible for 

the disproportionately slow growth and long fledging period of storm  petrel chicks. 
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Introduction 

Wilson's storm petrel, Oceanites oceanicus, is one of the most characteristic and widespread of 

pelagic seabirds. It breeds in considerable numbers on the Antarctic Continent, Antarctic 

Peninsula and sub-Antarctic islands in the South Atlantic and South Indian Oceans (Copestake & 
Croxall, 1985) and in the austral winter migrates into the North Pacific and North Atlantic Oceans, 

being especially abundant in the North American Gulf Stream (Roberts,  1940). 

Despite its abundance and wide distribution and the fact that it has been studied in some detail 

in six breeding areas-Terre Adelie, Antarctic Continent (Mougin, 1968; Lacan, 1971), Argentine 

and Anvers Islands, Antarctic Peninsula (Roberts, 1940; Obst, 1986; Obst, Nagy & Ricklefs, 

1987), King George Island, South Shetland Islands (Wasilewski, 1986) Signy Island, South 

Orkney Islands (Beck & Brown, 1972) and Bird Island, South Georgia (Copestake & Croxall, 

1985; Copestake, Croxall & Prince, 1988)-data published on its diet and feeding ecology have 

been mainly anecdotal, only Ainley, O'Connor & Boekelheide (1984) providing estimates of 

composition by mass. This paper reports the results of the first detailed quantitative evaluation of 

the diet of Wilson's storm petrel, based on regurgitations collected from adults arriving to feed 

their chicks at South Georgia. It also estimates provisioning rate (meal sizes and frequency of 

delivery) and compares this and the dietary information with data for other storm petrel species. 

 
 

Methods 
 

Study site 
 

The  study  was carried  out  in  the austral  summer  of  1984-85  at  Bird  Island,  South  Georgia  (54°001 S, 

38"02'W), of which the topography and habitats are described by Hunter, Croxall & Prince (1982). Wilson's 

storm petrels breed in consolidated scree and rocky debris slopes and their total Bird Island breeding 

population is estimated to be c. 60 000 pairs (Copestake, Croxall & Prince, 1988). The main study site was the 

scree slope on the north side of Stejneger Peak, described in detail by Copestake, Croxall & Prince (1988), who 

estimated its population to be c. 5200 pairs. The occupants of a few burrows on the south slope of Gazella 

Peak were also studied. 

 

Collection  and analysis of food samples 

Adult Wilson's storm petrels bringing food to their chicks were caught at night in mist nets (see Copestake, 

Croxall & Prince (1988) for details ofnetting techniques).  Many  birds regurgitate stomach contents  on impact 

or on removal from the net. Where possible, these regurgitates were collected in plastic bags fixed to the end of 

plastic funnels 15 cm in diameter. On Bird Island the liquid ('oil')  fraction  was  drained,  weighed  and discarded. 

Any fish otoliths present in the rest of the sample were removed and stored dry. The remainder was preserved in 

5% formaldehyde in sea  water and shipped  to the UK. Here, material  was sorted, identified  to  the lowest 

possible taxonomic category (using extensive reference collections for help with fragmentary material) and 

weighed to 0·01 g. Crustacean total lengths (TL) were measured (to O· I mm) from the anterior edge of  the eye 

to the tip of  the telson.  Because  many euphausiids  were insufficiently intact  to  permit  this, 



 

carapace lengths (CL: tip of rostrum to posterior end along mid-dorsal line) were also measured and 

converted to TL using the relationships: male TL=2·32CL+ 11·09; female TL=3·15CL+3·58; juvenile 

TL=2·88CL+2·28 (Morris, Watkins, Ricketts, Buchholz & Priddle, 1988). Identity offish was established 

by comparing otoliths with published illustrations and reference material (Adams & Klages, 1987; Hecht, 

1987; British Antarctic Survey, unpubl. data). Otolith length, breadth, thickness and weight were measured 

and these were used to estimate the size of the whole fish (see Croxall & North (1988) for full details). 

 
Feeding rate and meal size 

Feeding rate and meal size were estimated by weighing chicks. Nine chicks were weighed to 0·5 g twice daily 

(07: 00-09:00 and 18:00- I 9: 00 local time) from hatching to fledging, giving a total of 717 weights. These 

data were supplemented by weighing (to 0·1 g) 16 chicks, 37-58 days old and 25-65 g in weight, at 3-h 

intervals during daytime on 3-7 days in mid-to-late March-a total of 399 weights. The three-hourly daytime 

weighings were used to calculate an average rate of weight loss. This was used in conjunction with the 

morning weights to determine whether a chick had been fed since being weighed the previous evening. The 

meal mass delivered was also estimated by comparing morning and evening weights. 

 

 

 
Results 

 
Diet 

About 80 regurgitations were collected on eight sampling occasions between 6 and 15 March on 

Gazella Peak (mean fledging date 26 March± 4 days, range 23 March- I April, n = 8) and between 

19 March and 1 April on Stejneger Peak (mean fledging date 15 April± 18 days, range 26 March-6 

May, n=5). Only 51 samples contained  solid  material,  the rest (c. 36%) comprising  only oily 

liquid. The average weight of each of the 51 samples was 2·0 ± 1·3 g (range 0·5--6·4 g) and their 

overall composition by mass was 13% liquid, 52% identifiable material and 35% unidentifiable 

material. The general composition of the identified material, totalling 53·4 g, is summarized in 

Table I. 

 

 

 

 

 
TABLE  I 

Composition by weight.frequency of occurrence and number of 
individuals of prey in 51 samples regurgitated by Wilson's storm 

petrels at Bird Island, South Georgia 
 

 
 

Group 

Frequency of 
occurrence 

(%) 

Individuals 
 

Number % 

Weight (g) 
 

Total % 

Crustaceans 100 1983 98·5 36·3 68·0 
Fish 41 26 1·3 15·l 28·3 
Squid 2 1 O·l l·O 1·9 
Insects 6 3 O·l l·O 1·9 



 

TABLE II 

Size and composition by weight.frequency <Jf occurrence and number of individuals, in 51 samples <Jf 

crustacean  prey regurgitated by Wilson's storm  petrels at  Bird Island, South Georgia 

Frequency of Individuals Weight (g)  

 

Group 
occurrence 

(%) 

 

Number 
 

o;;i 

 

Total 
 

% 

Size range• 
(mm) 

Euphausiacea 
Euphausia superba 

 
51 

 
68 

 
3·4 

 
18·8 

 
51·8 

 
24 51 

E. triacantha 4 8 0·1 0·2 0·5  

E.frigida 2 I 0·l 0·2 0·5  

Thysanoessa sp. 22 33 1·7 0·7 1·9 6-12 

Amphipoda       

Themisto gaudichaudii (adult) 71 364 18·4 11·7 32·2 8-22 
T. gaudichaudii (juvenile) 49 1411 71·2 4·5 12·4 2-7 
Vibilia sp. 4 3 0·l 0·l  9--12 
Cyphocarus sp. 2 1 0·1 0·1   

Mysidacea       

Antarctomysis sp. (adult) 2 I 0·l 0·1 
Antarctomysis sp. (larvae) 4 2 0·l 0·I 

Copepoda 
Rhincalanus gigas 

 
4 

 
2 

 
0·l) 

   
8-10 

Ca/anus simillimus 6 5 0·3) 0·I 0·5 3-4 
C. propinquus 12 13 0·7)   4-5 

Cirripedia       

Cypris larvae 33 76 3·8 0·l 0·5 2-5 

• Total length: see methods section for details 

 

 

Overall, crustaceans dominated the samples, both numerically and by bulk, though the few fish 

made a large contribution  by mass. The samples contained remains of only one squid. 

Tiny pieces of pumice were present in 27 samples (53%) and fragments of plastic in five samples 

(10%). Fur seal hair occurred in five samples (10%); this might have been ingested together with 

scraps of blubber which would be digested rapidly, contributing to the oil fraction but not being 

recognizable in the solid material. Tiny pieces of unidentifiable tissue that might represent bird or 

seal flesh were recorded in ten samples (20%) but their total contribution by weight was less than 

5%. Small fragments of plant material occurred in 35 samples (69%); their provenance is 

unknown, as is that of the five insects, three of which were the mite Podocarus auberti. There were 

no significant variations in overall diet composition between any of the sampling occasions or 

sites. 

 
Crustaceans 

Wilson's storm petrels took a diverse selection of small crustaceans (Table 11) but two species, 

Antarctic krill Euphausia superba and the hyperiid amphipod Themisto gaudichaudii, accounted 

for 96% of the weight of crustaceans in the diet; Themisto alone comprised almost 90% of 

individual prey items. The only other taxa which contributed more than I% of the diet by numbers 

or mass were the euphausiid Thysanoessa and barnacle cypris larvae. Of the 20 krill which could be 

sexed and measured, six were sub-adult males (42-51 mm total length), three were sub-adult 



 

TABLE III 

Estimated total length and weight (from otolith measurements) of fish 

regurgitated by Wilson's storm petrel at Bird Island, South Georgia. Values 

are mean± S.D.  with  range in parenthesis 

Fish size 
Otolith 

Sample length Length Weight 
Species size (mm) (mm) (g) 

Protomyctophum normani 5 2·01 ±0·08      78·2±4·4      3·3±0·5 

(l ·90-2·10) (72-84) (2·6-3·9) 

P. bo!ini  1·80±0·02 63 l·8 

(1·79-1·82) 

 

 

 

females (42-49 mm) and 11 were juveniles (24-43 mm). Because a disproportionate number of 

large krill are likely to be intact, it is probable that well over half the krill portion of the diet 

consisted of juveniles. Most Themisto were sufficiently intact to be classified and measured; 79% 

were juveniles, but the 21% of adults comprise 72% of the total mass of this species ingested by the 

storm petrels. Although copepods are very abundant around South Georgia and several species 

are at least as big as the barnacle larvae, surprisingly few were present in the samples. Both 

Rhincalanus gigas were adults (one male, one female); four of the five Calanus simillimus were adult 

males, the other being a juvenile (copepodite stage V); ten Ca/anus propinquus were stage V 

copepodites, the other three being adult females. These three copepod species are by no means the 

commonest around South Georgia, but they are amongst the largest species (A. Atkinson, pers. 

comm.). 

 
 

Fish 

Fish were present in 42% of samples, though only five samples contained remains of more than 

one fish. No fish was sufficiently intact to be identified below family level and identifications, 

measurements and estimates oflength and weight rely almost exclusively on otoliths. The detailed 

results of these data were discussed by Croxall & North (1988). Eleven otoliths were sufficiently 

intact to be identified to family; all belonged to lanternfish Myctophidae. Eight (representing six 

separate indivdiuals) could be identified to species (Table III). Five of the six fish, representing 

87% of the estimated mass of identified fish, were Protomyctophum normani. The remaining 

specimen was the smaller congener P. bolini. Both species are fairly common members of the 

Scotia Sea epipelagic zooplankton. All identifiable flesh remains were of myctophids. Post-cranial 

skeletons of these were 16-45 mm long (n = 14) and reasonably intact fish (lacking heads) weighed 

l·1-2·5 g (n = 5). These measurements  are consistent  with  those estimated  from  otolith  size. 

Protomyctophum normani probably becomes sexually mature from about 48 mm standard length 

(Hulley, 1981), so most of the specimens taken were likely to have been adult fish.  

 
 

Squid 

The single beak was too badly damaged to be identifiable. 



 

TABLE IV 

Mean ( ±S.D.) rates of weight loss over different 
timespans for chicks of Wilson's storm petrel weighed 

at 3 h intervals 

Mean weight loss 
Timespan Sample 

(h) size g gh-1 
 

6 18 1·64±0·81 0·197 
9 40 2·59±1·12 0·288 

12 38 2-44±1·10 0·203 

All 96  0·247±0·118 

 

 
 

Feeding rate and meal size 

Calculation, solely from daily or even twice-daily weighings, of the frequency and mass of meals 

delivered to chicks is not simple. This is because meals are relatively infrequent and small meals 

may be missed because of the high rates of mass loss characteristic of small, fasting chicks. 

Allowance can be made for this by conducting separate experiments to estimate size of meals and 

rate of mass loss between meals (e.g. Payne & Prince, 1979; Ricklefs, Day, Huntington & Williams, 

1985). In our study the three-hourly daytime weighings allow estimation ofrates of mass loss. For 

96 periods (lasting from 3-12 h) of mass loss, the overall average rate was 0·247±0·118 g h- 1 

(Table IV). However, mass loss was not constant with time, being significantly lower when 

measured over the first 6 h than over longer time spans and not significantly different between time 

spans of 9 and 12 h (Table IV). If this pattern typically reflects digestion of the previous night's 

meal and the mass loss at night is similar to that recorded during the day (probably a conservative 

assumption), we can reasonably assume that chicks lose c. 2·5 g between 18:00 and 09:00 h. 

However, we cannot simply assume that all chicks which lose less than 2·5 g overnight have been 

fed, because the relatively large variance (46% C.V.) associated with this estimate means that a 

significant proportion of errors would be introduced. Thus, we know from the three-hourly 

daytime weighings that no study chick was fed in the daytime during this experiment (though 

genuine daytime feeds do occur, albeit infrequently). If, however, we take 9-12 h losses of2 g, 1 g 

and 0·5 g, respectively, to indicate that meals have been delivered, then this results in estimates of 

feeding frequency (meals per chick days) of 41·7%, 18·5% and 6·3%, respectively, compared with 

the true answer of 0%. In estimating daytime feeding frequency it seems, therefore, best to use 

chick mass increases, or decreases of not more than 0·5 g, to indicate that meals have been 

delivered. 

Because we have no three-hourly weighing data for night-time, we cannot perform a similar 

analysis. Accordingly, we use criteria similar to those applied to the daytime data (Table V). The 

most conservative, and certainly an underestimated, value for feeding frequency is 55% 

(comprising 50% of nights and 5% of days). Incorporating a modest correction ( 0·5 g criterion) 

for both day and night mass loss gives 85% (61% of nights and 24% of days); a larger correction (  

1·0 g criterion) gives 103% (65% of nights and 38% of days) and is certainly an overestimate. It is 

not clear why the same corrected threshold should result in a greater increase in daytime values 

than night-time ones, unless it is harder to detect daytime feeds (because they tend to be smaller). 

Probably  the most  we can conclude  from  this analysis is that  typical  feeding frequencies are 



 

between 70% and 90%. There is some suggestion (e.g. chicks 3 and 7) that chicks which failed to 

fledge received fewer feeds but this is not statistically significant. 

Meal sizes estimated from twice-daily weighings (Table VI) are very consistent between chicks 

and average 4·7 g (S.D. 3·4 g; n = 186) overall. These estimates are based solely on increases in 

chick mass and do not take account of the mass loss between receiving a feed and the next 
weighing. If meals are delivered, on average, halfway between successive weighings (i.e. at 01: 30 h) 

then the average mass loss would be 1·85 g (0·247 g h- 1 (Table IV) times 7·5 h), giving a true meal 

size of 6·55 g. Estimates of the meal size from the three-hourly weighings give a value of 7·6 g (6·1 g 

plus 0·247 g h- 1  times 6·0 h), so the true average is probably about 7·0 g. 

For both data sets we can estimate the number of nights on which chicks received two meals, if 

we assume that any increase greater than 9·4 g (twice-daily weighings) or 12·2 g (three-hourly 

weighings) represents two meals. This gives 19 (10·2%) and three (6·7%) double visits, respectively. 

 

 
Discussion 

 

Diet and feeding ecology 

Interpretation of results 

In any study of diet there are numerous sources of bias relating to the way the samples are 

obtained and analysed and the type of material present (Ashmole & Ashmole, 1967; Croxall, 

Prince, Baird & Ward, 1985; Duffy & Jackson, 1986; Croxall, In press). The main potential sources 

of error in  this study are: 

1. Only part (c. 10-95%) of the average meal load brought to the chick by the adult is collected 

as regurgitate. The likely bias is against larger items (mainly fish, perhaps also squid) which would 

be less easily vomited. 

2. The samples collected contained a high proportion (35%) of material which could not be 

easily allocated to fish, squid or crustacean sources. This will introduce biases if any of these classes 

were disproportionately represented in the unidentifiable material. Indeed, fish and squid material 

is digested particularly rapidly and crustacean fragments are, perhaps, more easily recognizable 

than minute remains of other taxa. However, if all the unidentifiable material in samples 

containing any fish (and it is very unlikely that fish would be totally overlooked in any sample that 

contained it) is assumed to be entirely fish-derived, then the proportion by weight offish in the diet 

would increase only from 28% to 37%, with crustaceans decreasing to 60%. 

3. Our analysis of solid, identifiable material assumes that all prey in the sample are equally 

digested, which is unlikely because they will have been in the petrel's stomach for different lengths 

of time and different prey types may be digested at different rates (e.g. Jackson & Ryan, 1986). One 

way of avoiding part of this bias is to estimate the mass of each prey item when it was freshly 

ingested (see Croxall et al., 1985; Duffy & Jackson, 1986). To do this requires: (a) identifying all the 

main prey taxa to species level, (b) having accurate size/weight relationships for whatever parts of 

these prey are available in the samples and (c) accurate estimates of the number of individuals in 

each prey taxon in the samples. If these criteria are not met the estimates ofingested weight of prey 

may be so inaccurate (e.g. squid of 35-40 g being ingested by Leach's storm petrel, Oceanodroma 

leucorhoa; Watanuki, 1985a) that greater biases are introduced than by recording accurately the 

composition  of the prey that the chick actually receives. In our study difficulties  in identifying 



 

t"' 

'D 
0 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE V 

Estimated percentage of days and nights on which Wilson's storm petrel chicks received meals, based on twice-daily weighings and using various 

criteria of  mass change 

Day Night OveraJI 
   

Days Increases   Including   Decreases of Increases   Including   Decreases of Increases   Including   Decreases of 

Chick   studied   Fate" only ..;0-5g ..;I·Og only ..;0-5 g ..;I-0 g only ..;0-5 g ..;1-0 g 
:-a
 

 

2 43 s 2·3 14·0 18·6 60·5 72·1 79·1 62·8 86·1 97·7 r.i 
4 58 s 5·2 24·1 32·8 50·0 63·8 65·5 55·2 87·9 98·3 

;,i;i
 

5 50 s 6·0 16-0 32·0 54·0 70·0 74·0 60·0 86·0 106·0
 0

 
 

8 58  s  1·7 15·5 29·3 58·6 60·3 63·8 60·3 75·8  93·1 > 
IO 59  s  1·7 25·4 59·3 49·2 61·0 69·5 50·9 86·4 128·8 

t"' 

II 34 F(54) 14·7 29·4 50·0 44·1 50·0 58·8                 58·8             79·4            108-8                            
t'I] 

3             35       F(53)         8·6            20·0               42·9                 28·6            40·0               40·0                 37·2             60·0               82·9                            "-l 
7 21 F(44) 4·8 57-1 66·7 38·1 52·3 57-1 42·9 109·4 123·8 

1 17 F(SO) O·O 11·8 11·8 70·6 76·5 76·5 70·6 88·3 88·3 r-- 
Overall mean 5·0 23·7 38·2 50·4 60·7 64·9 55-4 84·4 103·1 

S.D. 4·5 13·8 18·2 12·5 11·7 12·0 10·3 12·3 15·4 
range 0--15 12-57 12-67 29-ll 40-76 40-79 37-71 60--109 83-129 

• S: successful; F: failed, with percentage of normal fledging period (78 days) survived in parenthesis 

X 



 

TABLE VI 

Meal size (mean  positive  mass  increments  (g) 
between successive evening and morning weighings) 

delivered to Wilson's storm petrel chicks at Bird 
Island, South Georgia 

Meal size 
 

Chick Fate•    Mean    S.D. Range 
Sample 

size 

 

2 S 5·6 3·5 l·0-14·0 27 
4 S 5·1 3·9 0·5-15·0 27 
5 S 4·8 3·5 0·5-15·0 27 
8 S 4·4 3·2 0·5-10·5 33 

10 S 4·4 2·5 0·5-II·5 27 
I I F 4·8 3·4 0·5-10·5 15 

3 F 3·6 2·7 1·0-8·5 IO 

7 F 3·9 2·9 0·5-9·0 8 
I F 4·9 3·3 0·5-12·5 12 

Allb  6·1 3'9 0·5-15·5 45 

• S: successful; F: failed 
b From three-hourly weighings 

 
 

myctophid fish from otoliths and the paucity of data for estimating mass of crustaceans (other 

than E. superba) from carapace and other fragments meant that we did not attempt this approach. 

4. Wilson's storm petrels are known to pick minute fragments of fat (blubber) from the water 

surface. Formerly, whaling operations were a rich source of this material. Nowadays the main 

sources are likely to be fish offal or seal and penguin carcasses, especially those killed or rendered 

available by the activities of natural predators, e.g. leopard seals Hydrurga leptonyx, or larger 

avian scavengers, e.g. giant petrels Macronectes (Bonner & Hunter, 1982; Hunter, 1983). Small 

pieces of blubber are likely to be digested and therefore unrecognizable in the identifiable material. 

It is impossible, therefore, to assess the contribution that scavenged material might make to the 

diet of Wilson's storm petrels at South  Georgia. 

Despite these problems, our results suggest that crustaceans were the main food of Wilson's 

storm petrels during the late chick-rearing period at South Georgia in 1984-85 and that myctophid 

fish also made an important contribution by weight. Numerically, amphipods, particularly 

juvenile Themisto, predominated, but adult Themisto and particularly juvenile and sub-adult krill 

made the main contribution by weight. The crustaceans eaten were small, ranging from 2-5 mm 

long copepods and cypris larvae to 10-20 mm amphipods and 25-50 mm euphausiids. The 

smallest prey weighed about 0·001 g; the largest (22 mm Themisto and 50 mm krill) weighed 0·2 g 

and 0·7 g each. By contrast, the fish taken were about 60-85 mm long and weighed 1·8-4·0 g. It is 

not clear how such relatively large fish are caught or why crustaceans much larger than those 

actually ingested are not eaten. However, adult E. superba of up to 65 mm length and weighing 

l·3 g, which are eaten by penguins at South Georgia (Croxall & Lishman, 1987), may not be 

readily available in the surface waters to Wilson's storm petrels. 

 
Comparison  with existing information  on Wilson's storm petrel 

Most previous data on Wilson's storm petrel diet are anecdotal. Krill (E. superba) was the main 

component of food brought to chicks at Argentine Islands and Signy Island (Roberts, 1940; Beck 



 

& Brown, 1972); at Anvers Island, Obst (1985) records that it formed 85% by weight of the diet. 

Elsewhere, however, he refers to the importance of wax-rich myctophids and squid in the diet 

(Obst, 1986). Squid (as beaks, which may be retained in the stomach for appreciable times) have 

been recorded from specimens taken at Iles Kerguelen (Paulian, 1953), near the Antarctic 

Continent (Falla, 1937; Mougin, 1968; Kamenev, 1977) and at sea in the South Atlantic (Bierman 

& Voous, 1950). The amphipod Themisto (as Euthemisto} gaudichaudii, was recorded as 

'important'  in the diet off Kerguelen  (Falla, 1937). 

There are two recent more quantitative studies. Wasilewski (1986) obtained samples from 82 

adults during incubation and early chick-rearing and from 21 chicks. The latter contained only 

krill. Krill (95% E. superba, 5% E. crystallorophias) occurred in 96·4% of adult samples and 

formed 93·6% of 125 prey items recovered, amphipods (all Themisto gaudichaudii; 5·6%} and a 

single larval fish (0·8%), making up the rest. The krill averaged 42·8 mm long. Ainley et al. (1984) 

obtained 28 samples from birds caught in the Ross Sea (70°S}, off the Antarctic Continent (Table 

VII). Crustaceans and squid were the most abundant prey, in that order, which was reversed when 

composition by mass was estimated. The crustaceans were Antarctic krill (93% of individuals), 

averaging 35 mm in length (S.D. 0·5 mm, range 26-44 mm; n =14) and lysianassid amphipods (7% 

by numbers). The only two squid identified were Psychroteuthis glacialis which, applying data 

from Offredo, Ridoux & Clarke (1985) to the beak measurements, were estimated to have weighed 

l·5 g and 9·7 g. Fish material included remains of a couple of Pleuragramma antarcticum 

(Nototheniidae), but no other details are given. Polychaetes occurred in 25% of samples and 

formed 7% of the number of prey items and 3% of the diet by mass. Obvious differences between 

the Ross Sea and South Georgia diets are the greater importance of squid in the former and fish in 

the latter. In both, however, Euphausia superba is the single most important species and the size 

range taken is very similar in both  areas. 

Almost all authors mention the characteristic feeding method of dipping to pick items from the 

surface whilst skimming over the water, or, more often, hovering with feet touching the surface. 

This aerial pattering or 'hovering' is likely to be an important energy-saving mechanism (Withers, 

1979; Obst, Nagy & Ricklefs, 1987). Birds are rarely seen floating or swimming on the sea but sub 

surface seizing and surface plunging have been recorded (Harper, Croxall & Cooper, 1985; Prince 

& Morgan, 1987). Although aerial pattering enables the species to forage close to the sea surface, 

which must help it to prey on items like very small crustaceans, the presence of pumice (and 

plastics) in many samples suggest that there is little time or opportunity for the birds to 

discriminate between edible and inedible objects. 

 

Comparison  with other storm petrels 

Of the quantitative data available on storm petrel diets (Table VII), those on five species are 

limited to information on frequency of occurrence. Interpreting this in the light of the other studies 

suggests, in very general terms, that fish are the main food for all Oceanodroma species, with squid 

probably of next importance for all Pacific Ocean species and populations. By contrast, 

crustaceans seem to be the main prey of the species in the other three genera. Only one squid (see 

above} and few fish have been identified from storm petrel stomachs. Sternoptychidae were 

identified in Oceanodroma tristrami stomachs; Lampichthys procerus (Myctophidae} and 

Maurolicus muelleri (Sternoptychidae) together formed 40% by weight of the fish in Pelagodroma 

samples. Cottoidea, Gadidae, Myctophidae and Scorpaeniformes were reported in Alaskan 

Oceanodroma furcata samples (Hatch, 1983), although juvenile capelin Ma/lotus villosus are 
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TABLE VII 

General composition  (%)    of  the diet of storm petrels 

Squid Fish Crustaceans 
 

    

   -t"" 

Oceanodroma leucorhoa 33 - 36 - - c.50 
l:ll 

Japan (n = 178) Watanuki (1985a) 0 

3 O·I 3·4  82 8·1 66·5 c.75 91·7 30·2 Newfoundland  (n = 155)  Linton (1978)  VJ 
O.furcata 9 -  100 -  - 82+   - Alaska  (n = 22)" Hatch (1983)  ti) 

Fork-tailed storm petrel               ---l 
0. monorhis 32 - 52 - 10 - Korea (n=  178) Won & Lee (1986) 0 

Swinhoe's storm petrel 
:;i:,

 

0. castro 27 - 93 - 0 - Galapagos (n= 15) Harris (1966) 
Madeiran storm petrel '"1:1 

0. tethys 17 61 - - 14 - Galapagos (no=66) Harris (1966) 
t?l

 

Galapagos storm petrel :;i:, 
0. tristramib 60 - 50 - 60 - Hawaiian  Is. (11= 10) Harrison, Hida & t?l 

Sooty storm petrel Seki (1983) 
t""

 

Oceanites oceanicus 2 0·1 1·9 42 1·3 28·3 100 98 68 S. Georgia (n=5I) This study 
Wilson's storm petrel 54 30·0 45·5 7 6·6 15·2 64+ 56·7 36·3 Ross Sea {n = 28) Ainley eta/. (1984) t?l 

Ga"odia nereis 0 0 0 4 O·I 0·3 100 100 99·7 Chatham  Is. (n = 27) Imber (1981) ---l 
Grey-backed storm petrel 

Pelagodroma marina 0 0 0 3 30·0 - 97 70·0 Chatham  Is. (n=22) Imber (1981) 

White-faced  storm petrel 

• Each sample comprised combined  regurgitations of 15-20 birds 
b   Also insects 40%, coelenterate  (Vele/la)  40% 
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Leach's storm petrel 5 0·6 5-6 78 13·5 68·8 c.95 85.8 25·7 Nova Scotia (n= 91) Linton (1978) z 

           

           

           

           

           

           

           

             

             

             

 

 



 

TABLE VIII 

Comparison of crustacean diets of storm petrels. Values are proportion (%) by weight" with size range (mm) in 
parenthesis. Data sources as in Table Vil 

Leach's storm petrel Wilson's storm petrel 
 

Taxon 
 

Nova Scotia 

 

Newfoundland 
 

S. Georgia 
Grey-backed 
storm petrel 

White-faced 
storm petrel 

Euphausiacea 19 7 55 7 46 
Euphausia traceb  97 (24-51)<  0·7 (14-22)d 
Nyctiphanes australis    100 (8-14) 75(7-15) 
Nematosce/is mega/ops 9 (9-30)    23 (13-18) 
Meganyctiphanes norvegica 88 (12-33) 12 (18-39)    

Thysanoessa  88 (6-30)" 2 (6-12)  0·9 (14-16}1 
Amphipoda 3 20 45 7 10 

Themisto 73 (6-2))8 6 (3-21)8 100 (8-22)h 4 (7-8)h. 8 (7-I0)h 
Hyperia 13(3-15i 94 (3-18);  21 (6-l0)l 5 (9-16)i 
Vibilia   trace (9-12)  18 (5-18)k 
Cyllopus    15 (6-10r 59 (1-9r 

Decapoda 3 (24-66)" 3 (2!-63)m   trace (14) 
Stomatopoda     4 (14-29)P 
Copepoda trace (3-6)q trace (3-6)q trace (3-10)  trace (3)' 
Cirripedia    trace (2-5) 85 (2- 5)8 0·5 (2-5)' 

• For main groups, proportion of total diet; for species and genera, proportion by weight of main group 
b  E. krohnii 
0   E. superba; also E. triacantha and E.frigida as traces 
d E. lucens, E. similis 
• Thysanoessa raschii, also T. longicaudata and T. inermis as traces in Nova Scotia 

r   T. gregaria 

8 Themisto compressa (formerly regarded as conspecific with T. gaudichaudii; see Schneppenheim & Weigmann- 
Haass,  I986) 

h   T. gaudichaudii 
i  H. galba 
i H. spinigera 
kV. armata 

m C. macropis and C. magel/anlcus 
n Mainly Sergestes arctlcus and Parapasiphaea sulcatifrons larvae 

P Squilla armata and Heterosquilla spinosa larvae 

q Anomalocera opalus, also a few Euchaeta norvegica and Calanus sp. in Newfoundland and Nova Scotia, 
respectively 

' Calanus tonsus 
' Lepas australis larvae 

 

 
 

apparently the main food of chicks in some parts of this region and walleye pollock Theragra 

cha/cogramma have also been recorded (Sanger, 1987). Myctophids (probably mainly Electrona, 

Myctophum and Ceratoscopelus), cod Gadus morhua and hatchet fish Argyropelacus aculeatus 

comprised, respectively, 50-55%, 30-40% and 3-11% by volume of fish diet of 0. leucorhoa 

(Linton, 1978). Specimens of all these were typically 20- 70 mm long, though the largest individuals 

recorded just exceeded 100 mm. 

Only with the four detailed studies is it possible to make more critical comparisons, especially of 

the nature of the crustacean prey (Table VIII). Despite considerable differences in the importance 

of crustaceans and of the various constituents thereof and of the different geographical areas 

involved, there are striking similarities in the size and general identity of the zooplanktonic 

crustaceans eaten by storm petrels. In general, euphausiid crustaceans 15-50 mm long, weighing 



 

  

0·1--0·7 g, and hyperiid amphipods, usually 7-20 mm long, weighing 0·005-0·2 g, make up the bulk 

of the prey by weight. Smaller prey (down to 2 mm long) can be taken, though only for Garrodia do 

they form the main resource. Larger prey are sometimes taken (e.g. by 0. leucorhoa) but tend to 

contribute rather little to the overall diet. The main euphausiids and Themisto are all known to 

occur at high densities and this may be an important reason why they, rather than other euphausiids 

and amphipods, are taken. Copepods, despite their abundance, are of  little importance to storm 

petrels, presumably because larger prey are usually equally readily available. Garrodia appears to 

specialize on the tiny barnacle larvae. 

Finally, all workers who have collected food samples from storm petrels comment on the high 

proportion which contain only liquid ('oil'). This suggests either that storm petrels take prey that is 

especially easily digested (perhaps because small), or that the prey remains in the stomach for long 

periods. Both may be true. Most prey are small but, for many taxa, not much smaller than the prey 

of Antarctic prions (see next section), from which few food samples contain only liquid (P. A. 

Prince, unpubl. data). Later (p. 99) we show that storm petrel foraging trips are disproportionately 

long, so this may be the main cause. If the liquid fraction has a higher energy content than the solid 

portion (because energy is concentrated by selective absorption of water and protein), there may 

be additional advantages in maximizing energy density of meals in order to minimize the effect of 

the extra mass transported on flight speed and fuel consumption (Pennycuick, 1982; Ricklefs, 

Roby & Williams, 1986). This is a general point relevant to all procellariiforms but probably 

especially critical for storm petrels because of their small size and  long trips. 

 
Comparison  with other seabirds at South Georgia 

We have no data on the diet of grey-backed storm petrel Garrodia nereis and black-bellied storm 

petrel Fregetta tropica which nest in small numbers at South Georgia but can compare Wilson's 

storm petrel diet with that of two other small petrels (family Procellariidae) which feed mainly on 

zooplankton. Blue petrels Halobaena caerulea (190 g body mas) and Antarctic (dove) prions 

Pachyptila desolata (170 g) are abundant breeding species at Bird Island. The overall composition 

of their diets by weight and numbers, respectively, was, for blue petrels: crustaceans 91 % and 94%, 

fish 8% and 6%, squid 0·2% and 0·8%; and for Antarctic prions: crustaceans 98% and 98%, fish 

0·l % and 2%, squid 0·l % and less than 0·l % (Prince, 1980). This is not dissimilar to the general 

diet of Wilson's storm petrel (see Table I), with crustaceans predominating and squid being very 

rare. Depending on the allocation of unidentifiable material, the contribution by weight offish to 

Wilson's storm petrel diet was assessed at 28-33%. Prince (1980) also calculated the diet 

composition assuming that all unidentifiable material in samples containing fish, was fish. This 

gave results for blue petrel of crustaceans 43%, fish 56%, squid l % and for Antarctic prion of 

crustaceans 87%, fish 12%, squid 1%. In general terms, therefore, the diets of these three species 

are broadly similar. None of the fish remains in the blue petrel and Antarctic prion samples was 

identified, although it was 'probably myctophids' (Prince, 1980), so more critical comparison is 

limited to the crustaceans (Table IX). Antarctic krill E. superba is the principal prey of all species 

and there is substantial overlap in the size of the krill they take. Apart from krill, Antarctic prions 

eat mainly copepods and Wilson's storm petrels amphipods, and in both classes the size-range of 

prey taken by all three petrels is broadly similar. The composition of the amphipod prey, however, 

is rather different. Both blue petrels and Antarctic prions take a wide range of species, though the 

main  prey  are  rather different. Thus  Themisto and  Hyperiella comprise  77%  by  weight of 



 

TABLE  IX 

Comparison of crustacean diets delivered to chicks by blue petrels, Antarctic prions 
and Wilson's storm petrels at Bird Island, South Georgia. Values are proportion 

(%) by weight" with size range (mm) in parenthesis 

Taxon Blue petrel   Antarctic prion  Wilson's storm petrel 
 

Euphausiacea 
Euphausia superba 
Thysanoessa macrura 

Mysidaceab 
Decapoda0 

Amphipoda 
Themisto gaudichaudii 
Hyperia macrocephala 
Hyperoche medusarum 
Hyperiella antarctica 
Vibi/ia antarctica 
Cyllopus lucasii 
Eurythenes gryllus 

Copepoda 
Cirripedia 

85-9 
95·3 (10-59) 

4·7 (13-21) 
3·5 (20-37) 
4·3 (50-75) 

4·9 
10·2(5-1S) 

2·0(5-17) 
38·8 (10-18) 
10·2 (3-13) 
24·5 (4-8) 
10·2 (9-15) 

4·1 
1·4 

 

58·7 
99·5 (5-60) 
0·5 (9-14) 
0·8 (15-29) 

 

8·2 
56·1 (2-18) 
1·2 (3-11) 
4·9 (4-14) 

20·7 (3-8) 
6·1 (4-11) 

11·0 (5-14) 
 

32·3 (1-11)d 

54·7 
94·7 (24-51) 
3·5 (6-12) 

trace 
 

44·6 
100 (2-22) 

 

 

trace (5-18) 

 

0·5 (3-10) 
0·5 (2-5) 

 
 

• For main groups, proportion of crustacean diet; for species, proportion of 
main group 

b Antarctomysis maxima 
0  Acanthephyra sp. 
d Rhincalanus gigas (5-11 mm) and Calanoides acutus (1-5 mm) 

 

 

 
amphipods taken by Antarctic prions, whereas Hyperoche and Vibilia total 53% of the weight of those 

taken by blue petrels. Blue petrels take significantly larger specimens of Hyperia, Hyperiella and 

Hyperoche than Antarctic prions do (Prince, 1980). In contrast, Wilson's storm petrel almost 

exclusively  takes Themisto of  much  the same average size (12·2±3·8  mm) as those  taken  by blue 

petrels (10·2 ± 3·0 mm) and Antarctic prions (11·0 ± 3·1 mm). 

Prince (1980) related many of the differences between the diets of blue petrels and Antarctic 

prions to differences in feeding habits. Thus Antarctic prions use their palatal lamellae to filter 

copepods, whereas blue petrels have no morphological specializations for taking such small prey. 

Furthermore, they characteristically fly high above the sea and feed by swooping to pick prey from 

the surface (dipping) as well as by surface-seizing, which is also typical of prions (Prince & 

Morgan, 1987). Only relatively large prey items are likely to be taken by dipping, which might 

explain why the blue petrel takes larger prey of several taxa than the Antarctic prion does. Apart 

from this, all three species take a similar size-range of prey, but it appears that only Wilson's storm 

petrel specializes on Themisto. This is by far the most widespread and abundant amphipod around 

South Georgia, often occurring in considerable concentrations; but it is not clear why Wilson's 

storm petrels do not take a greater diversity  of amphipods. 

 
Chick  growth, feeding  rate and meal size 

Information on chick growth and provisioning rate for storm petrels, summarized in Table X, 

enables us to make intra- and interspecific comparisons and also, briefly, to compare storm petrel 

provisioning with that of other Procellariiformes. 
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Meal size: ,, 

 

TABLE X 

Comparison of aspects of chick-rearing  biology in storm  petrels 

Species  Fork-tailed Madeiran  storm  petrel        Galapagos      Leach's storm petrel Wilson's storm  petrel  White-faced 

storm  petrel  0.  castro storm petrel 0.  leucor/wa  Oceanites oceanicu.s British storm petrel storm  petrel 
  

Oceanodromaf,ucata    0.  tethys        Hydrobates  pelagicw Pelagodruma marina 

Site  Alaska; Galapagos;     Ascension;  Galapagos;   Japan; NE USA; S. Georgia;  Signy;    Adelie Land;   Wales; S. New 7.ealand; 

Reference• 58°SS'N  0'30'S 7"57'S  0°30'S 42°52'N 44°40'N  54°00'S 60"40'S 66°40'S  51°42'N  46°55'N 

I, 2, 3,4 5 6 5 7 8 9 to II 12, 13 14 

Adult mass (g) 59 40 44 25 49 c.45 35 38 43 28 47 

Fledging period (days) 58 (Sl-66) 69; 71 (60-72) 64 (59-72) 66, 86 61 63-70 78 (64-97) 60 (54-@)   48 (46-51)  70(61-86); 70 (61-86) 58 (53--68) 
Peak mass: 

(g) 85 68 75 - 70 75 49 61 76 42 65--67 

age in days c.45 46 48 51 52 48 57 31 so 35-SO 

% adult mass 144 170 170 - 143 167 140 157 177 ISO 138-143 r 
Fledge mass: 

fll
 

(g) 73 c.SO 49 - S1 c.60 35 55 c.64 34 58 
0
z 

% adult mass 124 125 111 - 116 133 100 145 149 121 123 fl) 

Growth rate (110-190) 
Cll

 

in days 33 c.38 c.40 44 c.35 c.40 43 c.29 c.42 ? --l 
0 

(g) 8·0±4 (3-19; n= 160)b 5·6 (n= 160/  6·6 (n= 15)' - - 10·0 (n=l6f 4·1 (0-15; n= 16) - - 6·5 (2-23; n=902f j  6·4 (0-25; n=314)i 

 

tT1 

 
 

-tT1 

 
• I. Boersma, Wheelwright, Nerini & Wheelwright (1980); 2. Boersma (1986); 3. Hatch (1983); 4. Simons (1981); 5. Harris (1966); 6. Allan (1962); 7. Watanuki 

(1985b); 8. Ricklefs eta/.(1985); 9. Copestake&Croxall(l985); this paper; 10. Beck& Brown(l972); I1. La n(l971); 12. Davis(l957); 13. Scott(l970); 14. Richdale 
(1965) 

b  Using weighings immediately before and after chick fed 
c   No method given 
d   Mass increases, plus decreases  :E:; 3·0 g (Hatch, 1983) 
• Using visit-recording device 

r  Using mass increments  based  on  twice-daily weighings 
8   Using mass increments  based  on  daily weighings 
h  7·6 g recorded for younger chicks (Ricklefs, J983); 10·0 g includes l·2 g for mass loss between three-hourly weighings 
i Using -0·5 gas threshold mass change between successive evening and morning weighings to indicate meal delivered 
i  Allows some (unspecified) decrease  between  evening and  morning  weighings  to  represent feeds (and  to add  to meal  size) 

'-.°.J 

7-4±2 (n=82)° 7·2 (11=75) c.7·0 13·6 E:: 
11·6 (4-24; II= 18)b 

12·8±7 (n= 14)° - 22·2 13-4-20·0 - - 23·2 
 

,--,l 
% adult mass 

Feeding frequencr, 

(chicks fed -d              ) 
Delivery rate 

13·6-21-7 
0·73d 

0·68--0·79" 
0·7-1-13° 

14·0-18·0 

0·44; 0·65r 
 

- 

15·0 

0-47' O·Sr 
 

0·59 - 

0·6 + 0 0·59 0·55r - 
0·76 0·84; 
0·72 0·61 - 

- o-8if·i 0·72 (0·6S--0·82); 

- - - 

r 
tT1 

0 

(adult visits d-  1  ) 1·02 0·92 --l 

 



 

TABLE XI 

Comparison of fledging period, chick growth and provisioning rate in three 

proce/lariiform species at South Georgia 

Adult   Fledging Chick Meal Feeding 
 

Species 

mass 
(g) 

period 
(d) 

peak mass 
(%)· 

size 
(%)" 

frequency 
(meals d- 1) 

Black-browed albatross 3800 116 132 15 0·85 
Antarctic prion 170 51 128 c.15 1·33 

Wilson's storm petrel 35 78 100 15-20 0·75 

• Percentage of adult mass 

 

 
 

Intraspecific variation 

The latitudinal gradient in body size of Wilson's storm petrel (Copestake & Croxall, 1985) is 

accompanied by a strong trend in chick parameters. Thus the duration of the chick fledging period 

differs greatly in Adelie Land, Signy and South Georgia birds, the last taking 62% longer than the 

first. There is a similar trend in absolute and proportionate peak mass (South Georgia birds being 

64% and 55%, respectively, lighter than Adelie Land birds) and fledging mass (South Georgia 

birds 55% and 67% lighter). It is likely that there are similar differences in provisioning rate but no 

data are available from the other studies. At the Crozet Islands (46°S), Jouventin, Mougin, Stahl & 

Weimerskirch (1985) estimated that chicks were fed on 56% of nights, which is similar to our data 

from South Georgia (56°S). 

Such a high degree of intraspecific variation is not entirely unexpected, given the major 

environmental differences between the Antarctic continent, where conditions are only suitable for 

breeding for a short period each year, and the much milder conditions at sub-Antarctic South 

Georgia. They illustrate, however, that considerable variation in chick growth rate is possible, 

presumably accompanied by similar variation in feeding frequency, because there cannot be much 

scope for increasing meal size beyond about 20-25%  of adult body mass. 

 
Comparison  with other storm petrels 

The substantial intraspecific variation in Wilson's storm petrel and the relatively few data for 

other species urge caution in interspecific comparisons. Nevertheless, the general picture is one of 

similarities rather than differences. Thus, despite a range of adult mass of 25-60 g, mean fledging 

periods are 58-70 days. However, the intraspecific variation in this is proportionately the greatest 

yet recorded for any group of Procellariiformes; notably the range of Wilson's storm petrel (48-78 

days), which spans those for all other species. Chicks reach peak weights (of 140-170% adult mass 

at 40-50 days of age), which are amongst the highest recorded for Procellariiformes; again the 

range for Wilson's storm petrel (140-180% at 31-60 days) spans all other storm petrels. The 

southernmost populations of Wilson's storm petrel have chick fledging masses (145-150% adult 

weight) considerably greater than in other species (110-130%) and the South Georgia population 

of Wilson's storm petrel (100%). Chick growth rates appear to be broadly similar but the data are 

not really adequate for critical comparisons. 

There are also problems in comparing meal size and feeding frequency, mainly because the 

various studies  have collected,  analysed  and  presented  their data in many different  ways. As 



 

Ricklefs et al. (1985) note, there is an urgent need for standardization of field techniques for such 

studies and also for similar approaches to data analysis and presentation of results. Allowing for 

the present differences, meal sizes are probably typically between 15 and 23% of adult body mass 

and chicks of most species are fed on between 50 and 80% of nights. There is a suggestion that 

lower values may be associated with tropical species and that chicks of temperate species may 

usually receive food on about 75% of nights. Only for three species are there estimates of the 

number of nights on which both adults may deliver meals. For Oceanodroma furcata this was 

recorded on 18 of 52 nights (35%; Simons, 1981: fig. 6), for 0. leucorhoa on 16 of 62 nights (26%; 

Ricklefs et al., 1985) and for Oceanites on 19 of 186 nights (10%; this paper) with delivery rates of 

adults being l·13, l ·02 and 0·92 visits per night, respectively. The lower value for Wilson's storm 

petrel is not surprising considering that its fledging period is 15-20 days (20-25%) longer than the 

other two species. 

 
Comparison  with other Procellariiformes 

Data on growth and provisioning rates of storm petrels (e.g. Ricklefs, White & Cullen, 1980a, b; 

Ricklefs et al., 1985) have been central to the issue of whether foraging rates in Procellariiformes 

are limited by food supplies or are closely adjusted to chick requirements. Lack (1968) argued that 

slow growth rates of Procellariiformes were consequences of low provisioning rates caused by the 

difficulty adults experience in locating unpredictably distributed prey which is of restricted 

availability to birds that can only forage in surface waters. Ricklefs (1983), Ricklefs, White & 
Cullen (1980b) and Ricklefs et al. (1985), however, maintained that growth rates were typical of 

other birds of similarly extreme developmental precocity and that significant increases in growth 

rate could be achieved by relatively small increases in provisioning rate, suggesting that adults 

were typically operating at well below capacity. 

There are few experimental data with which to evaluate these hypotheses. Twinning 

experiments (e.g. Huntington, 1963; Harris, 1966, 1969) have indicated that the upper limit to 

feeding rate in Procellariiformes is less than twice the food requirement of a single chick but these 

and other manipulation experiments (Prince & Ricketts, 1981; Shea & Ricklefs, 1985) also show 

that significant increases in provisioning and/or growth rate are possible, though usually within 

well-defined upper and lower limits. None of this is very surprising, because growth and 

provisioning rates are likely to operate as compromises between the maximum rate of food supply, 

above which chicks cannot absorb more, and a minimum rate below which chick growth is too 

slow for successful fledging. However, as Pennycuick, Croxall & Prince (1984) showed, both the 

smallest and largest Procellariiformes (storm petrels and great albatrosses) have disproportiona 

tely lower provisioning rates than medium-sized species, suggesting that they may face more 

rigorous constraints. 

There are now enough data available for storm petrels to state that in comparison with other 

Procellariiformes: (a) they have disproportionately long fledging periods (e.g. Croxall, 1984); (b) 

they have disproportionately slow chick growth (Ricklefs, 1973; Croxall, 1984), even though 

chicks generally attain proportionately similar (or even higher) peak and fledging masses. The 

slower growth seems to be due chiefly to less frequent parental visits rather than to smaller meals, 

which are similar to, or proportionately larger than, average values for other procellariiforms 

(Croxall & Prince, 1980; Pennycuick, Croxall & Prince, 1984). This can be illustrated simply by 

comparing Wilson's storm petrel with Antarctic prions and black-browed albatrosses (Diomedea 

melanophrys) (Table XI; data from Bird Island, South Georgia; see Croxall, Ricketts & Prince, 



 

1984; Croxall, Prince & Ricketts, 1985; Croxall & Prince, 1987). Thus black-browed albatrosses, 

which are one hundred times the mass of Wilson's storm petrel, only take half as long again to rear 

a chick and have a slightly higher provisioning rate. Antarctic prions, nearly five times the mass of 

Wilson's storm petrel, rear a chick in two-thirds of the time with double the provisioning rate. 

These comparisons do not indicate the extent to which the provisioning rate of Wilson's storm 

petrel is adjusted to food availability on the one hand or to chick requirements on the other. They 

do, however, emphasize that storm petrels cannot simply be regarded as typical Procellariiformes. 

That some of their chick-rearing adaptations are extreme in the family while other features (e.g. 

free-living energy costs) are relatively economic (Obst, Nagy & Ricklefs, 1987) may not be 

paradoxical but, rather, essential complementary adaptations for ensuring the success of these 

smallest of seabirds in the Antarctic environment. 
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