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Differences in forearm strength, endurance and hemodynamic kinetics between male 

boulderers and sport rock climbers. 

 

Abstract 

 

This study examined differences in the oxygenation kinetics and strength and endurance 

characteristics of boulderers’ and sport climbers. Using near infrared spectroscopy 13-

boulderers, 10-sport climbers and 10-controls completed assessments of oxidative capacity index 

and muscle oxygen consumption (mV̇O2) in the flexor digitorum profundus (FDP) and extensor 

digitorum communis (EDC). Additionally, forearm strength (maximal volitional contraction 

[MVC]), endurance (force time integral [FTI] at 40% MVC) and volumes (FAV and ∆FAV) 

were assessed. FDP and EDC Oxidative capacity index were significantly greater (p= 0.041 and 

0.013 respectively) in sport climbers and boulderers compared to controls (mean difference= -

1.166, 95% CI [-3.264 – 0.931 s]; mean difference= -1.120, 95% CI [-3.316 – 1.075 s] 

respectively) with no differences between climbing disciplines. Climbers had a significantly 

greater FTI compared to controls (mean difference = 2205, 95% CI= 1114 – 3296 and mean 

difference = 1716, 95% CI= 553 – 2880 respectively) but not between disciplines. There were no 

significant group differences in ∆FAV or mV̇O2. The greater MVC in boulderers may be due to 

neural adaptation and not hypertrophy. A greater oxidative capacity index in both climbing 

groups suggests that irrespective of climbing discipline, trainers, coaches and practitioners 

should consider forearm specific aerobic training to aid performance.         

 

Key words: Oxidative capacity, microvascular adaptation, near infrared spectroscopy, blood 

flow, perfusion  
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Introduction 

Sport climbing and bouldering both rely heavily on the performance of the forearms, but are 

potentially divergent with respect to the dominant metabolism. Although both disciplines have 

substantially grown over the past two decades, the majority of the literature has focused solely on 

sport climbing (Kodejska, Michailov, & Balas, 2015). Sport climbing requires the individual to 

ascend a route which is usually between 15 m and 30 m in height taking approximately 3 – 7 min 

to ascend; every few meters the person clips a rope to a fixing in the rock/wall to protect them 

against a fall. As such the sport requires notable forearm endurance, and with the exception of crux 

moves (the most difficult section on a route), is suggested to have a dominant reliance on the 

aerobic metabolism (Billat, Palleja, Charlaix, Rizzardo, & Janel, 1995; S Fryer et al., 2012). 

Conversely, bouldering is performed close to the ground (up to ∽4m high) and is often no more 

than 5-8 moves or ∽30 s in duration (Macdonald & Callender, 2011). Consequently, boulderers’ 

have been observed to have a greater finger strength and rate of force development (Fanchini, 

Violette, Impellizzeri, & Maffiuletti, 2013), which likely requires a larger contribution from the 

anaerobic metabolism.  

 

It is evident that forearm strength and endurance are of the upmost importance for rock climbing 

performance, and as such forearm oxygenation kinetics have become a focal point of research. 

However, there is a paucity of data on the oxygenation responses in the forearms of boulderers. 

Recently one previous study recently investigating sport climbers used the oxidative capacity 

index of the flexor digitorum profundus (FDP) to predict red-point performance (Simon Fryer et 

al., 2016). Given that the oxidative capacity index reflects the delivery, perfusion and consumption 

of oxygen within the muscle tissue; it is likely that the rate of muscle oxygen consumption (MV̇O2) 

may influence the oxidative capacity index i.e. increase time to half recovery of the tissue 

saturation index (TSI) however, this has not been investigated.    

 

Given that both climbing disciplines rely heavily on forearm performance but comprise of distinct 

exercise activities, it is pertinent that research aiming to quantify the strength, endurance and 

oxygenation response of both disciplines, as well as the mechanisms behind potential differences 

is investigated. Particularly as such knowledge could be used to improve precision in exercise 

prescription and identification of optimal training targets. Therefore, the aim of the current study 
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was to determine forearm characteristics including: oxidative capacity index, mV̇O2, 

anthropometric and strength and endurance in sport climbers, boulderers and controls. Specifically 

it was hypothesized that sport climbers would have a greater oxidative capacity index and mV̇O2 

in comparison to boulderers. These findings will help to inform trainers, practitioners and coaches.   

 

 

 

Method 

Participants 

In accordance with classifications set by Draper et al. (2016) thirteen advanced male sport climbers 

and 10 advanced male boulderers volunteered to participate in the current study. All climbers were 

not cross discipline trained, as they only climbed in their respective discipline. Eleven male 

controls matched for age, height, mass and training but not climbing volunteered to take part in 

the current study. Anthropometric and demographic data for all participants is presented in Table 

1. All participants were healthy, non-smoking and were not taking any vascular acting 

medications. Institutional ethics which met the standard of both the journal and the Declaration of 

Helsinki of the World Medical Association was granted prior to recruitment and testing.    

 

Procedures  

All testing was conducted on a single visit to an environmentally controlled exercise physiology 

laboratory with the temperature being maintained at 21oc. Participants were asked not to consume 

food for 4 hours prior to testing and to refrain from consuming caffeine or alcohol for a minimum 

of 12 hours prior. Upon arrival to the laboratory, each participant filled out forms for the 

determination of health history, informed consent, demographic data and, where relevant, a 

validated self-reported climbing ability (Draper et al., 2011).  Following this, anthropometric data 

was collected, including resting forearm volume (FAV) [water displacement], forearm 

circumference, stature (Holtain, Ltd, Crymych, UK) and body composition. Body composition 

was assessed using the BodPod system (Cosmed, Rome, Italy) which utilizes air displacement 

plethysmography. 

Participants were asked to lie in a supine position on a massage therapy bed for 20 min of quiet 

rest in a dimly lit room. Subsequently, near infrared spectroscopy (NIRS) was used to determine 
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resting mV̇O2 and oxidative capacity index of the FDP and extensor digitorum communis (EDC) 

of the dominant forearm. The FDP has been assessed in previous sport climbing research as it has 

been reported to be the most important finger flexor for rock climbing performance (Philippe, 

Wegst, Müller, Raschner, & Burtscher, 2011). No known research has determined responses to the 

finger extensors. Due to the large forces placed on the finger flexors during climbing, the finger 

extensors would likely be activated to oppose the isometric contraction. As such the EDC was 

chosen due to its primary role in extending the four medial digits of the hand (Tortora & 

Derrickson, 2008). Following the haemodynamic assessments, participants were then asked to 

perform a self-selected warm-up followed by determination of finger flexor maximal volitional 

contraction (MVC - open crimp). Following light cycle ergometry to aid recovery (Heyman, de 

Geus, Mertens, & Meeusen, 2009), the force time integral (FTI) during an intermittent test for 

failure was determined using an open crimp at 40% MVC until volitional fatigue. In accordance 

with Philippe et al. (2011), MacLeod et al. (2007) and S Fryer, Stoner, Lucero, et al. (2015) the 

intermittent test consisted of a contraction to rest ratio of 10:3s.  Immediately after volitional 

fatigue the post forearm volume was taken to enable calculation of a delta score (∆FAV). 

MVC/∆FAV was calculated to help elucidate whether potential group differences were due to 

hypertrophy or neural adaptation.  

 

Finger apparatus and exercise protocol 

The fingerboard apparatus is the same board that was previously used by S Fryer, Stoner, Lucero, 

et al. (2015) and based upon the work by MacLeod et al. (2007) and Philippe et al. (2011). The 

apparatus has a rock climbing specific handhold attached to a load-cell which once calibrated can 

determine a rock climbing specific measure of strength and endurance in the finger and wrist 

flexors. With a coefficient of variation of 0.5% the between-day reliability of the device is 

considered excellent.  For comparability to the majority of previously published research in the 

area, 40% MVC was chosen as a performance measure to determine the FTI [FTI = 0.4 x length 

of contraction (s) x force (N)]. To determine MVC three maximal trials were used and the highest 

was recorded.    
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Forearm volume and circumference 

In line with Boland and Adams (1996), forearm volume was measured using a water displacement 

volumeter both pre and immediately post the intermittent contraction test to volitional fatigue. 

Forearm volume represents the volume from the base of the carpus to the crease in the elbow joint; 

displaced water was weighed to determine volume. Forearm circumference was measured using 

an anthropometric tape measured at the widest point of the individuals forearm.   

 

Near-infrared spectroscopy (NIRS) 

Continuous-wave NIRS was used to measure forearm mV̇O2 and oxidative capacity index at the 

FDP and EDC. This technology relies upon the relative transparency of tissue to infrared light and 

the oxygen dependent absorption characteristics of haemoglobin (Hb) to determine oxy-

haemoglobin (O2Hb) and deoxyhaemoglobin (HHb), the sum of which is total haemoglobin (tHb). 

Application of the modified Beer-Lambert Law allows for relative concentration changes in 

chromophores to be determined (Delpy et al., 1988: Ferrari et al., 2002), whereas the use of 

spatially resolved spectroscopy (SRS) allows for the determination of a TSI (Patterson, Chance, & 

Wilson, 1989). It is important to note that NIRS cannot distinguish between myoglobin and Hb 

chromophores. For clarity the combination of Hb and myoglobin will be referred to as Hb in this 

paper.  

 

The NIRS system used in the present study consisted of two independent Artinis Portalite optodes 

(Artinins Medical Systems BV, Zetten, The Netherlands) sampling at 25 Hz. The optodes comprise 

of three light-emitting diodes, positioned 30 mm, 35 mm and 40 mm from a single receiver, which 

transmitted infared light at two wavelengths (760 nm and 850 nm). A differential path-length factor 

of 4.0 was used to correct for photon scattering within the tissue (Ferrari, Wei, Carraresi, De Blasi, 

& Zaccanti, 1992). The optodes were fixed to the skin close to the belly of the FDP and EDC with 

bi-adhesive tape and covered with an opaque cloth to prevent signal contamination by ambient 

light. Measures of skinfold thickness were taken from the sites beneath the positioned optodes and 

are reported in Table 1. The observed FDP and EDC skinfolds are notably less than the 6.4 mm 

which has previously been reported to affect NIRS signal quality (M. Van Beekvelt, Borghuis, 

Van Engelen, Wevers, & Colier, 2001). Accordingly, the effect of adipose tissue on NIRS signal 

was thought to be negligible.  
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Flexor and extensor locations  

To locate the FDP a line was drawn on the anterior side of the forearm from the medial epicondyle 

of the humerus to the base of the carpus (lunate) proximal to the ring finger. The NIRS optode was 

placed 33% distal to the epicondyle of the humerus. For the EDC a line was drawn from the medial 

epicondyle of the humerus to the ulnar styloid process. The NIRS probe was placed 33% distal to 

the epicondyle of the humerus. It is acknowledged that due to the complexity of the forearm 

muscular anatomy and the fact that ultrasound was not used to determine the FDP and EDC 

location, the NIRS optodes may, in part, overlay muscles adjacent to the target muscles.  

 

Muscle oxygen consumption (mV̇O2)  

Muscle oxygen consumption was derived from NIRS using the arterial occlusion method, by 

evaluating the rate of increase in HHb (De Blasi, Almenrader, Aurisicchio, & Ferrari, 1997). 

Briefly, a Hokanson rapid inflation cuff (Hokanson Inc, WA, USA) was fitted to the upper arm, 

proximal to the NIRS optodes. Following resting measures, the cuff was rapidly inflated to 220 

mmHg and sustained for 20 s. Three consecutive arterial occlusions were conducted separated by 

a deflation period of 1 minute. Concentration changes of HHb were expressed in micromolars per 

second (µmol·s-1) and converted to millilitres O2 per minute per 100 gram tissue (mlO2·min-

1·100g-1) using the following formula; 

 

mV̇O2 = Abs(((ΔHHb × 60)/(10 × 1.04)) × 4) × 22.4/1000 in mlO2·min-1100g-1 

 

where each Hb molecule blinds four O2 molecules and is was assumed that the molar volume of 

gas is 22.4 L under standard temperature pressure dry (STPD) conditions (M. C. Van Beekvelt, 

Colier, Wevers, & Van Engelen, 2001). A value of 1.04 kg·L-1 was used for muscle density 

(Vierordt, 1906). 

 

 

Oxidative capacity index 

Oxidative capacity index was derived using NIRS by measuring the time to half recovery (s) of 

TSI following 5 min of arterial occlusion (Chance, Dait, Zhang, Hamaoka, & Hagerman, 1992).  
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Expressed as a percentage, TSI is calculated as (O2Hb/(O2Hb + HHb)) × 100 and reflects both the 

influx of oxygenated arterial blood and the continued consumption of O2 during recovery from 

ischemia. Time to half recovery of TSI has previously been found to be a significant predictor of 

sport rock-climbing performance (Simon Fryer et al., 2016). Following mV̇O2 determination, 

participants were asked to perform light (~10 % MVC) handgrip dynamometry (HGD) exercise to 

activate the metabolism. Immediately following HGD, the rapid Hokanson cuff was inflated to 

220 mmHg and sustained for 5 minutes. The cuff was then released and recovery values of TSI 

were recorded for 5 min. Time to half recovery of TSI was calculated from the point of maximum 

deoxygenation at the end of occlusion to highest re-oxygenation percentage achieved during 

hyperaemia. A reduction in time to half-recovery is concomitant with an increase in skeletal 

muscle oxidative capacity index (McCully et al., 1994). 

 

Statistical analysis  

All data is presented as mean ± standard deviation. For meaningfulness, mean difference (MD) 

and 95 % confidence intervals (CI) are used. All variables were assessed and found to be normally 

distributed with equal variance. For each independent variable a one-way ANCOVA was 

performed with the covariates age and climbing experience (of which none were shown to be 

significant). If a significant ANOVA was found a series of post-hoc Bonferroni tests were used to 

determine where the group differences lay. All analysis was performed using Statistical Package 

for Social Sciences (SPSS, Version 22.0). For all statistical analysis the critical α-level was set at 

0.05.        
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Results 

 

Table 1. Demographic characteristics of control, sport climbing and bouldering groups.  

Dependent variable Control  Sport climbing  Bouldering  One-way ANOVA 

    p value % variance ( 2

p ) 

Age (yrs) 26.7 ± 4.2 26.1 ± 5.3 27.5 ± 5.7 0.804 1.4 

Height (cm) 180.0 ± 5.0 177.6 ± 8.7 175.8 ± 8.7 0.318 7.7 

Mass (kg) 74.9 ± 13.5 71.1 ± 8.2 72.7 ± 6.2 0.643 2.8 

Body fat (%) 16.97 ± 8.39 14.9 ± 7.96 10.01 ± 3.89 0.067 16.0 

Flexor skinfold (mm) 4.35 ± 1.63 4.0 ± 1.02 3.03 ± 0.60* 0.040 18.8 

Extensor skinfold (mm) 4.59 ± 2.05 3.87 ± 0.85 3.03 ± 0.60 0.124 12.6 

Resting FAV (ml)  968.7 ± 195.9 1026.3 ± 197.9 1115.9 ± 100.4 0.205 9.7 

Climbing time (hrs·week) N/A 9.5 ± 4.8 8.1 ± 4.9 0.510 2.1 

Climbing experience (yrs) N/A 7.8 ± 3.9 7.1 ± 4.3 0.716 0.6 

Climbing ability   N/A Advanced (Level 3) Advanced (Level 3) N/A N/A 

 

NB: FAV = forearm volume. The % variance is the estimated variance explained by the mean effects within each group for the named variable.  
* Significantly different (p<0.05) from the control group (p<0.05).  

Climbing ability was determined based on the best 6-month red-point grade; all were converted to IRCRA grades and categorized according to 

Draper at al., (2016).  

 

 

 

Table 2. Performance and haemodynamic data for control, sport climbing and bouldering 

groups.  

Dependent variable    One-way ANOVA 

 Control  Sport climbing  Bouldering  p value % variance  ( 2

p ) 

MVC (kg) 19.2 ± 2.5 29.4 ± 4.0* 36.9 ± 6.9*,** <0.001 67.1 

FTI (N) 26063 ± 8180 47696 ± 15131* 42899 ± 13626* 0.001 36.9 

MVC (kg)/ BW (kg) 0.26 ± 0.05 0.39 ± 0.06* 0.50 ± 0.08*,** <0.001 66.4 

MVC (kg) /∆FAV (ml) 0.20 ± 0.04 0.27 ± 0.05* 0.33 ± 0.05*,** <0.001 51.6 

∆ FAV (ml) 30 ± 29 49 ± 43 32 ± 46 0.451 5.0 

Time to fatigue (s)  339 ± 105 426 ± 100* 287 ± 70** 0.005 29.1 

Flexor time to half recovery (s) 8.96 ± 3.58 7.79 ± 1.46* 7.84 ± 1.82* 0.041 19.7 

Extensor time to half recovery (s) 8.60 ± 3.20 6.32 ± 2.07* 5.54 ± 1.17* 0.013 25.2 

Flexor mV̇O2 (µL·min-1) 0.07 ± 0.02 0.07 ± 0.01 0.08 ± 0.02 0.266 8.7 

Extensor mV̇O2 (µL·min-1) 0.15 ± 0.23 0.08 ± 0.02 0.13 ± 0.07 0.425 5.7 

Abbreviations: MVC, maximum voluntary contraction; FIT, force –time integral; BW, body weight; FAV, forearm volume; mV̇O2, muscle 

oxygen consumption 

NB: The % variance is the estimated variance explained by the mean effects within each group for the named variable. 
* Significantly different from the control group (p<0.05).  

** Significantly different from sport climbing (p<0.05). 
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Forearm strength and endurance characteristics  

The MVC of climbers (sport climbers and boulderers) was significantly greater than controls 

(mean difference = 17.8, 95% CI [13.2 – 22.3 kg] and mean difference = 8.2, 95% CI [3.9 – 12.5 

kg] respectively); additionally boulders had a significantly greater MVC than sport climbers (mean 

difference = 9.6, 95% CI [5.2 – 14 kg]). Time to fatigue during the intermittent test to failure was 

significantly longer for sport climbers compared to both boulderers (mean difference = 138, 95% 

CI [58 – 220 s]) and the control group (mean difference = 87, 95% CI [8 – 166 s]), and the control 

group was longer than boulderers (mean difference = 52, 95% CI [33 – 136 s]). Both sport climbers 

and boulderers had a significantly greater FTI compared to controls (mean difference = 2205, 95% 

CI [1114 – 3296] and mean difference = 1716, 95% CI [553 – 2880] respectively) but the FTI 

could not significantly distinguish between climbing disciplines. To determine relative strength 

MVC was divided by body mass and this was found to be significantly greater in sport climbers 

and boulderers compared to controls (mean difference = 0.128, 95% CI [0.066 – 0.190 MVC/kg] 

and mean difference = 0.252, 95% CI [0.186 – 0.318 MVC/kg] respectively); and boulderers had 

a significantly greater MVC/kg than sport climbers (mean difference = 0.124, 95% CI [0.061 – 

0.188 MVC/kg]). Similar significant differences were found for MVC/FAV with both sport 

climbers and boulderers having a greater MVC/FAV than the control group (mean difference = 

0.073, 95% CI [0.030 – 0.177 MVC/mL] and mean difference = 0.130, 95% CI [0.083 – .176 

MVC/mL] respectively) however unlike MVC/BW, boulders were significantly greater than sport 

climbers (mean difference = 0.056, 95% CI [0.012 – 0.101 MVC/mL]).           

 

Haemodynamic responses  

The oxidative capacity index of the FDP was significantly greater (quicker time to half recovery) 

in both sport climbers and boulderers compared to control groups (mean difference = -1.166, 95% 

CI [-3.264 – 0.931 s] and mean difference = -1.120, 95% CI [-3.316 – 1.075 s] respectively). The 

same was found in the EDC with sport climbers and boulderers having a greater oxidative capacity 

index than controls (mean difference = -2.287, 95% CI [-4.268 - -0.306 s] and mean difference = 

-3.067, 95% CI [-5.141 - -0.993 s] respectively). However, the oxidative capacity index was not 

significantly different between climbing disciplines for the FDP or the EDC. Further, there were 

no significant between group differences in resting mV̇O2 for the FDP or the EDC.    
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Discussion 

The major findings of this study were that, 1) the oxidative capacity index of both the FDP and the 

EDC was significantly greater in both climbing groups compared to the control group but this test 

does not appear to distinguish between climbing disciplines; 2) there was a significantly greater 

MVC, accompanied with no differences in ∆FAV in all climbers; 3) the FTI of intermittent 

contractions at an exercise to rest ratio of 10:3 s is beneficial for distinguishing climbers and non-

climbers, but it is not a useful tool to distinguish between climbing disciplines; and 4) there were 

no significant between group differences in resting mV̇O2 in either the FDP or the EDC. 

 

The current study found that the oxidative capacity index was significantly greater in all climbers 

compared to non-climbers, but there were no differences between climbing disciplines. Previous 

research has found that the oxidative capacity index has a moderate to strong relationship (R2 = 

0.52) to sport climbing performance (Simon Fryer et al., 2016). However, as the oxidative capacity 

index could not discriminate between climbing disciplines only control and climbers, it is likely 

that climbers, irrespective of discipline have an improved forearm aerobic capacity. This 

heightened aerobic capacity may be caused by a combination of the prolonged period of time spent 

ascending in sport climbing, and the brief rest periods seen in bouldering. Time motion analysis 

has suggested that sport routes usually take between 2 – 7 min  to complete and contraction time 

on each hold is ∽10 s (Michailov, 2014; Watts, 2004) and so there is a reliance on the forearm 

aerobic metabolism during the ascent. However, as an ascent in bouldering lasts ∽30 s and the rest 

time during hand transfers between holds is very short (approx. 0.6 s), there is a heightened need 

for rapid PCr re-synthesis. As such the ability to re-synthesis PCr is likely to be very important for 

bouldering performance. As PCr re-synthesis can only happen using energy which is aerobically 

derived (McCully et al., 1994), boulderers will also have a heightened oxidative capacity as 

evidenced in Table 2. Additionally, previous research (Simon Fryer et al., 2016) has suggested that 

a possible mechanistic adaptation for an increase in oxidative capacity index in rock climbers could 

be an increase in mV̇O2, however this is not evidenced in the current study when assessments were 

made during resting conditions. It may be that the greater oxidative capacity index seen in climbers 

is caused by an increase in the ability to re-perfuse a muscle through a greater capillarization, 

vasodilation and increased blood flow. Future work should look to determine muscle perfusion, 

mV̇O2 and blood flow during varying intensities of forearm exercise.  
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Previously the FTI has been used as a performance marker to distinguish between climbing 

abilities (S Fryer, Stoner, Dickson, et al., 2015; MacLeod et al., 2007; Philippe et al., 2011). Data 

from the current study suggests that although the FTI (at 40% MVC) can distinguish between 

climbers and non-climbers, it is not able to distinguish between climbing disciplines (Table 2). 

Boulderers have a significantly greater MVC compared to sport climbers, and sport climbers have 

a significantly greater time to exhaustion (when contracting at 40% MVC) than boulderers, and as 

such these values cancel each other out in the FTI equation [FTI = 0.4 x length of contraction (s) 

x force (N)]. It is unlikely that the low percentage of MVC (40%) used in the FTI affected the 

results as no differences have also been reported when the contraction was performed at 60%MVC 

(Kodejska et al., 2015). As such it may be that the FTI is not an appropriate measure and 

MVC/∆FAV is a more sensitive marker for distinguishing between ability groups and disciplines 

within the sport.  

 

Additionally, data from the current study supports the limited previous research suggesting that 

boulderers have a greater MVC and reduced endurance compared to both non-climbers 

(Macdonald & Callender, 2011) and sport climbers (Kodejska et al., 2015). However, a novel 

finding of this study is that both boulderers and sport climbers have a greater MVC/∆FAV 

compared to non-climbers. Further, boulderers have a significantly greater MVC/∆FAV than sport 

climbers. As FAV and ∆FAV was not significantly different between any groups, it could be that 

the greater MVC in boulderers compared to sport climbers is not due to hypertrophy but a chronic 

neural adaptation induced by several years of explosive training. Previously, boulderers have been 

shown to  be more dynamic and explosive than sport climbers (White & Olsen, 2010) and have a 

greater rate of force development compared to sport climbers (Fanchini et al., 2013). Additionally 

explosive and dynamic training has been previously been shown to increase the motor unit 

discharge rate (Aagaard, 2003). As such, the suggestion that a greater MVC and MVC/BW in 

boulderers may be caused by neural adaptions seems likely.  

 

This study highlights the importance of the aerobic metabolism for rock climbing performance. 

Additionally, the data presented could be used in future studies to help prescribe exercise 

intensities and help ascertain training targets in both disciplines. Additionally, it should be noted 
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that there is a paucity of research using female climbers and this should be addressed in future 

works to improve our understanding of the sport and help determine training targets for this 

population.    

 

Conclusion  

To our knowledge this was the first study to assess 1) the oxidative capacity index, FAV and ∆ 

FAV (post intermittent contraction to failure) of the dominant forearm in both boulderers and sport 

climbers, 2) oxygenation kinetics in a forearm extensor (the EDC), and 3) mV̇O2 in the FDP and 

EDC. Findings suggest that the greater MVC seen in boulderers compared to sport climbers and 

non-climbers may be due to neural adaptations and not hypertrophy. Additionally, both climbing 

groups have a greater oxidative capacity index than non-climbers suggesting a notable contribution 

from the aerobic metabolism. As such, irrespective of climbing discipline, trainers, coaches and 

practitioners should consider forearm specific aerobic training to aid performance.       
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