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Virtual Machine Introspection 
 

1. INTRODUCTION 
 
By providing emulation of physical computing resources, virtualization enables multiple 
operating systems to run on the server in the form of virtual machines and share the 
underlying physical resources. 
Virtualization platforms are becoming attractive targets of security attacks, ranging from data 
theft and denial-of-service attacks to the complete compromise of the virtualization 
infrastructure. 
Amongst virtualization security solutions to protect the virtualization environment from 
security attacks, virtual ma- chine introspection (VMI) has become one of the most widely 
used security techniques. 
This paper presents a review on VMI and its use in current virtualization security research. 
Section 2 discusses VMI rationale and its system components, while Section 3 provides a 
detailed analysis on the typical usages of how VMI is integrated with other security 
techniques. Limitations of VMI are discussed in Section 4, before the paper is summed up in 
Section 5. 
 

2. VIRTUAL MACHINE INTROSPECTION 
 

VMI inspects the VM memory and disk from the outside without intrusively injecting agents. 
Thus, one of its main benefits is to protect the VM monitoring tool from being compromised 
in the event of a successful security attack. To that end, the VM monitoring tool is placed 
outside of the target VM but in a trusted VM. The guest VM’s internal behaviour is then 
inferred by using the VM state information obtained at the hardware level [8]. In a typical 
virtualization environment, the VM state information is obtained via the hypervisor using the 
application programming interface (APIs) specific to a particular virtualization platform such 
as the XenCtrl library for the Xen hypervisor. 
 

2.1 Rationale behind VMI 
 

VMI is aimed to address the shortcomings associated with previous threat detection 
solutions, which can be broadly classified into host-based threat detection and network-
based threat detection. 
Host-based threat detection monitors the run-time activities of a guest VM by placing the 
monitoring tool inside it, as illustrated in Figure 1. Analogous to how antivirus solutions are 
run on a native computer system, it periodically scans the guest VM and uses a signature 
database for threat detection. 
While such an in-VM monitoring provides a complete and real-time view of the internal 
activities of a guest VM, it suffers from a number of shortcomings. The monitoring tool is 
susceptible to be corrupted in the event of a successful security attack. In addition, any 
software bug that exists within an in-VM monitoring solution can degrade the guest VM



 
performance significantly, given the multi-tenancy nature of a typical virtualization 
environment. 
On the other hand, network-based threat detection escapes these shortcomings as the 
monitoring tool is placed outside of the guest VMs. Running within a trusted VM, network- 
based threat detection monitors all the network traffic for any signs of possible threats. 
Network packets are intercepted and analysed for threats before forwarding them. By 
placing the monitoring tool outside of the guest VMs, it ensures that the monitoring tool can 
still function in the event of a VM compromise. 
Despite being able to protect the monitoring tool from a malware corruption, network-based 
threat detection does not provide an accurate view of the internal behaviours of guest VMs. 
In addition, the information obtained from monitoring network packets may not be accurate in 
threat determination as attackers can launch attacks by exploiting legitimate ports (such as 
port 21, in the case of FTP). 
[8] proposed VMI in order to overcome the limitations of host-based and network-based 
threat detection solutions. Similar to network-based threat detection, VMI places the 
monitoring tool outside of the guest VMs. Different from network-based threat detection, 
however, VMI monitors the internal behaviour of the guest VM using its state and event 
information obtained at the hardware-level. 
 

2.2 Architecture of VMI 
A typical VMI system is composed of three main components, namely userspace VMI 
application, VMI API (application programming interface) and guest OS symbol table as de- 
picted in Figure 2. 
 

2.2.1 VMI Application 
Running within the monitoring VM, VMI application is responsible for the external monitoring 
of the guest VM. The application is typically run on a trusted VM (i.e., Dom0), and may have 
the access privileges necessary to access the underlying hypervisor using hypervisor-
specific APIs. 
The userspace VMI application uses the functions provided by the VMI API to introspect the 
various operations of the guest VM. While the application is primarily used to monitor 
memory events, its functionality can be extended to monitor other aspects of the guest VM 
such as network flow and storage activities. 
 

2.2.2 VMI API 
Installed into the monitoring VM and running as a library module, the VMI API provides an 
interface between the VMI application and the underlying hypervisor. 
The userspace VMI application obtains different aspects of a VM’s state by using the VMI 
API, which in turn uses the API specific to the virtualization platform on which it runs. 
 

2.2.3 Guest OS Symbol Table 



While VMI uses hypervisor-specific APIs to obtain information about the guest VM state, it is 
impossible to interpret the acquired data without knowledge of the guest OS since it only has 
access to the hardware-level VM state information[8] [16]. This is commonly referred to as a 
semantic gap, which is the knowledge gap between the internal workings of a guest VM and 
the low-level information obtained externally. A VMI implementation typically uses the guest 
OS kernel symbol table (System.map in Linux, ntdll.dll in Windows) to make sense of the 
low-level state information. Initialized during the kernel compilation process, the symbol table 
contains the virtual addresses of important kernel data structures such as the system call 
table as well as the Interrupt Descriptor Table (IDT). Figure 3 shows a snippet of the kernel 
symbol table. 
 

 
 
 
The kernel symbol table helps narrow this semantic gap by enabling the VMI API to translate 
the hardware information with the virtual addresses of important guest kernel structures. It 
also provides the virtual addresses of structures such as the system call table, which 
enables the VMI API to traverse it and manipulate its entries. 
 

3. TYPICAL USAGES OF INTEGRATING VMI WITH OTHER VIRTUALIZATION 
SECURITY TECHNIQUES 

 
3.1 Signature-based Detection Using VMI 
 

One of the applications of VMI in virtualization security is integrating VMI with signature-
based threat detection. This scheme will use an attack signature database to identify the 
presence of threats within the guest VM, as depicted in Figure 4. Given it is done externally, 
however, the monitoring tool is protected from being compromised in the event of a 
successful VM attack. 



 
 
[8] proposed a VMI-based approach to monitoring guest VMs and implemented LiveWire 
which monitors guest VM activities via the management VM (i.e., Dom 0). The scheme 
consists of two parts, that is, an OS interface library which provides an interface for the 
monitoring VM to interact with the guests; and a Policy Engine containing the security poli- 
cies for monitoring different aspects of the virtualized environment. The security policies 
detect malware by calculating the hash values of in-memory programs, and using a 
database of attack signatures. The isolation of the monitoring tool from the guest VMs 
greatly reduces the threat of malware compromise. 
This approach was extended in the VmiIDS intrusion detection system [12]. Implemented 
on the QEMU-KVM virtualization platform, VmiIDS monitors the memory activities by 
comparing the results obtained from the VMI module to the process list obtained from an 
in-VM tool such as the ps command. The consistency of the VM file system was monitored 
by calculating the hash value of a file which is assumed to be consistent during the VM’s 
lifetime. 
[15] used pre-obtained system information to detect threats in a virtualization environment 
in its Patagonix rootkit detection system. The scheme uses hardware information and a 
database containing hashes of legitimate application binaries to determine the presense 
of rootkits. Specifically it uses the Non-Executable (NX) bit present in CPUs to mark the 
memory pages of the processes prior to their execution. Thus any attempts to change the 
page attributes can be trapped and checked by the “identity oracles” against the database. 
Implemented on the Xen 3.0.3 platform, Patagonix was able to identify the rootkits tested 
in the guest VM with additional 3% overhead. 

[6] incorporated Function-call Injection (FCI) and localized shepherding in its SYRINGE 
virtualization security solution. FCI periodically suspends the guest VM operation, and 
places the address of the remote monitoring tool in the EIP register of its virtual CPU 
(vCPU). This enables the monitoring tool to obtain a complete view of the VM’s internal 
operation without the threat of being compromised. Localized shepherding protect the 
monitoring tool by dissembling its code execution and comparing its flow to a whitelist of 
control flows deemed to be safe. Implemented on the VMWare virtualization platform, it 
incurred an over- head of 8% during its execution on a Windows XP guest VM. VMI was used 
in [5] to detect malware which uses multi-layer packing to hide its presence in the guest VM. 
Based on the observation that a packed malware must be unpacked prior to its execution, 
Maitland tracks for changes in the guest VM’s memory pages by hooking the hypercall 
which updates its Memory Management Unit (MMU). The Non-Executable (NX) bit of this 



hypercall is examined to determine whether a non-executable memory page has been 
changed to executable. A callback is then made to determine if the CR2 register contains 
the stack pointer address of the malicious process. 
VMWatcher, a rootkit detection scheme proposed in [11], incorporated VM state 
reconstruction with VMI. A technique called guest view casting was used in this scheme 
which reconstructs the storage and memory contents of a guest VM based on its external 
observations. The storage contents are reconstructed based on the knowledge of the OS’s 
file system structure, while the memory contents are reconstructed by traversing its 
physical memory using its kernel symbol table. Implemented on the Xen hypervisor 
platform using QEMU for guest VM access, VMWatcher used ten commercially available 
antivirus solutions to externally monitor a Windows XP guest VM. While this approach 
represents an attempt to bridge the semantic gap, the po- tential reconstruction overhead 
in a multi-VM environment will hinder the overall performance of the virtualization en- 
vironment. 
[13] incorporated VMI with signature based detection. Implemented on the VMWare ESXi 
virtualization platform, it records the details of all the processes running on a guest VM 
such as their PID and their respective user names. Sys- tem calls made by these processes 
are also recorded and broken up into sequences of length three. These sequences are 
stored in a database on a trusted VM, which uses VMI to monitor the activities of the 
guests. System calls from the guest VM are compared with the stored sequences, and any 
calls which deviate from the stored sequence are deemed suspicious. 

3..2  Training-based Detection Using VMI 

 

[7] proposed Virtuoso, which uses the traces of in-VM pro- grams to introspect the guest 
VM. It uses a program which, given a Process Identifer (PID), identifies the name of the 
process as well as its location in the guest VM’s memory. It is executed a number of times 
with different PIDs to obtain a collection of trace logs. These trace logs are then used to 
create an introspection program which is run in a security VM to introspect the guest VM’s 
activities. While this approach to VMI helps to reduce the ambiguity associated with 
introspecting guest VMs, it can prove to be difficult for operating systems which uses 
Address Space Layout Randomization (ASLR) to make its memory mapping hard for the 
hacker to predict. In addition, it can be difficult to introspect processes which are mapped 
across different locations in memory. 
[9] incorporated VMI with forensic memory analysis (FMA) and machine learning to 
implement a malware detection scheme. It monitors the guest VM’s memory activities over 
a period of time. The memory data is then fed into a ma- chine learning algorithm to 
generate a classifier for malware detection. It uses LibVMI to obtain the memory contents 
and the FUSE library to obtain the virtual drive contents. This malware detection scheme 
fails to prevent hardware- based attacks. 
[1] used VMI in HookLocator to monitor attempts in altering the function pointers stored 
in the kernel pool, which is a dynamically allocated region used for storing function pointers 
. Implemented on the Xen virtualization platform using LibVMI, it first  identifies  the  kernel  
function pointers from the physical memory to build a function pointer list. The kernel 
pool data of the guest VM is then searched for any references to the pointers identified in 
the list and cross-checked with the genuine function pointer list, before being placed into 
the learning pointer list. The entries in the latter are then put into the genuine pointer list 
after deter- mining their changes throughout their execution life-span. It is deemed to be 
a threat if the fuction pointer points to an address beyond the kernel code during its 
execution. 
[2] designed a hypervisor-based host intrusion detection sys- tem for IaaS cloud 
environments. The scheme uses KVM and treats each VM as a single process. The aim is 
to mon- itor system calls for anomalies using VMI. The system calls are collected from the 
virtual machines by so-called ’bags of system calls’ which is a frequency-based 
representation method that requires no probability calculation. Then the classifier is trained 



with the normal behaviour so that it will be able to detect anomalies. The classifier generated 
very strong anomaly signals with a very high detection rate. 
 
 3.3 Host-based Detection Using VMI 
 

Availability is one of the main pillars to information security. Because most cloud providers 
employ automatic load balancing mechanism to move virtual machines across physical 
servers for utilization purposes, an attacker could lure the system into migrating VMs without 
a real need. This could result in wasting hardware resources or disturbing quality of 
services. Thus, there is a need to detect Denial of Service (DoS) attacks coming from virtual 
machines especially attacks which will not normally be detected by intrusion detection 
systems. In [2], a VMI approach was used to detect DoS attacks in IaaS environments. 
Their method relies on monitoring system calls using training techniques. 
The Psycho-Virt security solution scheme in [4] incorporated VMI with existing host-
based intrusion detection and rootkit detection approaches. Using VMI to monitor the 
guest VM activities, the scheme runs either the chkroot rootkit or SNORT intrusion 
detection tools. These tools constantly check the integrity of the guest VM memory by 
calculating the hash values of the running processes’ TEXT area, which is marked read-
only. The calculated hash value is the compared with previous values to identify any dis- 
crepencies. 
The VMI-Honeymoon intrusion detection scheme in [14] integrated VMI with high 
interaction honeypots (HIH). Us- ing a network of HIHs (Honeynet), it monitors 
abnormalities within the incoming network packets while using the Volatility framework 
for memory reconstruction. The memory overhead caused by the multiple deployments 
of HIHs is mitigated by employing a Copy-on-Write (CoW) memory sharing approach 
between the parent VM and the other interconnected VMs. 
 

3.4 System Call Interception Using VMI 

 

[17] incorporated the key VMI concepts with system call interception in its XenFIT. 
Implemented on Xen, it inserts breakpoints within the guest VM’s kernel code and inter- 
cepts the system calls using the XenCtrl library. The modification of a file is determined 
based on its location in the filesystem. 
This approach was extended in the Gateway intrusion detection system [20]. Designed 
to monitor malware attacks against the guest OS’s kernel space, Gateway monitors all 
kernel-level API requests made by the drivers. It places the kernel drivers in a separate 
memory space of the hypervisor. VMI is applied to trap the guest kernel driver request, 
so as to determine if its virtual address belongs to a pre- determined entry point. If the 
request is legitimate, the guest VM’s CR3 register is changed to point to the kernel 
page table (KPT) stored in the hypervisor memory. Tested on a guest VM running a 
PAE (Physical Address Extension) Linux kernel, it incurred an operational overhead of 
approximately 10%. 
 

3.5 VM State Reconstruction Using VMI 

 

Implemented on the VMWare ESXi platform, the Cloud- Sec virtualization security 
scheme in [10] incorporated VMI with VM memory state reconstruction. Designed to 
monitor the memory events within the guest VM, CloudSec obtains the physical 
representation of the guest VM from the hypervisor and uses OS-specifc kernel structure 
information (System.map in Linux, and Microsoft Symbols in the case of Windows) for 
semantic reconstruction. 
[18] introduced a mechanism called  Distributed Streaming VM introspection (DS-VMI ) 
which can infer file system modifications from sector-level disk updates in real-time and 
stream them to a central monitoring point. The experiments showed that the overhead 



of this approach is modest except for write-intensive workloads. 
 
 

4. LIMITATIONS OF VMI 
 

4.1 Semantic Gap 
 

Semantic gap refers to the knowledge gap between the guest OS’s internal state and the 
information obtained externally at the hypervisor-level. This knowledge gap is usually 
compensated in a typical VMI implementation by using the guest OS’s symbol table to 
interpret the low-level guest VM information obtained from the hypervisor. 
While this approach helps close the semantic gap, it has a number of limitations. First of 
all, it is based on the assumption that it will not be changed throughout the guest OS’s 
execution, an assumption which does not tend to hold true in real-time environments. In 
addition, the need to store the symbol tables for every guest VM to be monitored also 
makes this approach inefficient in a typical virtualization environment. 
A possible approach to closing the semantic gap efficiently may be running the userspace 
applications (eg. ps) in the guest VM and collecting the output obtained. Another approach 
may use machine learning techniques to automate the process. However, they can be 
unreliable in the face of a successful rootkit attack. 
 

4.2 Being Susceptible to Attacks which Manipulate the Kernel Data Structures 
 

While VMI uses the guest symbol table to access the internal state of the guest OS, it does 
not provide any mechanism to determine the integrity of these kernel structures. This 
leaves VMI vulnerable to attacks which alter the guest OS state through the manipulation 
of these kernel data structures, as well as return-oriented programming (ROP) at- tacks. 
Direct Kernel Structure Manipulation (DKSM), proposed by [3], is designed to defeat the 
VMI monitoring by manipulating kernel structures such as the system call table and the 
Interrupt Descriptor Table (IDT).  DKSM manipulates the kernel structures through two 
different techniques. In the direct scheme, the kernel code which accesses the kernel 
structures is manipulated by identifying the kernel code pointers and redirecting their access 
to the address contain- ing the attack code. In the shadow scheme, redirection of kernel 
code execution is achieved by redirecting the function pointers instead of the kernel code. This 
is achieved by using a split-memory approach, by which the Translate Lookaside Buffer (TLB) 
is manipulated to point to the attack code. All accesses to the original code are then 
redirected to an- other memory location during the execution of the attack code containing 
logic to transfer control back to it after its execution. While DKSM can be used to 
compromise a guest VM by providing a false view of its internal state to a VMI monitoring 
tool its attack tends to fail when attempting to manipulate kernel invariant structures such 
as the IDT and the GDT, which could not be updated without raising suspicion. In addition, 
DKMS cannot function in a Control Flow Integrity (CFI)-enforced kernel. 
In addition, VMI is of limited ability against attacks such as return-oriented programming 
(ROP) and return-to-libc attacks. Designed to get around the non-execution (NX) re- 
strictions placed by modern processors on memory pages by operating at the CPU register 
level, these forms of attacks aim to hijack the control flow of a process. That is, they try to 
gain control of the process stack, and identify the machine instructions which can be 
exploited and executing them [19]. As these forms of attacks take place in the stack layer, 
it is not visible to a VMI monitor which only has access to the overall memory layout. 
 

5. SUMMARY 

 
This paper provides a review on virtual machine introspection (VMI) and its usages of 
being integrated with other virtualization security techniques. VMI employs a clear ap- 
proach to separate the security scheme outside of the VMs being inspected upon, which 



lays an effective framework for its usages of being integrated alongside a broad range of ex- 
isting security techniques. VMI can be considered a popular monitoring technique to protect 
the virtualization environment from compromise in the event of a successful VM security 
attack. If the limitations are addressed, then VMI has the potential to become one of the 
most effective virtualization security techniques. 
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