
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document and is licensed under All Rights Reserved license:

Win, Thu Yein ORCID logoORCID: https://orcid.org/0000-0002-
4977-0511, Tianfield, Huaglory, Mair, Quentin, Said, Taimur Al
and Rana, Omer F. (2014) Virtual Machine Introspection. In:
SIN '14: Proceedings of the 7th International Conference on
Security of Information and Networks, September 09 - 11,
2014, Glasgow, United Kingdom.

© Thu Yein Win | ACM} {2014. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in: SIN '14:
Proceedings of the 7th International Conference on Security of Information and Networks
http://dx.doi.org/10.1145/2659651.2659710

Official URL: http://dx.doi.org/10.1145/2659651.2659710
DOI: http://dx.doi.org/10.1145/2659651.2659710
EPrint URI: https://eprints.glos.ac.uk/id/eprint/4162

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Virtual Machine Introspection

1. INTRODUCTION

By providing emulation of physical computing resources, virtualization enables multiple
operating systems to run on the server in the form of virtual machines and share the
underlying physical resources.
Virtualization platforms are becoming attractive targets of security attacks, ranging from data
theft and denial-of-service attacks to the complete compromise of the virtualization
infrastructure.
Amongst virtualization security solutions to protect the virtualization environment from
security attacks, virtual ma- chine introspection (VMI) has become one of the most widely
used security techniques.
This paper presents a review on VMI and its use in current virtualization security research.
Section 2 discusses VMI rationale and its system components, while Section 3 provides a
detailed analysis on the typical usages of how VMI is integrated with other security
techniques. Limitations of VMI are discussed in Section 4, before the paper is summed up in
Section 5.

2. VIRTUAL MACHINE INTROSPECTION

VMI inspects the VM memory and disk from the outside without intrusively injecting agents.
Thus, one of its main benefits is to protect the VM monitoring tool from being compromised
in the event of a successful security attack. To that end, the VM monitoring tool is placed
outside of the target VM but in a trusted VM. The guest VM’s internal behaviour is then
inferred by using the VM state information obtained at the hardware level [8]. In a typical
virtualization environment, the VM state information is obtained via the hypervisor using the
application programming interface (APIs) specific to a particular virtualization platform such
as the XenCtrl library for the Xen hypervisor.

2.1 Rationale behind VMI

VMI is aimed to address the shortcomings associated with previous threat detection
solutions, which can be broadly classified into host-based threat detection and network-
based threat detection.
Host-based threat detection monitors the run-time activities of a guest VM by placing the
monitoring tool inside it, as illustrated in Figure 1. Analogous to how antivirus solutions are
run on a native computer system, it periodically scans the guest VM and uses a signature
database for threat detection.
While such an in-VM monitoring provides a complete and real-time view of the internal
activities of a guest VM, it suffers from a number of shortcomings. The monitoring tool is
susceptible to be corrupted in the event of a successful security attack. In addition, any
software bug that exists within an in-VM monitoring solution can degrade the guest VM

performance significantly, given the multi-tenancy nature of a typical virtualization
environment.
On the other hand, network-based threat detection escapes these shortcomings as the
monitoring tool is placed outside of the guest VMs. Running within a trusted VM, network-
based threat detection monitors all the network traffic for any signs of possible threats.
Network packets are intercepted and analysed for threats before forwarding them. By
placing the monitoring tool outside of the guest VMs, it ensures that the monitoring tool can
still function in the event of a VM compromise.
Despite being able to protect the monitoring tool from a malware corruption, network-based
threat detection does not provide an accurate view of the internal behaviours of guest VMs.
In addition, the information obtained from monitoring network packets may not be accurate in
threat determination as attackers can launch attacks by exploiting legitimate ports (such as
port 21, in the case of FTP).
[8] proposed VMI in order to overcome the limitations of host-based and network-based
threat detection solutions. Similar to network-based threat detection, VMI places the
monitoring tool outside of the guest VMs. Different from network-based threat detection,
however, VMI monitors the internal behaviour of the guest VM using its state and event
information obtained at the hardware-level.

2.2 Architecture of VMI
A typical VMI system is composed of three main components, namely userspace VMI
application, VMI API (application programming interface) and guest OS symbol table as de-
picted in Figure 2.

2.2.1 VMI Application
Running within the monitoring VM, VMI application is responsible for the external monitoring
of the guest VM. The application is typically run on a trusted VM (i.e., Dom0), and may have
the access privileges necessary to access the underlying hypervisor using hypervisor-
specific APIs.
The userspace VMI application uses the functions provided by the VMI API to introspect the
various operations of the guest VM. While the application is primarily used to monitor
memory events, its functionality can be extended to monitor other aspects of the guest VM
such as network flow and storage activities.

2.2.2 VMI API
Installed into the monitoring VM and running as a library module, the VMI API provides an
interface between the VMI application and the underlying hypervisor.
The userspace VMI application obtains different aspects of a VM’s state by using the VMI
API, which in turn uses the API specific to the virtualization platform on which it runs.

2.2.3 Guest OS Symbol Table

While VMI uses hypervisor-specific APIs to obtain information about the guest VM state, it is
impossible to interpret the acquired data without knowledge of the guest OS since it only has
access to the hardware-level VM state information[8] [16]. This is commonly referred to as a
semantic gap, which is the knowledge gap between the internal workings of a guest VM and
the low-level information obtained externally. A VMI implementation typically uses the guest
OS kernel symbol table (System.map in Linux, ntdll.dll in Windows) to make sense of the
low-level state information. Initialized during the kernel compilation process, the symbol table
contains the virtual addresses of important kernel data structures such as the system call
table as well as the Interrupt Descriptor Table (IDT). Figure 3 shows a snippet of the kernel
symbol table.

The kernel symbol table helps narrow this semantic gap by enabling the VMI API to translate
the hardware information with the virtual addresses of important guest kernel structures. It
also provides the virtual addresses of structures such as the system call table, which
enables the VMI API to traverse it and manipulate its entries.

3. TYPICAL USAGES OF INTEGRATING VMI WITH OTHER VIRTUALIZATION
SECURITY TECHNIQUES

3.1 Signature-based Detection Using VMI

One of the applications of VMI in virtualization security is integrating VMI with signature-
based threat detection. This scheme will use an attack signature database to identify the
presence of threats within the guest VM, as depicted in Figure 4. Given it is done externally,
however, the monitoring tool is protected from being compromised in the event of a
successful VM attack.

[8] proposed a VMI-based approach to monitoring guest VMs and implemented LiveWire
which monitors guest VM activities via the management VM (i.e., Dom 0). The scheme
consists of two parts, that is, an OS interface library which provides an interface for the
monitoring VM to interact with the guests; and a Policy Engine containing the security poli-
cies for monitoring different aspects of the virtualized environment. The security policies
detect malware by calculating the hash values of in-memory programs, and using a
database of attack signatures. The isolation of the monitoring tool from the guest VMs
greatly reduces the threat of malware compromise.
This approach was extended in the VmiIDS intrusion detection system [12]. Implemented
on the QEMU-KVM virtualization platform, VmiIDS monitors the memory activities by
comparing the results obtained from the VMI module to the process list obtained from an
in-VM tool such as the ps command. The consistency of the VM file system was monitored
by calculating the hash value of a file which is assumed to be consistent during the VM’s
lifetime.
[15] used pre-obtained system information to detect threats in a virtualization environment
in its Patagonix rootkit detection system. The scheme uses hardware information and a
database containing hashes of legitimate application binaries to determine the presense
of rootkits. Specifically it uses the Non-Executable (NX) bit present in CPUs to mark the
memory pages of the processes prior to their execution. Thus any attempts to change the
page attributes can be trapped and checked by the “identity oracles” against the database.
Implemented on the Xen 3.0.3 platform, Patagonix was able to identify the rootkits tested
in the guest VM with additional 3% overhead.

[6] incorporated Function-call Injection (FCI) and localized shepherding in its SYRINGE
virtualization security solution. FCI periodically suspends the guest VM operation, and
places the address of the remote monitoring tool in the EIP register of its virtual CPU
(vCPU). This enables the monitoring tool to obtain a complete view of the VM’s internal
operation without the threat of being compromised. Localized shepherding protect the
monitoring tool by dissembling its code execution and comparing its flow to a whitelist of
control flows deemed to be safe. Implemented on the VMWare virtualization platform, it
incurred an over- head of 8% during its execution on a Windows XP guest VM. VMI was used
in [5] to detect malware which uses multi-layer packing to hide its presence in the guest VM.
Based on the observation that a packed malware must be unpacked prior to its execution,
Maitland tracks for changes in the guest VM’s memory pages by hooking the hypercall
which updates its Memory Management Unit (MMU). The Non-Executable (NX) bit of this

hypercall is examined to determine whether a non-executable memory page has been
changed to executable. A callback is then made to determine if the CR2 register contains
the stack pointer address of the malicious process.
VMWatcher, a rootkit detection scheme proposed in [11], incorporated VM state
reconstruction with VMI. A technique called guest view casting was used in this scheme
which reconstructs the storage and memory contents of a guest VM based on its external
observations. The storage contents are reconstructed based on the knowledge of the OS’s
file system structure, while the memory contents are reconstructed by traversing its
physical memory using its kernel symbol table. Implemented on the Xen hypervisor
platform using QEMU for guest VM access, VMWatcher used ten commercially available
antivirus solutions to externally monitor a Windows XP guest VM. While this approach
represents an attempt to bridge the semantic gap, the po- tential reconstruction overhead
in a multi-VM environment will hinder the overall performance of the virtualization en-
vironment.
[13] incorporated VMI with signature based detection. Implemented on the VMWare ESXi
virtualization platform, it records the details of all the processes running on a guest VM
such as their PID and their respective user names. Sys- tem calls made by these processes
are also recorded and broken up into sequences of length three. These sequences are
stored in a database on a trusted VM, which uses VMI to monitor the activities of the
guests. System calls from the guest VM are compared with the stored sequences, and any
calls which deviate from the stored sequence are deemed suspicious.

3..2 Training-based Detection Using VMI

[7] proposed Virtuoso, which uses the traces of in-VM pro- grams to introspect the guest
VM. It uses a program which, given a Process Identifer (PID), identifies the name of the
process as well as its location in the guest VM’s memory. It is executed a number of times
with different PIDs to obtain a collection of trace logs. These trace logs are then used to
create an introspection program which is run in a security VM to introspect the guest VM’s
activities. While this approach to VMI helps to reduce the ambiguity associated with
introspecting guest VMs, it can prove to be difficult for operating systems which uses
Address Space Layout Randomization (ASLR) to make its memory mapping hard for the
hacker to predict. In addition, it can be difficult to introspect processes which are mapped
across different locations in memory.
[9] incorporated VMI with forensic memory analysis (FMA) and machine learning to
implement a malware detection scheme. It monitors the guest VM’s memory activities over
a period of time. The memory data is then fed into a ma- chine learning algorithm to
generate a classifier for malware detection. It uses LibVMI to obtain the memory contents
and the FUSE library to obtain the virtual drive contents. This malware detection scheme
fails to prevent hardware- based attacks.
[1] used VMI in HookLocator to monitor attempts in altering the function pointers stored
in the kernel pool, which is a dynamically allocated region used for storing function pointers
. Implemented on the Xen virtualization platform using LibVMI, it first identifies the kernel
function pointers from the physical memory to build a function pointer list. The kernel
pool data of the guest VM is then searched for any references to the pointers identified in
the list and cross-checked with the genuine function pointer list, before being placed into
the learning pointer list. The entries in the latter are then put into the genuine pointer list
after deter- mining their changes throughout their execution life-span. It is deemed to be
a threat if the fuction pointer points to an address beyond the kernel code during its
execution.
[2] designed a hypervisor-based host intrusion detection sys- tem for IaaS cloud
environments. The scheme uses KVM and treats each VM as a single process. The aim is
to mon- itor system calls for anomalies using VMI. The system calls are collected from the
virtual machines by so-called ’bags of system calls’ which is a frequency-based
representation method that requires no probability calculation. Then the classifier is trained

with the normal behaviour so that it will be able to detect anomalies. The classifier generated
very strong anomaly signals with a very high detection rate.

 3.3 Host-based Detection Using VMI

Availability is one of the main pillars to information security. Because most cloud providers
employ automatic load balancing mechanism to move virtual machines across physical
servers for utilization purposes, an attacker could lure the system into migrating VMs without
a real need. This could result in wasting hardware resources or disturbing quality of
services. Thus, there is a need to detect Denial of Service (DoS) attacks coming from virtual
machines especially attacks which will not normally be detected by intrusion detection
systems. In [2], a VMI approach was used to detect DoS attacks in IaaS environments.
Their method relies on monitoring system calls using training techniques.
The Psycho-Virt security solution scheme in [4] incorporated VMI with existing host-
based intrusion detection and rootkit detection approaches. Using VMI to monitor the
guest VM activities, the scheme runs either the chkroot rootkit or SNORT intrusion
detection tools. These tools constantly check the integrity of the guest VM memory by
calculating the hash values of the running processes’ TEXT area, which is marked read-
only. The calculated hash value is the compared with previous values to identify any dis-
crepencies.
The VMI-Honeymoon intrusion detection scheme in [14] integrated VMI with high
interaction honeypots (HIH). Us- ing a network of HIHs (Honeynet), it monitors
abnormalities within the incoming network packets while using the Volatility framework
for memory reconstruction. The memory overhead caused by the multiple deployments
of HIHs is mitigated by employing a Copy-on-Write (CoW) memory sharing approach
between the parent VM and the other interconnected VMs.

3.4 System Call Interception Using VMI

[17] incorporated the key VMI concepts with system call interception in its XenFIT.
Implemented on Xen, it inserts breakpoints within the guest VM’s kernel code and inter-
cepts the system calls using the XenCtrl library. The modification of a file is determined
based on its location in the filesystem.
This approach was extended in the Gateway intrusion detection system [20]. Designed
to monitor malware attacks against the guest OS’s kernel space, Gateway monitors all
kernel-level API requests made by the drivers. It places the kernel drivers in a separate
memory space of the hypervisor. VMI is applied to trap the guest kernel driver request,
so as to determine if its virtual address belongs to a pre- determined entry point. If the
request is legitimate, the guest VM’s CR3 register is changed to point to the kernel
page table (KPT) stored in the hypervisor memory. Tested on a guest VM running a
PAE (Physical Address Extension) Linux kernel, it incurred an operational overhead of
approximately 10%.

3.5 VM State Reconstruction Using VMI

Implemented on the VMWare ESXi platform, the Cloud- Sec virtualization security
scheme in [10] incorporated VMI with VM memory state reconstruction. Designed to
monitor the memory events within the guest VM, CloudSec obtains the physical
representation of the guest VM from the hypervisor and uses OS-specifc kernel structure
information (System.map in Linux, and Microsoft Symbols in the case of Windows) for
semantic reconstruction.
[18] introduced a mechanism called Distributed Streaming VM introspection (DS-VMI)
which can infer file system modifications from sector-level disk updates in real-time and
stream them to a central monitoring point. The experiments showed that the overhead

of this approach is modest except for write-intensive workloads.

4. LIMITATIONS OF VMI

4.1 Semantic Gap

Semantic gap refers to the knowledge gap between the guest OS’s internal state and the
information obtained externally at the hypervisor-level. This knowledge gap is usually
compensated in a typical VMI implementation by using the guest OS’s symbol table to
interpret the low-level guest VM information obtained from the hypervisor.
While this approach helps close the semantic gap, it has a number of limitations. First of
all, it is based on the assumption that it will not be changed throughout the guest OS’s
execution, an assumption which does not tend to hold true in real-time environments. In
addition, the need to store the symbol tables for every guest VM to be monitored also
makes this approach inefficient in a typical virtualization environment.
A possible approach to closing the semantic gap efficiently may be running the userspace
applications (eg. ps) in the guest VM and collecting the output obtained. Another approach
may use machine learning techniques to automate the process. However, they can be
unreliable in the face of a successful rootkit attack.

4.2 Being Susceptible to Attacks which Manipulate the Kernel Data Structures

While VMI uses the guest symbol table to access the internal state of the guest OS, it does
not provide any mechanism to determine the integrity of these kernel structures. This
leaves VMI vulnerable to attacks which alter the guest OS state through the manipulation
of these kernel data structures, as well as return-oriented programming (ROP) at- tacks.
Direct Kernel Structure Manipulation (DKSM), proposed by [3], is designed to defeat the
VMI monitoring by manipulating kernel structures such as the system call table and the
Interrupt Descriptor Table (IDT). DKSM manipulates the kernel structures through two
different techniques. In the direct scheme, the kernel code which accesses the kernel
structures is manipulated by identifying the kernel code pointers and redirecting their access
to the address contain- ing the attack code. In the shadow scheme, redirection of kernel
code execution is achieved by redirecting the function pointers instead of the kernel code. This
is achieved by using a split-memory approach, by which the Translate Lookaside Buffer (TLB)
is manipulated to point to the attack code. All accesses to the original code are then
redirected to an- other memory location during the execution of the attack code containing
logic to transfer control back to it after its execution. While DKSM can be used to
compromise a guest VM by providing a false view of its internal state to a VMI monitoring
tool its attack tends to fail when attempting to manipulate kernel invariant structures such
as the IDT and the GDT, which could not be updated without raising suspicion. In addition,
DKMS cannot function in a Control Flow Integrity (CFI)-enforced kernel.
In addition, VMI is of limited ability against attacks such as return-oriented programming
(ROP) and return-to-libc attacks. Designed to get around the non-execution (NX) re-
strictions placed by modern processors on memory pages by operating at the CPU register
level, these forms of attacks aim to hijack the control flow of a process. That is, they try to
gain control of the process stack, and identify the machine instructions which can be
exploited and executing them [19]. As these forms of attacks take place in the stack layer,
it is not visible to a VMI monitor which only has access to the overall memory layout.

5. SUMMARY

This paper provides a review on virtual machine introspection (VMI) and its usages of
being integrated with other virtualization security techniques. VMI employs a clear ap-
proach to separate the security scheme outside of the VMs being inspected upon, which

lays an effective framework for its usages of being integrated alongside a broad range of ex-
isting security techniques. VMI can be considered a popular monitoring technique to protect
the virtualization environment from compromise in the event of a successful VM security
attack. If the limitations are addressed, then VMI has the potential to become one of the
most effective virtualization security techniques.

6. REFERENCES

[1] I. Ahmed, G. G. Richard III, A. Zoranic, and V. Roussev. Integrity checking of
function pointers in kernel pools via virtual machine introspection.

[2] S. S. Alarifi and S. D. Wolthusen. Detecting anomalies in iaas environments through
virtual machine host system call analysis. In Internet Technology And Secured
Transactions, 2012 International Conferece For, pages 211–218. IEEE, 2012.

[3] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu.
Dksm: Subverting virtual machine introspection for fun and profit. In Reliable Distributed
Systems, 2010 29th IEEE Symposium on, pages 82–91. IEEE, 2010.

[4] F. Baiardi and D. Sgandurra. Building trustworthy intrusion detection through vm
introspection. In Information Assurance and Security, 2007. IAS 2007. Third
International Symposium on, pages 209–214. IEEE, 2007.

[5] C. Benninger, S. W. Neville, Y. O. Yazir, C. Matthews, and Y. Coady. Maitland:
Lighter-weight vm introspection to support cyber-security in the cloud. In Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 471–478.
IEEE, 2012.

[6] M. Carbone, M. Conover, B. Montague, and W. Lee. Secure and robust monitoring of
virtual machines through guest-assisted introspection. In Research in Attacks, Intrusions,
and Defenses, pages 22–41. Springer, 2012.

[7] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing the
semantic gap in virtual machine introspection. In Security and Privacy (SP), 2011
IEEE Symposium on, pages 297–312. IEEE, 2011.

[8] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture
for intrusion detection. In Proceedings of Network and Distributed Systems
Security Symposium, pages 191–206, 2003.

[9] C. Harrison, D. Cook, R. McGraw, and J. Hamilton. Constructing a cloud-based ids
by merging vmi with fma. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012 IEEE 11th International Conference on, pages
163–169. IEEE, 2012.

[10] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy. Cloudsec: a security
monitoring appliance for virtual machines in the iaas cloud model. In Network and
System Security (NSS), 2011 5th International Conference on, pages 113–120. IEEE,
2011.

[11] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-based out-of-
the-box semantic view reconstruction. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 128–138. ACM, 2007.
[12] T. Kittel. Design and implementation of a virtual machine introspection based intrusion
detection system. diploma thesis, Technische Universit¨at Mu¨nchen (TUM), 2010.
[13] M. Laureano, C. Maziero, and E. Jamhour. Intrusion detection in virtual machine
environments. In Euromicro Conference, 2004. Proceedings. 30th, pages 520–525. IEEE,
2004.
[14] T. K. Lengyel, J. Neumann, S. Maresca, and
A. Kiayias. Towards hybrid honeynets via virtual machine introspection and cloning. In
Network and System Security, pages 164–177. Springer, 2013.
[15] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for identifying covertly
executing binaries. In USENIX Security Symposium, pages 243–258, 2008.
[16] B. D. Payne, M. De Carbone, and W. Lee. Secure and flexible monitoring of virtual

machines. In Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 385–397. IEEE, 2007.
[17] N. A. Quynh and Y. Takefuji. A novel approach for a file-system integrity monitor tool of
xen virtual machine. In Proceedings of the 2nd ACM symposium on Information, computer
and communications security, pages 194–202. ACM, 2007.
[18] W. Richter, C. Isci, B. Gilbert, J. Harkes, V. Bala, and M. Satyanarayanan. Agentless
cloud-wide streaming of guest file system updates. In Proceedings of the 2014 IEEE
International Conference on Cloud Engineering, IC2E ’14, pages 7–16, Washington, DC,
USA, 2014. IEEE Computer Society.
[19] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages, and applications. ACM Transactions on
Information and System Security (TISSEC), 15(1):2, 2012.
[20] A. Srivastava and J. T. Giffin. Efficient monitoring of untrusted kernel-mode execution. In
Proceedings of the 18th Annual Network and Distributed Security Symposium, 2011.

