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ABSTRACT 
 

Measures of knee joint function, although useful in predicting injury, can be 

misleading because hip position in traditional seated isokinetic tests is dissimilar to 

when injuries occur. This study aimed to determine differences between seated and 

supine peak torques and strength ratios, and examine the interaction of position with 

joint velocity.  This was a cross-sectional, repeated measures study.  Isokinetic knee 

extensor and flexor concentric and eccentric peak torque was measured seated and 

supine (10° hip flexion) at 1.04 and 3.14 rad·s
-1

 in 11 Rugby players.  Repeated 

Measures ANOVA and paired t-tests were used to analyses peak torques and strength 

ratios. Bonferroni posthoc, Limits of Agreement and Pearson’s correlation were 

applied. Seated peak torque was typically greater than supine for muscle actions and 

velocities.  Values ranged from 109 ±18 Nm (mean  ±σ) for supine hamstring 

concentric peak torque at 1.04 rad·s
-1

 to 330 ±71 for seated quadriceps eccentric peak 

torque at 1.04 rad·s
-1

.  There was a significant position*muscle action interaction; 

eccentric peak torque was reduced more than concentric in supine.  Knee joint 

strength ratios ranged from 0.47 ±0.06 to 0.86 ±0.23, with a significant difference in 

means between supine and seated positions for functional ratio at 3.14 rad·s
-1

 

observed; seated it was 0.86 ±0.23 and supine it was 0.68 ±0.15 (p<0.05).  Limits of 

Agreement for traditional and functional ratios ranged from 1.09 x/1.37 to 1.13 

x/1.51.  We conclude hip angle affects isokinetic peak torques and knee joint 

strength ratios.  Therefore, hip angle should be nearer 10° when measuring knee joint 

function because this is more ecologically valid.  Using similar protocols sports 

practitioners can screen for injury and affect training to minimize injury. 
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INTRODUCTION 

 

Thigh muscle strength imbalance has been implicated as predictive of some common 

lower limb musculoskeletal injuries in field and court sports (1, 8, 9, 18, 19, 22, 24-

26).  Research in this area has examined strength imbalances on isokinetic devices 

measuring a range of variables including hamstring and quadriceps torques, 

conventional hamstring-quadriceps ratio (Hcon:Qcon), functional hamstring-quadriceps 

ratio (Hecc:Qcon), bilateral ratios, and stronger-weaker ratios (12, 16).  The reliability 

of these measurements at various velocities has been established and some have been 

shown to be more reliable than others.  For instance, absolute measures have been 

shown to be more reliable than strength balance ratios (12, 16, 28).  For absolute 

measures, the fewer the repetitions the better the reproducibility (12, 28); concentric 

actions have been shown to have greater reliability than eccentric actions (12, 28); 

measurements taken at slower velocities are typically more reliable than measures at 

high velocity (12, 16, 17); and less variability has been observed with extensor 

movements compared to flexor movements (12, 28).  For strength ratios, Hecc:Qcon is 

reported to be more reliable than others; possibly because Hecc:Qcon more accurately 

reflects the dynamic function of hamstring and quadriceps muscle groups and 

consequently better describes dynamic muscular stabilization of the knee (16). 

There is compelling evidence to suggest a relationship between muscle 

imbalance and lower limb soft tissue injury (9, 24) and studies have indicated that 

effective activation of the eccentric component of the hamstrings during active knee 

extension reduces loading on the anterior cruciate ligament (1, 18).  Furthermore, 

training studies have shown that strength balance ratios can be improved and that 

improvements may reduce the incidence of lower limb musculoskeletal injury (2, 14).  

Despite this evidence, doubt over the value of the hamstring-quadriceps strength 

balance ratios as a screening tool for injury risk remains.  This may, in part, be due to 

a perceived poor relationship between isokinetic strength and muscular power (19, 

21), and isokinetic strength and sprinting performance (20).  Other limitations may 

include the movement velocity used in available studies which do not represent the 

limbs movement velocity during real world movements such as sprinting, or the 

influence of hip joint position. It may also have not been helped by the inconsistency 

in studies’ methodology and outcomes (1, 8, 9, 23, 28).   
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It is hardly surprising therefore that current data exploring the relationship 

between hamstring-quadriceps balance ratios and injury are conflicting. For example, 

Orchard et al.(24) reported a significant relationship between Hcon:Qcon ratio and 

hamstring injury but Bennell et al.(4) found no relationship between the same 

outcome variables.  More recently, Croisier et al.(9) reported a strong correlation 

between Hecc:Qcon ratio, determined from eccentric hamstring torque at a slow 

velocity (0.53 rad.s
-1

) and concentric quadriceps torque at a fast velocity (4.19 rad.s
-1

), 

and hamstring injury. These conflicting data may be largely due to Bennell et al.(4) 

using Hcon:Qcon.  Croisier et al.’s (9) work demonstrated that the Hcon:Qcon would not 

have detected approximately 30% of hamstring injuries in their study. 

One major consideration that has been ignored in previous studies of either 

Hcon:Qcon  or Hecc:Qcon is the influence of hip joint position (1, 20, 24).  Studies which 

have investigated the relationship between isokinetic test performance and lower limb 

musculoskeletal injury have typically reported data obtained from participants tested 

in a seated position.  However, rarely are field and court sport athletes active with 

those kinematics (e.g. the hip flexed at 90º).  Most lower limb injuries occur while 

athletes engage in some running activity; specifically, at foot plant (1, 4, 7, 9, 18, 23).  

For over-ground running trunk angle is reported to typically be approximately 10° to 

the vertical with foot plant occurring directly inferior to the torso (see figure 1)(29).  

Thus, when hip and knee joints are nearer full extension dynamic knee joint stability 

is most important.  Consequently, it could be argued that isokinetic screening where 

hip angle is more similar to when executing real world sporting tasks, using an 

eccentric hamstring strength testing protocol, would be more ecologically valid than 

other traditional methods.   

Altering hip angle for lower limb isokinetic screening might have an effect on 

hamstring and quadriceps torques and subsequent knee joint strength ratios.  At the 

very least the stretch-tension relationship of the hamstrings and quadriceps muscle 

groups will likely differ (20).  Therefore, the relative contribution of the active 

contractile components of the muscle to overall force production would change.  This 

theory is supported by work which has examined the effect of hip position on knee 

torque production (3, 6, 15, 20), as well as changes in neuromuscular activation 

(determined from electromyography) throughout range of motion (17).  However, 

studies which have compared the effect of hip position on isokinetic test performance 

are limited to only determining whether a significant difference between positions 
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exists (3, 6, 15, 20).  No studies have explored the level of agreement between peak 

torque measures from supine and seated positions using Bland and Altman’s Limits of 

Agreement (3, 5, 6, 15, 20).  If Hecc:Qcon is to be used as a screening tool for injury 

risk it is important to determine the level of agreement of values obtained when the 

hip joint is placed in different positions. If there is good agreement between positions 

then strength balance ratios would not change and ratios calculated from each position 

would be equally able to predict musculoskeletal injury.  In addition to being limited 

by statistical constraints, published research which has investigated the effect of hip 

position on knee joint strength ratios is limited to examining Hcon:Qcon ratio only (15). 

Consistent application of a screening method which measures eccentric 

hamstring strength in a hamstring-quadriceps ratio is necessary because some of the 

most severe and costly injuries in sport typically occur during active extension of the 

knee and during the terminal swing phase during running/sprinting (9, 23, 24, 26).  

Understanding the effect of hip angle on hamstring and quadriceps concentric and 

eccentric torques and knee joint strength ratios, and applying such knowledge, might 

enhance current screening methods and subsequently lead to the development of a 

standard, more ecologically valid, isokinetic protocol.  Information obtained from 

such screening methods may enable sports practitioners to more effectively identify 

athletes at greater risk of lower limb musculoskeletal injury and allow them to alter 

training practices to reduce injury risk or to establish progress from rehabilitation.  

Therefore the aims of this study were to compare isokinetic strength measurements 

recorded in a near supine position where kinematics were more similar to what would 

be observed while executing real world sporting tasks (i.e. hip flexion 10° to the 

vertical) to seated measurements to determine the effect of hip position on Hcon:Qcon 

and Hecc:Qcon.   

 

 

METHODS 

   

Experimental Approach 

 

This was a cross-sectional, repeated measures study. Participants attended the 

laboratory on three occasions; the first being for familiarization; the other two were 
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test sessions, the order of which was randomized for seated or supine position.  There 

were between 7 and 14 days between sessions. 

 

Subjects 

   

Eleven academy players from an English Premiership Rugby Union Club 

(characteristics mean  σ, age 19.3  0.8 y, body mass 92.8  12.6 kg, stature 182.22 

  8.07 cm) volunteered to participate in this study.  All participants completed the 

testing in the 3 weeks immediately prior to commencement of preseason games.  All 

players were free from injury or illness.  Written informed consent was obtained from 

all participants and a health questionnaire screen took place. The University Research 

Ethics Committee approved the study.  

 

Procedures 

 

Equipment 

Stature and body mass were measured using a stadiometer (Holtain, Crymych, Dyfed, 

UK) and scales (Cranlea, Birmingham, UK).  A warm up prior to testing was 

performed on a Monark cycle ergometer (Monark 814E, Varberg, Sweden).  

Isokinetic measurements were made on a Biodex System 3 (Shirley, NY, USA).  All 

statistical analyses were performed using SPSS for Windows (V16.0, SPSS Inc., 

Chicago, IL, USA 

 

Warm-up and Dynamometer Positioning 

For 48hr prior to testing all participants refrained from intense exercise, especially 

eccentric exercise to reduce the likelihood of delayed onset muscle soreness affecting 

the results. All participants were asked to remain adequately hydrated prior to testing 

but refrain from drinking caffeine 12hr before testing.  Food was not consumed 2hr 

prior to testing. All tests involved a standardized procedure, including a 3 min warm-

up on a cycle ergometer at a self-regulated moderate intensity.  

In the seated test, participants were placed in a seated position with the 

backrest positioned at 1.4 rad flexion. The axis of rotation of the dynamometer was 

aligned with the lateral epicondyle of the dominant knee, and the cuff was placed 
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approximately 2 cm superior to the medial malleolus. Straps were tightened around 

the chest, pelvis and thigh for stabilization. Range of motion was set using the 

voluntary knee extension position that the participant deemed to be comfortably 

straight but not hyper extended 0 to 1.31 rad knee flexion. Range of motion was 

limited in this way to more easily enable the extended or flexed knee to achieve the 

necessary preload in the eccentric test. The same ROM was used for the other leg. A 

hard cushion was used so that the length of the acceleration and deceleration phase 

was shortened.  Once positioned, the gravity correction procedure involved the 

participants relaxing their leg so it could be weighed during passive knee flexion, in 

accordance with the manufacturer’s recommendations 

For the other test, participants were placed lying supine with the backrest 

positioned at 0.2 rad flexion. All other procedures were the same as that described for 

the seated test. Figure 1 describes the rationale behind the supine angle and shows the 

two testing positions.   

 

*** Figure 1 near here***(10, 11, 27, 29) 

 

Isokinetic Protocol 

For each velocity and mode of muscle action, participants were permitted four 

familiarization repetitions of increasing effort with 30 s rest before the test and 90 s 

between the test and the next set of familiarization repetitions. During the test 

participants were instructed to push and pull or resist the attachment as hard and as 

fast as possible.  Three continuous maximal efforts at 1.04 rad·s
-1

 and 4 at 3.14 rad·s
-1

 

were performed with concentric tests taking place before eccentric tests. Knee 

extensors always acted first.  Verbal encouragement by the same experimenter but no 

visual feedback was given. Both knees were tested on the same day but starting leg 

was randomized.  The order of seated and supine testing was also randomized 

between participants. 

 

Statistical analyses 

 

Hip flexion angle and testing velocity were the independent variables.  Peak torques 

for concentric and eccentric muscle actions for the hamstrings and quadriceps muscle 

groups and knee joint strength ratios were the dependent variables. 
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The highest gravity corrected peak torque on the windowed and filtered output 

was rounded to the nearest 1 Nm and recorded for further analysis. To reduce the 

effects of acceleration and deceleration of the lever arm on torque output, only peak 

torque data obtained from a period of constant velocity, (within a 5% range of the pre-

set angular velocity) were used for analysis. Descriptive statistics were presented as 

mean  σ for all peak torque values and torque ratios. Both Hcon:Qcon and Hecc:Qcon 

were calculated using peak torque data. A Repeated Measures ANOVA was 

performed on peak torque data.  There were four within-subject factors; position 

(seated or supine), agonist (quadriceps or hamstrings), muscle action (concentric or 

eccentric) and velocity (1.05 or 3.14 rad∙s
-1

). Where significant interaction or main 

effects were found, paired t-tests with Bonferroni adjustment were used to assess for 

differences between pairs.  The same analysis was performed on Hcon:Qcon and 

Hecc:Qcon but with position and velocity as within-subject factors. Pearson correlations 

were calculated between seated and supine variables.  Ninety-five percent ratio Limits 

of Agreement (LOA)(5) based on log transformed data and antilogged to give a 

dimensionless ratio, which represents random error, were calculated to determine the 

extent of agreement between seated and supine variables.  Limits of Agreements were 

only calculated where there was no significant difference between seated and supine 

variables.  Alpha level was set at p<0.05. 

 

 

RESULTS 

 

Mean values of peak torque, Pearson correlations, and 95% ratio LOA are displayed 

in Table 1.   

 

***table 1 near hear*** 

 

The Repeated Measures ANOVA demonstrated significant main effects of position 

Significant main effects of position (seated greater than supine, p=0.014), agonist 

(extensor greater than flexor, p<0.001), muscle action (eccentric greater than 

concentric, p=0.002) and velocity (slower greater than fast, p<0.001) were also 

identified.  A significant position*muscle action interaction (p<0.05) for peak torque 

(see Figure 2).    
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***Figure 2 near here*** 

 

The interaction was due to eccentric peak torque being reduced more in the supine 

position compared to concentric peak torque.  Paired t-tests revealed a significantly 

lower extensor concentric peak torque at 3.14 rad∙s
-1

, extensor eccentric peak torque 

at 1.05 rad∙s
-1

 and flexor eccentric peak torque at 3.14 rad∙s
-1

 in the supine position 

(Table 1).  Pearson correlations between seated and supine peak torques varied from 

low to high. Where no significant difference between seated and supine peak torque 

existed, 95% ratio LOAs were calculated and varied from x/1.38 to 1.53.  That is, 

seated and supine peak torque measurements will differ due to random error by 

between 38% and 53% on either side of the systematic bias which ranged from 6% to 

21%.  

Mean values of Hcon:Qcon and Hecc:Qcon,  Pearson Correlations and 95% ratio 

LOAs are shown in Table 2.  

 

***table 2 near here*** 

 

No other significant interactions were observed but the Repeated Measures ANOVA 

(Table 3) revealed a significant main effect of velocity (p<0.05) on Hcon:Qcon and 

Hecc:Qcon due to a higher ratio at the faster velocity.  There was also a significant 

(p<0.05) main effect of position but for Hecc:Qcon only.  Paired t-tests revealed the 

seated Hecc:Qcon was significantly greater than the supine equivalent at the faster 

velocity only (Table 2).  However, it was in this ratio that there was a significant 

Pearson correlation (p<0.05) between seated and supine. All other correlations were 

low. Larger differences between seated and supine were observed in the Hecc:Qcon 

compared to the Hcon:Qcon with the mean seated H:Q being greater than supine. Where 

there was no significant difference between seated and supine H:Q, 95% ratio LOAs 

were calculated and varied from x/1.37 to 1.51 on either side of the systematic bias 

which ranged from 9 to 14% (table 2).  

 

***table 3 near here*** 
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DISCUSSION 

 

The first aim of this study was to compare knee flexion and extension isokinetic peak 

torque measured in a supine compared with a seated position.  A significant 

position*muscle action interaction effect was found with greater concentric torque 

recorded in a seated position compared with eccentric torque in a supine position. 

Subsequently the significant main effects for position (seated torque greater than 

supine) and muscle action (eccentric greater than concentric) are in agreement with 

the existing literature (3, 6, 15, 20). We found that for 3 of the 8 peak torque variables 

mean peak torque was significantly greater in the seated position compared to the 

supine position; for the other 5 measures agreement was poor, i.e. the random error 

limits were between 37 and 53% and there was a large systematic bias ranging 

between 6 and 21% (Table 1).   Furthermore, in most instances correlations were only 

weak to moderate.  Therefore, it can be argued that results obtained in a seated 

position would typically be significantly different and unrelated to testing in the near 

supine position. 

Both concentric and eccentric peak torque was negatively affected by testing 

in the supine position.  However, the magnitude of that effect was greater for 

eccentric actions (Figure 2).  This is not surprising since supine peak torques were 

dissimilar and unrelated to seated peak torques as indicated by some significant 

differences, and poor agreements and correlations.   

This study, similarly to others (3, 6, 15, 20), has shown that hip angle 

influences both concentric and eccentric peak torque.  Based on results from this 

study and others (3, 6, 15, 17, 20) it can be hypothesized that hip angle influences the 

stretch tension relationship of the muscle, the relative contribution of active 

contractile components of the muscle, and/or neuromuscular control; which ultimately 

effects a number of isokinetic peak torque indices.  For example, it could be argued 

that when extending the knee with a greater hip-thigh angle neural activation of the 

hamstrings differs to when seated due to less tension applied by the series elastic and 

parallel elastic components of posterior chain muscles.  Further research to support 

this argument is necessary.  Repeating this study with a larger sample while 

concurrently measuring muscle activity using electromyography would be a 

reasonable approach. 
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In agreement with other studies we have found a significant main effect for 

velocity on both concentric and eccentric torque production, with greater torque found 

at the slower velocity (12, 15).  However, it is important for knee stability that during 

faster velocity movements that the eccentric hamstring torque is relatively unaffected 

by velocity to increase the Hecc:Qcon to produce less strain on the ACL.  Irrespective of 

hip positioning we have found that concentric quadriceps decreases by around 20% 

with increasing velocity but comparable eccentric hamstring torque only decreased by 

3%.  

  The second aim of this study was to determine if there was an influence of hip 

angle on knee joint strength ratios.  This is important to determine if strength ratios 

are to be used as a screening tool to explore the possible risk of an individual to 

injury. As the hip is rarely fixed at 90º during most functional movements then 

assessment of the ratio in a seated position provides little ecological validity. 

Determination of strength ratios in a prone or supine position where the hip is fixed at 

a position that more closely reflects running (10º of hip flexion) is more valid, 

especially as it replicates more closely the length-stretch relationship. It is important 

when testing in a supine position to correct for gravity, as we have done in this study, 

as the gravitational influence on torque production will be different from upright 

running. Unlike previous work, a main effect for Hcon:Qcon was  not found in the 

current study (15).  However, a main effect of position on Hecc:Qcon was observed.  To 

the knowledge of the researchers of the present study this is the first which has 

examined the effect of hip angle on Hecc:Qcon.  The non-significant effect of position 

on Hcon:Qcon is not surprising since its calculation requires division of one concentric 

peak torque by another (14).  Assuming hamstring and quadriceps concentric peak 

torques in the 2 positions were different  by the same amount, the same ratio was 

expected for Hcon:Qcon; whereas Hecc:Qcon calculation requires division of an eccentric 

action by a concentric action (14) and since eccentric actions were more negatively 

affected by position a smaller Hecc:Qcon from testing in the supine position was 

expected because the numerator in the equation was disproportionately smaller. 

 Unlike the main effect of position where an effect was observed for Hecc:Qcon 

only,  a main effect of velocity was observed for Hecc:Qcon and Hcon:Qcon.  This can be 

explained by the main effect of velocity on the absolute values from which the ratios 

are calculated.  However, these results must be read with caution since torque 

reliability at higher velocities becomes questionable (9, 12, 28).  
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 As noted previously, isokinetic measurement of knee joint strength balance 

can be used as a screening tool to predict lower limb musculoskeletal injury (1, 8, 9, 

18, 22, 24-26).  However, evidence to support the relationship between muscular 

imbalances and lower limb musculoskeletal injury is inconsistent (1, 4, 9, 13, 24).  

Thus, the development of a standard, ecologically valid testing protocol is necessary 

(9, 23-26).  Using an eccentric protocol, Croisier et al.(9) revealed a strong 

relationship between strength imbalance and hamstring strain.  However, their mixed 

Hecc:Qcon still did not detect approximately 5% of injuries, and despite having a large 

sample their alpha level was set at p<0.05.  Therefore, their protocol, while 

promising, may have ‘missed’ a considerable number of injuries.  This may be 

explained by the fact that the protocol used by Croisier et al. (9) tested participants in 

a seated position, given the present study has shown that hip flexion angle affects 

isokinetic test performance considerably.  This begs the question - since hip angle 

affects concentric and eccentric peak torque, and this has a carryover effect to 

Hecc:Qcon, would a Hecc:Qcon calculated from peak torques measured with a hip angle 

which more closely reflects that which is observed while executing real world 

sporting tasks better predict musculoskeletal injury? 

 

 

PRACTICAL APPLICATIONS 

 

Compelling evidence showing a relationship between knee joint strength ratios, 

determined by use of isokinetic dynamometers, and lower limb musculoskeletal injury 

exists.  Furthermore, training studies have shown that knee joint strength ratios can be 

improved and, consequently, injury risk may be reduced.  Despite this evidence some 

reluctance by sports practitioners to test knee joint strength ratios on isokinetic 

dynamometers remains.  This may be due to perceptions of a lack of relationship 

between isokinetic test performance and other physical performance qualities.  It may 

also be related to inconsistencies in testing protocols and outcomes.  Thus, we argued 

that the development of a standard ecologically valid testing protocol be developed.  

Evidence leans toward testing protocols which measure hamstring strength 

eccentrically being better able to predict injury.  However, in studies which have 

presented this evidence a considerable number of injuries were still not predicted.  We 

highlighted that an oversight of much of the research to date is the effect of hip 
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position on isokinetic test performance.  In fact it has been argued in this paper that 

the ecological validity of isokinetic testing protocols for knee joint strength ratios is 

typically questionable because they typically test athletes in seated positions (i.e. hip 

angle of 90°).  Most functional tasks in field and court sports, rugby included, are 

executed with far less hip flexion (i.e. hip angle of approximately 10°).  This study 

showed that hip position has a significant effect on isokinetic peak torque and 

agreement between seated and supine measurements was poor.  Furthermore, the 

effect of hip position on peak torques carried over to affect functional knee joint 

strength ratio.  Thus, an isokinetic testing protocol which considers eccentric 

hamstring strength where measurements are recorded with a hip flexion angle nearer 

10° is likely to be most ecologically valid.  Using such a protocol strength imbalances 

can be determined and lower limb musculoskeletal injury may be predicted.  By 

adopting screening methods such as this, sports practitioners can affect training to 

reduce injury risk and therefore enhance performance. 
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FIGURE LEGEND 

 

Figure 1: (a) The approximate lower body joint angles while running in rugby union 

(10,11,27,29) providing some justification for the selected hip joint angle 

adopted for the supine test; (b) The two testing positions 

Figure 2: The interaction (p=0.004) between position and muscle action type on peak 

torque. 

 

Table 1: Descriptive statistics (mean  s) for isokinetic peak torque (Nm) in the  

seated and supine positions. 

Table 2: Descriptive statistics (mean  s) and 95% ratio Limits of Agreement (LOA)  

for traditional H:Q ratio (Hcon:Qcon) and functional H:Q ratio (Hecc:Qcon). 

Table 3: Significance of main effects on H:Q ratio of position and velocity, and  

position*velocity interaction. 
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Table 1: Descriptive statistics (mean  s) for isokinetic peak torque (Nm) in the seated and supine positions. 

 Quadriceps Hamstrings 

 
Con Ecc Con Ecc 

 1.05 rad∙s-1 3.14 rad∙s-1 1.05 rad∙s-1 3.14 rad∙s-1 1.05 rad∙s-1 3.14 rad∙s-1 1.05 rad∙s-1 3.14 rad∙s-1 

Seated 272  49 *219  27 *330  71 305  56 144  26 121  16 179  45 *186  60 

Supine 260  33 211 37 307  70 277  78 123  19 109  18 147  20 138  30 

Pearson Correlation 0.44 **0.57 0.23 0.03 0.44 **0.57 ***0.70 ***0.83 

 95% ratio LOA  1.06 x/ 1.38 n/a n/a 1.12 x/ 1.37 1.19 x/ 1.53 1.15 x/ 1.38 1.21 x/ 1.54 n/a 

*Significantly higher peak torque in seated compared to supine condition (p<0.00625) based on Bonferroni adjustment of p 

**p<0.05 

***p<0.01 
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Table 2: Descriptive statistics (mean  s) and 95% ratio Limits of Agreement (LOA) for traditional H:Q ratio (Hcon:Qcon) and functional H:Q ratio (Hecc:Qcon). 

 Traditional H:Q Ratio (Hcon:Qcon) Functional H:Q Ratio (Hecc:Qcon)  

 1.05 rad∙s-1 3.14 rad∙s-1 1.05 rad∙s-1 3.14 rad∙s-1 

Seated 0.53 (0.07) †0.56 (0.07) 0.66 (0.09) *†‡ 0.86 (0.23) 

Supine 0.47 (0.06) †0.51 (0.09) 0.58 (0.07) †‡ 0.68 (0.15) 

Pearson 

Correlation 

-0.11 0.10 -0.03 **0.78 

95% ratio LOA 1.13 x/ 1.51 1.09 x/ 1.37 1.14 x/ 1.41 n/a 

*Significantly greater in seated compared to supine (p<0.0125) based on Bonferroni adjustment of p 

**p<0.01 

† Significant main effect for velocity 

‡ Significant main effect for position 

 
 
 

 
 

 



 

Table 3: Significance of main effects on H:Q ratio of position and velocity, and position*velocity interaction. 

 position velocity position*velocity 

Traditional 

H:Q ratio 

0.090 0.046 0.549 

Functional 

H:Q ratio 

0.003 0.018 0.316 

 

 

 

 


