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Abstract 

There are several community-based bioindicator systems that use species presence or abundance 

data as proxies for environmental variables. One example is the Ellenberg system, whereby 

vegetation data are used to estimate environmental soil conditions. Despite widespread use of 4 

Ellenberg values in ecological research, the correlation between bioindicated values and actual 

values is often an implicit assumption rather than based on empirical evidence. Here, we correlate 

unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct 

environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our 8 

results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for 

direct environmental measures but this was not true for soil moisture, when relationships were weak and 

non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic 

relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted 12 

values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally 

for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct 

environmental measures better than did abundance-weighted ones. This suggests that the presence of 

rare plants can be highly important in accurate quantification of soil parameters and we recommend using 16 

an unweighted approach. However, site profiles created only using rare plants were inferior to profiles 

based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and 

nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of 

moisture values should be considered along with the effect of seasonality on the efficacy of the system. 20 
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Introduction 

Relationships between species and abiotic environmental variables are usually quantified to provide 

insights into distribution patterns (e.g. Jones, 2001) and spatial differences in species interactions 

(e.g. Fagan et al., 1999), or to inform ecological management (e.g. Thomas et al., 1998; Bailey and 28 

Thompson, 2009). However, quantification of species-environment relationships also allows opportunities 

for bioindication. Bioindication is based on organisms having a specific tolerance for multiple environmental 

parameters. Once tolerance ranges are known, it is possible to use species presence or abundance as a 

proxy indicator for environmental conditions (Johnson et al., 1993; Diekmann, 2003). Bioindicators are  32 

advantageous in that data can: (1) often be gathered quickly and without specialist equipment (Cullen 1990; 

Wamelink et al., 2005); (2) supplement laboratory data and provide a long-term insight into environmental 

parameters rather than the “snapshot” provided by chemical/physical testing (Keeler and McLemore, 

1996; Holt and Miller, 2011); and (3) demonstrate effects of an environmental parameter, or change 36 

therein, on biota directly (rather than this needing to be quantified separately) (Landres et al., 1988).  

Given these advantages, numerous bioindicator systems are in use globally, spanning many different 

environments and utilising many different taxonomic groups. Some systems rely on single species 

indicators, for example, the plant Astragalus racemosus for selenium concentration (Trelease and 40 

Trelease, 1938) and the bryophyte Hylocomium splendens for heavy metal pollution (Hasselbach et 

al., 2005). However, the majority of indicator systems use community-based approaches whereby the 

presence (and sometimes abundance) of multiple species is taken into account. These community indices 

are often more robust than single-species indicators as they combine information from multiple species 44 

(Dale and Beyeler, 2001; Diekmann, 2003; Wamelink et al., 2005). Examples of community-based 

biomonitoring systems include the use of aquatic macroinvertebrates as indicators of dissolved 

oxygen (reviewed by Hawkes, 1998), use of lichens to monitor air quality (reviewed by Conti and 

Cecchetti, 2001), and use of arthropod community to assess soil acidity (van Straalen and Verhoef, 1997). 48 

Plants are tightly constrained by climatic and edaphic factors (Ter Braak and Gremmen, 1987), and plant 

communities therefore have the potential to be proxies for specific environmental parameters. Several 

community-based indices have been developed, for example, Zolyomi et al. (1967) in Hungary, Landolt 

(1977) in Switzerland and Bohling et al. (2002) in Greece. However, over the last three decades, one 52 

indicator system – that developed by Ellenberg (1974) & Ellenberg et al. (1992) – has become especially 

well used, largely because of its comprehensiveness and flexibility. The system comprises values for 

2,726 central European vascular plants, with respect to light availability (L), soil moisture (F), soil fertility 

(N), temperature (T), soil reaction pH (R), continentality of climate (K) and salinity (S) (Diekmann, 2003). 56 

For all parameters, plants have values indicating the position along the specific environmental gradient at 

which each, on average, reaches peak probability of occurrence (Smart, 2000; Wamelink et al., 2005; 

Appendix S1). As Ellenberg values were designed originally for use in central Europe, their use elsewhere 

usually requires location-specific recalibration (previously undertaken for Russia (Maslov, 1996), Italy 60 



(Celesti-Grapow et al., 1993), France (Thimonier et al., 1994), Estonia (Partel et al., 1996; 1999), the 

Faroe Islands (Lawesson et al., 2003) and Great Britain (Hill et al., 1999, 2004)). This is important since 

the reliability of values is likely to be inversely related to distance from initial location, both because 

species adapt to local conditions (van der Maarel, 1993) and because the ecological optima of specific 64 

species depends upon competitor species, which themselves differ spatially (Thompson et al., 1993). 

Indeed Diekmann (2003) notes that recalibration of indicator values for new areas always results in a 

more reliable system compared to simply using unadjusted values, even where species are very similar. 

In the UK, recalibration involved comparing original Ellenberg value for a given species to the mean 68 

values of species with which it frequently co-occurs in a UK context. Co-occurrence was determined 

using quadrat data in Barr et al. (1993) and species association tables in Rodwell (1991a, 1991b, 1992, 

1995). Values were adjusted using a complex algorithm utilising two-way weighted averaging followed 

by local regression (Hill et al., 1999; 2000), which essentially modified values for individual species 72 

based on values of co-occurring species (i.e. decreasing the moisture value of species A if co-occurring 

plants in the UK all have lower values). Information from other published sources on use of plant 

bioindicators in a UK contest was used where appropriate – for example Palmer et al. (1992) for pH in 

aquatic environments. In cases where there was a large discrepancy between original and recalibrated 76 

values, the new value was accepted only after consultation with experts or based on field experience. 

Original and recalibrated values were highly correlated, especially for soil parameters (Hill et al., 2000).  

In order for any community-based bioindicator system, including Ellenberg’s, to be used meaningfully and 

with confidence, there needs to be a strong positive correlation between bioindicated parameters and 80 

the actual parameters themselves (Chase et al., 2000; McGeoch et al., 2002; Smart and Scott, 2004). 

Worryingly, despite widespread use of Ellenberg values in ecological and environmental research 

(e.g. Persson 1980; Wittig and Durwen, 1982; Latour et al. 1994; Möller 1997; Bunce et al., 1999; 

Ewald, 2000; Smart 2000; Godefroid, 2001; Ling, 2003; Fanelli et al., 2006), this correlation is often an 84 

implicit assumption rather than being based on empirical evidence. While some work has been done on 

the robustness of the Ellenberg system, studies have generally focussed upon the relationship with 

other indicator systems (e.g. Godefroid and Dana, 2007) or the internal consistency in the Ellenberg 

system by comparing indicator values for species that co-occur (Ter Braak and Gremmen, 1987; 88 

Hawkes et al., 1997). Somewhat surprisingly, relatively few studies have compared Ellenberg values 

to actual parameters. Even where the validity of Ellenberg indicator values has been tested using 

direct measurements, studies have typically: (1) been undertaken using direct environmental 

measures from just one time period, such that the comparison between these and Ellenberg values 92 

might have been compromised by their “snapshot” context (Wilson et al., 2001); (2) analysed sites with 

different habitats in the same analysis, which, according to Ellenberg et al. (1992) and Wamelink et al. 

(2002) could seriously bias results (e.g. Ertsen et al., 1998; Fanelli et al., 2007); (3) have only considered 

one parameter in isolation from others, such that it is not possible to compare the “fit” between 96 



Ellenberg values and measured values for different environmental variables simultaneously (e.g. 

Lawesson, 2003); or (4) have only considered a subset of the plant species present (e.g. Hawkes et 

al., 1997). The main detailed studies that have been undertaken have taken place outside of the UK, 

for example, in Sweden (Diekmann, 1995) and the Netherlands (Schaffers and Sykora, 2000) have 100 

given conflicting results as regards the strength of any correlation between Ellenberg and direct 

measurements for specific environmental parameters. Further studies to quantify the relationship 

between Ellenberg values and actual measured values are necessary to establish the robustness of 

Ellenberg values and how the correlation between proxy and actual values can be increased.  104 

In this paper, we provide a detailed comparison between community-derived bioindicator values for 

moisture, pH and fertility (nitrate) levels using both unadjusted Ellenberg values (Ellenberg et al., 1992) 

and values adjusted for the UK by Hill et al. (1999) in relation to direct measures for the same 

parameters established using laboratory procedures. Our research is based on 50 woodland sites in the 108 

UK, which were subject to repeat sampling to avoid the direct environmental measures being a 

“snapshot” relative to the Ellenberg values and to establish how the relationship between bioindicated 

values and direct measures might differ seasonally, which has not hitherto been considered. 

Moreover, this is, to our knowledge, the first time that Ellenberg values for all three soil parameters 112 

have been assessed concurrently within woodland communities (other than in the pilot study of 

Hawkes et al., 1997) and the first time that Hill-adjusted values have been correlated with measured 

parameters in any habitat. Finally, because it has been suggested previously that an unweighted 

mean (i.e. a mean that take no account of the relative abundance of each plant species) is flawed 116 

given that species usually differ in dominance (Hawkes et al., 1997; Schaffers and Sykora, 2000), we 

also address the question of whether it is better to use parameter-specific, site-specific, values that 

have been generated using an unweighted mean or a weighted mean.  

120 



Methods 

Study Sites 

This study took place during 2011 in Gloucestershire, a county district in the southwest of the United 

Kingdom centred on 51°46'N 02°15'W. The area has mild-temperate climate (annual mean temperatures 124 

around 9°C and 800mm/yr precipitation with considerable intra-annual variation; Met Office, 2012) 

and a climatic climax vegetation community of Quercus spp. woodland.  

To obtain 50 random woodland sites within Gloucestershire, the grid references corresponding to the 

northern, southern, western and eastern county boundaries were defined and a random number 128 

generator was used to provide coordinates within this area centred upon woodland habitat and where 

access was possible (landowner permission had been granted). Of the 50 randomly-selected sites, the 

majority were mature and relatively unmanaged (i.e. not plantations, under commercial silviculture, or 

subject to thinning or selective tree removal); six sites had been managed previously with evidence of 132 

tree thinning more than a decade before this study. The sites varied both geologically and topographically 

and were spread across Gloucestershire to give long gradients for the environmental variables (a 

frequent oversight in this type of study; Diekmann, 2003).Most sites were located on sedimentary substrata, 

primarily oolitic limestone (42%), sandstone (22%), Carboniferous limestone (some coal bearing) 136 

(18%), and mudstone (10%). The remaining 8% of sites were located on shale or glacial deposits. Site 

elevation ranged from 25 m to 280 m above sea level, while slope angle varied between 0° and ~35°. 

Vegetation data 

At each site, a 10m x 10m plot was laid out centred upon the actual coordinates (Sutherland, 2006). All 140 

trees and shrubs, as well as vascular ground plants in the field and herb layers, were identified. Species’ 

abundance was recorded using the numerical Braun-Blanquet scale, which is based on defined percentage 

cover bands (Chytry and Otypkova, 2003). This scale is recommended for studies of species-environment 

interactions and it is used extensively throughout Europe (Leps and Hadincova, 1992; Chytry and 144 

Otypkova, 2003) and the USA (Wikum and Shanholtzer, 1978) because it is both quick and accurate. Both 

of the previous detailed studies that related Ellenberg values to direct environmental measures (Diekmann 

1995; Schaffers and Sykora, 2000) quantified vegetation in this way. Moreover, for reasonably large 

sample plots (as here), use of Braun-Blanquet is less likely to generate inaccuracies than a finer resolution 148 

scale (e.g. cover in 5% bands), when assigning species to the correct band reliably becomes problematic. 

There was substantial heterogeneity in the plant communities between the sites: in total 22 woody 

species were located (including, in order of prevalence, Fagus sylvatica, Corylus avellana, Quercus 

robur, Fraxinus excelsior, Acer pseudoplatanus, Betula pendula. A total of 50 non-woody vascular 152 

plants was represented (including, in order of prevalence, Hyacinthoides non-scripta, Urtica dioica, 

Anemone nemorosa, Rumex sanguineus, Mercurialis perennis. Each site was surveyed twice, once 

during the spring (May 2011) and once during the summer (July 2011).  



Soil data 156 

A soil sample was obtained from the top of the A horizon in the centre of the plot (as per Hawkes et 

al., 1997). There was very little variability in sample depth between sites, with samples being taken at 

10 cm ± 1 cm in all cases. The soil sample was placed in a plastic bag, sealed with as little air as possible, 

and placed in a cool-box to keep the samples in a cool and dark environment in the field before they 160 

were transferred to a fridge at a constant 4°C for a maximum of three days until analysis. To allow for 

seasonal variation in soil parameters, soil samples were collected from the sample location at each 

site twice, once during the spring (May 2011) and once during the summer (July 2011).  

All laboratory protocols followed Radojevic and Bashkin (2006). To quantify soil moisture content, a 164 

sample of each soil was weighed, dried for 24 hours at 105°C and re-weighed. The pH of each sample 

was obtained by adding deionised water to each soil sample at a ratio of 10:1 (w/v) and agitating the 

sample using a magnetic flea before allowing it to settle for 30 minutes. The electrode of a digital pH 

meter (HI 991300, HANNA Instruments, Leighton Buzzard, UK) was then placed in the supernatant and 168 

a reading taken. The pH meter was never allowed to come in contact with the settled soil particles 

during testing and was recalibrated periodically between samples. Quantifying ‘fertility’ was more 

problematic. Ellenberg et al. (1992) loosely defined the fertility values as indicating the amount of nitrogen 

available during the growing season, but added that the values may also be interpreted as indicating the 172 

general nutrient supply. There are many different ways of measuring nitrogen and at least 10 measures, 

including nitrate, ammonia, nitrification rate, nitrification ratio, mineralization, and plant tissue nitrogen load, 

have been related to indicator values previously (review by Diekmann, 2003). We quantified nitrate as a 

proxy for fertility because this has been found previously to correlate the best with Ellenberg values in the 176 

Netherlands (Schaffers and Sykora, 2000). Nitrate levels of each soil sample were obtained by preparing 

each sample as per Radojevic and Bashkin (2006), then using an AutoAnalyser (Sampler 5 system, 

Bran & Luebbe, Germany) to obtain a nitrate measurement in parts per million (equivalent to mg/kg). 

Bioindicator values 180 

Post fieldwork, indicator values were calculated using the vegetation data for the three parameters 

under consideration (soil moisture, soil pH and soil fertility) using firstly unadjusted Ellenberg values 

(Ellenberg et al., 1992) and secondly the indicator values adjusted for use in the UK by Hill et al. (1999). 

For both schemes, and for each of the three parameters, an unweighted mean was calculated by 184 

averaging the indicator scores for all species on a site-specific basis regardless of their relative 

abundance at that site. Because it has been suggested previously that this unweighted mean is 

flawed (see above), an abundance-weighted mean was also calculated for each parameter, again on 

a site-specific basis, using the numerical Braun-Blanquet scale, to establish whether this correlated 188 

better with measured parameters (Hill and Carey, 1997). This was done in addition to, rather than 

instead of, the unweighted mean method, since this has been advocated over the abundance-

weighted approach in other studies (Diekmann, 1995). In all cases, a site profile was created firstly 



using all plant species and secondly using only non-woody vascular species. This was done to 192 

establish whether the bioindicated value for a site derived from quick-growing, often seasonal, non-

woody species correlated better with direct environmental measures than a bioindicator value based 

on all species because the former would likely have a reduced lag-time effect. Because non-woody 

vascular species were also more shallow-rooted, and soil samples were taken from the A horizon, this 196 

also ensured that any weak correlations were not an artefact of sampling soils at a different depth 

from that at which the plant species were rooted. When indictor values were not provided for specific 

species, these were excluded as per the protocol of Hawkes et al. (1997). 

Statistical analysis 200 

To determine whether there was a significant difference in site profiles depending on whether Ellenberg’s 

original values or Hill’s UK-adjusted values were used, a paired-samples t-test was used. Separate 

analyses were conducted for moisture, pH, and nitrates. Then, to establish to what extent site profiles 

generated using the Ellenberg and Hill systems related to site-specific measured values, regression 204 

analysis was used. In all cases, separate analyses were undertaken for each of the environmental 

parameters (soil moisture, pH and nitrates) and for unweighted and abundance-weighted versions of the 

two indicator systems. Regression was deemed appropriate because although the plant-specific 

indicator values were actually ordinal, averaging species-specific values to generate a site profile 208 

(unweighted or weighted) generated a continuous variable since the averages were not restricted to 

integer values. Moreover, the data fulfilled all other parametric criteria, being homoscedastic and with 

normally distributed residuals based on visual evaluation of Q-Q plots. This approach, and a similar 

rationale, has been used in similar studies (Diekmann, 1995; Schaffers, and Sykora, 2000; Wamelink 212 

et al., 2002). Because the relationship between indicator values and direct environmental 

measurements can be non-linear (Diekmann, 1995; Schaffers, and Sykora, 2000), and non-linear 

relationships were identified here by inspection of scatterplots (Fig. 1 and 2), we used both linear and 

curvilinear regression approaches. In all cases, the best model (highest r2, lowest P) was identified 216 

and reported. Curvilinear regression was adopted rather than rank-order correlation since: (1) non-

linear relationships were logarithmic rather than monotonic; (2) this approach has been used before in 

studies relating Ellenberg values to environmental conditions (Diekmann, 2003); and (3) models 

created with linear and curvilinear regression are directly comparable, thereby allowing meaningful 220 

comparisons between environmental parameters (in this study) and between countries (comparing this 

study with others). Finally, to establish whether reliable site profiles could be generated using rare 

species alone, we repeated the main regression analyses after site profiles had been generated 

based only upon species with <25% cover. The <25% demarcation was selected since reducing this 224 

any further, and thereby generating a profile based on only really rare species, meant that a large 

number of sites (36 out of 50) had to be excluded. All analyses were conducted in SPSS version 19. 



Results 228 

Differences between bioindicator systems  

There was a significant difference in site profiles for all three environmental parameters depending on 

whether original Ellenberg or adjusted Hill values were used. This was true regardless of whether site profiles 

were generated using unweighted data (paired-samples t-tests: moisture t = 3.351, p = 0.002; pH t = -6.887, 232 

p < 0.001; fertility t = 4.032, p < 0.001) or using an abundance-weighted approach (moisture t = 3.051, p = 

0.004; pH t = -5.864, p < 0.001; fertility t = 3.495, p = 0.001) (d.f. = 49). The results remained unchanged in 

all cases when only field layer species (i.e. not trees and shrubs) were analysed (results not shown). 

 236 
Relationship between bioindicated values and direct environmental measures  

Generally, there were significant relationships between site profiles based on an assessment of plant 

species using the Ellenberg and Hill indicator systems and direct environmental measurements as derived 

from laboratory analysis (Table 1; Figs 1 and 2). The relationship was good for pH (average r2 = 0.371) 240 

and reasonable for nitrates (average r2 = 0.189). There was no correlation between moisture bioindicator 

values and direct environmental measurements (all tests non-significant; average r2 = 0.007). Relationships 

were fairly similar for spring and summer sampling periods (and the average of these) in most cases 

(Fig 1 and 2 and statistical results thereon). The exception was nitrates, when the correlations for the 244 

summer period were non-significant (and actually negative). This was in contrast to the positive 

correlation that was both expected and seen during the spring period (Fig. 1f, 2f). When only considering 

analyses with significant – and positive – correlations (spring analyses), average model fit increased 

substantially compared to all analyses combined (average r2 = 0.270 versus r2 = 0.189, respectively). To 248 

investigate this further, a paired-samples t-test was undertaken on direct environmental measurement 

of nitrate level for the spring and summer periods. This confirmed that nitrate levels were significantly 

lower on a per-site basis later in the year (spring mean = 2.255 mg/kg (± 0.258 se); summer mean = 

1.361 mg/kg (± 0.100 se); t = 3.039, d.f. = 49, P = 0.004). There was no difference in the significance 252 

of any of these findings when only non-woody (field layer) species were included in analyses (results 

not shown), suggesting that these results are not affected by the lag time inherent for slow-growing 

woody species or the fact that soils were only sampled from the A horizon. Likewise, there was no 

change in the significance of any results when analyses were re-run following removal of managed 256 

woodland sites from the data set. However, because so few sites were either currently or recently 

previously managed (n = 6), this was not unexpected. 

 

All relationships were best described by linear equations except for those for nitrates, when curvilinear 260 

regression fitting a logarithmic curve generated a better model (higher r2 and lower P compared to linear 

models) (Table 1, Fig. 1 and 2). This was the case for all nitrate analyses except those based on data from 

the summer period when a non-intuitive negative correlation resulted (see above). In all other cases, linear 



models were superior. A couple of other general patterns emerged. Firstly, Hill’s UK-adjusted bioindicator 264 

values either correlated better (higher r2; lower P) with direct environmental measures than did Ellenberg’s 

original values quantified for central Europe (moisture and pH), or were very similar (nitrate) (Table 1; 

Fig. 3), confirming the importance of using recalibrated values outside of the original geographic area. 

Secondly, regardless of whether Ellenberg or Hill-adjusted values were used, unweighted data correlated 268 

better with direct environmental measures than when data were weighted by plant abundance, 

suggesting that presence-only data were actually a better proxy for the environmental parameters than 

abundance-weighted data (Table 1; Fig. 3). However, repeating the main regression analyses after 

site profiles had been generated based only upon the rare plant species (defined as those with <25% 272 

cover) resulted in models that were substantially poorer than those based on the full community, 

regardless of whether a weighted or unweighted approach was used in the community analyses 

(Table 2). Indeed, in the case of moisture, the relationship between indicator profiles and direct 

measurements became non-significant when only data on rare species was used (Table 2). 276 

 



Discussion 

The results of our study show that within UK woodland: (1) the efficacy of plant community bioindicator 

values is parameter specific (good proxy for pH, reasonable proxy for nitrates overall (although there were 280 

important seasonal differences), but a poor proxy for soil moisture); (2) Hill’s adjusted values are better 

than Ellenberg’s original ones for UK woodland; and (3) that unweighted values correlate with direct 

environmental measures better than do abundance-weighted ones.  

Relationship between bioindicated and direct environmental measures  284 

The strength of the relationship between bioindicator values and direct environmental measurements is 

parameter specific. Values correlate particularly well for pH, possibly because species have narrower 

tolerance ranges for pH than for other environmental parameters. This is supported by lower 

variability between plant-specific indicator values on a per-site basis for pH than occurs for other 288 

parameters (see below). As regards nitrates, there are strong relationships between bioindicated and 

direct measurements in spring but not in summer. This, coupled with the fact that nitrate levels are 

significantly higher on a plot-by-plot basis in spring compared to summer, suggests that indicator 

values are proxies for annual nitrate maxima (i.e. the amount in spring before it is transferred to 292 

biomass of seasonal plants) rather than annual minima or the average. This would be an interesting 

avenue for future research, especially if ammonia (also used by plants) was quantified alongside nitrate. 

The lack of relationship between indicator values and direct moisture measurements agrees with 

research on woodlands in the North of the UK by Hawkes et al. (1997), which noted variability in 296 

Ellenberg values for co-occurring species (also reported by Major and Rejmanek (1992)). In our study, 

Ranunculus repens, which has an Ellenberg moisture value of 10 (indicating waterlogged soil), co-

occurred in all cases with Pteridium aquilinum and in 83% of cases with Corylus avellana, both of 

which have a moisture value of 5 (indicating moderate moisture). Although soil moisture is the most 300 

variable of the three soil parameters considered here, some reanalysis Ellenberg/Hill moisture values 

might be advantageous.   

It is worth noting that none of the correlations are very strong – the highest r2 value (unweighted Hill 

values for pH) was 0.549 – such that in almost all cases the indictor values explained <50% of the 304 

variability in direct measurements. Although it is possible that stronger relationships might be identified if 

a wider range of abiotic environments were studied (i.e. if the environmental gradients were longer), 

there are several reasons to suppose that the assumed strong positive relationship between indicator 

and actual parameter might not always occur. Firstly, each individual species has a single indicator 308 

value – the hypothetical optimum of the species (Wamelink et al., 2005) – despite the fact that 

species typically occur over a tolerance range, the width of which varies species-specifically. Species 

tolerance ranges also differ spatially due to spatial genetic variation within species (Bocker et al., 

1983), and can shift geographically over time (Dierschke, 1994), as well as in relation to changes in 312 



community dynamics (Diekmann and Lawesson, 1999). Secondly, Ellenberg values (and values in 

most Ellenberg-derived systems, including Hill’s) are based on expert knowledge, with only a minor 

part being based on actual field measurements. Thus, although they should correlate with actual 

conditions – indeed this is the whole premise on which the system is based – It is perhaps 316 

unreasonable to assume that the correlation will be near-perfect and this is an inherent weakness of 

the system (Wamelink et al., 2002). Indeed, many authors, including Ellenberg, have stressed that 

indicator values allow for only quick estimates of environmental conditions and cannot replace field 

measurements (Ellenberg, 1974; Dzwonko, 2001). Finally, autocorrelation of different abiotic factors 320 

might also be problematic. For example, Diekmann (2003) found that light and soil pH are often 

negatively correlated in forests, such that a site profile for, say, soil pH is shifted not because of a 

change in actual site pH, but because light levels become limiting as a result of inter-correlated abiotic 

conditions (Smart and Scott, 2004; Verheyen et al., 2012).  324 

For indicator systems to work effectively, the environment must be stable. Plants often lag behind 

change in environmental parameters, such that it may take years before abiotic change is visible in 

plant species assemblage (Witte et al., 2004). Conversely, one event might have a disproportionate 

effect; for example, the impact of one dry season may be visible in species composition for many 328 

years (Wamelink et al., 2005). Species that are either a relic of former conditions or a recent colonist 

might not make good indicators (Witte et al., 2004). This is demonstrated by research by Dzwonko 

and Loster (1992) and Dzwonko (1993, 2001), which showed that Ellenberg indicator values are good 

predictors of the environment in ancient woodlands, but much poorer indicators in recent woodlands. 332 

Indeed, Dzwonko (2001) showed Ellenberg indicator values correlate only weakly with soil parameters 

(pH and nitrates) in woodland <70 years old since, until this point, the environment is not floristically 

stable. This is due in part to ecological succession, coupled with wind-dispersed species being over-

represented in relatively recent woodland (Dzwonko and Loster, 1992; Dzwonko, 1993). In this study, 336 

however, there was no change in the indicator accuracy once the few currently/recently managed 

woodlands (n = 6 out of 50) were experimentally removed from analyses. Moreover, correlations 

between Ellenberg/Hill site profiles and direct measurements were very similar regardless of whether 

slow-growing woody species were included. Taken together, this suggests that lag time is not a major 340 

bias here (and, by extension, suggests lag times at other sites could further reduce the relationship 

between bioindicated and directly-measured conditions). 

Ellenberg versus Hill 

There were significant differences in the site profiles generated using the Ellenberg and Hill indicator 344 

systems, which led to differences in the strength of the correlation between bioindicated and directly-

measured values between systems. Correlations between direct environmental measures and 

indicator profiles were generally weaker when using Ellenberg’s original values (formulated for use in 



Central Europe: Ellenberg 1974; Ellenberg et al. 1992) than when using Hill’s values (adjusted 348 

specifically for use in the UK: Hill et al., 1999, 2004). This underlines the importance of using regionally-

recalibrated values, as highlighted previously by Diekmann (2003), and possibly stems from  species 

having different tolerance ranges in different geographical areas (van der Maarel, 1993) and/or because 

the ecological optima of specific species depends upon competitor species (Thompson et al., 1993). The 352 

increase in model fit between using Hill’s values rather than Ellenberg’s was especially high in the case of 

pH, possibly because the relationship between plants and the pH optima is highly variable spatially.  

Unweighted versus abundance-weighted approaches 

Several studies have suggested that the strictly arithmetic approach of averaging the indicator values 356 

of all plant species at a particular site for a given environmental parameter is flawed, given that 

species are not generally uniformly abundant. Accordingly, it has been suggested that weighting the 

mean by the abundance of each species in the community might be more biologically meaningful (e.g. 

Hawkes et al., 1997; Schaffers, and Sykora, 2000). This has been advocated over the use of medians 360 

(which might be considered to be technically more correct given the ordinal nature of the indicator 

variables: Kowarik and Seidling, 1989; Seidling and Fischer, 2008) because of the lack of precision 

that can result from the course scales involved (Smart and Scott, 2004). For our study sites, there was 

generally a better correlation between direct environmental measures and unweighted indicator values, 364 

rather than those weighted by plant abundance, regardless of which indicator system was used. This 

agrees with Diekmann (1995), who reported similar results in deciduous woodlands in Sweden for 

both pH and moisture. However, although use of unweighted data was consistently better than 

abundance-weighted data, the differences in model fit were relatively small for nitrates and moisture. 368 

This agrees a review by Diekmann (2003), which concluded that results from presence-absence 

(unweighted) data compared to those from abundance-weighted data generally show little substantive 

difference.  In the case of pH, however, using unweighted values was substantially better. This is 

interesting given that in one of the very few other studies to compared bioindicator values with actual 372 

measurements, Hill and Carey (1997) found the converse at the long-term UK grassland study at 

Rothamsted Park. This suggests that the most appropriate approach might be habitat-specific and/or 

affected by local abiotic conditions, such as soil type or species community structure.  

The fact that unweighted values are consistently, and in some cases substantially, better than 376 

abundance-weighted values in their agreement with actual values, is interesting. It seems counter-

intuitive as it suggests that rare plants are important for obtaining a representative community profile 

and implies that the presence of species occurring at low abundance can be highly informative. 

Examining the data revealed that no species were found at low abundance across a range of plots; 380 

instead rare species were site-specific. One possible explanation is that plants occurring at a low 

abundance might be recent colonists and therefore might reflect the current conditions of the plot 



better than established (and abundant) species (Hawkes et al., 1997; Ertsen et al., 1998). It is worth 

noting here that there were very few non-native species found during the entire study, so this pattern is 384 

not caused by invasion of non-native flora. Alternatively, it is possible that rare species are more 

specialist in their ecology. Such species would, almost by definition, have a narrower tolerance range 

and would, therefore, be better proxies for local environmental conditions than generalist species with 

wide tolerance ranges (Futuyma and Moreno, 1988; Gilchrist, 1995; Kleshcheva, 2010; Marsh and 388 

Kaufman, 2012). Specialist species are still frequently outcompeted by generalist species, even when 

conditions are optimal, so are often rare (Griffith and Sultan, 2012). However, relating site profiles 

generated only using rare species to direct environmental measures produced inferior models relative 

to when site profiles were generated based on the entire plant community (using either unweighted or 392 

weighted approaches; Tables 1 and 2) This suggests that although the rare species are a vital part of 

generating a robust and accurate site profile, they are not very informative on their own. An interesting 

avenue for future research would be to quantify abundance at a finer resolution than the Braun-Blanquet 

scale (e.g. using DOMIN or 10% cover categories) to establish whether the increased precision from 396 

such an approach might make abundance-weighted measures more useful than suggested here. 

Recommendations 

This study comparing direct field site measurements and bioindicated values, has indicated some 

issues particularly for soil moisture. We would recommend further validation studies, in a range of 400 

terrestrial ecosystems, ideally using more than the two temporal replicates used in the current study. 

In the meantime, it is recommended that values are only used if they have been recalibrated for the 

particular region being studies (i.e. using Hill’s recalibrated values rather than Ellenberg’s original 

values in the case of Great Britain) and that unweighted values are used since these usually given 404 

superior correlation with actual values and also have the advantage of being more straightforward to 

calculate. We therefore conclude that use of bioindicator values can give useful information on local 

environmental conditions in some situations, especially for pH, but should not be used without caution.  
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Table 1 – Regression of bioindicator values generated on a site-specific basis using either Ellenberg’s  

original and Hill’s UK-adjusted indicator systems against direct environmental measures for the same 

sites for soil moisture, pH and nitrates. Analyses were conducted for spring and summer periods 596 

separately and using data averaged over these two periods using both unweighted and abundance-

weighted approaches (n = 50 sites in all cases). * = analysis used curvilinear regression using a 

logarithmic equation rather than linear regression (as for all other analyses). 

 Moisture  pH  Nitrate 

 F R2 P  F R2 P  F R2 P 

Ellenberg            

Average            

Unweighted 0.300 0.006 0.586  19.560 0.290 <0.001  *16.828 0.260 <0.001 

Weighted 0.006 0.000 0.939  10.919 0.185   0.002  *14.000 0.255 <0.001 

 Spring period            

  Unweighted 0.800 0.002 0.778  14.458 0.231 <0.001  *20.178 0.296 <0.001 

  Weighted 0.086 0.002 0.771    9.780 0.165   0.003  *16.002 0.250 <0.001 

 Summer period            

  Unweighted 0.445 0.009 0.508  18.529 0.279 <0.001    2.154 0.043   0.149 

  Weighted 0.009 0.000 0.923    9.127 0.160   0.004    0.691 0.014   0.410 

Hill            

Average            

Unweighted 0.893 0.018 0.350  58.385 0.549 <0.001  *17.654 0.269 <0.001 

Weighted 0.074 0.002 0.787  40.775 0.459 <0.001  *17.177 0.264 <0.001 

 Spring period            

  Unweighted 0.412 0.009 0.524  42.224 0.468 <0.001  *20.006 0.300 <0.001 

  Weighted 0.010 0.000 0.921  36.049 0.429 <0.001  *17.064 0.262 <0.001 

 Summer period            

  Unweighted 1.050 0.021 0.311  47.070 0.495 <0.001    1.895 0.038   0.175 

  Weighted 0.130 0.003 0.721  28.824 0.375 <0.001    0.545 0.011   0.464 
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Table 2 - Regression of bioindicator values generated on a site-specific basis using either Ellenberg’s  

original and Hill’s UK-adjusted indicator systems calculated using rare species only (those with <25% 

cover) against direct environmental measures for the same sites for soil moisture, pH and nitrates. 604 

Analyses used data averaged over spring and summer sampling periods and an unweighted approach 

was used throughout (n = 41 sites in all cases) * = analysis used curvilinear regression using a 

logarithmic equation rather than linear regression (as for all other analyses) 

 Moisture  pH  Nitrate 

 F R2 P  F R2 P  F R2 P 

Ellenberg 1.254 0.030 0.270  4.551 0.102 0.039  *5.446 0.120   0.025 

Hill 1.418 0.039 0.241  4.652 0.104 0.037  *8.953 0.183   0.005 
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Figure Legends  

Figure 1: Relationship between Ellenberg indicator value (unweighted community average) and direct 

environmental measures for 50 woodland sites in the UK for: (a, b) moisture; (c, d) pH and (e, f) soil 

nitrate. In all cases the average relationship is shown first, followed by the season-specific 612 

relationship. Note that some relationships are curvilinear. 

Figure 2: Relationship between Hill-modified Ellenberg indicator value (unweighted community 

average) and direct environmental measures for 50 woodland sites in the UK for: (a, b) moisture; (c, 

d) pH and (e, f) soil nitrate. In all cases the average relationship is shown first, followed by the 616 

season-specific relationship. Note that some relationships are curvilinear. 

Figure 3: Schematic diagram of correlation strength between bioindicated and direct environmental 

measures for different parameters. 


