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Abstract

Despite recent papers on problems associated with full-model and stepwise regression, their use is still common
throughout ecological and environmental disciplines. Alternative approaches, including generating multiple models and
comparing them post-hoc using techniques such as Akaike’s Information Criterion (AIC), are becoming more popular.
However, these are problematic when there are numerous independent variables and interpretation is often difficult when
competing models contain many different variables and combinations of variables. Here, we detail a new approach, REVS
(Regression with Empirical Variable Selection), which uses all-subsets regression to quantify empirical support for every
independent variable. A series of models is created; the first containing the variable with most empirical support, the second
containing the first variable and the next most-supported, and so on. The comparatively small number of resultant models
(n = the number of predictor variables) means that post-hoc comparison is comparatively quick and easy. When tested on a
real dataset – habitat and offspring quality in the great tit (Parus major) – the optimal REVS model explained more variance
(higher R2), was more parsimonious (lower AIC), and had greater significance (lower P values), than full, stepwise or all-
subsets models; it also had higher predictive accuracy based on split-sample validation. Testing REVS on ten further datasets
suggested that this is typical, with R2 values being higher than full or stepwise models (mean improvement = 31% and 7%,
respectively). Results are ecologically intuitive as even when there are several competing models, they share a set of ‘‘core’’
variables and differ only in presence/absence of one or two additional variables. We conclude that REVS is useful for
analysing complex datasets, including those in ecology and environmental disciplines.
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Introduction

Ecological, zoological and environmental research frequently

generates datasets comprising one dependent or response variable

(Y) and multiple independent or predictor variables (X1, X2 etc),

giving a dataset that is multivariate and multidimensional [1,2].

Examples include diet and availability of different prey species,

animal morphology and climatic variables, disease prevalence and

population parameters, and, a particularly common scenario,

species-habitat interactions. In the last of these, species abundance,

or life-history traits such as longevity, reproductive success, or

offspring fitness, are related to multiple habitat variables [3,4]. As

findings from such research are typically used to inform

management decisions, it is vital that analyses highlight the most

important environmental features (i.e. the causal variables) [5,6].

Full model regression
Traditional analysis of such datasets has been based on General

Linear Models (GLM), typically using Multiple Linear Regression

(MLR). At its simplest, this involves regressing the selected

dependent variable against the complete suite of predictor

variables. Although this full model regression approach might

seem logical, there are several key problems. Firstly, and most

importantly, the method does not allow the identification of those

factors (if any) that are actually statistically related to the

dependent variable [2,7]. This is against the statistical – and

intuitive – concept of parsimony and means that the ecological

context often cannot be understood. Consequently, results can be

hard to interpret [2,6,8] and their potential for informing sensible

and sustainable management is reduced [9]. Secondly, having

multiple predictors in a model adds noise to the analysis, with the

effect that non-significant results may be returned even when the

model contains significant predictors (effectively inducing the risk

of a Type I error) [10,11]. Thirdly, multicollinearity can occur

within the suite of predictors. Where exact multicollinearity occurs

(i.e. when two or more predictor variables are correlated perfectly),

there is no unique least squares regression equation and the

regression model will fail. Although this is uncommon, approxi-

mate multicollinearity (when two or more predictor variables are

closely correlated with one another) is common in ecological

datasets and renders full least squares regression less robust [12].

These issues mean that parameter estimates from full-model

regression are often inaccurate or biased [13].

Stepwise regression
Because of the problems outlined above, regression processes

that involve variable selection have become popular. These seek to

identify the ‘‘best’’ subset of predictors and thus simultaneously
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remove those variables that are redundant: a statistical version of

Occam’s Razor. Statistically, this means that the noise generated

by non-significant predictors is reduced and a parsimonious model

is created [14,15], while biologically this allows understanding of

which predictor variables have an important effect on the

dependent variable, making the results useful for applied species

management. The two main methods are backwards elimination

(starting with all predictor variables and removing the least

significant first, then the next least significant and so on until all

remaining variables are significant) and forward selection (intro-

ducing the most significant predictor, then next most significant

until all the remaining candidate variables are non-significant) [16].

These approaches can be combined to allow variables to be entered

or removed at any stage after the initial step.

The final model of each of a stepwise procedure theoretically

comprises the (sub-)set of predictors that have an important effect

on the response variable and that best explain the response [17].

However, there are serious issues with this approach [18]. Most

importantly, because of the one-at-a-time nature of adding/

dropping variables, it is possible to miss the ‘‘optimal’’ model

[14,19]. In other words, although a single variable may be better

replaced by a combination of multiple variables, this is not

accounted for in standard stepwise algorithms. Indeed, any

variable selection model based on the inclusion/exclusion of

individual variables without reference to all other variables is likely

to be biased [20,21]. Also, the variable selection typically rests on

p-values (but see later), which means that removal of less

significant predictors tends to inflate the significance of the

remaining predictors artificially [6,14], potentially leading to type

II errors especially when continuous variables excluded from the

model are assigned an effect size of zero, despite having some

(even minor) effect on the response variable. Contrary to common

belief a stepwise approach does not involve calculation and

comparison of all possible models. Instead pairs of nested models

are compared according to a fixed algorithms, such that only a

small fraction of the possible models are actually tested [15], which

again means that the optimal model might be missed [22].

Important inconsistencies in selection algorithms can also be

overlooked [9]. The number of variables that are entered during

stepwise procedures can also cause issues, with final models often

having too many variables for reliable interpretation and too few

variables for good predictive capabilities [23]. Even the order of

the predictor variables in the dataset can affect the selected model,

especially when multicollinearity is high [24]. Indeed, because of

multicollinearity, a vital variable may not be selected for inclusion

because its unique contribution to the model is very slightly lower

than the combined power of a subset of other variables entered

previously [25]. This is completely counter-intuitive and against

the statistical principle of parsimony, which stepwise techniques

have theoretically been designed to address. Even in the rare cases

where multicollinearity is low, stepwise regression is still likely to

lead to locally optimal solutions rather than globally optimal

solutions [26]. As a result of all of these issues, different stepwise

approaches often fail to converge to the same model as one

another, and it can be that none of them converges with the actual

optimal model [27].

The main philosophical premise of stepwise regression has also

been challenged because it seeks only to identify the Minimum

Adequate Model (MAM): the single model that, theoretically,

explains the highest amount of variability in the response variable.

However, when there are two or more models that have almost

equal explanatory power, confidence in a single ‘‘final’’ model

could be misplaced [16]. The whole concept of a MAM is also

based on the null hypothesis approach to analysis, which itself has

frequently been criticised, for example [5], especially for ecological

research into species-habitat interactions, which are more

descriptive than hypothesis-driven [28].

The statistical and philosophical problems regarding stepwise

regression, coupled with the need to optimise the biological meaning

of the results obtained and to acknowledge uncertainty, constitute

serious weaknesses. These are concerning given the continuing

prevalence of stepwise regression in ecological research [9–11].

All-subsets regression
The main alternative to variable-selection regression is all-

subsets regression, whereby numerous models are generated – one

for each combination of predictor variables – with the best model

being selected post-hoc (or, more correctly, the best models to

avoid the MAM issues discussed earlier) [21]. Post-hoc selection

occurs within an Information Theoretic (IT) Framework and most

commonly uses Akiake’s Information Criterion (AIC) [29]. When

derived for a series of models with the same dependent variable,

AIC values can be used to compare those models on using their

accuracy (model fit) when balanced with complexity (parsimony).

Actual AIC values are inconsequential, rather it is the difference

between these values – the so-called delta AICs – that is important

(the model with the lowest AIC value, and models that have AIC

values close to the minimum, have maximum support – see

methods for more details). IT is not based on the null hypothesis

approach with arbitrary significance values, but on statistical

inference whereby competing models are compared by evaluating

their relative support by the data [5,30,31].

The all-subsets approach is gradually becoming more common,

especially since the publication of seminal papers, for example [9].

The advantages are: (1) reduced reliance on a single MAM, (2)

reduced risk that biologically-important variables will be over-

looked, and (3) greater confidence in results as the uncertainty of

each model can be acknowledged explicitly. However, there are

some remaining issues. Where there are few predictors the all-

subsets approach is feasible, but with increasing numbers of

predictors, the number of models generated increases exponen-

tially. For example, four possible predictors would result in the

generation of 15 models, but 30 possible predictors – not

uncommon in ecological datasets – would result in

1,073,741,823 models being generated. Undertaking an exhaus-

tive search for the optimal model (i.e. computing, calculating and

comparing every possible model) can be done through techniques

such as bestglm [6], however, computational time can still be very

considerable [26]. Other all-subsets approaches utilise branch-

and-bound algorithms to reduce the number of combinations by

selecting ‘‘pathways’’ of variable combinations [16]: common

techniques are LEAPS and the Gatu method [32,33], respectively.

Although these methods are sometimes considered exhaustive

[32], technically they are not totally exhaustive as they do not test

every single possible variable combination. Instead, all major

‘‘pathways’’ of variable combinations are tested and pathways with

support are investigated more fully. This reduces computational

time relative to the exhaustive approach (although the number of

models can still be considerable if numerous pathways have

considerable support), but the trade-off is that a non-exhaustive

search can still result in the optimal model being missed. As a

result of this, these subset selection methods may not be

satisfactory in terms of prediction accuracy and stability [34]

and can frequently miss the optimal model [22]. It should also be

noted that even where advances in computer power mean that all-

subsets (exhaustive or branch-and-bound) regression is possible, it

is not necessarily desirable for such analysis to be undertaken as

the large number of models generated means that there is usually
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support (AIC or equivalent) for a considerable number of

competing models. While this is not a problem statistically, it

becomes increasingly hard to understand the biological meaning of

the models, especially when competing models contain a large

number of different variables (as opposed to minor differences or

different combinations of similar variables). This was exhibited by

work by on bird-habitat associations, when 42 highly-supported

competing models, with many different variable combinations,

were generated [9].

Remaining problems and the need for a new approach
There have been attempts to combine the statistical advantages

of AIC and the intuitive appeal of stepwise procedures [23] with

AIC values being used instead of p-values as a method of variable

selection in stepwise regression. In this approach, a decrease in

AIC of at least 2 is needed for an extra parameter to be added in

forward-selection or retained in backwards-selection (this is the

minimum for any improvement in model fit not to be outweighed

by the addition of an extra parameter:[18]. The issues with this

are: (1) the continuing use of a one-at-a-time method of adding/

dropping variables with an arbitrary cut-off with all the inherent

weaknesses described above, (2) the continuing focus on MAMs,

and (3) the fact that when used as a method of variable selection

AIC will always enter predictors from a set of independent

variables, even when none are significantly related (i.e. at least one

model will always be generated) [35]. Moreover, in a backwards

selection scenario in ecological datasets, the elimination of

variables may stop at a given point because no single variable

will reduce AIC sufficiently. However, if elimination of the weakest

variable is forced manually at this step, substantially lower AIC

values can result at later stages (pers. obs.). Another approach has

involved development of the closely-related, piecewise linear,

regression shrinkage techniques LASSO [36] and least angle

regression (LARS) [37]. These work in a similar way to stepwise

regression but, rather than adding/subtracting variables per se, they

instead alter predictor coefficients in the direction their correlation

with Y. These approaches can be used effectively in some cases, for

example [38], but are often over complex (i.e. not maximally

parsimonious) and are still very vulnerable to error when there is

high multicollinearity [26].

The need for new regression techniques to circumvent some of

the issues discussed above has been repeatedly highlighted in

statistical literature [2]. More specifically, there have been calls for

development of a robust method of variable selection (based on the

empirical support for each variable rather than computer

algorithms) to create a few competing models that have optimum

prediction performance and that can be compared post-hoc using

AIC [39]. In this paper, we detail a new technique that combines

IT and traditional linear regression approaches to analyse complex

ecological datasets. In this new method, which we have named

REVS (Regression with Empirical Variable Selection), we

combine the rigour of all-subsets regression, the convenience

and intuitiveness of stepwise procedures, and the transparency of

post-hoc multiple model consideration. This demonstrates a

‘thinking approach’ to analysis [40]. We test the effectiveness of

the new technique in relation to full and stepwise regression using

a case study dataset relating nest site parameters to avian offspring

fitness, and verify it using a further 10 exemplar datasets. The R

code for REVS is provided as supplementary material.

Methods

The basic premise of REVS is to use branch-and-bound all-

subsets regression to quantify the amount of empirical support for

each individual variable in the dataset. A series of regression

models is then created; the first model containing only the variable

with the most empirical support, the second containing this

variable and the one with the next most empirical support and so

on. Full regression models are created at each step, which can then

be compared post-hoc. If it is desirable to have a final Minimum

Adequate Model (MAM), the model with the highest R2 and

lowest P value is indicated. If, as is usually the case, it is better to

consider multiple models, the models can be compared using delta

AIC values. Full details of each process, and their rationale, is

given below, and outlined in Fig. 1. All processes are linked within

the single REVS code, which is supplied here as Supporting

Information (File S1), together with a sample dataset (File S2) and

a short ReadMe document (File S3). This last is intended to

supplement those given below by providing a practical introduc-

tion to REVS; it also describes how to run REVS on the sample

data (File S2) and briefly interprets the results obtained by so-

doing.

All subset regression stage
All-subsets regression is run on a given dataset within REVS

using the R library LEAPS [8]. This employs sophisticated

branch-and-bound techniques to run combinations of variables

within each level; a level being defined as the number of variables

allowed into a given model at any one time [32]. In REVS,

LEAPS is parameterised to output the best model at each level (i.e.

the best model containing one variable, the best model containing

any two variables etc.). The best model at each level is determined

by comparison of the R2 values of the candidate models; the model

with the highest R2 value being selected. The number of levels,

and thus the number of models, equals the number of predictor

variables in the dataset (e.g. if there are 25 independent variables,

there are 25 levels (level one having one variable, level two having

two variables and so on) and thus 25 models (one at each level)).

When LEAPS is run independently of REVS, the output is a

square matrix with individual variables as columns and levels as

rows (the matrix is square by virtue of the fact that the number of

variables will always equal the number of levels – see above). If the

value of an individual cell of any variable/level combination is

TRUE, the specified variable has been included in the best model

at that level, otherwise FALSE is returned. Thus, by counting the

number of TRUE values for each variable, an empirical ranking

value can be accorded to that variable (e.g. if a variable has been

included in 20 out of 25 models, it gains an empirical ranking of

20). Theoretically, a single ranking value will be accorded to each

variable between 1 (the variable with least support; only being

included in the final model that enters all variables) and k (k being

equal to the actual number of predictors; which would be

accorded to the variable with the most support by virtue of its

inclusion in every model). In practice, however, this does not

always happen as there can be ties (for example, two variables each

being included in 10 models each). This might happen, for

example, when one variable is superior at Level 1 (where one

variable is entered) but not needed at Level 2 (where two different

variables are better). It should be noted that when LEAPS is run

within REVS, the TRUE/FALSE matrix is not displayed, but the

empirical ranking is calculated and stored. Because of limitations

in the LEAPS function, the maximum number of variables that

can be included in a single dataset is 32 (31 predictors and 1

dependent variable).

Model generation stage
Once the empirical support for each variable has been

ascertained in the form of a ranking, a series of regression models

Regression with Empirical Variable Selection
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is created. The first model contains only the variable with the most

empirical support, the second contains this variable and the one

with the next most empirical support and so on. In essence, this is

similar to a manual stepwise process, but differs in that the entry

order of variables is based on empirical evidence not an algorithm.

It addition to detailing which variables are in each model,

traditional estimates of model fit (adjusted R2) and significance (P)

are given, along with AIC values and delta AIC values to allow

multiple models to be compared in an IT framework. As noted

above, AIC values are based upon combining model fit (based on

log-likelihood, which is related to the Kullback–Leibler distance)

and parsimony (the number of explanatory variables in the model,

K) using the formula AIC = 22(log-likelihood)+2K. High AIC

values suggest comparatively poor model fit, but this is not

intuitive. Thus, delta AIC values are calculated for each model to

show the amount of support (D) for a given model (i) using the

formula Di = AICi2AICmin (AICmin is defined as the AIC value of

the model that has the lowest AIC score from a series of competing

models). Models that have low D values can be considered superior

to those with high D values using a relative scoring system [21]: D
values of 0–2 = very strong support; 3–4 = strong support; 5–

9 = considerably less support; .10 = essentially no support.

We strongly suggest that when comparing between models, delta

AIC values are used rather than R2 values. This is because although

R2 gives a simple measure of model fit by quantifying the amount of

variability in the dependent variable explained by predictors, the

addition of any additional variable (or even random noise) into a

model will increase this value. Although this is allowed for in REVS

(and many other MLR approaches) by use of the adjusted R2 value

so that there is no spurious increase in model fit estimation, this does

not actually penalise the model on the basis of parsimony.

Conversely, AIC calculation uses both model fit and parsimony to

reduce the chance of over-complicated models being supported

when a less complicated model is almost as good [30]. R2 values do,

however, provide a useful and intuitive measure of model fit in the

selected models, hence their retention in the REVS output.

Sometimes, the empirical ranking will contain ties for reasons

explained above. When this occurs, REVS will, by default, enter

individual variables within a tie in the order in which they appear

in the datasheet. Such ties, and their arbitrary order of entry, do not

matter if all tied variables are entered into the best (lowest AIC)

model. For example, if there is a tie between variables (e.g. 3a and

3b) and both are entered into the best model (together with other

variables if appropriate) this will not bias results. However, it is

possible that one of a pair of variables (e.g. 3a) is entered and the

resultant model is considered the best model before the other tied

variable (3b) is entered, because parsimony outweighs a relatively

small increase in model fit. In this case, it remains possible that a

better model would have been generated if the alternative variable

had been entered instead. To circumvent this, where there are ties

in the dataset AND the best model is generated without both tied

variables being entered (1, 2, 3a), the alternative is also created (1, 2,

3b). The better model is then selected on the basis of delta AIC. In

the case of a 3-way tie (e.g. 3a, 3b, and 3c), all options are tested.

REVS allows for up to a five-way tie (i.e. equal empirical support for

up to five variables). Ties between a greater number of variables

than this are extremely unlikely because the number of predictors is

constrained (indeed, extensive testing has failed to find an occasion

where are dataset generated anything higher than a four-way tie).

Rationale
The advantage of using all-subsets regression to rank support for

candidate predictor variables empirically is four-fold. Firstly, it

avoids the one-at-a-time method of adding or dropping variables

that is so problematic in stepwise regression [14]. It allows for, and

quantifies, situations where a specific variable is best at Level 1 but

where two different predictors are better in tandem at Level 2 and

three totally new variables are better at Level 3; something that

current stepwise algorithms cannot achieve. As such, the best

model at each level is independent of all others. This is particularly

important when multicollinearity is high [12], as it is in many

complex ecological datasets. Secondly, ties are explicitly allowed

for, such that the order that the variables are listed in the dataset

does not matter, as it can do in conventional stepwise regression

[24]. Thirdly, because adjusted R2 values are used during the all-

subsets analysis, there is no demarcation of variables as being

‘‘important’’ or ‘‘unimportant’’ of the basis of an arbitrary

significance value. The situation whereby removal of less

Figure 1. The REVs procedure outlined (MLR = Multiple Linear Regression).
doi:10.1371/journal.pone.0034338.g001
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significant predictors tends to inflate the significance of the

remaining predictors artificially [14] is also avoided. Fourthly, and

most importantly, the order of entry into what is essentially a

manual stepwise procedure is based on empirical evidence rather

than an algorithm that can change even between software

packages [9]. Thus the process is completely transparent with no

masking of analytical uncertainties.

The empirical ranking of each variable provides the researcher

with some understanding of the importance of individual

parameters. There are, however, several reasons for using this

information as a means to an end rather than the end itself.

Constructing new models based upon empirical ranking means: (1)

model fit can be ascertained; (2) models can be used predicatively;

and (3) AIC values are generated to allow comparison of multiple

models. Moreover, without building new models, it would be

unclear what the demarcation between a variable being an

‘‘important’’ or ‘‘unimportant’’ influence on the dependent

variable should be. Any rule-of-thumb figure, such as a variable

being regarded as ‘‘important’’ if it is included in more than 50%

of models, would be without empirical support and akin to using

an arbitrary significance value [15].

When compared to all-subsets approaches, REVS may also be

superior. It requires much less computing power than exhaustive

all-subset approaches (which is particularly important in cases

when there are numerous independent variables as computational

time increases exponentially) and can be more robust than sole use

of branch-and-bound all-subset approaches, such as LEAPS. To

expand on this last point, because REVS utilises LEAPS to

quantify empirical support for each variable in a given dataset,

theoretically, the best REVS model and the best LEAPS model

should be identical. However, because LEAPS does not perform

an exhaustive search for the ‘‘best’’ model from a series of

predictors, the optimal model could be missed. Although the

REVS approach takes information from LEAPS (the empirical

support for each variable), it does not rely on LEAPS isolating the

optimal model. Instead, a new model is created based on the

empirical support rankings, which is akin to an incremental search

for the lowest delta AIC (and thus the optimal model). Moreover,

contrary to all-subsets regression, REVS is variable-driven rather

than model-driven. In LEAPS, or any other type of all-subsets

regression, variables in the best model may be very different to

those in the second best model and so on. This is logical

statistically, especially when there is multicollinearity in the

predictor variables, but confusing both biologically and from an

applied perspective, especially when there are several competing

models with a delta AIC,2 (since these are treated as equivalents

under traditional use of AIC). REVS avoids this by first

determining how much support is there for each variable (using

the all-subsets matrix) and then determining where the cut-off

point is for variables to be useful in predicting the dependent

variable (additional of variables stepwise until the model does not

substantially improve). This is easier to understand as, even if there

are two or more competing models within a delta AIC of ,2, they

will have many variables in common and only differ in whether or

not additional variables are added (i.e. the main ‘‘core’’ is the same

and there are just minor differences in presence/absence of

additional variables). This makes interpretation much easier than

comparing a series of models that are fundamentally different – a

situation that often applies in ecology [9].

Case study dataset
The condition of altricial birds when they fledge from their natal

nest is a key determinant of their immediate and first-winter

survival [41,42], longevity [43], recruitment into the breeding

population [44] and future reproductive success [45]. The

influence of habitat variables on fledging condition is therefore

important to deepen understanding of environmental influences

on life-history parameters. Although condition is difficult to

measure directly, wing length (the best univariate size predictor)

is an excellent proxy [46].

Wing lengths of juvenile great tits (Parus major) raised in

nestboxes at Nagshead Nature Reserve (Gloucestershire, UK)

were recorded by AEG under licence from Natural England

(Number 20060590) in 2006. In total, measurements were taken of

232 chicks in 50 nests. All measurements were taken 15 days post-

hatching, when wing lengths were fully grown [47]. Mean wing

length was calculated for each brood to avoid pseudoreplication;

and this constituted our dependent variable, Y. Concurrent

fieldwork was undertaken to quantify the habitat surrounding

each nest. Vegetation data giving information on species and

structure (Table 1) were collected from circular nestbox plots,

which were 11.3 m diameter and provided a survey area of

100 m2 (0.01 ha) centered on the nestbox tree [48]. In addition,

distances from each nestbox tree to the nearest permanent water

source, footpath, vehicular forest track (used by forestry workers

and reserve staff) and main roads were quantified by comparing

GPS location of each nestbox to all water, path, track and road

datapoints using Pythagoras’ theorem and selecting the lowest

value for each parameter. In total, there were 25 independent

variables. All necessary permits were obtained for the described

field studies; specifically bird handling was undertaken under

licence from Natural England (Number 20060590; licensee AEG)

and no specific permissions were required for collection of the

habitat data since work was entirely survey based (i.e. non-

manipulative). Permission to work at Nagshead Nature Reserve

was provided by the Royal Society for the Protection of Birds

(RSPB) and Natural England.

Previous research [49] analysed the effect of nestbox orientation

on wing length, but the potential influence of the other variables

was not considered, making this an ideal (and ecologically

typically) dataset on which to trial REVS. To assess the

effectiveness of the REVS technique, the same case study dataset

was also analysed using full model regression, stepwise regression,

and LEAPS all-subset regression using AIC and R2 values. Given

that calculating goodness-of-fit statistics, such as R2, can cause

inflation in apparent model fit [50,51], comparing methods using

spilt-sample cross-validation is preferable when sample sizes

permit [1,19]. Accordingly, we performed a validation where we

removed 10 cases from our original dataset at random to create a

hold-out dataset and then calculated REVS, the full regression

model, the best stepwise model, and the best LEAPS all-subset

model using the remaining 40 cases. On a per-model basis, we

then used gradients and intercept information to calculate the

predicted value of Y (great tit wing length) for the 10 cases in the

hold out sample. Using a separate regression analysis for each of

the four models, predicted values of Y (Ypredicted) were compared

with actual values of Y (Yactual) on the basis of R2 values (higher

values = better prediction accuracy) and residual sum of squares

(RSS; low figures = low error) as honest model fit estimates and

honest error rate predictions, respectively [26].

Additional datasets
In addition to the detailed consideration of the above dataset,

we also tested REVS on a further 10 ecological datasets to

establish the general applicability of the technique as a model

fitting process as per [6]. Half of these additional datasets were

concerned with species-habitat relationships (mammals and birds);

the remaining datasets were more general, covering plant
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morphology, animal behaviour, human biology, microbiology and

environmental biology. All datasets are detailed briefly in Table 2

and were either previously published (and details of ethical

considerations can be found therein), or were unpublished

collected without the need for specific permits. Again, datasets

were also analysed using full, best stepwise and best LEAPS all-

subset regression models by comparing model-specific AIC values

[14,52–54].

Results

Case study dataset
Analysis with REVS gave much higher R2 values, considerably

lower delta AIC values and lower p-values than were produced

with full or stepwise regression models (Table 3). The full model

was non-significant, despite containing significant predictors, and

had a very high AIC value that was within the ‘‘no support’’

category of .10 [21]. Three models were created during the

stepwise process; adding, in order, orientation category, percent-

age cover bracken and percentage ground cover. In total, 25

models were created using REVS (as there were 25 independent

variables) and the best model on the basis of delta AIC and R2

entered eight predictors (Table 4). The best LEAPS all-subset

model, contained five predictors, of which two (orientation

category and percentage cover bracken) were included in both

the best stepwise model and the best REVS model. REVS was

superior to LEAPS (higher R2), although the delta AIC distance of

both models was ,2, such that they both had considerable

support.

Recalculation of the models on subset of the data (n = 40 cases)

allowed quantification of honest R2 and honest error rate through

comparison of Ypredicted with Yactual for the 10 cases in the hold-out

sample. This showed that the REVS model was superior (higher

R2, lower RSS) to all other models (Table 3). The low predictive

accuracy (and low honest R2/high RSS) of the LEAPS all-subset

model was surprising, but partially explained by substantial

discord between Ypredicted and Yactual for one case using this model

(if this case was excluded, R2 rose to 0.238 and the RSS decreased

to 150.728).

When considering the actual variables entered in the different

models, two things are worthy of note. Firstly, there were

substantial differences in the variables included in the best REVS

model compared to the best stepwise and best LEAPS all-subset

models. The best LEAPS model included percentage cover holly,

diversity of field-layer species, and canopy coverage; all variables

that were absent from the best REVS model. Moreover, one of the

three factors (percentage cover bracken) that was included in both

the best stepwise and best LEAPS model was not included in the

best REVS model – indeed this variable was ranked 20 out of 25

using this process. The fact that it was included in the stepwise/

LEAPS models, when it actually did not correlate univariately with

wing length as the response variable, was possibly because it

correlated significantly (P = 0.002) with the distance to the nearest

path (the second ranked variable using REVS: Table 4). Secondly,

it is worth noting that, univariately, the number of trees in the

nestbox plot, which was entered into the best REVS model, did

not correlate with great tit wing length (P = 0.988), and so would

never have been included in a ‘‘one-at-a-time’’ stepwise model,

and would probably always be ignored by branch-and-bound all-

subsets approach. However, this variable is key in combination

with other variables (being included in 23 out of 25 models created

using REVS, making it the third most common parameter).

Additional datasets
In terms of delta AIC values, significance and R2, the REVS

model was superior to full models for all 10 datasets tested,

superior to stepwise regression for 8/10 datasets (in the remaining

datasets, the best REVS model was exactly the same as the best

stepwise model with the same model fit and significance values),

and superior to LEAPS all-subsets regression in 4/10 datasets

(again in the remaining datasets, the best REVS model was exactly

the same as the best LEAPS all-subsets model). Crucially, REVS

was never worse than any other method. On average, delta AIC

was 0 for the best REVS model compared with almost 20 for the

full model (Fig. 2a) while mean R2 values were higher for models

generated using REVS compared to any of the traditional MLR

methods (Fig. 2b). Overall, R2 was 32% higher when REVS was

used in place of the full model and 8% higher when REVS was

used rather than stepwise or LEAPS all-subset regression. P values

for REVS were, on average, much lower than for full or stepwise

models, and very similar to LEAPS (Fig. 2c).

The complex relationship between delta AIC, R2, and

significance is shown in Fig. 3. Generally, when comparing the

different REVS models for each dataset, generally the AIC value

was at its optimum (lowest) with a slightly more conservative

model (i.e. fewer levels and thus with fewer independent variables)

compared to the optimum (highest) R2 value (Fig. 3). This was

expected because while adjusted R2 values allow for the inclusion

of an additional variable into the model to avoid non-helpful

predictors inflating the variance explained artificially, they do not

penalise the model for the inclusion of an additional variable.

Thus, unlike AIC, they do not reduce the chance of over-

complicated models being supported when a less complicated

model is almost as good [30]. The lowest significance value using

REVS usually occurred at the same level of model complexity as

the highest R2 value, but was occasionally better one level higher

(i.e. better if one more variable was added to the model) (Fig. 3).

Intuitive interpretation
As noted in the methods, REVS is variable-driven rather than

model-driven. Thus, even when two or more competing models

have a delta AIC,2 (i.e. essentially equal support), they will have

the same ‘‘core’’ set of variables, whereas two competing all-

subsets models might be very different. For example, in the case

study dataset, seven models were generated with LEAPS that had

Table 1. Vegetation variables in the case study dataset.

Generic habitat variables Specific habitat variables

Number of trees Number of Pedunculate oak (Quercus robur)

Distance to the nearest tree Number of silver birch (Betula pendula)

Number of saplings Number of beech (Fagus sylvatica)

Number of shrubs Number of rowan (Sorbus aucuparia)

Percentage of ground cover Number of sycamore (Acer pseudoplatanus)

Diversity of trees Number of white/downy birch (Betula
pubescens)

Diversity of saplings Percentage coverage by holly (Ilex
aquifolium)

Diversity of field-layer species Percentage coverage by hawthorn
(Crataegus monogyna)

Total plot diversity Percentage coverage by bramble (Rubus
fruticosus agg.)

Grazing regime (grazed or not) Percentage coverage by bracken (Pteridium
aquilinum)

doi:10.1371/journal.pone.0034338.t001
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a delta AIC,2, but they differed substantially. Nine variables were

entered into the top three models combined, but only three of

these (orientation, diversity of field-layer species and percentage

bracken) were common to all three models, with the rest typically

appearing in just one of the three. A similar situation occurred for

one of the additional datasets on body fat (see Table 2), where 7 of

the 13 models LEAPS generated had a delta AIC,2: four

variables occurred in each of these in different combinations with a

further seven variables. Conversely, when REVS was used,

interpretation was simplified. Firstly, there were fewer competing

models with delta AIC,2 (three and five for the great tit and body

fat datasets, respectively), which meant that fewer comparisons

were necessary. Secondly, and more importantly, in both cases,

the core variables were the same in all competing models, such

that the importance of additional variables, and their influence on

the overall model, could be clearly discerned.

Discussion

Use of REVS with the considered datasets suggests that the

technique provides much more useful results than typical

regression approaches (full, stepwise, and all-subset models),

particularly when the aim of the researcher is to identify the

causal factors in a dataset and understand their effect on the

dependent variable [5]. This is of fundamental importance when

quantifying species-habitat relationships to inform management

[11]. When analysing the case study dataset (habitat influence on

great tit offspring quality), the best REVS model allowed

Table 2. Details of the 10 additional datasets (the top five datasets are on species-habitat interactions; the second five datasets are
wider biological datasets).

Dataset details Dependent variable Independent variables Cases Source

Blue tit nest site selection
(Nagshead, Gloucestershire)

Frequency of nestbox
occupations over (15 years)

20 nestbox variables
(e.g. size, height, location)

295 A Goodenough; unpublished data

Great tit nest site selection
(Nagshead, Gloucestershire)

As above As above 295 A Goodenough; unpublished data

Dormouse nest site selection
(Midger Wood, Gloucestershire)

Frequency of nest tubes
occupation (13 years)

25 variables describing
surrounding habitat

100 R. Williams; unpublished data

Pied flycatcher clutch size
(Nagshead, Gloucestershire)

Mean number of eggs per
clutch per nestbox (15 years)

31 variables describing
surrounding habitat

258 [4]

Pied flycatcher fledging success
(Nagshead, Gloucestershire)

Mean number of fledglings per
brood per nestbox (15 years)

As above 254 [4]

Plant morphology (Lady Park
Wood, Gwent)

Canopy coverage 4 tree-specific variables,
including height and DBH

300 A Goodenough; unpublished data

Animal behaviour Average time spent in slow
wave sleep per 24 hours

7 life-history variables (e.g.
weight, gestation, lifespan)

62 [55] Available from: http://lib.stat.cmu.edu/
datasets/sleep]

Human biometrics Percentage body fat
(underwater weighing)

14 measurements (e.g.
weight, height, chest
circumference)

252 Data from R. Johnson; available from: http://lib.
stat.cmu.edu/datasets/bodyfat

Aquatic bacterial load (River
Severn, Gloucestershire)

Total bacteria plate count from
100 ml water on nutrient agar

5 chemical parameters
(nitrogen, calcium, pH etc)

12 S. Eley; unpublished data

Organic pollution
(Oslo, Norway)

Amount of organic particulate
matter (log transformed)

7 environment parameters
(e.g. wind speed,
time of day)

500 Data from M. Aldrin; available from http://lib.stat.
cmu.edu/datasets/PM

Running the REVS procedure on these datasets took ,1 min.
doi:10.1371/journal.pone.0034338.t002

Table 3. Comparison of REVS against full model regression, stepwise regression (P to enter = 0.05) and LEAPS all-subset regression
for the case study dataset of great tit chick fitness (quantified using wing length) as the dependent variable and 25 independent
habitat parameters.

Model Complete model (n = 50)
Comparison of Ypredicted with Yactual for 10
cases in a hold-out sample

Adjusted R2 AIC Delta AIC P Adjusted R2 RSS

REVS (best model1) 0.374 156.00 0.00 0.0005 0.478 62.745

LEAPS all-subsets (best model2) 0.331 157.40 1.40 0.0007 0.104 353.713

Stepwise (best model3) 0.254 160.71 4.71 0.0014 0.439 80.229

Full 0.034 184.74 28.74 0.4899 0.449 76.986

1For variables included in the best model, see Table 4.
2Variables included: orientation category (2), percentage cover bracken (+), percentage cover holly (2), diversity of field-layer species (+), and canopy coverage (+).
3Variables included: orientation category (2), percentage cover bracken (+), and overall percentage cover ground (2).
The full models are detailed and the prediction accuracy of each is calculated using a hold-out sample (see methods for more details).
doi:10.1371/journal.pone.0034338.t003
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identification of key variables, which the full model did not

(indeed, the very presence of important predictors within the set of

independent variables was masked by a high AIC, low R2 and

overall non-significance). Only three variables were included in the

stepwise model and these would not easily inform management.

For example, it might appear from the stepwise results that poor-

quality great tit chicks were associated with areas of high bracken

coverage. However, when the REVS models are examined, it

becomes apparent that actually they are associated with greater

numbers of trees, particularly silver birch, which tend to occur in

areas with less bracken (i.e. the multicollinearity of the dataset is

masking the true picture). The fact that the best LEAPS and

REVS models differed, and the low accuracy of the LEAPS model

in predicting actual values of Y for cases in a hold-out sample,

suggests that branch-and-bound techniques can compromise

effectiveness for computational rapidity. Using LEAPS to quantify

empirical support for each variable, and then generating new

models based on this information in the way that REVS does,

seems to be a rapid and convenient way to circumvent these

problems.

Regression approaches are also common in other biological

disciplines, including environmental biology and animal behav-

iour. Testing REVS on example datasets has demonstrated the

wider applicability of the approach, with REVS models again

being more parsimonious than full models, greater model fit

(resulting in higher R2 values), and lower delta AIC values. When

compared with stepwise regression, the best REVS model typically

had a higher R2 value, a lower delta AIC value and lower P values.

In 18% of datasets tested here, the best REVS and the best

stepwise model were synonymous. This is not surprising given that

both techniques are used to achieve the same end result – indeed it

could be argued that if stepwise procedures were optimal, stepwise

and REVS results should be synonymous. The same is true of

comparing REVS with LEAPS all-subset models – in 60% of cases

the models are identical, but in 40% of cases the REVS models are

superior. Importantly, REVS was never inferior to stepwise or

LEAPS all-subsets, so use of REVS appears to be, at worse, the

same as these procedures and at best, improve upon them.

REVS does not rely on model building using a one-at-a-time

method of adding/deleting variables since the empirical support

for each variable is gained multivariately. Thus the ‘‘optimal’’

model should not be missed [14,19] and the inclusion/exclusion of

individual variables is likely to be biased [20,21]. There is no

reliance on p-values, such that there is no arbitrary cut-off point

and artificial inflation of the significance of individual predictors

and potential type II errors [14] are avoided. Given the way that

ties in variable ranking are handled in REVS (see Methods), the

order of the predictor variables in the dataset will also have no

effect, unlike in many stepwise scenarios [24]. Finally, because

AICs are used, multiple models can be considered and there is no

reliance, implicit or explicit, on a MAM [5,9,16]. This also means

that the researcher does not have to be confined by a potentially-

unhelpful null hypothesis framework [28], although significance

values can be generated and used if this is helpful; for example in

Table 4. REVS models for analysis of great tit wing length
giving R2 and delta AIC values.

Model Adjusted R2 Delta AIC

Orientation category (1 = S-SW;
0 = other; negative relationship)

0.074 14.072

+Distance to nearest path
(positive relationship)

0.085 12.535

+Number of trees (positive relationship) 0.165 9.920

+Number of silver birch (positive
relationship)

0.258 5.011

+Distance to nearest water source
(negative relationship)

0.314 2.066

+Percentage of ground cover
(positive relationship)

0.318 2.596

+Number of downy birch
(negative relationship)

0.342 1.681

+Number of saplings
(negative relationship)

0.374 0.000

+Distance to nearest road
(positive relationship)

0.369 1.191

+Percentage holly coverage
(negative relationship)

0.355 2.970

Each row shows the latest variable to be entered into the model (in addition to
those previously added) and the overall adjusted R2 and delta AIC. The model in
bold was the single best model when models were compared using delta AIC
(or R2). All models were significant (P,0.05).
doi:10.1371/journal.pone.0034338.t004

Figure 2. Mean (± se) results of running 10 datasets (detailed
in Table 2) through REVS compared with standard full
regression and stepwise regression for (a) delta AIC values
(combines model fit and parsimony; lower values are prefer-
able); (b) R2 values (higher values are preferable) and (c)
significance (P values; lower values are preferable). It should be
noted that the delta AIC value for REVS was 0 in all cases.
doi:10.1371/journal.pone.0034338.g002
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lab studies where a specific hypothesis has been generated [9].

Interpretation of multiple competing models, in situations when

reliance on a MAM is unsuitable, is easier for REVS than for

LEAPS as there are fewer models to consider and more similarities

between candidate models. In summary, REVS is a rapid and

intuitive analytical method, with general applicability in biologi-

cal/ecological correlative studies, that avoids the usual weaknesses

of full-model and stepwise regression.
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File S1 R code for the REVS procedure (requires R to
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by so-doing.
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