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Abstract Thermal error compensation is considered as an
effective and economic method to improve the machining
accuracy for a machine tool. The performance of thermal error
prediction mainly depends on the accuracy and robustness of
predictive model and the input temperature variables. Selec-
tion of temperature-sensitive measuring points is the premise
of thermal error compensation. In the thermal error compen-
sation scheme for heavy-duty computer numerical control
(CNC) machine tools, the identification of temperature-
sensitive points still lacks an effective method due to its com-
plex structure and heat generation mechanisms. In this paper,
an optimal selection method of temperature-sensitive measur-
ing points has been proposed. The optimal measuring points
are acquired through three steps. First, the degree of tempera-
ture sensitivity is defined and used to select the measuring
points with high sensitivity to thermal error. Then, the first
selected points are classified with fuzzy clustering and grey
correlation grade. Finally, the temperature-sensitive measur-
ing points are selected with analysis of location of temperature
sensors. In order to verify the method above, an experiment is
carried out on the CR5116 of flexible machining center. A
novel temperature sensor, fiber Bragg grating (FBG) sensor,
is used to collect the surface temperature of the machine. A

thermal error compensation model is developed to analyze the
prediction accuracy based on four sequences of measuring
points, which are generated by different selection approaches.
The results show that the number of the measuring points is
reduced from 27 to 5 through the proposed selection method,
and the thermal error compensation model based on the opti-
mum temperature-sensitive measuring points has the best per-
formance of prediction effect.

Keywords Temperature-sensitivemeasuring points . FBG
sensors . Heavy-duty machine tools . Thermal errors

1 Introduction

Thermally induced errors and geometric errors are the two
main contributors to the inaccuracies onmachined workpieces
[1]. However, according to the statistics, the thermal errors,
caused by internal and external heat sources, account for as
much as 70 % of the total workpiece errors in machining [2].
Compared with the geometric error [3], the thermal errors
caused by the thermal deformation of the machine structure
are time dependent and dynamic. There are many strategies to
reduce the thermal errors, such as designing a thermo-
symmetric machine with cooling systems, using low-
expansion materials, controlling the humidity and temperature
of the workshop, and adopting thermal error compensation
[4]. Due to the complex heat generation mechanisms and var-
ious internal and external heat sources, the thermal errors can-
not be eliminated completely in the design stage and the soft-
ware compensationmethod is considered as the most econom-
ic and effective way to reduce the thermal error [5].

In general, the research on thermal error compensation in-
cludes two parts: the thermal error compensation modeling [1,
2, 6] and the real-time compensation devices [7]. The
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compensation models are used to predict the thermal error
through accurately mapping the empirical relationship be-
tween temperature values and thermal errors of the machine
tools. However, the temperature measurement and the selec-
tion of temperature-sensitive measuring points are the premise
of the thermal error compensation models.

In recent years, many research studies have been done
on the selection methods of thermal key measuring points.
These methods can be categorized into two types accord-
ing to their characteristics: mechanism analysis and statis-
tics analysis. Mechanism analysis methods concentrate on
the generation mechanism of thermal error on machine
tools, such as temperature field calculation and displace-
ment field analysis. Finite element method (FEM) [8] and
finite difference method (FDM) [9] are two main mecha-
nism analysis methods, which are used to analyze the
temperature distribution and the deformation at particular
points. In the field of statistics analysis, various models
and algorithms, such as correlation theory [10, 11], grey
correlation theory [12, 13], neural network [14–16], fuzzy
clustering [17–20], partial correlation analysis [21], and
stepwise multiple regression analysis [22], have been pro-
posed to identify the key temperature measuring points.
Liang [23] presented a method using correlation coeffi-
cient and multiple linear regressions to identify the key
measuring points of a horizontal machine center. Li [12]
used the grey system theory to select the optimal measur-
ing points and verify the performance of this method.
Miao [24] combined the fuzzy clustering and grey corre-
lation theory to identify the temperature-sensitive points,
and then established the compensation models based on
the temperature sequences of these points. Yang [25] pro-
posed a grouping method of temperature variables. They
were divided into groups based on the correlation coeffi-
cient, and then the key points were determined by permu-
tation and combination of temperature variables of each
group. Miao [26] used a comprehensive analysis method

to identify the temperature-sensitive points, which was a
combination of grey correlation, stepwise regression, and
fuzzy clustering.

The methods discussed above both have advantages
and disadvantages in temperature-sensitive point selec-
tion. Due to the complex process of heat transfer and
difficulties in determining the boundary condition, the
performance of mechanism analysis methods is not good.
In statistics analysis areas, correlation coefficient and grey
system theory only consider the correlation between the
temperature variables and thermal errors, which ignore the
coupling problems among temperature variables. Fuzzy
clustering theory is used to classify the temperature vari-
ables. However, the random selection of threshold makes
various results in classification. In order to reduce the
coupling and grouping problem, this paper proposes a
new method combining the mechanism analysis and sta-
tistics analysis to select the optimal temperature measur-
ing points.

Section 2 introduces temperature measurement method and
chooses initial measurement points. Section 3 proposes a
method for selecting temperature-sensitive measuring points.
Section 4 describes the experimental setup and evaluates the
performance of thermal error compensation based on the se-
lected points.

Fig. 1 The deployment of FBG sensors

Table 1 Classification of FBG sensors

Position FBG sensor no. Total

Bed T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 10

Column T13, T14, T15, T16, T17 5

Headstock T19, T20, T21, T22, T23 5

Tool rest T25, T26, T27 3

Environment T11, T12, T18, T24 4
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2 Measurement of surface temperature and thermal
error on heavy-duty CNC machine tool

This study was carried out on a CR5116 flexible machin-
ing center (FMC). Due to the complex heat generation
mechanisms of the machine tools, it is difficult to deter-
mine the measuring positions of the machine tools and
the numbers of the temperature sensors. The FMC heat
sources, causing the thermal errors, always come from
two main aspects, internal and external sources. The in-
ternal sources mainly include the heat generated by spin-
dle motor, spindle bearing, ball screw system, cool sys-
tem, etc. The external ones are from sunlight, heater, and
personal radiations. All these heat sources will affect the
temperature field distribution and cause the heat defor-
mation and relative displacement of components on the
machine tool. In order to monitor the thermal behavior of
the FMC, 27 measuring points were selected according
to the main heat sources, such as headstock, drive motor,
ball screw, and environmental temperature. In this paper,
fiber Bragg grating (FBG) sensors [27, 28] were used to
collect the surface temperature data of FMC. Compared
with PT100 platinum resistance sensors, FBG sensors
have the advantages in temperature measurement on the
heavy-duty machine tools, such as easy deployment,
anti-electromagnetic property, and small size. In this ex-
periment, FBG sensors were attached on the surface of
the FMC. Figure 1 shows the details of the temperature
measuring points and locations of FBG sensors. The
FBG sensors can be divided into five groups according
to their locations, as shown in Table 1.

The other parameters to be collected are the thermal errors
of the spindle in the X, Y, and Z directions. Three CCD laser
displacement sensors were used to measure the thermal drifts
of the spindle in the three directions.

3 Temperature-sensitive measuring points selection

In this section, we introduce the method for temperature-
sensitive measuring point selection, which is based on corre-
lation analysis, correlation analysis, temperature sensitivity
analysis, and fuzzy clustering.

As shown in Fig. 2, the processes of optimal selection for
temperature measuring points can be divided into three parts.
In the first selection, the temperature variables will be sorted
according to the degree of thermal error sensitivity and gen-
erated a new sequence. The measuring points in the first half
of the sequence are chosen for further analysis. In the second
selection, the grey relation grades between the first selected
measuring points and thermal errors are calculated and then
these measuring points will be classified into different groups
using fuzzy clustering. The second selected sequence of mea-
suring points will be achieved by choosing the point with
maximum grey relation grade in each group. In the third se-
lection, the second selected sequence will be analyzed by
combining with the location of sensors. Through the three
steps, the temperature-sensitive measuring points are identi-
fied. The definitions and algorithms used in the three selec-
tions are described as below.

Fig 2 The processes of
temperature-sensitive measuring
point selection

Fig 3 Fuzzy clustering processes
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3.1 Definition of thermal error sensitivity

In order to facilitate the analysis and description, the thermal
error and temperature data sets can be represented as
y={y(k)|k=1,2,…,m} and xi={xi(k)|k=1,2,…,m; i=1,2,…,
n} separately, in which n means the number of temperature
measuring points and k is the sample size.

The thermal error sensitivity represents the impact degree
of temperature changes on thermal errors. The coefficient of
thermal error sensitivity is defined as

Si kð Þ ¼ dY kð Þ
dX i kð Þ ¼ lim

ΔX→0

ΔY kð Þ
ΔX i kð Þ ð1Þ

As ΔXi might be zero in different measuring points, it is

much easier to calculate the reciprocal of Si, which is 1
Si kð Þ ≈

ΔX i kð Þ
ΔY kð Þ. The degree of thermal error sensitivity Gi will be

calculated as Eq. (2), in which ðΔX i kð Þ
ΔY kð Þ Þ presents the average

value of ΔX i kð Þ
ΔY kð Þ :

Fig. 4 Temperature and thermal
error collection system
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The value of Gi is bigger, the more sensitive the tempera-
ture measuring point is.

3.2 Grey correlation analysis

Grey system theory presented by Deng [29] aims to evaluate
the relationship of a series of data through analyzing the geo-
metric similarity of the data curves. The grey correlation grade
indicates the close degree between two series, which is calcu-
lated by grey correlation coefficient. In this study, we assume
the original sequence and the sequence for comparison as
y={y(k)|k=1,2,…,m} and xi={xi(k)|k=1,2,…,m; i=1,2,…,
n} separately. In the grey system theory, the grey correlation
coefficient is defined as

ξ0i kð Þ ¼ Δmin þ ρΔmax

Δ0i kð Þ þ ρΔmax
ð3Þ

where ρ is the distinguishing coefficient and it is taken as 0.5
in general.Δ0i(k) is defined asΔ0i(k)=|x0(k)−xi(k)|.Δmin and
Δmax mean the minimum and maximum ofΔ0i(k), which are
defined as Δmin ¼ min

i
min
k

Δ0i kð Þ and

Δmax ¼ min
i

min
k

Δ0i kð Þ. The grey correlation grade is de-

fined as

γ0i ¼
1

m

X

m

k¼1

ξ0i kð Þ ð4Þ

3.3 Fuzzy clustering analysis

Fuzzy clustering is used to establish the fuzzy relationship
among temperature variables. The temperature variables will
be classified based on a specific threshold. As shown in Fig. 3,
there are five main steps in fuzzy clustering analysis, which
are normalization, correlation coefficient calculation, estab-
lishment of fuzzy similarity matrix, threshold determining,
and variables classification:

1. Data normalization aims to increase the cohesion of entity
types and reduce the data redundancy. We use variable c as a
normalized value of x, which is calculated as

ci kð Þ ¼ xi kð Þ
max xi kð Þj j ð5Þ

2. Fuzzy similaritymatrix is defined asR=(rij)n×n, constructed
by the relation coefficient rij. The rij describes the linear rela-
tionship between ci and cj and is calculated as

ri j ¼

X

m

k¼1

ci kð Þ−ci kð Þ
� �

c j kð Þ−c j kð Þ
� �
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Table 2 The degree of thermal
error sensitivity T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0.0123 0.0125 0.0105 0.0049 0.0114 0.0133 0.0170 0.0130 0.0142 0.0073

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0.0115 0.0124 0.0069 0.0130 0.0128 0.0086 0.0136 0.0089 0.0105 0.0072

T21 T22 T23 T24 T25 T26 T27

0.0116 0.0132 0.0103 0.0157 0.0082 0.0108 0.0110

Fig. 6 The fuzzy equivalence
matrix
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where ci kð Þ and c j kð Þ mean the average value of sequence
ci(k) and cj(k).
3. As the fuzzy similarity matrix R=(rij)n×n is not transitive, a
fuzzy equivalence matrix should be created for variables clas-
sification. We assume t(R) as the fuzzy equivalence of R. If
there exists an integer l, which satisfies R2l=R2l+1, then the
fuzzy equivalence matrix can be defined as t(R)=R2l.
4. Threshold determining is the last step before classification.
The value of the threshold λ directly determines the result of
variables classification. So the temperature variables will be
classified into different groups with different thresholds. In
this research, λ is determined by the number of temperature
variables. For example, if the amount of temperature variables
is n, the threshold λ will be chosen, when the number of
classified groups is around n/2.

4 Example verification

4.1 Experiment setup

An experiment was designed to identify the temperature-
sensitive measuring points on a flexible manufacturing center
CR5116. Based on the temperature data collected from the
measuring points, thermal errors compensation model was
developed to analyze the feasibility and performance of the
method for key measuring points selection.

Figure 4 shows the temperature and thermal errors collec-
tion based on FGB sensors and CCD laser displacement sen-
sors. There were 27 FBG sensors deployed on the surface of

FMC, as shown in Fig. 1. Three CCD sensors were used to
measure the thermal errors of X, Y, and Z direction of spindle.

The experiment lasted for 3 days with air cutting, which
means that the FMC run without implementing real cutting
process and the measuring system collected data per minute,
including temperature values and the spindle thermal errors.
The collected data were divided into three groups according to
the date: data01, data02, and data03. The first group was used
to select the temperature-sensitive measuring points. The sec-
ond and the third ones were used to verify the effectiveness
and robustness of the thermal error compensationmodel based
on the selected points. Figure 5 shows the thermal errors of X,
Y, and Z directions of spindle. It is obvious that the biggest
change of the thermal error happened in Y directions. So the
thermal error in Y direction was only considered in the
experiment.

4.2 Temperature-sensitive measuring points selection

As discussed in Sect. 3, an integrated method can be used to
select the temperature-sensitive points. In this paper, data01
was considered as the original data set for identification of the
measuring points. Based on the processes in Fig. 2, the simu-
lation results of each step were obtained using Matlab, which
were listed as below:

1. According to the Eq. (2), the degrees of thermal error
sensitivity for the 27 measuring points were calculated.
Table 2 shows the results of each measuring point.

The first selection of temperature-sensitive measuring
points was made based on the degrees of thermal error

Table 3 The grey correlation grades between temperature variables and thermal errors

T12 T8 T10 T11 T18 T9 T23 T15 T17

0.8372 0.8314 0.8273 0.8144 0.8143 0.8098 0.8041 0.7976 0.7926

T24 T7 T14 T13 T19 T1 T21 T22 T3

0.7676 0.7674 0.7514 0.7421 0.7394 0.7394 0.7194 0.7152 0.7129

T16 T25 T20 T26 T27 T6 T2 T4 T5

0.7111 0.7073 0.6978 0.6959 0.6849 0.6825 0.6771 0.6556 0.6552

Table 4 Classifications of measuring points with different thresholds

Threshold Classification Second selection of temperature variables

i. ii. iii. iv. v. vi. vii. viii

λ=0.8996 T1 T7 T8 T9 T11 T12 T15 T18, T22 T2 T6 T14 T23 T25 T2 T6 T12 T14
T23 T25

λ=0.9017 T1 T8 T9 T11 T12 T15 T18 T22 T2 T6 T7 T14 T23 T25 T2 T6 T7
T12 T14 T23 T25

λ=0.9095 T1 T8 T9 T11 T12 T15 T18 T2 T6 T7 T14 T22 T23 T25 T2 T6 T7 T12
T14 T22 T23 T25
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sensitivity. First, the temperature measuring points were
sorted by the values shown in Table 2. Then, the top 14
points were selected for further analysis. So T1, T2, T6,
T7, T8, T9, T11, T12, T14, T15, T18, T22, T23, and T25
were selected and others were abandoned.

2. The 14 primary points were classified into different groups
with fuzzy clustering algorithms. The first step was the calcu-
lation of fuzzy equivalence matrix t(R). By following Eq. (6),
t(R) was calculated and shown in Fig. 6. The second one was
threshold (λ) selection, which was determined by the number
of primary points and the classification of measuring points.
The goal of this step was to reduce by around half the amount
of primary variables. As the number of primary points was 14,
the temperature variables could be divided into six, seven, and
eight groups with different thresholds. The third step was cal-
culation of grey correlation grades between temperature vari-
ables and thermal errors. The results were sorted and shown as
Table 3. The final step was selecting temperature variables in
each classification. The point with max value of grey

correlation grade was selected in each group. Three tempera-
ture variables sequences were achieved, which were r1=[T2
T6 T12 T14 T23 T25], r2=[T2 T6 T7 T12 T14 T23 T25], and
r3=[T2 T6 T7 T12 T14 T23 T25], as shown in Table 4.
3. The third selection was based on the positions of FBG
sensors. As shown in Table 1, the temperature measuring
points were divided into five groups. Only one measuring
point was chosen in each group. In order to eliminate coupling
among temperature variables, the one with maximum value of
grey correlation grade was selected. Based on r1, r2, and r3,
the new sequences of measuring points were got, which were
e 1 = [ T 6 T 1 2 T 1 4 T 2 3 T 2 5 ] a n d e 2 =
e3=[T7 T12 T14 T23 T25]. According to Table 3, the grey
correlation grade of T7 was larger than that of T6, so we chose
e2 or e3 as the optimal measuring points.

4.3 Models of thermal error compensation

In order to evaluate the performance of the method for mea-
suring point selection, a thermal error prediction model was
designed based on the multi-linear regression (MLR). In the
experiment, MLR, as a statistical technique, was used to pre-
dict thermal error through several temperature variables. Da-
ta01 was used to establish the thermal error prediction model.
T7, T12, T14, T23, and T25 were selected to establish regress
equation. We assumed x7, x12, x14, x23, and x25as the temper-
ature variables of the selected points. The prediction model
was calculated as below:

y ¼ 6:5263x7 þ 5:1961x12 þ 0:1227x14

þ 4:5709x23− 4:9635x25 þ 14:1779 ð9Þ

Data02 and data03 were used to analyze the prediction
accuracy. The fitting accuracy for data0201 is shown in
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Fig. 7 The fitting accuracy of data0201
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Fig. 7, and the predictive effects of the two batches are shown
in Fig. 8.

In order to compare the performance of the compensation
model with different temperature variables, four measuring
point sequences (G1, G2, G3, and G4) were chosen based
on different selection methods.

As shown in Table 1, the measuring points were divided
into five groups according to their location. G2 consisted of
the measuring points with maximum degree of temperature
sensitivity in each group. G3 selected the measuring points
with maximum grey correlation grade with thermal errors in
each group. G4 concluded the measuring points, selected ran-
domly in each group. The details of the sequences are shown
in Table 5, and the predictive performance based on each
sequences of measuring points is shown in Table 6.

From the Table 6, we can see that the mean error of G1, G2,
and G3 was much smaller than that of G4. The max error of
G4 is bigger than the original max error, which means that G4
cannot be used to predict the thermal error. Through

comparison of the four groups in terms ofmean error, standard
error, and max error, G1 had the best performance of thermal
error prediction and the predictive thermal error was reduced
by 79.42 %.

5 Conclusion

In this paper, FBG sensors have been used to collect the sur-
face temperature of a heavy-dutymachine tool. A newmethod
of temperature-sensitive measuring point selection consists of
three steps. The first step defines the degree of temperature
sensitivity, and the primary measuring points are achieved
according to the degree of temperature sensitivity. The second
step combines grey theory with fuzzy clustering. In this step,
the first selected measuring points are classified with fuzzy
clustering. The second selected measuring points are chosen
with comparison of grey grade for each temperature variable.
Finally, the last step aims to select the optimal temperature
measuring points by considering the locations of FBG
sensors.

An experiment was carried out on a flexible machining
center CR5116 to verify the method. By using the three selec-
tions, the temperature-sensitive points were identified. The
number of measuring points was reduced from 27 to 5. Based
on these measuring points, a thermal error prediction model
was built to analyze the performance of the method for
temperature-sensitive point selection. The experiment result
based on data0202 shows that the average predictive residual
error was reduced to 1.6 μm and the maximum predictive
residual thermal error was less than 5.3 μm. In order to further
demonstrate the effectiveness of the point selection method,
three other methods were used to create three different mea-
suring point sequences. Then, a comparison was made among
four thermal prediction models using data02 and data03,
which were based on four measuring point sequences. The
result shows that the prediction model with the temperature-
sensitive points, selected by the method proposed in this pa-
per, had the best performance of predictive accuracy.
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