A Simulation Method for Design and Development of Magnetic Shape Memory Actuators

Schiepp, Thomas (2015) A Simulation Method for Design and Development of Magnetic Shape Memory Actuators. PhD thesis, University of Gloucestershire.

[img]
Preview
Text
2015_10_23_PhD-Thesis_Thomas_Schiepp_Redacted for signature only.pdf
Available under License All Rights Reserved.

Download (9MB) | Preview

Abstract

The systems/products and their design processes have become more and more complicated due to the fact that their requirements in terms of function, durability, reliability and energy efficiency have been increased significantly and that their leading time has to be short and their materials cost has to be low. To meet these requirements, individual parts and subsystems have to offer increased functionality and efficiency themselves. It has been found that smart materials, such as piezo ceramics or various shape memory alloys as well as less known dielectric elastomers or magnetic shape memory alloys, offer ideal preconditions to fulfil such requirements. Among the various shape memory alloys, the Magnetic Shape Memory (MSM) alloy is a kind of smart material that can elongate and contract in a magnetic field. Based on the MSM alloy a new type of smart electromagnetic actuators have been designed and developed. This kind of actuator exhibits the features above. Typically, the MSM material is a monocrystalline Ni-Mn-Ga alloy, which has the ability to change its size or shape very fast and many million times repeatedly. State-of-the-art alloys are able to achieve a magnetic field induced strain of up to 12%. The magneto-mechanical characteristic of MSM alloys is being constantly improved. However, as far as the author is aware, there are no efficient and commercially available tools for engineers to design MSM-based actuators. To achieve this, simulation tools for design are indispensable. This thesis is dedicated to this task. In this PhD thesis, new design and simulation techniques for MSM-based actuators have been studied. In particular, three simulation methods have been proposed. These three methods extend standard magneto-static FEM simulation techniques by taking into account the magneto-mechanical coupling and the magnetic anisotropy of the MSM materials. They differ in terms of the necessary a priori alloy characterisation (i.e., measurement effort), computational complexity and consequent computing time. The magneto-mechanical characteristics of the MSM material are a necessary and fundamental ingredient for this type of simulation. However, the characterisation of the MSM materials is a very challenging task and requires specific modifications to standard measurement approaches. So, in this thesis, some specific measurement methods of the magneto-mechanical characteristics of the MSM materials have been proposed, designed and developed. It is described how existing measurement instruments can be modified to measure the unique magneto-mechanical characteristics of MSM, so they are applicable and with practical values. Various tests have been carried out to validate the new methods and the necessary characterisations of the properties of MSM materials have been performed, such as the measurement of the permeability of MSM under a defined stress during elongation. The new measurement results have been analysed and the findings have been used to design and develop the simulation methods. The three simulation methods can be used to predict and optimise the current-elongation behaviour of an MSM element under the load of a mechanical stress while excited by a magnetic field. Extensive experiments have been carried out to validate these three simulation methods. The results show that the three methods are relatively simple but, at the same time, very effective means to model, predict and optimise the properties of an MSM actuator using finite element tools. In addition, the experiment results have also shown that the simulation methods can be used to gain some deep insights into the magneto-mechanical interaction between the MSM element and the electromagnetic actuator. In this thesis an evolutionary algorithm which works together with the simulation methods has been developed to achieve individual optimised solutions in very short times. In summary, from the experiment results, it has been found that the measurements and simulation methods proposed and developed in this thesis; enable designers to perform simulations for a high-quality actuator design based on the magneto-mechanical properties of MSM alloys. This is the first time that a MSM can be characterised for simulation purposes in a fast and precise way to predict MSM and electromagnetic actuator interactions and identify and optimise the design parameters of such actuators. However, these simulation methods are strongly dependent on the measurement of the magneto-mechanical characteristics of magnetic shape memory alloys, whose precision can be further improved. To reach commercial success as well higher precision in the simulation prediction, further achievements in the field of material science (e.g. smoothness of mechanical curves) are also necessary.

Item Type: Thesis (PhD)
Thesis Advisors:
Thesis AdvisorEmailURL
Zhang, Shujunszhang@glos.ac.ukUNSPECIFIED
Schluter, AndreasUNSPECIFIEDUNSPECIFIED
Uncontrolled Keywords: Magnetic Shape Memory (MSM); MSM-based actuators; Design, Simulation tools; Smart material
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Schools and Research Institutes > School of Computing and Technology
Depositing User: Susan Turner
Date Deposited: 07 Jan 2016 11:53
Last Modified: 16 Sep 2016 13:02
URI: http://eprints.glos.ac.uk/id/eprint/2974

University Staff: Request a correction | Repository Editors: Update this record

University Of Gloucestershire

Bookmark and Share

Find Us On Social Media:

Social Media Icons Facebook Twitter Google+ YouTube Pinterest Linkedin

Other University Web Sites

University of Gloucestershire, The Park, Cheltenham, Gloucestershire, GL50 2RH. Telephone +44 (0)844 8010001.