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Abstract 

Understanding the influence of stress on human performance is of theoretical and practical 

importance. An individual’s reaction to stress predicts their subsequent performance; with a 

‘challenge’ response to stress leading to better performance than a ‘threat’ response. However, this 

contention has not been tested in truly stressful environments with highly skilled individuals. 

Furthermore, the effect of challenge and threat responses on attentional control during visuomotor 

tasks is poorly understood. Thus, this study aimed to examine individual reactions to stress, and 

their influence on attentional control, among a cohort of commercial pilots performing a stressful 

flight competency assessment. Sixteen pilots performed an ‘engine failure on take-off’ scenario, 

in a high-fidelity flight simulator. Reactions to stress were indexed via self-report; performance 

was assessed subjectively (flight instructor assessment) and objectively (simulator metrics); gaze 

behaviour data were captured using a mobile eye tracker, and measures of attentional control were 

subsequently calculated (search rate, stimulus driven attention, and entropy). Hierarchical 

regression analyses revealed that a threat response was associated with poorer performance and 

disrupted attentional control. The findings add to previous research showing that individual 

reactions to stress influence performance, and shed light on the processes through which stress 

influences performance. 
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Introduction 

 On the 15th January 2009, US Airways flight 1549 experienced loss of power to both 

engines during take-off. Within minutes, the plane was forced to make an emergency crash landing 

in the Hudson River, Manhattan. Surprisingly, all 155 passengers were safely evacuated, and this 

positive and unlikely outcome was attributed to the skills and capabilities of the pilot, Captain 

Chesley Sullenberger. Despite the inevitable stress he experienced, Captain Sullenberger managed 

to remain focused, maintain control of the plane, and execute an effective emergency landing. Had 

he reacted poorly to the stress that he experienced, the outcome of this event may have been very 

different!  

 It is clear from such an example that developing a better understanding of the influence of 

stress on human performance is of theoretical and practical importance, particularly in safety-

critical industries such as aviation, emergency medicine, and the military. For example, in the 

aviation industry, researchers have revealed that high levels of stress are a prominent cause of pilot 

error (Causse, Dehais, Péran, Sabatini, & Pastor, 2013; Fornette, Bardel, Lefrançois, Fradin, 

Massioui, & Amalberti, 2012). Indeed, with improvements in technology reducing the influence 

of mechanical errors, such human error is now the leading cause of aviation accidents (Nall, 2011; 

Shapell, Detwiler, Holcomb, Hackworth, Boquet, & Wiegmann, 2007). The current study seeks to 

collate the predictions of two prominent theories within performance psychology, and exploit the 

unique opportunities provided by aviation simulation to further our understanding of how stress 

influences human performance.  

 Early attempts to draw a direct relationship between stress and performance have been 

largely unsuccessful, due primarily to intra- and inter-individual differences in the way in which 

people respond to stress (Cerin, Szabo, Hunt, & Williams, 2000). Consequently, transactional 



models of stress that account for cognitive appraisal of the stressor (Lazarus, 1990), have become 

widely acknowledged. The biopsychosocial model of challenge and threat (BPSM; Blascovich, 

2008) is one such model, and provides a theoretical framework for understanding reactions to 

stress. According to the BPSM, how an individual responds in a stressful situation is determined 

by their evaluations of situational demands and personal coping resources. If the individual 

determines that resources are sufficient to meet the demands of the situation, then it is evaluated 

as a challenge; conversely, if resources are judged to be insufficient, then the situation is evaluated 

as a threat (see Seery, 2011, for a review). Critically, a consistent body of evidence has recently 

emerged, demonstrating that a challenge state (and underlying demand and resource evaluations) 

predicts superior performance compared to a threat state in academic (Seery, Weisbuch, Hetenyi, 

& Blascovich, 2010), sporting (e.g., Moore, Wilson, Vine, Coussens, & Freeman, 2013), and 

surgical (e.g., Vine, Freeman, Moore, Chandra-Ramanan, & Wilson, 2013) tasks. However, 

whether challenge and threat states predict task performance in highly stressful applied settings, 

such as aviation, has yet to be examined.   

 While challenge and threat states can be objectively determined via distinct cardiovascular 

responses (see Blascovich, 2008), they can also be indexed accurately using subjective measures 

that assess evaluated demands and resources (e.g., cognitive appraisal ratio; Tomaka, Blascovich, 

Kelsey, & Leitten, 1993). Importantly, these measures have been shown to corroborate closely 

with cardiovascular indexes of challenge and threat and have strong predictive validity for 

performance outcomes (Moore, Vine, Wilson, & Freeman, 2012; Vine et al., 2013; Zanstra, 

Johnston, & Rasbash, 2010). Subjective measures of challenge and threat evaluations are therefore 

an expedient and practical way to assess reactivity to stress in applied settings. This is important, 

because there is a paucity of research examining challenge and threat states in ecologically valid 



settings, where stress is meaningful (see Moore et al., 2013, for an exception). If research is to 

better understand performance variability under stress and ultimately inform human operator 

training and assessment, then such methodological approaches need to be examined further.  

 An additional limitation of previous research is that few studies have examined the possible 

mechanisms through which challenge and threat evaluations might influence performance. This 

lack of research is despite suggestions from several authors that impaired attentional control might 

be an important underlying mechanism (Blascovich, Seery, Mugridge, Norris, & Weisbuch, 2004; 

Jones, Meijen, McCarthy, & Sheffield, 2009). Recent research has supported this assertion and has 

shown that a threat state (and underlying demand and resource evaluations) is associated with 

disrupted gaze control during the performance of both sporting (Moore, Vine, Wilson, & Freeman, 

2012; Moore et al., 2013) and surgical (Vine et al., 2013) tasks. For example, Vine and colleagues 

(2013) found that evaluating a stressful surgical task as a threat was associated with a sub-optimal 

gaze strategy consisting of more fixations of a short duration directed to the surgical tool rather 

than the targets to be moved. Such measures of in-vivo gaze control reveal interesting differences 

in the focus of attention between challenge and threat states that resonate with the predictions of a 

recent theoretical development of the anxiety-performance relationship; Attentional Control 

Theory (ACT; Eysenck, Derakshan, Santos, & Calvo, 2007).  

ACT predicts that anxiety causes a diversion of available processing resources from task-

relevant to task-irrelevant stimuli. The authors relate this impairment of attentional control to a 

disruption in the balance of two attentional systems; a goal-directed (top down) system and a 

stimulus-driven (bottom up) system. According to ACT, anxiety increases the sensitivity of the 

stimulus-driven system, making individuals more distractible, and less able to maintain focused, 

goal-directed control (Eysenck et al., 2007). These predictions have been supported in sporting 



and surgical environments where disruptions to goal-directed attention (gaze) have been associated 

with performance impairments (see Wilson, 2012, for a recent review). Generally, anxious 

individuals use more, shorter fixations to a variety of locations, and are unable to maintain the 

long, target-focused fixations important for the planning and control of movement (Wilson, 2012). 

For example, Allsop and Gray (2014) found that increased anxiety caused an increase in entropy 

(a measure of the randomness of visual scanning) in an aviation task, which they attributed to an 

increase in the influence of the stimulus-driven attentional system (Allsop & Gray, 2014). 

Importantly, as described above, recent research has shown that individuals experiencing a threat 

state also demonstrate such disruptions to attentional (gaze) control (e.g., Moore et al., 2012; 2013; 

Vine et al., 2013).  

 The aim of the present study was to advance our understanding of the individualistic way 

in which stress influences human performance, in an ecologically-valid setting. We report novel 

data which supports and builds upon existing research findings. Specifically, we examined 

reactions to stress (challenge and threat) and disruptions to gaze control (using mobile eye tracking 

technology) in a highly stressful simulated aviation scenario with experienced and qualified pilots. 

We predicted that evaluating the stressful aviation scenario as more of a threat (i.e., situation 

demands outweigh resources) would be associated with greater disruptions to attentional control 

(indexed by disrupted gaze behaviours) and poorer performance (reduced manual control of the 

aircraft).  

 

 

Methods 



Participants: Sixteen active and qualified pilots (14 male, 2 female; M age = 34.8 years, SD 

= 8.1 years) were recruited through a regional commercial airline. All participants signed informed 

consent prior to the start of study procedures. The experiment was approved by an institutional 

ethics committee. 

Task: Participants performed a flight in a Bombardier Dash-8 Q400 flight simulator (Flight 

Safety International) as part of their bi-annual license competency checks (line operation flight 

evaluations; LOEs). The LOE is an industry wide quality and performance assurance check. The 

importance of the LOE for both the operating airline, and for the pilot, can make it a highly stressful 

experience. This provides a unique opportunity to examine reactions to stress and changes to 

performance in a safe, yet meaningful environment.  

The scenario: Pilots were required to execute routine pre-flight checks, and then take off. At 

a consistent point during takeoff (just after wheels clear the runway) the simulator was 

programmed to initiate an engine failure (left engine). Due to the low altitude, slow airspeed, and 

restricted time period to act upon the emergency, an engine failure is considered one of the most 

stressful situations a pilot can experience. Participants were required to deal with the engine failure 

appropriately and land the plane. All pilots were familiar with the flight simulator and the type of 

scenario they were asked to execute.  

Measures: 

Demand and resource evaluations: Demand and resource evaluations were assessed using 

two items from the cognitive appraisal ratio (Tomaka et al., 1993) so that challenge or threat 

responses to the flight scenario could be determined. Demand evaluations were assessed by asking: 

“How demanding do you expect the task to be?” and resource evaluations by asking: “How able 

are you to cope with the demands of the task?” These items are rated using a 6-point Likert scale 



anchored between 1 (not at all) and 6 (extremely). A Demand Resource Evaluation Score (DRES) 

was calculated by subtracting demands from resources, with a more positive score reflecting the 

task being evaluated as more of a challenge and less of a threat1 (as Moore et al., 2013; Vine et al., 

2013). 

Gaze Control: Gaze was recorded using an Applied Science Laboratories (ASL; Bedford, 

MA, USA) Mobile Eye Tracker. Data was analysed in a frame-by-frame manner using 

GazeTracker (Eye Response Technologies, Charlottesville, VA, USA) video analysis software. 

Look zones were created around relevant areas in the scene and maintained in place by the 

experimenter as the video progressed. The software then provided data regarding the duration and 

frequency of fixations occurring within each area of interest. We were able to capture useable eye 

tracking data for 12 of the 16 pilots tested (75%). From the data provided by gaze tracker we 

computed the following metrics that have recently been found to be sensitive to the effects of 

anxiety and relate to the predictions of ACT. First, search rate, a measure of the rate of visual 

scanning, was calculated by dividing the number of fixations by the mean fixation duration (as 

Wilson, Smith, Chattington, Ford, & Marple-Horvat, 2006; Wilson, Vine, & Wood, 2009). 

Second, the difference between the percentage of fixations to regions of importance (ROIs) and 

regions of unimportance (ROUs) was calculated to reflect changes in the influence of the stimulus-

driven attentional system. ROIs were classified as providing information relating to controlling the 

plane (i.e., the cockpit window, and the primary flight display), whereas ROUs included the 

‘engine management system’ display and the ‘emergency warning panel’ (which indicated that an 

engine failure had occurred). All other displays within the cockpit that were not of relevanceto the 

engine failure or the control of the aircraft (e.g. radar) were coded as ‘other’ and included as a 

                                                           
1 While challenge and threat states are used to describe reactions to stress, these states represent the end points of a 

continuum.  



ROU2. Finally, entropy, the randomness of the scanning behaviours of the pilot, was determined. 

First the order in which fixations entered the ROI and ROU (lookzones) was manually coded by 

an experimenter. In order to calculate the conditional entropy for each participant we then 

computed the following; (1) p(i) - the zero order probability of fixating upon the i-th ‘look zone' 

based on the percentage of time spent fixating upon it, and (2) p(j|i) - the conditional probability 

of viewing ‘look zone' j based on a current dwell on ‘look zone’ i. These probabilities were then 

used to calculate entropy in an identical way to Allsop & Gray, 2014 (see also Ellis and Stark, 

1986). 

Performance: Performance was assessed both subjectively (by a flight instructor who 

assessed the pilot and was naïve to the purpose of this project) and objectively (via parameters 

provided by the simulator software). The subjective performance constitutes a 16-point assessment 

developed specifically for the purpose of this project by experienced flight instructors at the airline. 

This assessment measured performance in five dimensions: directional control during rotation, 

anticipated roll control, communication, speed control, and rudder control. Importantly, a greater 

evaluation rating from the flight instructor reflected better flying performance from the pilot. The 

objective performance provided by the simulator constitutes information about the speed and 

heading of the plane, and calculates deviation from expected values (errors; speed deviation and 

heading deviation). Such performance metrics are routinely used by flight instructors to assess a 

pilot’s flying performance with greater deviations reflective of poorer performance.  

Procedure: Participants were made aware of the adaptation to their LOE prior to arriving at 

the testing centre, and were at this stage able to withdraw from the study. For those who agreed to 

                                                           
2 These areas of importance / unimportance were determined through discussion with experienced flight instructors 

and pilots at the airline training academy. ROIs reflect the fact that pilots should focus on cues related to flying the 

plane while the co-pilot continues to monitor the ‘threat’ stimuli relating to the engine failure (ROUs).   



participate, on arrival at the flight simulator they provided informed consent, and received further 

written and verbal information about the study. They were then fitted with the eye tracker. Pilots 

were then instructed to ready the plane for takeoff (pre-flight checks) before the flight instructor 

described the specific scenario (take off and engine failure) that they would undertake (see above). 

Self-report measures (demand and resource evaluations) were then taken to assess challenge and 

threat evaluations in response to the instructions. Eye tracking data were recorded continuously 

during the scenario. The instructors assessing the LOE were asked to record (on paper) their 

subjective assessment of performance throughout the flight, and objective performance metrics 

were downloaded from the simulator software at the end of the session. 

Statistical analysis: To examine the extent to which demand and resource evaluations 

(DRES) predicted performance, a series of hierarchical regression analyses were performed. 

Performance measures (instructor’s evaluation, speed deviation, and heading deviation) were 

entered into separate models as dependent variables; age and years of flying experience were 

entered as independent variables at step one and two, and DRES was entered as an independent 

variable at step three.  

 To examine the extent to which DRES predicted the gaze control of the pilots, a further 

series of hierarchical regression analyses were performed. Gaze control measures (search rate, 

stimulus-driven attention, and entropy) were entered into separate models as the dependent 

variable; age and years of flying experience were entered as independent variables at step one and 

two, and DRES was entered as an independent variable at step three.  

 To examine the extent to which the gaze control measures predicted performance a series 

of simple regression analyses were performed. In separate models the gaze control measures 

(search rate, stimulus-driven attention, and entropy) were entered as independent variables and 



performance (instructor’s evaluation, speed deviation, and heading deviation) were entered as 

dependent variables. 

Results 

Hierarchical regression analyses 

DRES and performance: Hierarchical regression analysis revealed that DRES significantly 

predicted the instructor’s evaluation (ΔR2 = 0.61), over and above the effects of the pilot’s age (R2 

= 0.05), and years of flying experience (R2 = 0.12). DRES also significantly predicted heading 

deviation (ΔR2 = 0.33), over and above the effects of the pilot’s age (R2 = 0.02), and years of flying 

experience (R2 = 0.15). Finally, DRES significantly predicted speed deviation (ΔR2 = 0.21), over 

and above the effects of the pilot’s age (R2 = 0.05), and years of flying experience (R2 = 0.30; see 

Table 1).  

DRES and gaze control: Hierarchical regression analysis revealed that DRES significantly 

predicted search rate (ΔR2 = 0.68), over and above the effects of the pilot’s age (R2 = 0.08), and 

years of flying experience (R2 = 0.09). DRES also significantly predicted stimulus-driven attention 

(ΔR2 = 0.23), over and above the effects of the pilot’s age (R2 = 0.43), and years of flying 

experience (R2 = 0.52). Finally, DRES predicted entropy (ΔR2 = 0.32), over and above the effects 

of the pilot’s age (R2 = 0.09), and years of flying experience (R2 = 0.26), although this only 

approached significance (p = 0.06; see Table 1). 

 

 

Simple regression analyses 

Gaze control and performance: Simple regression analysis revealed that search rate 

significantly predicted both the instructor’s evaluation (R2 = 0.67), and heading deviation (R2 = 



0.46), but did not significantly predict speed deviation (R2 = 0.14). Regression analysis also 

revealed that stimulus-driven attention significantly predicted both instructor’s evaluation (R2 = 

0.50), and heading deviation (R2 = 0.51), but did not significantly predict speed deviation (R2 = 

0.44). Finally, regression analysis revealed that entropy did not significantly predict instructor’s 

evaluation (R2 = 0.31), heading deviation (R2 = 0.00), or speed deviation (R2 = 0.09). For all simple 

regression analyses see Table 2. 

Discussion 

Given that high levels of stress are a prominent cause of errors in safety critical industries such 

as aviation and emergency medicine, it is critical to gain a better understanding of how individuals 

perform in stressful environments. This is particularly pertinent within the field of aviation, where 

human error is now the leading cause of accidents (Causse et al., 2013; Nall, 2011). Thus, the aim 

of the present study was to investigate experienced and qualified pilot’s reactions to a simulated 

stressful incident (engine failure), and to further probe the influence of these reactions (challenge 

vs. threat) on attentional control and motor (flying) performance.  

The findings support previous research demonstrating that challenge and threat states and the 

underlying demand and resource evaluations predict subsequent task performance (e.g., Moore et 

al., 2013; Vine et al., 2013). The pilot’s self-reported evaluations of situational demands and 

personal coping resources predicted performance in terms of the control of the aircraft, as indexed 

both subjectively by an instructor’s evaluation, and objectively by the simulator (i.e., heading 

deviation). Importantly, the current findings suggest that such simple measures can predict 

performance in stressful situations above and beyond other relevant factors (e.g., years of flying 

experience). These results therefore have important implications for safety and error avoidance in 

safety critical industries (e.g., aviation, surgery, and driving), and for improved performance in 



stressful applied environments (e.g., sport and military). While more complex psychophysiological 

indices of challenge and threat states may reflect subconscious evaluations that are free from 

reporter bias to be assessed (e.g., Blascovich et al., 2004; Moore et al., 2012; Turner, Jones, 

Sheffield, & Cross, 2012; Turner, Jones, Sheffield, Slater, Barker, & Bell, 2013), the current study 

provides further support for the validity of expedient self-report measures that can be easily 

collected in applied environments.  

 The findings of the current study also shed further light on some of the processes through 

which stress influences performance. A greater threat reaction to stress was associated with 

increased disruptions to attentional control, as indexed by the gaze control of the pilots. 

Specifically, pilots who evaluated the scenario as more of a threat displayed higher search rates, 

increased randomness in scanning behaviour (entropy), and a reduced ability to inhibit distraction 

from threatening or irrelevant stimuli (i.e., greater stimulus-driven attention). Although entropy 

failed to predict performance (cf. Allsop & Gray, 2014), this may be due to the relatively larger 

distances involved between the regions of interest in the current study. Whereas the flight 

instruments in Allsop and Gray’s (2014) study were presented on a single computer screen, the 

simulator cockpit necessitated larger head and trunk movements to fixate some locations of 

interest; potentially reducing the sensitivity of the entropy measure. Nevertheless, the findings 

support previous studies (Wilson et al., 2009; Allsop & Gray, 2013, 2014), and suggest that gaze 

disruptions reflect disturbances to the attentional control of the pilots, in line with the predictions 

of ACT (Eysenck et al., 2007; Vine et al., 2013).  

Importantly, the disrupted gaze control exhibited by pilots who adopted a threat response to 

stress was associated with poorer performance. The inability to maintain control of attention, and 

to focus on regions of importance for flying the plane (out of the cockpit window, and the primary 



flight display), were associated with poorer manual control of the aircraft and lower flight 

instructor’s subjective assessment. These findings are therefore in keeping with previous research 

highlighting the important role of top down attentional control in enforcing the necessary spatial 

and temporal co-alignment of the gaze and motor systems for accurate performance in visually 

guided tasks (see Land, 2009; Vickers, 2007; Vine, Moore, & Wilson, 2014)  

 Despite the encouraging findings, the present study is not without its limitations. First, it is 

not clear whether the positive findings would translate from the simulated test environment to the 

real world, where stressors may differ (e.g., distractions etc.; Barnes & Monan, 1990). Second, 

while mobile eye trackers allow researchers to collect data in ecologically valid settings, more 

controlled methodologies (e.g., the anti-saccade paradigm, Derakshan et al., 2009) may be required 

to examine the specific functions of working memory responsible for effective attentional control 

under pressure (e.g., the inhibition and shifting functions, see Miyake, Friedman, Emerson, Witzki, 

Howerter & Wager, 2000). Finally, while gaze and attention have been shown to be inextricably 

linked in goal-directed tasks (Henderson, 2003), covert shifts in attention, or ‘look but don’t see’ 

errors in judgement cannot be assessed using eye tracking technology (Vickers, 2007). 

Conclusion 

To conclude, the results of the current study add to the body of research demonstrating that 

an individual’s evaluation of the relationship between environmental demands and personal coping 

resources predicts subsequent performance in a meaningful and stressful situation. A  threat 

response to stress (demands outweighing resources) predicted poorer performance than a challenge 

response (resources outweigh demands). Furthermore, a threat response was associated with 

disrupted attentional control (as indexed by increases in search rate, stimulus-driven attention, and 

entropy of scanning). These findings unite the predictions of two prominent theories (the BPSM; 



Blascovich, 2008, and ACT; Eysenck et al., 2007) and further our understanding of the processes 

that underpin individual reactions to stress.  
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Table 1: Hierarchical regression analyses, reporting the variance in performance and attentional control explained by pilots’ stress 

evaluation (demand resource evaluation score; DRES) over and above their age and flying experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent  variable Step Independent variable   B SE B   t   F 

       

Instructors evaluation 1 Age -0.10 0.06 -1.72 0.72 

 2 Years of flying 0.08 0.06 1.25 0.88 

 3 DRES 1.26 0.25 5.15 10.56** 

Heading deviation 1 Age 1.27 2.45 0.52 0.24 

 2 Years of flying 0.06 2.47 0.02 1.15 

 3 DRES -28.26 10.19 -2.78 3.73* 

Speed deviation 1 Age -0.09 0.19 -0.44 0.76 

 2 Years of flying 0.17 0.20 0.86 2.73 

 3 DRES -1.84 0.81 -2.27 4.11* 

       

Search rate 1 Age 10.55 4.62 2.29 0.88 

 2 Years of flying -8.20 6.00 -1.37 0.45 

 3 DRES -83.84 17.42 -4.81 8.74** 

Stimulus-driven attention 1 Age 1.28 1.51 0.85 7.44* 

 2 Years of flying -1.10 1.96 -0.56 4.91* 

 3 DRES 15.23 5.70 2.67 7.90** 

Entropy 1 Age -0.09 0.19 -0.44 0.92 

 2 Years of flying -0.17 0.20 0.86 1.61 

 3 DRES -1.84 -0.62 -2.27 3.69^ 

       

Note: * = p < .05; ** = p < .01; *** = p < .001; ^ = p = .06.  



Table 2: Simple regression analyses, reporting the variance in performance explained by the three measures of attentional control. 

Dependent Variable Independent variable    B SE B t    F 

      

Instructors evaluation  Search rate -0.01 0.00  4.51 20.31** 

Heading deviation Search rate  0.35 0.68  2.90 8.43* 

Speed deviation Search rate  0.02 0.01  1.26 1.59 

Instructors evaluation  Stimulus-driven attention  0.04 0.01  3.17 10.04* 

Heading deviation Stimulus-driven attention -1.16 0.36  -3.23 10.44** 

Speed deviation Stimulus-driven attention -0.09 0.03 -2.79 7.79* 

Instructors evaluation Entropy -6.24 2.20 -2.10 4.39^ 

Heading deviation Entropy -5.12 105.17 -0.05 0.00 

Speed deviation Entropy 7.95 8.10 0.98 0.96 

      

Note: * = p < .05; ** = p < .01; *** = p < .001; ^ = p = .06  

 

 

 


