

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document, This is a non-final version of an article published in final form in Lloyd, Rhodri S. and Radnor, John M. and De Ste Croix, Mark B and Cronin, John B and Oliver, Jon L (2016) Changes in sprint and jump performance following traditional, plyometric and combined resistance training in male youth pre- and post-peak height velocity. Journal of Strength and Conditioning Research, 30 (5). pp. 1239-1247. and is licensed under Creative Commons: Attribution-Noncommercial 3.0 license:

Lloyd, Rhodri S., Radnor, John M., De Ste Croix, Mark B ORCID logoORCID: https://orcid.org/0000-0001-9911-4355, Cronin, John B and Oliver, Jon L (2016) Changes in Sprint and Jump Performances After Traditional, Plyometric, and Combined Resistance Training in Male Youth Pre- and Post-Peak Height Velocity. Journal of Strength and Conditioning Research, 30 (5). pp. 1239-1247. doi:10.1519/JSC.000000000001216

Official URL: http://dx.doi.org/10.1519/JSC.000000000001216 DOI: http://dx.doi.org/10.1519/JSC.00000000001216 EPrint URI: https://eprints.glos.ac.uk/id/eprint/2725

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document:

Lloyd, Rhodri S. and Radnor, John M. and De Ste Croix, Mark B and Cronin, John B and Oliver, Jon L (2015). *Changes in sprint and jump performance following traditional, plyometric and combined resistance training in male youth pre- and post-peak height velocity.* Journal of Strength and Conditioning Research. ISSN 1064-8011

Published in Journal of Strength and Conditioning Research, and available online at:

http://dx.doi.org/10.1519/JSC.000000000001216

We recommend you cite the published (post-print) version.

The URL for the published version is http://dx.doi.org/10.1519/JSC.000000000001216

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

1 ABSTRACT

2 The purpose of this study was to compare the effectiveness of 6-week training interventions <u>utilizing</u> different modes of resistance (traditional strength, plyometric 3 4 and combined training) on sprinting and jumping performance in boys pre- and postpeak height velocity (PHV). Eighty school-age boys were categorized into two 5 maturity groups (pre- or post-PHV) and then randomly assigned to 1) plyometric 6 7 training, 2) traditional strength training, 3) combined training, or 4) a control group. Experimental groups participated in twice-weekly training programmes for 6-weeks. 8 9 Acceleration, maximal running velocity, squat jump height and reactive strength index data were collected pre- and post-intervention. All training groups made 10 significant gains in measures of sprinting and jumping irrespective of the mode of 11 12 resistance training and maturity. Plyometric training elicited the greatest gains across 13 all performance variables in pre-PHV children, whereas combined training was the most effective in eliciting change in all performance variables for the post-PHV 14 15 cohort. Statistical analysis indicated that plyometric training produced greater changes in squat jump and acceleration performance in the pre-PHV group compared to the 16 post-PHV cohort. All other training responses between pre- and post-PHV cohorts 17 were not significant and not clinically meaningful. The study indicates that plyometric 18 19 training might be more effective in eliciting short-term gains in jumping and sprinting 20 in boys that are pre-PHV, whereas those that are post-PHV may benefit from the additive stimulus of combined training. 21 22 23 Key words: strength training, plyometric training, combined training, children,

24 adolescents

25

26 INTRODUCTION

- It is well documented that developmentally appropriate, well supervised resistance 27 training interventions are safe and effective in stimulating positive adaptations on a 28 29 range of physical performance measures in children and adolescents (21, 22). Resistance training is defined as a specialized method of conditioning whereby an 30 individual is working against a wide range of resistive loads in order to enhance 31 32 health, fitness and performance (21). Researchers have shown that a myriad of resistance training modes have all been effective in eliciting beneficial training 33 34 responses in neuromuscular performance in youth, including, traditional strength training (28) which involves the lifting of moderate to heavy loads with moderate 35 36 inter-set recovery using free weights or resistive machines (19), weightlifting (7), 37 plyometrics (26, 36) and combined strength and plyometric training (11, 37). However, while studies have examined the efficacy of individual forms of resistance 38 39 training (e.g. plyometrics), minimal evidence exists that <u>compares</u> the effectiveness of 40 different resistance training modes and their potential interaction with maturation in
- 41 <u>youth populations</u>.
- 42

Previous meta-analyses have attempted to examine the effects of resistance training 43 44 on muscular strength (3) and motor skill performance (2) in youth of different 45 maturational status. Combined these meta-analyses showed that while adolescents were able to make greater adaptations with respect to muscular strength, the 46 transference of resistance training gains to motor skill performance were more 47 pronounced in children (2). Such findings may reflect the heightened neural plasticity 48 and increased sensitivity for motor control and coordinative adaptation during 49 childhood (34, 35), versus the <u>enhanced</u> hormonal profile and greater muscle mass 50

associated with adolescence_(10). However, it should be noted that neither metaanalysis showed differential responses to different resistance training modes in relation to maturation. Additionally, very few studies have specifically examined the interaction of training responses with maturation (20, 28, 31). These studies focused solely on the interaction of maturation with strength training and combined, showed varying results.

57

Sprinting and jumping ability are fundamental locomotive skills that form part of the 58 59 athletic motor skill spectrum (23). Also, they are commonly used as indicators of neuromuscular fitness in youth (33) and within talent identification screens to 60 discriminate between potential elite and non-elite youth athletes (12). Recently, 61 62 Rumpf et al. (32) reviewed existing speed training literature to examine the effects of 63 different training methods on sprint performance in male youth. Interestingly, the review showed that boys that were pre-peak height velocity (PHV) and circum-PHV 64 65 appeared to benefit most from plyometric training, while post-PHV adolescents maximized gains in sprint speed following a combination of strength and plyometric 66 training methods (32). While these data, and those reported by Behringer et al. (2, 3) 67 show that maturity may play a role in the trainability of youth, an experimental study 68 examining the interaction effects of different resistance training modes and maturation 69 70 is still warranted.

71

Therefore, the purpose of this study was to determine the effectiveness of different resistance training modes (traditional strength training, plyometric training or combined training) on measures of neuromuscular performance (squat jump height, reactive strength index, acceleration and maximal running velocity) in boys of

76 different maturational status. We hypothesized that boys that were pre-PHV would

respond more favorably to plyometric training, whereas boys that were post-PHV

78 would show a greater training response to traditional strength training or combined
 79 training.

80

81 METHODS

82 **Experimental approach to the problem**

A between-group, repeated measures design was used to examine the effects of 83 84 different resistance training programs on measures of sprinting and jumping. Pre and post-PHV male youth were placed within one of three experimental groups (traditional 85 strength training, plyometric training, combined training) or a control group. The 86 87 experimental groups participated in their respective training programs twice-weekly for 88 6 weeks, while the control group completed their regular physical education lessons. The training period of 6 weeks was selected to match the typical duration of a school 89 90 term, while also reflecting a recognized mesocycle duration (13). All participants were tested before and after the 6-week intervention for the following independent variables: 91 92 squat jump height, reactive strength index, acceleration and maximal running velocity. Repeated measures of analyses of variance were used to test for possible changes in test 93 94 scores across the 6-week intervention period, while inferential statistics were used to 95 examine the qualitative meaning of the observed changes in the independent variables.

96

97 Subjects

Eighty young male school children (n = 40 pre-PHV and n = 40 post-PHV) from a local secondary school in the United Kingdom volunteered to participate in the study and were subsequently divided into one of three training groups (traditional strength

101 training, plyometric training or combined strength and plyometric training) or a control 102 group (n = 10 x pre-PHV and 10 x post-PHV per group). Participant characteristics per maturation group and training intervention are presented in *table 1*. All participants had 103 104 previously engaged in physical education-based activities, however they were not involved in any formalized strength and conditioning program. The training groups 105 completed 2 training sessions per week for 6-weeks instead of their regular physical 106 education classes. Conversely, the control group continued with their physical 107 108 education curricula. Parental informed consent and participant assent were obtained in 109 advance of the study and ethical approval for the research was granted by the University Research Ethics Committee in accordance with the Declaration of Helsinki. 110 111 ****Table 1 near here**** 112 113 **Testing procedures** 114 115 Prior to the start of the intervention period, all participants took part in a familiarization session, which provided opportunities to practice both jumping and 116 sprinting test protocols. Participants were allowed to complete as many practice trials 117 as required to ensure they fully understood the protocols and could demonstrate 118 119 consistent technical execution as determined by the principal investigator. For the 120 purposes of the actual test sessions, participants completed a standardized 10-min dynamic warm-up inclusive of 3 min of sub-maximal multidirectional running and 7 121 min of light dynamic mobilization and activation exercises targeting the main muscle 122 123 groups of the upper and lower extremities. Following the warm-up and practice attempts of the test protocols, participants completed the battery of tests in the 124 following order: anthropometrics, squat jump test, 5-maximal rebound test, 10 m and 125

flying 20 m sprint tests. For each test, participants completed three trials with the best of three trials being used for further analysis. Two and five minute rest periods were given between each trial and test respectively to limit the effects of fatigue on consecutive efforts.

130

Anthropometrics. Standing height (cm) and seated height (cm) were measured using a
stadiometer (SC126, Holtan, Wales), while body mass (kg) was measured using a
balance beam scale (Seca 700, seca gmbh, Germany). This data was then incorporated
into a sex-specific regression equation (equation 1) to predict whether participants
were either pre- or post-PHV (29).

136

137 Jump protocols. Squat jump height (cm) and reactive strength index (mm/ms) were 138 calculated from a squat jump and 5-maximal rebound test respectively, both of which 139 were performed on a mobile contact mat (Smartjump, Fusion Sport, Australia). Both 140 protocols have been shown to be valid and reliable means of assessing neuromuscular performance in youth (squat jump, ICC = 0.93; reactive strength index, ICC= 0.90141 (24)). The squat jump was performed starting from an initial semi-squat position (90° 142 knee flexion as determined subjectively by the principal researcher), with participants 143 144 holding the position for approximately two seconds before jumping vertically for 145 maximum height on the command of the tester (24). Hands remained akimbo for the entire movement to eliminate any influence from arm swing and participants were 146 instructed to maintain fully extended lower limbs throughout the flight period. 147 148 Reactive strength index was determined during a 5-maximal rebound test, with participants required to perform five consecutive maximal vertical rebounds on the 149 150 mobile contact mat. Participants were instructed to maximize jump height and

151	minimize ground contact time (8). The first jump in each trial served as a
152	countermovement jump and consequently was discounted for analysis, while the
153	remaining four rebounds were averaged for analysis of reactive strength index (24).
154	
155	Sprinting protocols. Sprint times were recorded using wireless timing gates (Smart
156	Speed, Fusion Sport, Australia) in an indoor sports hall. Data was instantaneously
157	collected via a handheld PDA (iPAQ, Hewlett Packard, USA). Acceleration was
158	measured over 0-10 m with a stationary start from a line 30 cm behind the first timing
159	gate. Maximal running velocity was measured over a 20 m distance with a flying start.
160	
161	Training programs
162	Training took place twice per week for 6-weeks and training sessions were designed
163	and implemented by a fully accredited strength and conditioning coach (ASCC).
164	Training sessions were separated by at least 48 hours to enable full recovery. Within
165	each session, a fully qualified physical education teacher was present, which enabled
166	a staff-to-pupil ratio of 1:10. To be included in the final analyses, participants were
167	required to complete at least 80% of the total training sessions within their respective
168	program. Correct technical execution was stressed at all times throughout the program
169	with relevant feedback provided on an individual basis; while intensity was never
170	increased at the expense of technical competency. In the event of participants being
171	unable to competently perform any given exercise, relevant exercise regressions were
172	prescribed on an individual basis. Within all training programs, training sessions
173	lasted no longer than 60 minutes and prescribed inter-set rest periods ranged between
174	1-2 minutes dependent on the relative intensity of the exercise; an approach that is
175	commensurate with recommended guidelines for youth resistance training (21).
1	

176	Throughout the intervention period the control group received games-based physical
177	education lessons commensurate with the requirements of the UK national
178	curriculum. The principal investigator was not present during the control group
179	physical education classes.
180	

Traditional strength training group. Within traditional strength training sessions, 181 182 participants completed 3 sets of 10 repetitions of a barbell back squat, barbell lunge, dumbbell step up and leg press. In order to enable the prescription of individualized 183 184 training intensities, 10-repetition maximum (10RM) loads were calculated for 185 participants in the traditional strength training group prior to the start of the training 186 period using a protocol previously identified in the literature (16). In the event of 187 technical failure, where the coach deemed that competent technique was no longer 188 maintained to a satisfactory standard, the set was stopped to avoid potential risk of injury to the participant. To progressively overload the training stimulus, intensity 189 190 was increased each week via a 5% increment in external load for all participants on the proviso that technical competency was maintained. In the event of a particular 191 exercise being too difficult or failing to provide enough challenge, loads were reduced 192 or increased respectively on an individual basis. 193

194

Plyometric training group. Plyometric training prescription included a combination of exercises that were geared towards developing both safe jumping and landing mechanics (e.g. drop landings, vertical jumps in place, single leg forward hop and stick) and to also stress stretch-shortening cycle activity (e.g. pogo hopping, drop jumps, multiple horizontal rebounds). Within each session, participants were exposed to multiple sets of 4 exercises to enable sufficient repetition to develop motor control

201	programs. The plyometric training program (table 2) was progressed conservatively
202	according to number of foot contacts completed within each session (week 1 foot
203	contacts = 74 per session; week 6 foot contacts = 88 per session).
204	
205	****Table 2 near here****
206	
207	Combined training group. The combined training program involved exposure to two
208	traditional strength training exercises (barbell back squat and barbell lunge) and two
209	varied plyometric exercises each session taken from the plyometric training program
210	(table 3). As per the traditional strength training group, individualized training
211	intensities were prescribed based on baseline 10RM loads. Similarly, a 5% increment
212	in external load was selected to progressively overload the traditional strength training
213	exercises, while plyometric exercises were progressed according to total foot contacts
214	per exercise, per session.
215	
216	****Table 3 near here****
217	
218	Statistical Analysis
219	Descriptive statistics (means $\pm sd$) were calculated for all performance variables for
220	both pre- and post-training intervention data. Differences in all performance variables
221	were analyzed using separate 2 x 4 x 2 (time x training group x maturity) repeated
222	measures ANOVA, where <u>'time' denotes pre- to post-training data</u> , 'training group'
223	represents plyometric training, traditional resistance training, combined training or
224	control groups, and <u>'maturity' refers to pre- vs post-PHV</u> . Sphericity of data was
225	tested by Mauchly's statistic, and where violated, Greenhouse-Geiser adjustment was

226	used. Bonferroni and Games-Howell post hoc tests were used to determine the origin
227	of any between-group differences when equal variance was or was not assumed
228	respectively. Effect sizes were calculated for all performance variables in each
229	training group and assessed using the magnitude of effect sizes according to Cohen's
230	d statistic. Descriptive statistics and repeated measures ANOVA analysis were
231	computed using SPSS V.20 (SPSS Inc., Chicago, IL, USA), with statistical
232	significance for all tests set at an alpha level of $p < 0.05$.

233

234 Inferential statistics were used to examine the meaning of differences in the training response between pre and post-PHV groups for each training modality. The smallest 235 worthwhile effect was used to determine whether the observed changes were 236 237 considered negative, trivial or positive. The smallest worthwhile effect was calculated 238 as 0.20 of the pooled between-group standard deviation pre-training (1). A 90% confidence interval was applied to the between-group difference using an online 239 240 spreadsheet (14) to calculate the probabilistic inference of each observed difference being greater than the smallest worthwhile effect, applying thresholds of 25-75% as 241 242 possibly, 75-95% as likely, 95-99.5% as very likely and >99.5% as almost certainly (15). The outcome was deemed unclear when the 90% confidence interval of the 243 244 mean change overlapped both positive and negative outcomes, otherwise the outcome 245 was clear and inference reported as the category (negative, trivial or positive) where the greatest probability was observed. 246

247

248 RESULTS

Mean changes in sprint and jump performance, including effect sizes, are displayed in *table 4* for pre- and post-PHV groups respectively and where significant, changes in

251	sprint and jump performance in both pre-PHV and post-PHV groups ranged from
252	small (<0.20) to large (>0.90). Irrespective of maturation, none of the control groups
253	made any significant changes in performance over the 6-week training period.
254	Attendance rates for pre-PHV (plyometric training = 91%, traditional strength training
255	= 89% and combined training $=$ 90%) and post-PHV (plyometric training $=$ 83%,
256	traditional strength training = 88% and combined training = 87%) experimental
257	groups and both control groups (>82%) were above the predetermined attendance
258	threshold across the intervention period.
259	
260	****Table 4 near here****
261	

Significant main effects in acceleration and maximal running velocity were reported 262 for time and maturity. For both indices of sprinting, post-PHV boys demonstrated 263 faster performances following the training intervention period. For acceleration, 264 265 significant interactions were found for time x maturity, time x training group, and time x maturity x training group. Acceleration significantly improved in all three 266 training groups from within the pre-PHV cohort and in the resistance and combined 267 training groups within the post-PHV cohort. Analysis of maximal running velocity 268 data revealed a significant interaction for time x training group. Maximal running 269 270 velocity significantly increased in the plyometric and combined training groups of both pre- and post-PHV cohorts. 271

272

273 Analysis of squat jump and reactive strength index data showed main effects for both time and maturity. For both jumping variables, post-PHV youth demonstrated greater 274 performances following the training intervention period. Significant interactions were 275

found for time x maturity and time x training group for both squat jump and reactive strength index. Additionally, there was a significant time x maturity x training group interaction for squat jump performance. Significant improvements in squat jump height and reactive strength index were seen in all pre-PHV training groups. In the post-PHV cohort, squat jump height increased significantly in the resistance and combined training groups, while reactive strength index improved significantly in the plyometric and combined training groups.

283

284 While within-group analysis showed that all training groups improved some aspect of neuromuscular performance in response to their specific training interventions, 285 significance testing failed to determine any significant differences in training response 286 287 between pre- and post-PHV groups. Nearly all of the differences in training responses between pre- and post-PHV cohorts were not significant and 'trivial' for traditional 288 strength training, combined training and control groups. However, pre-PHV children 289 290 who completed the plyometric training intervention showed changes in acceleration and squat jump height that were 'very likely greater' than post-PHV youth who also 291 292 followed the plyometric training intervention (Figure 1).

293

²⁹⁴ ****Figure 1 near here****

295

296 DISCUSSION

297 From the results of this study it was observed that boys, both pre- and post-PHV, were

able to make significant improvements in jumping, sprinting, or both qualities

following a range of 6-week resistance-based training programs. Irrespective of

300 maturation, none of the control groups showed any significant changes in

301 performance across the intervention period. Plyometric training appeared to stimulate the greatest gains in pre-PHV children, with significant improvements (range of % or 302 ES) reported for all sprinting and jumping variables. Across all pre-PHV training 303 groups, effect sizes were greater for changes in jumping versus sprinting performance. 304 For the post-PHV cohort, combined training appeared to be the most effective in 305 eliciting change across all performance variables, with moderate to large effects 306 307 reported in acceleration, maximal running velocity and squat jump height. Inferential statistics showed that for almost all variables, comparable performance changes 308 309 between pre- and post-PHV boys were trivial following both resistance and combined training interventions. However, following plyometric training, changes in squat jump 310 and acceleration performance were significant and very likely greater in pre-PHV 311 312 children versus their post-PHV peers.

313

314 It should also be noted that in addition to the current study showing beneficial effects

315 for all resistance training modes, performance gains were achieved without any

316 occurrence of musculoskeletal injury. This finding provides further support to recent

317 recommendations from international consensus statements that children should

318 participate in a varied, technical competency driven, and age appropriate strength and

319 <u>conditioning program to facilitate athletic development (4, 21).</u>

320

Developmentally appropriate <u>strength</u> training (28), weightlifting (7), plyometric
training (26) and combined training (9) have all been proven effective in mediating
beneficial adaptations in numerous measures of neuromuscular performance in youth.
In the current study, significant main effects for time across all variables indicated
that irrespective of resistance training mode, both pre- and post-PHV boys were able

to make worthwhile improvements in jumping and sprinting performance. The current
 study also identified significant time x training group interactions for all jumping and
 sprinting variables, with all training programs having a significant influence on the
 performance changes reported following the 6-week intervention period.

330

Of greater interest to the youth practitioner however, was the significant time x 331 332 training group x maturity interaction for both squat jump and acceleration performance. Furthermore, magnitude-based inferences confirmed that in response to 333 334 the plyometric training intervention, pre-PHV children had improvements in acceleration and squat jump height that were very likely greater than post-PHV males. 335 Almost all other between-maturity group differences were non-significant and trivial, 336 337 irrespective of training intervention. Intuitively, this suggests that the pre-PHV boys 338 responded more favorably to the plyometric training program. These findings may reflect the process of 'synergistic adaptation', which refers to the symbiotic 339 340 relationship between specific adaptations of an imposed training demand with 341 concomitant growth and maturity-related adaptations. It is acknowledged that 342 appropriately prescribed plyometric training enhances stretch-shortening cycle function in youth (26). Stretch-shortening cycle activity is governed by efficient 343 344 neural regulation (18) and research shows that pre-pubescence is a timeframe during 345 which children experience a proliferation in neural coordination and central nervous system maturation (5, 30, 34). It could be suggested that the high neural demand of 346 347 plyometric training provided a stimulus that coincided with the natural adaptive 348 response of the pre-PHV boys resulting from growth and maturation. Combined, this synergistic relationship may have led to an amplified age-related training response 349 and suggests that training during this <u>developmental</u> period should <u>include exposure</u> 350

351 to plyometric training to complement motor skill and foundational strength 352 development.

353

354 Squat jump and acceleration performance are indicative of slower stretch shortening cycle activity (6), while reactive strength index and maximal running velocity 355 typically utilize faster-stretch-shortening cycle actions (25). Interestingly, the 356 357 heightened training response shown by the pre-PHV group following the plyometric training intervention resulted only in very likely greater adaptations in squat jump and 358 359 acceleration performance, but unlikely changes in measures of reactive strength index and maximal running velocity. This may simply be a reflection of adaptations 360 emanating from specifics of program design and exercise selection. For example, the 361 362 plyometric training program included a number of exercises that targeted effective 363 landing mechanics and movements that recruited longer ground contact times (e.g. drop landings, single leg forward hop and stick, horizontal jumps and multiple 364 365 horizontal rebounds), which may have led to a bias in adaptations of slower stretchshortening cycle mechanics. The notion of different jump protocol strategies eliciting 366 specific neuromuscular adaptations is supported by previous literature (17, 25). 367 368 369 While magnitude-based inferences indicated that the post-PHV boys failed to show an 370 enhanced training response compared to the pre-PHV children for any of the

371 performance variables, it is worth noting that statistical significance testing showed

that the training mode that led to the largest and highest number of significant

373 performance changes was combined training. Combined training incorporates both

374 plyometric and traditional <u>strength</u> training exercises, and while speculative, it could

be suggested that the stimulus of this training mode more closely reflected the internal

376 milieu of the post-PHV participants. Performance of plyometrics and traditional 377 strength training differs in the time available in which to produce force. Plyometrics involve rapid movement speeds and high rates-of-force development, whereas 378 379 traditional strength training allows for much longer contraction times in order to attain 380 higher peak force outputs. Developmentally, post-PHV boys will experience 381 morphological changes that facilitate force generation (e.g. increased motor unit size 382 and pennation angles) in addition to continued neural adaptations as a consequence of maturation (27). The synergistic relationship between the combined training and 383 384 natural adaptive processes may have provided a more potent maturity-related training 385 stimulus. Combined, the findings for both pre- and post-PHV cohorts support recent 386 meta-analyses that showed pre-PHV boys made the greatest gains in sprinting 387 performance following plyometric training (32), while post-PHV males benefitted most from combined training modes. 388 389 390 In conclusion, in order to acutely improve vertical jump and acceleration capacities, pre-PHV children appear to benefit more than post-PHV males from plyometric 391 392 training that requires high rates-of-force development and high velocity movement

393 speeds. Post-PHV males appear to make greater adaptations from combined training,

394 which utilizes a greater range of exercises that stress different regions of the force-

395 velocity continuum. While speculative, these specific training responses appear to be

396 age- and maturity-related respectively, reflecting the natural adaptive processes

397 experienced by both pre- and post-PHV males. <u>We suggest these concomitant</u>

398 <u>adaptations may reflect the process of 'synergistic adaptation'.</u>

399

400 PRACTICAL APPLICATIONS

401	The novel findings of the study suggest that when seeking to induce specific acute
402	adaptations (6-week) in vertical jump and acceleration capacities in boys that are pre-
403	PHV, practitioners may benefit from devoting increased training time to plyometrics.
404	Alternatively, post-PHV males may benefit more from exposure to a combination of
405	plyometric and traditional strength training methods. Given the short-term nature of
406	the current study, it should be stressed that the resistance training stimulus should be
407	changed periodically in order to facilitate continued progressive neuromuscular
408	adaptation. Thus, while a focus on plyometrics may initially provide a preferential
409	training response for pre-PHV boys, practitioners should routinely change the primary
410	training mode to facilitate long-term adaptation. Practitioners must ensure that youth
411	of all ages are prescribed varied, periodized and developmentally appropriate training
412	programs. Furthermore, rather than an independent entity, resistance training should
413	be a component of an integrated approach to youth physical development, which
414	targets multiple physical fitness qualities and aligns with the goals of long-term
415	physical development strategies_(22).
416	
417	ACKNOWLEDGEMENTS
418	There are no acknowledgements.

- 419
- 420

421 **REFERENCES**

- Batterham AM and Hopkins WG. Making meaningful inferences about magnitudes. *Int J Sports Physiol Perform* 1: 50-57, 2006.
- Behringer M, Vom Heede A, Matthews M, and Mester J. Effects of strength
 training on motor performance skills in children and adolescents: a metaanalysis. *Pediatr Exerc Sci* 23: 186-206, 2011.
- Behringer M, Vom Heede A, Yue Z, and Mester J. Effects of resistance
 training in children and adolescents: a meta-analysis. *Pediatrics* 126: e11991210, 2010.

430	4.	Bergeron MF, Mountjoy M, Armstrong N, Chia M, Cote J, Emery CA,
431		Faigenbaum A, Hall G, Jr., Kriemler S, Leglise M, Malina RM, Pensgaard
432		AM, Sanchez A, Soligard T, Sundgot-Borgen J, van Mechelen W,
433		Weissensteiner JR, and Engebretsen L. International Olympic Committee
434		consensus statement on youth athletic development. Br J Sports Med 49: 843-
435		851, 2015.
436	5.	Borms J. The child and exercise: an overview. J Sports Sci 4: 3-20, 1986.
437	6.	Bret C, Rahmani A, Dufour AB, Messonnier L, and Lacour JR. Leg strength
438		and stiffness as ability factors in 100 m sprint running. J Sports Med Phys
439		Fitness 42: 274-281, 2002.
440	7.	Chaouachi A, Hammami R, Kaabi S, Chamari K, Drinkwater EJ, and Behm
441		DG. Olympic weightlifting and plyometric training with children provides
442		similar or greater performance improvements than traditional resistance
443		training. J Strength Cond Res 28: 1483-1496, 2014.
444	8.	Dalleau G, Belli A, Viale F, Lacour JR, and Bourdin M. A simple method for
445		field measurements of leg stiffness in hopping. Int J Sports Med 25: 170-176,
446		2004.
447	9.	Faigenbaum AD, Farrell A, Fabiano M, Radler T, Naclerio F, Ratamess NA,
448		Kang J. and Myer GD. Effects of integrative neuromuscular training on fitness
449		performance in children. <i>Pediatr Exerc Sci</i> 23: 573-584, 2011.
450	10.	Faigenbaum AD, Llovd RS, and Myer GD. Youth resistance training: past
451		practices, new perspectives, and future directions. <i>Pediatr Exerc Sci</i> 25: 591-
452		604, 2013.
453	11.	Faigenbaum AD, McFarland JE, Keiper FB, Tevlin W, Ratamess NA, Kang J.
454		and Hoffman JR. Effects of a short-term plyometric and resistance training
455		program on fitness performance in boys age 12 to 15 years. J Sports Sci Med
456		6: 519-525, 2007.
457	12.	Gissis I. Papadopoulos C. Kalapotharakos VI. Sotiropoulos A. Komsis G. and
458		Manolopoulos E. Strength and speed characteristics of elite, subelite, and
459		recreational young soccer players. <i>Res Sports Med</i> 14: 205-214, 2006.
460	13.	Haff GG. Periodization strategies for youth development, in: Strength and
461		Conditioning for Young Athletes: Science and Application. RS Llovd. JL
462		Oliver, eds. Oxford, United Kingdom: Routledge, 2013, pp 149-168.
463	14.	Hopkins WG. A spreasheet for deriving a confidence interval, mechanistic
464		inference and clinical inference from a p value. <i>Sportscience</i> 11: 16-20, 2007.
465	15.	Hopkins WG, Marshall SW, Batterham AM, and Hanin J. Progressive
466		statistics for studies in sports medicine and exercise science. <i>Med Sci Sports</i>
467		<i>Exerc</i> 41: 3-13, 2009.
468	16.	Ingle L, Sleap M, and Tolfrey K. The effect of a complex training and
469		detraining programme on selected strength and power variables in early
470		pubertal boys. J Sports Sci 24: 987-997, 2006.
471	17.	Jidovtseff B, Quievre J, Harris NK, and Cronin JB. Influence of jumping
472		strategy on kinetic and kinematic variables. J Sports Med Phys Fitness 54:
473		129-138. 2014.
474	18.	Komi PV. Stretch-shortening cycle: a powerful model to study normal and
475		fatigued muscle. J Biomech 33: 1197-1206. 2000.
476	19.	Kraemer WJ and Ratamess NA. Fundamentals of resistance training:
477		progression and exercise prescription. <i>Med Sci Sports Exerc</i> 36: 674-688.
478		2004.

479	20.	Lillegard WA, Brown EW, Wilson DJ, Henderson R, and Lewis E. Efficacy of
480		strength training in prepubescent to early postpubescent males and females:
481		effects of gender and maturity. Pediatr Rehabil 1: 147-157, 1997.
482	21.	Lloyd RS, Faigenbaum AD, Stone MH, Oliver JL, Jeffreys I, Moody JA,
483		Brewer C, Pierce KC, McCambridge TM, Howard R, Herrington L, Hainline
484		B, Micheli LJ, Jaques R, Kraemer WJ, McBride MG, Best TM, Chu DA,
485		Alvar BA, and Myer GD. Position statement on youth resistance training: the
486		2014 International Consensus. Br J Sports Med 48: 498-505, 2014.
487	22.	Lloyd RS and Oliver JL. The youth physical development model: a new
488		approach to long-term athletic development. Strength Cond J 34: 61-72, 2012.
489	23.	Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, De Ste Croix MB,
490		Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP, Hatfield DL,
491		Cronin JB, and Myer GD. Long-term athletic development, part 2: barriers to
492		success and potential solutions. J Strength Cond Res 29: 1451-1464, 2015.
493	24.	Lloyd RS, Oliver JL, Hughes MG, and Williams CA. Reliability and validity
494		of field-based measures of leg stiffness and reactive strength index in youths. J
495		Sports Sci 27: 1565-1573, 2009.
496	25.	Lloyd RS, Oliver JL, Hughes MG, and Williams CA. Specificity of test
497		selection for the appropriate assessment of different measures of stretch-
498		shortening cycle function in children. J Sports Med Phys Fitness 51: 595-602,
499		2011.
500	26.	Lloyd RS, Oliver JL, Hughes MG, and Williams CA. The effects of 4-weeks
501		of plyometric training on reactive strength index and leg stiffness in male
502		youths. J Strength Cond Res 26: 2812-2819, 2012.
503	27.	Malina RMB, C.; Bar-Or, O. Growth, Maturation and Physical Activity.
504		Champaign, IL: Human Kinetics, 2004.
505	28.	Meylan CM, Cronin JB, Oliver JL, Hopkins WG, and Contreras B. The effect
506		of maturation on adaptations to strength training and detraining in 11-15-year-
507		olds. Scand J Med Sci Sports 24: e156-164, 2014.
508	29.	Mirwald RL, Baxter-Jones AD, Bailey DA, and Beunen GP. An assessment of
509		maturity from anthropometric measurements. Med Sci Sports Exerc 34: 689-
510		694, 2002.
511	30.	Myer GD, Kushner AM, Faigenbaum AD, Kiefer A, Kashikar-Zuck S, and
512		Clark JF. Training the developing brain, part I: cognitive developmental
513		considerations for training youth. Curr Sports Med Rep 12: 304-310, 2013.
514	31.	Pfeiffer RDF, R.S. Effects of strength training muscle development in
515		prepubescent, pubescent, and postpubescent males. Phys Sportsmed 14: 142-
516		143, 1986.
517	32.	Rumpf MC, Cronin JB, Pinder SD, Oliver J, and Hughes M. Effect of different
518		training methods on running sprint times in male youth. Pediatr Exerc Sci 24:
519		170-186, 2012.
520	33.	Runhaar J, Collard DC, Singh AS, Kemper HC, van Mechelen W, and
521		Chinapaw M. Motor fitness in Dutch youth: differences over a 26-year period
522		(1980-2006). J Sci Med Sport 13: 323-328, 2010.
523	34.	Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, and Toga AW.
524		Longitudinal mapping of cortical thickness and brain growth in normal
525		children. J Neurosci 24: 8223-8231, 2004.
526	35.	Sowell ER, Trauner DA, Gamst A, and Jernigan TL. Development of cortical
527		and subcortical brain structures in childhood and adolescence: a structural
528		MRI study. Dev Med Child Neurol 44: 4-16, 2002.

529	36.	Thomas K, French D, and Hayes PR. The effect of two plyometric training
530		techniques on muscular power and agility in youth soccer players. J Strength
531		Cond Res 23: 332-335, 2009.
532	37.	Wong PL, Chamari K, and Wisloff U. Effects of 12-week on-field combined
533		strength and power training on physical performance among U-14 young
534		soccer players. J Strength Cond Res 24: 644-652, 2010.
575		

535

536 FIGURE LEGEND

- 537 **Figure 1.** Mean difference (90%CI) between pre and post-PHV groups in 10 m sprint time, 20 m
- sprint time, squat jumps height (SJ) and reactive strength index (RSI) across different training
- 539 interventions. Training interventions are presented as; PLY = plyometric training, TST = traditional
- 540 strength training, COM = combined training and CON = control group. The grey shaded area
- 541 represents the smallest worthwhile effect. Magnitude-based inferences are represented by; U =
- 542 unclear, T = trivial, VL-N = very likely negative, VL-P = very likely positive.

Figure 1. Mean difference (90%CI) between pre and post-PHV groups in 10 m sprint time, 20 m sprint time, squat jump height (SJ) and reactive strength index (RSI) across different training interventions. Training interventions are presented as; PLY = plyometric training, TST = traditional strength training, COM = combined training and CON = control group. The grey shaded area represents the smallest worthwhile effect. Magnitude-based inferences are represented by; U = unclear, T = trivial, VL-N = very likely negative, VL-P = very likely positive.

Maturation	Group	Sample size	Age	Height	Body mass	PHV
Stage						
Pre-PHV	PT	10	12.7 ± 0.3	159.6 ± 8.9	56.0 ± 11.0	-1.5 ± 0.4
	TST	10	12.6 ± 0.3	156.9 ± 6.3	50.3 ± 14.4	-1.4 ± 0.6
	CT	10	12.7 ± 0.3	158.3 ± 7.6	53.5 ± 10.7	-1.5 ± 0.7
	CON	10	12.8 ± 0.2	157.0 ± 9.2	54.9 ± 10.6	-1.5 ± 0.6
Post-pubertal	PT	10	16.4 ± 0.2	179.5 ± 5.7	67.8 ± 6.1	1.3 ± 0.3
	TST	10	16.3 ± 0.3	177.5 ± 5.3	64.9 ± 5.3	1.3 ± 0.3
	CT	10	16.2 ± 0.3	178.3 ± 5.4	65.3 ± 7.2	1.3 ± 0.6
	CON	10	16.2 ± 0.3	179.0 ± 5.2	67.2 ± 8.4	1.2 ± 0.4

 Table 1. Descriptive statistics for anthropometrics per group

Note: PT = plyometric training, TST = traditional strength training, CT = combined training, CON = control group

 Table 2. Overview of the plyometric training program

Week	Exercise	Sets	Repetitions	Total Foot Contacts
1	Drop landings	3	6	74
	Vertical jumps in place	3	6	
	Horizontal jumps	3	6	
	SL forward hop and stick	2	10	
2	Drop landings	3	6	76
	SL forward hop and stick	2	10	
	Split squat drop lands	3	6	
	SL lateral hop and stick	2	10	
3	Box jumps	3	6	78
	Pogo hopping	3	8	
	Multiple horizontal bilateral rebounds	4	3	
	"Ankling" drill	3	8	
4	Power skipping	3	10	80
	Unilateral pogo hops	2	10	
	Multiple horizontal rebounds	5	3	
	Multiple horizontal rebounds over hurdles	5	3	
5	Unilateral pogo hops	2	10	83
	Alternate leg bounding	3	8	
	Multiple bounding	3	8	
	Multiple horizontal rebounds over hurdles	5	3	
6	Drop jumps	4	4	88
	Alternate unilateral horizontal jumps	3	8	
	Power skipping	3	8	
	Alternate leg bounding	3	8	

Week	Exercise	Sets	Repetitions
1	Drop lands	3	6
	Back squat	3	10
	Broad jump	3	6
	Barbell lunge	3	10
2	Back squat	3	10
	SL forward hop and stick	2	10
	Split squat drop lands	3	6
	Barbell lunge	3	10
3	Back squat	3	10
	Pogo hopping	3	8
	Barbell lunge	3	10
	Multiple bilateral bounds	4	4
4	Back squat	3	10
	Alternate leg bounds	3	10
	Barbell lunge	3	10
	Multiple bilateral bounds + hurdles	5	3
5	Back squat	3	10
	Alternate leg bounds	3	8
	Barbell lunge	3	10
	Unilateral pogo hopping	2	10
6	Drop jumps	4	4
	Back squat	3	10
	Power skipping + hurdles	3	8
	Barbell lunge	3	10

 Table 3. Overview of the combined training program

Variable/Maturity	Condition	PT	TST	СТ	CON
Group					
10 m acceleration (s)	Pre	2.3 ± 0.2	2.3 ± 0.2	2.2 ± 0.2	2.2 ± 0.2
Pre-PHV	Post	2.2 ± 0.2^b	2.2 ± 0.2^a	2.1 ± 0.2^b	2.2 ± 0.2
	Effect size (Cohen's d)	0.38	0.11	0.32	0.00
10 m acceleration (s)	Pre	1.9 ± 0.1	1.9 ± 0.1	1.9 ± 0.1	1.9 ± 0.1
Post-PHV	Post	1.9 ± 0.1	1.8 ± 0.1^b	1.8 ± 0.1^b	1.9 ± 0.1
	Effect size (Cohen's d)	0.06	0.36	0.62	0.04
20 m speed (s)	Pre	3.4 ± 0.2	3.4 ± 0.3	3.4 ± 0.3	3.3 ± 0.3
Pre-PHV	Post	3.3 ± 0.2^b	3.4 ± 0.3	3.3 ± 0.3^b	3.3 ± 0.3
	Effect size (Cohen's d)	0.45	0.04	0.31	0.02
20 m speed (s)	Pre	2.7 ± 0.3	2.8 ± 0.2	2.8 ± 0.2	2.7 ± 0.3
Post-PHV	Post	2.6 ± 0.3^b	2.7 ± 0.2	2.6 ± 0.2^a	2.7 ± 0.3
	Effect size (Cohen's d)	0.34	0.08	0.50	0.02
SJ (cm)	Pre	24.6 ± 4.9	22.3 ± 4.9	24.1 ± 4.3	23.4 ± 4.6
Pre-PHV	Post	28.3 ± 4.6^b	24.8 ± 4.6^b	28.2 ± 4.6^b	23.5 ± 4.2
	Effect size (Cohen's d)	0.77	0.52	0.96	0.03
SJ (cm)	Pre	32.3 ± 6.4	32.4 ± 5.0	33.2 ± 5.4	34.2 ± 4.6
Post-PHV	Post	32.7 ± 6.3	34.6 ± 5.1^{b}	37.4 ± 5.5^b	34.2 ± 4.6
	Effect size (Cohen's d)	0.07	0.45	0.79	0.00
RSI (mm/ms)	Pre	1.0 ± 0.2	0.9 ± 0.2	1.0 ± 0.3	1.0 ± 0.2
Pre-PHV	Post	1.1 ± 0.2^b	1.0 ± 0.2^b	1.0 ± 0.3^b	1.0 ± 0.2
	Effect size (Cohen's d)	0.53	0.16	0.19	0.04
RSI (mm/ms)	Pre	1.4 ± 0.2	1.4 ± 0.2	1.4 ± 0.2	1.4 ± 0.3
Post-PHV	Post	1.5 ± 0.2^b	1.4 ± 0.2	1.4 ± 0.2^b	1.4 ± 0.3
	Effect size (Cohen's d)	0.27	0.05	0.28	0.01

Table 4. Changes in running speed and jump performance for pre-PHV subjects post-6-week training intervention (mean $\pm sd$)

^{*a*}significantly different from pre-test (p < 0.05); ^{*b*}significantly different from pre-test (p < 0.01) PT = plyometric training group; TST = traditional strength training group; CT = combined training group; CON = control group; SJ = squat jump; RSI = reactive strength index