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ABSTRACT 
 

In order to keep products and systems attractive to consumers, developers have to do what 

they can to meet growing customers’ requirements. These requirements could be direct 

demands of customers but could also be the consequence of other influences such as 

globalization, customer fragmentation, product portfolio, regulations and so on. In the 

manufacturing industry, most companies are able to meet these growing requirements with 

mechatronic and interdisciplinary designed and developed products, which demand the 

collaboration between different disciplines. For example, the generation of a virtual 

prototype and its simulation tools of a mechatronic and multi-disciplinary product or system 

could require the cooperation of multiple departments within a company or between 

business partners. In a simulation, a virtual prototype is used for testing a product or a 

system. This virtual prototype and test approach could be used from the early stages of the 

development process to the end of the product or system lifecycle. Over years, different 

approaches/systems to generating virtual prototypes and testing have been designed and 

developed. But these systems have not been properly integrated, although some efforts have 

been made with limited success.  Therefore, the requirement exists to propose and develop 

new technologies, methods and methodologies for achieving this integration.  

In addition, the use of simulation tools requires special expertise for the generation of 

simulation models, plus the formats of product prototypes and simulation data are different 

for each system. This adds to the requirements of a guideline or framework for implementing 

the integration of a multi- and inter- disciplinary product design, simulation software and 

data management during the entire product lifecycle. 

The main functionality and metadata structures of the new framework have been identified 

and optimised. The multi-disciplinary simulation data and their collection processes, the 

existing PLM (product lifecycle management) software and their applications have been 

analysed. In addition, the inter-disciplinary collaboration between a variety of simulation 

software has been analysed and evaluated. The new framework integrates the identified and 

optimised functionality and metadata structures to support and manage multi- and inter-

disciplinary simulation in a PLM system environment.  

It is believed that this project has made 6 contributions to new knowledge generation: (1) the 

New Conceptual Framework to Enhance the Support and Management of Multi-Disciplinary 

System-Simulation, (2) the New System-Simulation Oriented and Process Oriented Data 

Handling Approach, (3) the Enhanced Traceability of System-Simulation to Sources and 

Represented Products and Functions, (4) the New System-Simulation Derivation Approach, 

(5) the New Approach for the Synchronisation of System Describing Structures and (6) the 

Enhanced System-Simulation Result Data Handling Approach. 

In addition, the new framework would bring significant benefits to each industry it is applied 

to. They are: (1) the more effective re-use of individual simulation models in system-
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simulation context, (2) the effective pre-defining and preparing of individual simulation 

models, (3) the easy and native  reviewable system-simulation structures in relation to input-

sources, such as products and / or functions, (4) the easy authoring-software independent 

update of system-simulation-structures, product-structures and function-structures, (5) the 

effective, distributed and cohesive post-process and interpretation of system-simulation-

results, (6) the effective, easy and unique traceability of the data which means cost reductions 

in documentation and data security, and (7) the greater openness and flexibility in simulation 

software interactions with the data holding system.  

Although the proposed and developed conceptual framework has not been implemented 

(that would require vast resources), it can be expected that the benefits in 7 above will lead 

to significant advances in the simulation of new product design and development over the 

whole lifecycle, offering enormous practical value to the manufacturing industry.   

Due to time and resource constraints as well as the effort that would be involved in the 

implementation of the proposed new framework, it is clear there are some limitations to this 

PhD thesis. Five areas have been identified where further work is needed to improve the 

quality of this project:   (1) an expanded industrial sector and product design and 

development processes, (2) parameter oriented system and production description in the 

new framework, (3) the improved user interface design of the new framework, (4) the 

automatic generation of simulation processes and (5) enhancement of the individual 

simulation models. 
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1 INTRODUCTION 
 

1.1 INTRODUCTION 
 

This thesis will propose and design a new framework for supporting and managing multi-

disciplinary system simulations in a PLM (Product Lifecycle Management) environment by 

exploring the complex relations between simulation sources, simulation model sources and 

system describing sources, as well system simulations.  

Mr. Anton Huber, CEO of Siemens Industry Automation Division, said: “The integration of 

product development, simulation and validation is now at the top of our agenda.”  (Siemens 

AG, 2011). In his speech at the Siemens global sales team conference, Mr. Chuck Grindstaff, 

CEO of Siemens PLM Software, said: “We are investing heavily in CAE (Computer aided 

engineering) [...] for multi-disciplinary analysis throughout the product definition cycle.” 

Many other senior managers also have similar thoughts. They all believe that it is necessary 

and important to design and develop complex products in a multi- and inter- disciplinary 

modelling and simulation environment. For example, Engelson (Engelson, 2000) said that the 

isolated subsystem simulation has become a thing of the past; the current trend is to simulate 

the increasingly complex physical systems and products as a composition of subsystems from 

multiple domains. 

In the whole product lifecycle, these multiple disciplines normally include mechanics, 

electronics, hydraulics, pneumatics, controls, mathematics, chemistry and biology, etc.  

(Bharadwaj, 1998). In order to build a multi-disciplinary modelling and simulation 

environment, it is required to adopt an approach which can be used to develop a single 

disciplinary based simulation model into a comprehensive multi-disciplinary based 

simulation model (Ai, Chen, Wan, & Xiong, 2011). So, “several paths are being followed to 

enable communication between models of components from different domains” (van Beek, 

Rooda, Engell, & Zaytoon, 2000). Several previous projects have been carried out to deploy a 

single simulation environment based on a C-like language (Diamond, 1993). Such a 

simulation environment is expected to meet all simulation requirements of the different 

disciplinary simulation scenarios. This expectation will be seen critically by the users because 

of missing functionalities compared to disciplinary oriented simulation environments. 

However, each business’s functional department uses its own specialised simulation software 

tools in an isolated way. The various simulation software models have not been integrated 

yet (Zaeh & Baudisch, 2003). Hence, communication between different functional simulation 

models becomes a serious issue. In order to solve such a problem, it is necessary to design 

and develop vendor-independent APIs (application programming interfaces) to achieve the 

software system integration of various simulation models. The APIs can be used to solve 

communication problems between simulation models (MODELISAR consortium, January 26, 

2010). These kinds of APIs will provide the interaction between different and multiple 
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simulation models. The simulation models could then be generated more independently by 

applicable departments using the most appropriate simulation authoring tools. 

However, the use of different and multiple simulation models will lead to large amounts of 

simulation data. The simulation models require vast quantities of input data such as CAD 

(computer aided design) models or parameters. In a PDM/PLM (product data management/ 

product lifecycle management) environment, the management of most product data will 

begin at an early stage of the product lifecycle. The PDM/PLM environment could provide 

important input to simulation model generation. Some PDM/PLM environments could also 

manage simulation data. These simulation models are then recorded together with different 

simulation model metadata (Brendel & Kühner, 2004). 

At an early stage of a product lifecycle, mechatronic concepts of the product will be evaluated 

and analysed. The mechatronic product concepts will be used to optimise products. However 

in system engineering, the mechatronic product concept could also be used for the 

idealization of the product development process (Mahler, 2012). The mechatronic product 

concept could be an abstract, virtual prototype of the new product. At later stages of a 

product lifecycle, it is frequently required for the product design and development team to 

build a virtual prototype of a new product to reduce the product lead time (Mahler, 2012). In 

order to achieve this, the team has to identify and optimise the required simulation models 

using the simulation model metadata defined at the early stage of the product lifecycle. Then, 

the processes for simulation model data collection in both multi-disciplinary and inter-

disciplinary environments need to be determined. However, there is no existing software 

available to help a team in a PLM environment achieve this goal (Ai, Chen, Wan, & Xiong, 

2011; Vyatkin V. , Hanisch, Cheng, & Chia-Han, 2009). 

So, it is not only theoretically meaningful, but also practically important to design and 

develop such a software environment. This is a huge undertaking and a great amount of effort 

is needed in order to achieve this task. Considering the time and resource limitation of this 

PhD project, the focus will be put on research, proposal, design and development of a new 

framework that integrates the identified and optimised functional and metadata structures. 

In this framework, various methods will be studied and developed to identify and optimise 

the required functional and metadata structures to support and manage both multi-

disciplinary and inter-disciplinary simulation data and processes, embedded in a PLM 

environment. 
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1.2 AIM AND OBJECTIVE 
 

The overall aim of the research project is formulated as follows: 

Researching, proposing, designing and developing a new framework that supports 

and manages multi- and inter-disciplinary system-simulations embedded in a PLM 

environment. 

The objectives are: 

1. Analysing and evaluating multi-disciplinary simulation data and their 
collection processes, the existing PLM software and their applications to 
identify and optimise the required functional and metadata structures to 
support and manage multi-disciplinary simulation data and processes 
embedded in a PLM environment. 

2. Analysing and evaluating inter-disciplinary collaboration of various simulation 
software to identify and optimise the required functional and metadata 
structures to support and manage inter-disciplinary simulation data and 
processes embedded in a PLM environment. 

3. Researching, proposing, designing and developing a new framework that 
integrates the identified and optimised functional and metadata structures to 
support and manage multi- and inter- disciplinary simulation in PLM system 
environment. 

 

The research questions are: 

What kinds of functional and metadata structures are required to support and manage 

multi-disciplinary simulation data and processes embedded in a PLM environment? 

 

What kinds of functional and metadata structures are required to support inter-

disciplinary collaboration of various simulation software embedded in a PLM 

environment? 

 

Can these functional and metadata structures be integrated into a framework to 

support and manage multi-disciplinary and inter-disciplinary simulation in PLM 

system environment? 

 

1.3 DISCUSSION OF THE PROBLEMS 
 

If a company is interested in the virtual test and validation of their products, simulation tools 

have to be employed. Most companies are interested in this because the time for a new 
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product to go to market and the development costs are important factors and risks can be 

reduced with the use of virtual development tools. As AberdeenGroup (2009) discussed: 

“Iterative build and test cycles add additional cost and consume valuable time in the 
schedule. More importantly, designs are often too constrained late in the process to 
properly address problems identified during testing, forcing many to adopt meagre 
design compromises to get the product out the door.” 

In order to reduce the amount of time to go to market yet improve the quality of products, 

companies are willing to optimise their development process. Companies could use 

simulation tools to test and validate their products and improve their development process. 

However, simulation tools are based on the underlying mathematics and numerical 

approaches (Dehning & Wolf, 2006, p. 8) and limited to their mathematical base. This means 

that simulation tools can solve only problems that can be described by their mathematical 

base. However, the validation of modern products often requires more than one 

mathematical base. Most products and processes include multi-physical systems where 

different physical disciplines work together.  

The products and processes are often built as an amalgamation of different natural science 

disciplines (mechanics, electronics, controls etc.). For product testing and validation, the use 

of different natural and engineering science disciplines also requires the cooperation of 

different natural science and engineering disciplines described through varying mathematical 

forms. This could require multiple and different simulation tools to describe systems. 

Monolithic and even integrated simulation tools will often not be useable because these 

simulation tools are limited to their mathematical base. Vadim Engelson (2000) wrote in his 

dissertation: 

“Simulation is typically used to optimise product properties and to reduce product 
development cost and time to market. Whereas in the past it was considered sufficient to 
simulate subsystems separately, the current trend is to simulate increasingly complex 
physical systems composed of subsystems from multiple domains such as mechanical 

electric, hydraulic, thermodynamic, and control system components.”   

So, whilst companies are interested in simulating their products and processes, it also means 

they have to simulate these products and processes as a combination of the natural science 

disciplines that are involved in the system (Arnold & Schierz, 2009). In such a case, a multi-

disciplinary view on the system is required. The virtual testing and validation of such a multi-

disciplinary system could require multi-disciplinary simulation bases. Different simulation 

tools are required to generate simulation models based on multi-disciplinary simulation 

bases. A simulation tool can simulate a specific discipline or maybe only a part of this 

discipline. Therefore, the different disciplines and their simulations have to be linked to each 

other (Arnold & Schierz, 2009). This gap between simulation tools has to be closed if the 

complete functionality of the product is to be simulated. In the book “Why do Multi-Physics 

Analysis?” (Dehning & Wolf, 2006), this is summarised in one sentence:  
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“[… ] multi-physics applications are indeed clearly more complex than mono-physic 
simulations, but they are essential in many cases in order to obtain adequate engineering 
understanding.”  

The difference between mono- and multi-physic simulations is not based on the combination 

of the numbers of used natural and engineering science disciplines. According to Dehning & 

Wolf, a simulation generation based on one simulation application is a mono-physic 

simulation and a simulation generation based on more than one simulation tool in couple 

mode is a multi-physic simulation. 

In order to meet the simulation requirements of companies, simulation application vendors 

changed their technologies. First the simulation software was oriented as mono disciplinary 

simulation application (Arnold & Schierz,2009). However, with the ongoing development of 

the simulation products, some of them were improved based on more than one mathematical 

approach. With one simulation product, the user can address different disciplines of 

simulations such as combined thermal and flow simulation applications. This does not mean 

that the solving technology will be combined into monolithic application approaches. The 

most commercial simulation products are a combination of multiple simulation applications. 

Different simulations but combined simulation applications could be coupled internally in the 

simulation product. However, there will be borderlines. Nevertheless, the internal coupling 

would be the most effective one. It would also be possible to couple externally. This could 

achieve the coupling of simulation tools from different vendors. 

Different commercial products will be available on the market to link and couple simulation 

tools (Otter & Elmqvist, 1995, S. 2). Most of them will fix special problems whilst some try to 

be more universal. All of them use interface technologies for communication between 

different applications. These interfaces will transfer information bidirectionally or 

unidirectionally from and to a simulation tool which requires an input port for the simulation 

tools to receive data. However, the interfaces will mostly be individual and won’t support a 

high number of simulation tools. In recent years, several standard interfaces have been 

created such as the MODELISAR – Interface (Consortium, October 12, 2010). Unfortunately, 

they are not generalised and are available only in a small, though growing, number of 

simulation tools (Consortium, 2011).  

An open and general support of interacting simulation tools have to be independent from the 

art of interface (Kossel, Claudene, & Loeffler, 2009). This kind of application should be more 

than an interface. For example, multiple simulation tools, linked together for co-simulation, 

require that the simulation system runs in convergence manner (Dehning & Wolf, 2006, pp. 

10-11). The convergence could fail because the convergence criteria will not be achieved. A 

convergence criterion can be ‘energy balance’ or ‘force balance’. In the case of unachieved 

convergence, the simulation time step size has to be repeated or reduced. Thus, the 

convergence control requires sampling and time management and possibly, error correction. 

This could be achieved by using simulation middleware such as the software application 

called ICOS. This software application will be provided by the international research centre 

Virtual Vehicle in Graz (Zehetner, Wenpu Lu, Watzenig, & Bernasch, 2012)  
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A mono-physic simulation does not require this complexity of data and tools, or tool 

architecture. In contrast to mono-physic simulation, the data management of multi-physics 

simulation will be much more complex. Multi-physical simulation requires multiple 

simulation tools as well as multi-physic simulation architecture designs. The simulation 

models, their sources and the simulation results have to be managed. Thereby, the simulation 

can only be as good as the input of the simulation. So, the simulation model sources will play 

an important role in securing the simulation result quality and requires to be linked to the 

simulation. In the case of multi-disciplinary-simulation with multiple input sources, each 

simulation will require specific sources (Kübler, 2000, S. 21). In order to keep the sources and 

the simulation data of multi-disciplinary simulation transparent, this data should be 

managed. 

PDM-systems (product data management) are normally used as the technology for the 

management of engineering product information and data. Engineering product information 

could become the most important source for the simulation models because the descriptions 

of the product would usually be the most important input (such as CAD models) for 

simulation. Commercial technologies and solutions to managing a single simulation model 

will need to relate simulation data to the simulation sources. TEAMCENTER UNIVIED from 

SIEMENS INDUSTRY SOFTWARE GmbH & Co KG will provide one of the leading solutions. 

Nevertheless, these technologies will not provide a solution for supporting and managing 

multi-disciplinary simulation data in an effective way. In Section 1.4, the improvement of the 

multi-disciplinary simulation data and process-management will be discussed. 

  

1.4 THE DISCUSSION OF THE IDEA OF A NEW FRAMEWORK FOR SUPPORTING AND 

MANAGING MULTI-DISCIPLINARY SIMULATIONS 
 

The idea is to conceptualise a new framework that supports and manages multi-disciplinary 

simulation. This new framework should support the simulation from the task of the 

generation of a single simulation model to the task of obtaining analysis results from the 

multi-disciplinary simulation. The multi simulation models could be created by different 

departments and possibly by different companies. The individual simulation models will be 

connected and linked into a multi-disciplinary simulation model. Therefore, the individual 

simulation models have to be reusable and traceable in the environment of multi-disciplinary 

simulations. Additionally, the individual simulation models should be traceable to their 

sources. The traceability to their sources should also be achieved for multi-disciplinary 

simulations. The solve run (a solve run is the mathematical calculation of a simulation 

model) of multi-disciplinary simulations will generate multiple simulation results data that 

should be re-traceable as well.  

Furthermore, the new framework should improve the support and management of multi-

disciplinary simulation data. Additionally, the new framework should include the functions 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 23 of 347 
 

 

for interacting directly with simulation source data storing and managing systems. In this 

thesis, PDM and PLM systems are used as the simulation source storing systems. So, the focus 

will be on conceptualizing a new framework that can be used to improve the support and 

management of multi-disciplinary simulation data embedded in a PLM environment. 

Within a PLM environment, the generation of simulation models could be supported at an 

early stage of a product lifecycle. This data is recorded together with different metadata 

(Brendel & Kühner, 2004;Siemens Industry Software GmbH & Co.KG. , 2012). The data could 

be re-used in a later stage of the development process. At later stages, it is frequently 

required for the product design and development team to build a virtual prototype of 

product. This will reduce the product lead time (Mahler, 2012). In order to build the virtual 

prototype, the team has to identify and optimise the required simulation models. Thereby, 

they could use the simulation model metadata defined at the early stage. Then, they have to 

determine the processes for the simulation model data collection in both multi-disciplinary 

and inter-disciplinary environments. However, there is no existing software available to help 

a team in a PLM environment achieve this goal (Ai, Chen, Wan, & Xiong, 2011; Vyatkin, 

Hanisch, Cheng, & Chia-Han, 2009). 

Therefore, it is not only theoretically meaningful, but also practically important to design and 

develop such a software environment. This is a huge task that requires a great amount of 

effort in order to fulfil this task. Considering the time and resource limitation of this PhD 

project, the focus will be on the research, proposal, design and development of a new 

framework that integrates the identified and optimised functional and metadata structures. 

In this framework, various methods will be studied and developed to identify and optimise 

the required functional and metadata structures to support and manage both multi-

disciplinary and inter-disciplinary simulation data and processes embedded in a PLM 

environment. 

 

Accordingly, the research project will evidently be influenced by the dependencies of the 

single and multi-disciplinary simulation models and the multiple simulation results. The 

focus will be on the data management.  

 

1.5 ORGANISATION OF THE THESIS 
 

Chapter 1 introduces the research and PhD thesis. The research aims and objectives, the 

requirement discussion plus the idea of a new framework to support and manage multi-

disciplinary simulation in a PLM environment will be presented. 

Chapter 2 presents the literature review of previous work in the areas that are related to this 

project topic. An insightful discussion into the areas of ‘multi-disciplinary-simulation’, 
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‘simulation data management’ and ‘data management of multi-disciplinary simulation’ will be 

given. Based on that, the gap between supporting and managing multi-disciplinary 

simulation, and the proposition of the new framework, will be discussed. 

Chapter 3 presents the methodology of the research approach including discussions relating 

to the ontological approach, the methodology and methods used for this PhD project.  

Chapter 4 presents the data collection, presentation and analysis of simulation supporting 

systems and technologies in a PLM system. The selection of the PLM system is also discussed 

by relating to the Chapter 2.  

Chapter 5 presents four multi-disciplinary simulation case studies. These case studies discuss 

the support of data management and its processes. The data will be handled using a PLM 

system presented in Chapter 4. 

Chapter 6 presents the new framework for improving the support and management of multi-

disciplinary simulation in a PLM environment. The organisation of a system-simulation-

structure, a system-simulation-result-structure and the collaboration of systems describing 

structures are discussed. Furthermore, an approach of combining system-simulation-

structure and process-oriented simulation processes will be presented.  

Chapter 7 presents a discussion of the new framework approach. A brief summary of the 

improvements, benefits and the verification of the new framework approach will be 

presented in the first subsection 7.1. Critiques and further work on the new approach will be 

presented in section 7.2. The chapter will end with the conclusion presented in the 

subsection 7.3. 

  



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 25 of 347 
 

 

2 LITERATURE REVIEW 
 

2.1 INTRODUCTION 
 

In Chapter 1 the project’s scope and objectives have been presented.  This chapter will 

presents the critical review of literature in supporting and managing multi-disciplinary 

system-simulations. The subtopics are shown in Figure 2-1. 

 

 

Figure 2-1 Research topic and subtopics 
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- Simulation Data Management 

- Product Data Management 

- Product Lifecycle Management 

- Data Management of Multi-disciplinary simulation 

- System Engineering Methodology 

 

2.2 MULTI-DISCIPLINARY SIMULATION 
 

If a company is interested in using virtual prototypes to develop and validate their products, 

they usually use CAD models for design, and CAE simulation for validation and verification. 

Companies are interested in this because the time to go to market and the development costs 

are important factors and risks can be reduced with the use of virtual development tools such 

as simulation tools. Vadim Engelson (2000) thought that:  

“Simulation is typically used to optimize product properties and to reduce product 
development cost and time to market. Whereas in the past it was considered sufficient to 
simulate subsystems separately, the current trend is to simulate increasingly complex 
physical systems composed of subsystems from multiple domains such as mechanical 
electric, hydraulic, thermodynamic, and control system components (p.125).”  

Today, companies use simulation to optimise, validate and verify their products and 

processes. However, the simulation tools are based on the underlying mathematical and 

numerical approaches (Dehning & Wolf, 2006, p. 8) and limited to their bases, i.e. the 

simulation tools can solve only problems that can be described by their mathematical base. 

Modern product- or process- development often needs more than one mathematical base for 

its simulation. Most products and processes are multi-physical solutions where different 

physical disciplines work together. The products and processes are largely built as a 

mechatronic community including different disciplines (mechanic, electronic, control, etc.). 

Hui, Liping, Li & Tifan (2011) stated:  

“Products are the complex systems with multiple disciplines, such as mechanical, 
electronic, hydraulic and control, whose creative development stems from single domain 
to multi-domain, from single application software to comprehensive application of 
several types of software.”  

Single-disciplinary simulation is not able to maturely represent the product or process. 

Multiple disciplines of simulation have to be applied. The most industrial used simulation 

tools are specialised mono-disciplinary simulation tools (Arnold & Schierz, 2009). So, it is 

necessary to use multiple simulation tools. Unfortunately, the multiple simulation models of 

the same product or process, addressing different challenges (such as different kinds of 

abstract simulation based representations of products or processes), have to interact with 
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each other. A solution is to couple the independent mono-disciplinary simulations in parallel 

or serial. The coupling of different physical simulation components is called multi-physics 

analysis, for example thermodynamics is coupling thermal with fluid dynamics (Dehning & 

Wolf, 2006). The parallel coupling of two or more simulation tools is called co-simulation 

(Arnold & Schierz, 2009). Multi-physics analysis can be done with or without co-simulation. 

Dehning & Wolf (2006) stated:  

“[…] multi-physics applications are indeed clearly more complex than mono-physic 
simulations, but they are essential in many cases in order to obtain adequate engineering 
understanding.” 

Accordingly, multi-disciplinary simulation means multiple disciplines should be considered 

in integrated way. This kind of discipline is not defined (such as mechatronic, physical or 

simulation disciplines). All kinds of multi-physics simulation are summarised under the 

multi-disciplinary simulation. Multi-physics means the integration of coupling different 

physics simulations (such as thermal and electric).  

There are different commercial solutions to link simulation models (Otter & Elmqvist, 1995, 

p. 2). Most of them fix a special problem and others try to be more universal. All of them use 

interfaces to transport information unidirectionally or bidirectionally between the simulation 

models. However, there is no interface that is generalised and supported by a high number of 

simulation tools. A standard interface could be a solution. However, such a standard interface 

for a more universal use to link different simulation models had to be independent (Kossel, 

Claudene, & Loeffler, 2009). In recent years, some companies pushed and tried to achieve a 

standard interface with the development of MODELISAR – Interface (Consortium, 2010).  

The correspondence through these kinds of interfaces is usually dependent on the simulation 

time. Mostly, time-dependent multi-disciplinary simulations are needed to represent a time-

dependent process or task. Only in some special cases is it possible to reduce the time-

dependence of a simulation to a snapshot view such as an impact analysis of a maximum load 

case. In the case of a time-dependent simulation, also called transient simulation, the virtual 

time-line is subdivided into time samples. Time-sampling can be fixed or flexible, generated 

automatically or manually. Therefore, the virtual time-handling should be managed 

(Consortium,  2010, S. 5). Sometimes the convergence of the multi-disciplinary simulation is 

not given. This can be caused by the instability of the energy or force balance. An automatic 

correction of the virtual time-sampling step size could improve the convergence of the multi-

disciplinary simulation (Dehning & Wolf, 2006, pp. 10-11).  

The technological aspects of multi-disciplinary simulation, described above, are critical. A 

simulation middleware organises the interface-technology, the virtual simulation time-

handling and the convergence control. Another simulation middleware organises the 

communication between the different simulation models by using interface technology. Thus, 

simulation middleware runs the simulation models, deciding the simulation time step size by 

controlling the convergence criteria. One simulation middleware example is an extracted 

software application such as ICOS from Virtual Vehicle in Graz, Austria. Alternatively a 
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simulation application can even own functionatlities to run the task of a simulation discipline 

and the task of a simulation middleware. Such a simulation and simulation middleware 

application will be NX Motion. 

In addition to the simulation architecture, there are base boundaries to achieve a realistic 

simulation: A simulation can only be as good as the input of the simulation. In the case of 

multi-disciplinary simulations, there are multiple simulation inputs (Kübler, 2000, S. 21). 

Two or more single simulation models are an input for the multi-disciplinary simulation. 

Additionally, a single simulation also requires input data. All this data has to be available; 

missing data reduces the simulation result quality. 

All the previously discussed boundaries, influences and knowledge will be required for a 

multi-disciplinary simulation. Losing data or information will reduce the achievable quality of 

the multi-disciplinary simulation result. In order to secure and keep the data and information, 

the storage and management of this data and information is required. Simulation data 

management, discussed in Section 2.3, aims to meet such requirements.  

 

2.3 SIMULATION DATA MANAGEMENT 
 

This section reviews the management of simulation data and the support and management of 

simulation processes. The review will focus on the management of single simulation data and 

processes rather than the management of multi-disciplinary simulation data. As mentioned in 

Section 2.2 the data of single simulation models have to be re-used in the case of multi-

disciplinary simulation. So the handling of single simulation data and information has to be 

respected in the multi-disciplinary context. 

The management of knowledge and data, that is used or generated by simulation processes, 

can help improve the development process. The efficiency and economy of simulations, the 

design and resource investment into simulation and design are cumulated. Jenkins (2012) 

mentions:  

“[…] Interviewees identified insufficient focus on knowledge capture, data sharing and re-
use as major constraints on the value available from simulation and analysis. Data needed 
by collateral and downstream project functions is too often unavailable, outdated, or 
captive to error-prone manual methods of dissemination and re-entry. Also needed are 
ways to capture and share best practice work processes beyond the project where they 
originated. […] Individual analysts and engineers reported pragmatic needs for solutions 
that let them work faster and with higher confidence. […] Beyond this […] most would 
find simulation data and process management of greatest value […]”.  

The study of Jenkins (2012) was based on “some two dozen program managers, discipline 

leads, analysts, engineers and other employed […] in North America, Europe and Asia.” The 

interviews were focused on the “best practices […] for implementing digital simulation and 

analysis and maximizing its business impact.” This research was carried out across a range of 
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manufacturing industries including aerospace and defence, aircraft engines, automotive 

power trains, consumer electronics, medical devices and off-highway equipment. Jenkins 

(2012) thought that it would be necessary for the SDM/SPM (Simulation Data 

Management/Simulation Process Management) to be “embedded in context to the product 

structure management.” Instead of the singular view on SDM and SPM, a merged and 

common view was given about SDPM (simulation data and process management). 

Mostly SDPM will be used to manage single simulation models. So, simulation is bonded to a 

huge amount of data and information and a high number of files. This can be best 

demonstrated in a simplified example of standard FEA (Finite Element Analysis) simulation 

process Heber & Gray, (2005): 

1. There should be a description of task and input-data such as CAD models, load cases 

and boundaries etc., for the simulation to provide the information an analyst needs 

about what is to be examined. This information has to be generated by the person in 

charge.  The description information is stored in documental formats such as MS 

Word and MS Outlook etc.  

 

2. The data for describing models has to be generated. This kind of data is predefined 

from the product development department in a CAD format. In that case, the data will 

be mentioned in the description of the task.  In most cases, this will be stored in 

CAD formats such as NX and Solid Edge etc. 

 

3. The data for representing models has to be abstracted in models that are ideal for 

meshing or simulating. For example, an engine bonnet is abstracted to the mid-

surface and the thickness. This process is the first part of a so-called Pre-Process.  

The abstracted data is usually stored in initiative CAD formats as well, but they could 

also be stored in CAE formats such as FEMAP and ANSYS WORKBENCH etc. 

 

4. The simulation expert has to transform this abstracted model to a finite element 

(FEA) based format. This means that the abstracted CAD model has to be abstracted 

to a mesh with FEA-mesh-specific descriptions. “The meshing phase decomposes the 

model geometry into simple shapes or voxels like tetrahedral or bricks that fill the 

volume (Heber & Gray, 2005)”. This process is part of the Pre-Process and done in a 

FEA-Pre-Process-tool. This mesh data will be mostly stored in initiative FEA-Post-

Process-tool-specific files such as NX, FEMAP and ANSYS WORKBENCH etc. 

 

5. Based on the generated mesh or meshes, load cases and boundaries have to be added. 

A load case describing force and moment influences on mesh nodes and boundaries is 

called a mesh-node-freedom-degree-reduction. The FEA-tool adds the loads and 

boundaries. Specification of solver parameters has to be filled out and defined. “The 

finite element analysis is an approach to modelling partial differential equations by 
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replacing the continuum problem with an approximate discrete problem suitable for 

numerical solution in a computer (Heber & Gray, 2005).” A solver takes care and 

automates the mathematical routines. These load cases, boundaries and solver 

parameters will be mostly stored in initiative FEA-Post-Process-tool-specific files 

such as NX, FEMAP, ANSYS WORKBENCH etc. 

 

6. This file is not readable by a FEA-solver-tool. A FEA-solver needs a special file format. 

The file format is dependent on the solver. A solver-specific file is generated by the 

FEA-Post-Process-tool (Inc., NX Nastran User's Guide, 2009). This file is called input-

deck.  An FEA-solver-specific-input-deck file is generated by the Post-Process tool 

readable by solvers such as NASTRAN and ANSYS etc. 

 

7. An FEA-solver, solving the mathematical routines, loads the input-deck file. Based on 

the data included in the input-deck and the automated mathematical routines, the 

solver will generate matrices. Most of these matrices are only saved temporarily, but 

in some cases, it will be necessary to keep this data. Afterwards, the matrices are 

solved with the automated mathematical routines of the solver. The results will be 

stored in result files. The number of result files and their formats will be dependent 

on the FEA-solver and the defined solver parameters. There are files including results 

and others describing the FEA-solver routines and work, for examples log-protocols 

of the routines, warnings and errors. The log-files should make the solve-process 

reviewable (Inc., NX Nastran User's Guide, 2009).  The solve run will generate user-

predefined result files, protocol files and output files in the FEA-solver specific 

formats such as NASTRAN and ANSYS etc.  

 

8. The result-files include result data like stress or deformation. Unfortunately, the 

result files are very big tables and are not suitable to post simulation analysis. With 

Post-Processor tools, the results can be visualised using a virtual environment instead 

of tables. Based on this visualisation, the results become interpretable by an analyst. 

The output files and protocol files could be opened with text-reading tools such as 

Notepad to get additional information. Besides, the use of Post-Processing-tools 

requires specific user know-how. Additionally, the analysis and the interpretation of 

the simulation are not documented by the Post-Process tools (Heber & Gray, 2005). 

To document the interpreted results, other tools such as Microsoft Office are 

preferred.  In order to better understand the result interpretation, two or three 

dimensional images are integrated in the results documentation. Therefore, Post-

Processing tools provide the possibility to derivate images such as two dimensional 

jpg-, gif-formats or three dimensional JT-formats or videos such as avi-format. These 

images should be viewable with popular tools such as Microsoft Office or PDF readers 

or JT-Viewer such as JT2GO. The interpretation of the results should always be 

documented. The documentation is stored in documentation files such as MS Office 

documents and picture and movie files such as jpg-, gif-, avi- and JT-format.  
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The example in Section 2.3 is a standard simulation example and describes the required and 

produced data of a single simulation during the simulation process. In the case of multi-

disciplinary simulations, the amount of data will be multiplied. Each of the simulation models 

will be generated during its own simulation process. Afterwards, the individual simulation 

models will be merged into the multi-disciplinary simulation. A large number of files and 

information are generated during multi-disciplinary simulations, much bigger than the 

number of files and information in a single/individual simulation case. With the growing 

number of required and generated data and files, the use of simulation-data-management will 

become more important. Special and commercial applications for managing multi-

disciplinary system-simulation data will be available, but they will not address the support 

and management of the described single simulation process. Such special and commercial 

applications will be discussed in Section 2.6.  

However, a single simulation requires traceability to its simulation sources. A traceable 

management of the data and information guarantees the quality of simulation (Ulrich, 2011, 

p. 56). Two main issues should be solved for data traceability and this can be achieved using a 

simulation data management tool: 

 The design development continues and creates new versions of the product, mostly in 

the form of CAD models, whereas the simulation department works with an old 

version of the product-representing CAD models. Relationships between the data 

should provide a possibility to check the actuality of the simulation against the 

actuality of the designed product descriptions (VDA, 2008). 

 In the case of freezing a simulation, i.e. the simulation and analysis ends with a 

positive result or a necessary design change, the bases of the simulation have to be 

traceable individually. Therefore, the simulation and the simulation source data, such 

as CAD models, have to be linked to each other. This means the simulation has to be 

linked to the source versions. The used base data of the simulation, such as CAD 

models, is called the base line of the simulation. This base line has to be traceable. The 

SDM tools have to take care of product data changes, such as CAD models or 

documentations, during an on-going development or change process after the 

generation and freezing of simulation data and information (VDA, 2008). 

Simulation files should be managed by simulation data management tools (Sebastien & 

Ducellier, 2006). In addition, metadata such as the author of a simulation, the date of creation 

or data change, link-paths to external data and the state of the simulation, etc., should be 

managed by SDPM (VDA, 2008). The metadata information can be helpful, for example, in 

identifying the person responsible for the simulation model or the interpretation of a 

simulation result, and the date the data and information was generated. Metadata is 

necessary to give answers to questions like ‘Who has made what, when and why?’ or ‘What 

dependencies are given for this information?’ (Boy, Grau, & Trautmann, 2010). Knowing such 

information will help to make decisions like ‘Is the simulation too old for re-use?’ or ‘Who 

could update the simulation?’ Such decisions would be made during a product development 

or product change process. 
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Simulations could have a high impact on other areas in the product lifecycle (Sebastien & 

Ducellier, 2006). Concepts, designs, manufacturing processes, transportation and usage of the 

products could be optimised with simulation. This is because simulations can represent a 

challenge, product or scenario. For detailed and precise interpretation the simulation should 

be as realistic as possible. This requires a large amount of information and knowledge about 

the addressed challenge, product or scenario. Product data management (PDM) or product 

lifecycle management (PLM) could manage this required data and information. In order to 

merge such information with the data of the simulation, managed by SDPM, it will be useful to 

merge the data management approaches of SDPM with PDM and/or PLM (Boy, Grau, & 

Trautmann, 2010). The PDM approach will be discussed in Section 2.4 and the PLM approach 

in Section 2.5. 

A simulation process can be complex and extensive. Moreover, if the simulation process has 

to be documented or reproducible, it also makes sense to manage the simulation process 

itself. If the simulation process is fully or partially automated, costings and timings will be 

reduced if the process has to be repeated multiple times. So, the management of simulation 

processes could provide the required data, information and metadata. Fachbach & 

Rosenberger (2010) consider that simulation process management, in addition to simulation 

data management, could: 

 build a base for automation. 

Simulation could be realised with a higher efficiency by automating the 

simulation process that generates the simulation. Such automation will help to 

achieve a constant quality in the generation of simulation models. 

Additionally, the management of the simulation process will also generate 

documentation for later traceability. 

 build a base for collaboration. 

Different tasks could be necessary in a simulation process. The tasks could be 

undertaken by different persons and departments. Managed simulation 

processes could support the individuals taking part in the process. Therefore, 

the management of the simulation process could assist with ‘push and pull’ of 

data and information. This could improve the efficiency of simulation tasks. 

For the ‘push and pull’ or checking of data and information managed in a 

SDPM or PLM system, a collaborating simulation process management has to 

be integrated into these systems. 

The opinions of Fachbach & Rosenberger (2010) will be valid for individual/single and multi-

disciplinary simulation models and processes.  Fachbach & Rosenberger (2010) state:  

“SDPM concerns CAE data, processes, methods and maybe resources. These elements are 
components of more complex data flows and overall processes. SDPM can therefore be 
considered not as an isolated system – rather, it plays the role of a central middleware for 
a variety of processes and systems. […] Tight integration with other data management 
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systems and all decision-making processes, as well as the wide range of different tools in 
the field of CAE is the elementary challenge [...].”  

The ultimate goal of SDPM is to provide an efficient decision-making data base including 

simulation data and processes. A system, product or part of a product or system has to fulfil 

functionalities. Each function has to fulfil technical requirements. Fulfilment of the 

requirements could be used for validation and verification of the system, product or 

subsystems and subproducts. The achievement of requirements could be checked by 

simulations (see also Section 2.7), which will be useful for the decision-making process. SDPM 

will help to manage data, information and processes to make them useable in context with 

other data and processes. Fachbach & Rosenberger (2010) report:  

“Data supply for the virtual development process has to be guaranteed and the gap 
between the different systems has to be closed in a traceable way. The focus will be on 
the support of the decision and release process.”  

The viewpoint of SDPM will also be included in the viewpoint of simulation lifecycle 

management (SLM). CIMdata Inc. (2011) elucidated that SLM (simulation lifecycle 

management): 

“is to transform simulation from a specialty operation to an enterprise product 
development enabler that spans many segments of the product lifecycle. To do this, SLM 
should provide technology in four foundational areas: simulation and test management, 
simulation and test process management, decision support, enterprise collaboration”  

In this thesis, SLM has additional functionalities to SDPM such as decision support and 

enterprise collaboration.  

CIMdata Inc. (2011) mentioned special functionalities of a SLM system: 

 SLM should support decision processes:  

“Fundamentally, organizations perform simulations to validate decision making 
based on functional, logical, and physical requirements. SLM provides capabilities 
to capture and present simulation information and results to enable these design 
decisions.”  

 
 SLM should support enterprise collaborations:  

“With SLM, simulation is no longer decoupled from the product lifecycle. 
Simulation data and processes can be linked with requirements, parts, the BOM 
(bill of material) and other elements in the PLM process. Verification and 
validation of the design becomes more than a check in a box. Approvals have more 
substance than just a signature. Users can navigate to the exact simulation results 
that drove the design decision. SLM helps make it straightforward to see the 
genesis of the design – why certain designs were selected in favour of others. This 
exposure of simulation to the enterprise PLM provides a critical bridge between 
design and engineering.”  
 

However, in the commercial market, the derivations based on such functionalities will not be 

made. Though the commercial software approaches are called SLM, SDPM and SDM and are 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 34 of 347 
 

 

independent of the functionalities they have, the functionalities of commercial applications 

and academic oriented approach descriptions (SDPM, SDM, SLM) are incompatible. An SDPM 

tool could also be an SLM tool, such as TEAMCENTER. 

Nevertheless, SLM seems to be a combination of SDPM, PDM and PLM. So the combination of 

SDPM and PDM or PLM could be a way of achieving improvements in multiple cases 

(Sebastien & Ducellier, 2006). Therefore, Section 2.4 will discuss the combination of PDM and 

SDPM, and Section 2.5 will discuss the combination of PLM and SDPM.  

 

2.4 PRODUCT DATA MANAGEMENT 
 

Because PDM could be a success factor, companies are interested in the organization and 

collection of product development information in one database. VDA (2008) stated:  

“An increasing number of companies have introduced and are using product data 
management systems […] to control engineering data storage and to manage engineering 
workflows. […]”  

This will help to organise multiple development departments and multiple experts (Brendel 

& Kühner, 2004, p. 62). All those departments and experts are dependent upon each other 

because their work is dependent upon each other’s information and data.  A single database 

holding this information will facilitate the search for relevant data and information related to 

the individual work (Sebastien & Ducellier, 2006). So, PDM systems, also called EDM systems 

(Engineering-Data-Management) (Cummings, 2006), are applied. Besides, regional gaps 

between the different individuals working on one project or product will be bridgeable 

through PDM systems.  

Cummings (2006) mentioned that PDM still remains relevant today, for three key reasons: 

 its ability to search for information using metadata, 

 to manage interrelationships or virtual information, 

 and to foster collaboration across geographical areas  

 

I. Search for Information 
 

All data and information of a product and engineering project should be stored in a PDM 

system. Thus the PDM system should include all information and data that will present or 

represent the product and, as such, will summarise the product definition (Wikipedia 

Produktdatenmanagement, 2011) (Albers, 2011). Additionally, the metadata and information 

should be organised in the PDM system. Cummings (2006) described:  
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“Any valuable information that describes an attribute of the product can be classified as 
metadata. For example, search criterion could encompass product name, part or client 
name, or revision date. This allows searching and retrieval to be extremely focused […].” 

Such data is managed and provided by a PDM system. The PDM system also provides search 

engines to filter this data. Cummings (2006) mentioned that search functionality is important 

in engineering. Search functionalities, such as full text search for an overall search and 

metadata search for a specific and focused search will be required. 

This data and information could include interrelationships and virtual information about the 

product. Data, metadata and information should interact with each other. Therefore PDM has 

to support both the management of interrelationships and virtual information. 

 

II. The Management Interrelationships between Information and Data 
 

Interrelationships could occur between two- or three-dimensional CAD models. The CAD 

models represent the product design in a virtual environment. Interrelationships of the CAD 

models relate to objects such as drawings or even other CAD models. The interrelationships 

can combine or/and form different data representing parts or assemblies into a community 

such as system or product. Cummings (2006) mentioned: 

“This interrelationship […] is a ‘virtual construct’. This means that the only way that you 
know a particular screw or a bolt is related to a nut, is because there is this virtual 
construct called an ‘interrelationship’ between the two.”  

Interrelationships can also be used to link different kinds of information and data. 

Dependencies between different information and data, such as engineering and design 

information, will become manageable. For example, engineering information could be from a 

Microsoft Word document describing requirements for a system or product (mostly 

generated before the design process begins) and design information such as a CAD model 

describing the developed virtual product (generated during the design process). 

In addition to the improved traceability of the data and information, interrelationships will 

provide possibilities for a more complex search. This will foster the collaboration between 

different departments and persons taking part in a product development or change process. 

 

III. Foster Collaboration 
 

In engineering departments, experts focus on different and specific software applications. It 

does not make sense to train experts in each engineering software application in a company 

yet not have access to all engineering software applications. Besides, it is necessary for 

experts to be able to access information that will normally be stored in files with restricted 
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access to the authoring software application. Such information could be synchronised with 

publicised metadata. Cummings (2006) noted that the PLM system should “[…] provide the 

ability for engineers to access that data without needing the […] application installed. […] 

They will be able to access, view and manipulate […]” the data.  

Access to data has to be restricted by managing access rights of users and the access to the 

data should be opened up for different localities. Not every user has the right to change 

design models or to view them. For example, engineers who are planning a production line 

should not be allowed to change the design, but they need access to view the CAD models. 

Cummings (2006) mentioned:  

“EDM/PDM systems also provide a platform through which geographically remote teams 
can work on product design and engineering together. It provides the backbone and 
cohesion for teams to get accurate data to make informed business decisions about the 
products they design. […] The cross-geographical capabilities of EDM/PDM systems make 
these solutions more relevant because it’s an absolute business requirement […]”  

The collaboration between departments cannot end at the boundaries of a PDM system. 

Simulation experts also require data and information from design and planning departments. 

The combination of SDPM systems used by simulation departments and the PDM systems 

used by designing and planning departments could foster this collaboration thereby reducing 

gaps in the simulation process. 

 

IV. Combination of SDPM with PDM 
 

SDPM and PDM are often separate systems. This is in contrast to the interacting and 

collaborating requirements between departments. SDPM, as a separate system, cannot 

achieve full interaction with other departments, tasks and projects in a company (see Figure 

2-2). However, the interaction and collaboration between design and simulation engineering 

departments is important. So those companies investing in SDPM would also invest in 

collaborations between the SDPM system and other data management systems. Fachbach & 

Rosenberger(2010) mentioned that:  

“[…] SDMPM couldn’t be seen as isolated system - it has to be more a central linking-
system of a high number of processes and systems. […] The tight integration with other 
data management systems and all decision-making processes and the wide range of 
different tools in the field of CAE is the elementary challenge of the implementation.”  
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Figure 2-2 SDPM Integration in a Complex System- and Process-Landscape (Source: Virtual Vehicle) 

 

Consequently, the combination of SDPM and PDM could foster collaboration and improve the 

efficiency and quality of engineering. VDA (2008) noticed:  

“To increase the efficiency of virtual product validation and decrease the time to market, 
companies are striving to improve the synchronization and integration of the technical 
(CAD) engineering process and the virtual product validation process (simulation and 
computation). This implies an integration of simulation and computation data in the PDM 
environment.” 

 Fachbach & Rosenberger (2010) mentioned that:  

“A major task of SDM is the link between CAD and CAE. This gap must be closed in such a 
way that simulation results and decisions based on the functional properties in a project 
can be traced at any time and from any perspective.”  

A common collaboration framework between different data and information management 

tools used by the different departments, tasks and projects in a company will foster the 

collaboration and improve product quality. PLM tries to provide such a common 

collaboration framework as discussed in Section 2.5. 
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2.5 PRODUCT LIFECYCLE MANAGEMENT 
 

This section introduces product lifecycle management. The review will discuss the stage of 

technology and different application approaches. This knowledge will be used for subsequent 

identification of the most important SDPM and PLM application in Section 4. 

A PDM database will be only one component used to manage engineering knowledge. The 

lifecycle of a product has to go through different processes such as: 

 Idea management  

 Project planning 

 Product development  

 Product simulation  

 Product testing 

 Factory planning 

 Production planning  

 Controlling 

 Sales 

 Product Support 

 Product Recycling 

Since the number of departments, tasks, processes and time periods is great, it follows that 

the lifecycle of a product should be assisted by product lifecycle management systems. 

Robust and complex PLM systems can be used to provide information to management before, 

during and after development processes (Schuh, 2011). With large amounts of data, it makes 

sense that processes are managed and trigger-automated by the PLM system; they could also 

include automated checks such as availability of data or quality of CAD models. The 

predefining of processes and automation could reduce administrative work, increasing both 

quality (of the product and its processes) and efficiency. Therefore, the core technology of 

PLM systems will also encompass engineering data and management information through an 

interacting or mostly integrated PDM system.  

“The key to any successful PLM initiative is at its core the EDM/PDM system. In fact, PLM 
does not exist in any shape or form without the EDM/PDM component to serve up 
accurate design/engineering data” (Cummings, 2006).  

The focal point of PLM is the integration of distributed company locations and departments. 

Processes, data and IT systems should be integrated via a PLM infrastructure. Abramovici & 

Schulte (2005) discussed the vision of a continuous and company-location-overlapping 

process chain. One of the points that should be optimised in the future is the reduction of the 

number of data management systems. Multiple data management systems are a result of 

using multiple engineering software tools like CAE, CAM (Computer aided manufacturing) 

and DMU (Digital Mock Up) tools. Each of these systems or tools has its own requirements in 

combination with data management systems. There are also increasing application systems 
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such as CAx (computational added and x stands for the different options) in those areas 

where competitive advantage could be gained. These applications will generate special, 

additional data and information, which makes special and additional data management 

systems necessary. The individually specialised data management systems usually do not 

focus on general data management. So PLM tries to provide a common framework for all this 

data holding or data authoring applications. 

The backbone of PLM is to integrate various concepts, methods and IT-tools into one data and 

information management system. This system should provide engineering information, 

processes and challenges in a co-operational, global and distributed product lifetime cycle to 

optimise the product from the viewpoint of a producer, customer and deliverer. All released 

data in the product lifecycle should be integrated into the PLM-tool and should be stored and 

managed in a central or multi-central archive (Abramovici & Schulte, 2006). 

PLM requires deep integration of PDM (Abramovici & Schulte, 2006) and should build a 

common framework to integrate multiple data and information holding or producing 

applications. If SDPM is also integrated into PLM, the common framework of a PLM system 

will be further improved and the representation of a product lifecycle more realistic. 

 

I. Combination of SDM with PLM 
 

A greater amount of data and information of the product lifecycle will be available in a PLM 

system. Simulation requires detailed information and data about the product or system.  

More information and data could be used to carry out more realistic simulations. A more 

realistic simulation approach will improve the simulation quality because simulations should 

represent a challenge, product or scenario as realistically as possible. Therefore, it is 

necessary to integrate all influences appearing throughout the product lifecycle into the 

simulation (Boy, Grau, & Trautmann, 2010). A typical example is that loads or boundaries 

(like material properties etc.) should be considered based on resultant data of production 

processes. This data will also be stored and managed in a product lifecycle system (Ulrich, 

2011, p. 56). An example of this is cupping of sheets which influences the material behaviour 

of the sheet. If this sheet is embedded in a car crash simulation, the material behaviour will 

not be congruent to the general material. The simulation expert should utilise the changed 

material behaviour after the cupping (Fachbach & Rosenberger, 2010). 

In summary, PDM and PLM could include data and information that is useful for simulations. 

PLM includes a greater amount of data and information than PDM because more data and 

information in the product lifecycle is managed through PLM. In order to access more data 

and information about the product lifecycle and to improve simulation based on this data and 

information, an integration of SDPM into a PDM or PLM system will be useful (Hui, Liping, Li 

& Tifan, 2011). This integration could provide access to more important simulation source 

data and information of other departments, processes etc. (Giptner, Moshammer, & Panzer, 
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2010, p. 222). So, the simulation is both high quality and bears a much closer resemblance to 

physical reality. 

Most commercial SDPM tools are stand alone applications and only provide interfaces to PDM 

or PLM systems. Only a few of them are integrated into PLM systems. In the following 

sections, commercial SDPM tools from five leading vendors will be evaluated from the 

viewpoint of their interactions with PLM approaches. 

 

II. SDPM Application Interaction with PLM Approaches of the Five Leading 

Vendors 

 

Vrinat (2009) analysed the five leading vendors of SDPM in his research report. He identified 

them as: 

1) Company: ANSYS  

Product: EKM (Engineering Knowledge Manager) and Workbench V10 (Released Q2 

’09) 

2) Company: MSC Software (MSC) 

Product: SimManager and SimXpert R14 (Released Q2 ’09) 

3) Company: Siemens PLM Software (Siemens) 

Product: TEAMCENTER for Simulation V8 (Released Q3 ’09) 

4) Company: Dassault Systèms / SIMULIA (DS/SIMULIA) 

Product: Enovia SLM V6 R2010 (Released Q2 ’09) 

5) Company: Altair 

Product: Hyper Works Enterprise (Released Q4 2009/Q1 2010) 

The same leading vendors are also listed in Ulrich (2011). These five vendors actually 

provide the most effective simulation data management tools.  

In relation to the support and management of multi-disciplinary system-simulation in a PLM 

environment, the expectation and cooperation on a SDPM and PLM interaction is high. So, it is 

not only single simulation processes and data that have to be managed and supported, but 

also merging multi-disciplinary system-simulations. The SDPM tools that are the best for 

cooperating and interacting with PDM and PLM applications could provide both important 

and valuable information for the research project.  

All major vendors have achieved significant progress through data integration between 

different simulation authoring tools. In PLM integration, ANSYS and Siemens have achieved 

good ratings whereas all other vendor’s ratings were relatively low (Vrinat, 2009). According 

to ANSYS (2011), ANSYS EKM has an interface to PLM/PDM applications such as Windchill 

from PTC and TEAMCENTER from Siemens. However, there is no document declaring that 

ANSYS EKM is integrated into a PDM or PLM system. This means that all vendors except for 

Siemens have to use interfaces to PDM or PLM systems for data integration. Data and 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 41 of 347 
 

 

information that is not supported by an interface have to be handled using a PDM or PLM 

system separately from the SDPM system. 

DS/Simulia or SIMULIA SLM from Dassault Système is based on Dassault Systèmes’s V6 

platform technology. This solution includes scenario definitions, execution engines, live 

simulation reviews, Isight and other add-on components. The scenario definition is based on 

Dassault Systèmes ENOVIA V6 data management technology (CIMdata Inc., 2011). This 

combination represents a good but not full integration into a PLM system. 

TEAMCENTER Unified ® from Siemens is a high level PLM and PDM system which includes a 

fully embedded SDPM tool. TEAMCENTER for Simulation, a specialised application on top of 

TEAMCENTER Unified Technology, has the highest ranking and coverage in the scorecard of 

Vrinat (2009). The product TEAMCENTER for Simulation is more a branding; the official 

product name is TEAMCENTER Simulation Process Management ® (PLM, 2012). In the case 

of TEAMCENTER Simulation Process Management ®, the SDPM system is directly integrated 

into the PLM system TEAMCENTER. This integration also supports the direct use and 

cooperation with TEAMCENTER System Engineering & Requirements Management ® 

(Mahler, 2012). Interfaces from TEAMCENTER to 3rd party software tools, like DOORS, are 

also available (Inc., Siemens Product Lifecycle Management Software, 2001). 

In summary, TEAMCENTER can be seen as the best SDPM tool in achieving a high level of 

interaction with PDM and PLM applications. However, it still does not provide the full 

integration/management of the data and information generated in multi-disciplinary 

simulations. This is the focus of the proposed new framework. Section 2.6 will discuss this in 

more detail. 

 

2.6 DATA MANAGEMENT OF MULTI-DISCIPLINARY SIMULATIONS 
 

This section will review the data management of multi-disciplinary simulations.  Current 

SDPM systems will be evaluated against their performances of supporting and managing 

multi-disciplinary system-simulations. Additionally, existing special applications for system-

simulation data management will be discussed. The knowledge gained from this evaluation 

will be used for the purpose of identifying the most important SDPM and PLM applications in 

Section 4.   

Following the development of multi-disciplinary simulations, there has been an up growth in 

demand for data management tools.  Commercial SDPM tools do not meet all these demands. 

Some are met by special applications to manage system-simulation data such as LMS.SysDM 

of the LMS Company. Such applications manage behaviour models of selected simulation 

authoring tools (Matlab / Simulink and LMS.Imagin Lab) (LMS International, 2012). However 

functions of data management fundamentals have not been met. Furthermore, the 

connectivity to PDM or PLM are not available. In addition, the openness for cooperating with 
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multiple simulation authoring tools is ineffective. As far as the author is aware, there are no 

tools that offer universal support of multi-disciplinary simulation data management. 

In the context of SDPM systems, the support of multi-disciplinary simulations could be 

misunderstood.  

1.) One understanding could be that the SDPM application should support multiple 

simulation authoring tools. This means that SDPM should be independent and 

support multiple simulation tools. The disciplines of the simulation tools should not 

have any influence on the SDPM systems. This independence is not given in every 

case (Fachbach & Rosenberger, 2010).  So, Vrinat (2009) and Fachbach & 

Rosenberger (2010) identified the need to support multiple and disciplinary-

independent simulation tools with SDPM tools. Wrongly or misleadingly, these are 

often called multi-disciplinary (Vrinat, 2009). 

 

2.) Another understanding could be that data and information of a simulation, that 

combine multiple disciplines, needs to be managed. In the case of supporting multi-

disciplinary simulations, the different simulation tools or simulation disciplines have 

to be coupled. The data and information of the coupled simulation should be managed 

and represented by an SDPM system (Giptner, Moshammer, & Panzer, 2010, p. 222-

223). The thesis of Giptner, Moshammer, & Panzer (2010, p. 222-223) elucidated for a 

special solution of SIEMENS AG Austria that the importance of coupled simulation will 

increase. However, this kind of simulation would generate heavy dataflow between 

different departments and companies in the development process. In order to provide 

this dataflow, an SDPM system embedded into PDM is required.  

The understanding of multi-disciplinary in the research project will be congruent to the 

second point. However, the second point also includes the first point because the 

management of data and information generated by a multi-disciplinary simulation also 

requires the management of data and information generated by multiple simulation 

authoring tools. 

 

I. SDPM Systems for Supporting Multi-Disciplinary-Simulations  
 

The SDPM systems presented in Section 2.5 II will be used as a base for the evaluation. The 

usability of the five SDPM systems above in the multi-disciplinary simulation data and 

process management will be examined. 

Dassault Systems provides the products SIMULIA Multiphysics Digital Lab and SIMULIA Co-

Simulation Engine to support co-simulations. These products can be coupled with their PLM 

product ENOVIA. SIMULIA Multiphysics Digital Lab supports the multi-physics simulation 

with simulation tools of Dassault Systems like the Abaqus simulation tools or products of 
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involved partners (Systems, 2012) such as CD-Adapco (Dassault Systems, 2010). Dassault 

Systems (2010) explain that Abaqus and CD-Adapco can be coupled to carry out fluid-

structure-integrated simulations by using SIMULIA Co-Simulation Engine. CD-Adapco 

specialises in simulation tools for thermal and flow simulation. Abaqus, which is part of the 

Dassault Systems Company, concentrates on simulation tools for structure simulations. In 

order to link these simulation tools, interfaces such as the MpCCI interface from Fraunhofer 

SCAI Institute are used. However, no documentation (CIMdata Inc., 2011;Dassault Systems, 

2011; Dassault Systems, 2012) includes information about the fact that Dassault Systems 

tools manage multi-disciplinary simulation data and process. It seems therefore, that 

effective functionality for supporting and managing multi-disciplinary simulation data and 

process has not been integrated. 

Ansys EKM could cooperate with PDM enterprise databases, but it is an independent tool 

with file-based storage for the data. Only the metadata is stored in the SDM system database 

(ANSYS), hence it is not integrated in a PLM context. As far as the author is aware, there are 

no publications about functionalities with Ansys EKM to manage multi-disciplinary 

simulation data and process (Ansys, INc., 2011). Similarly, it seems that effective 

functionalities for supporting and managing multi-disciplinary simulation data and process 

have not been integrated. 

With the product SimXpert, MSC provides a multi-disciplinary simulation tool as authoring 

tools to generate multi-disciplinary simulation models (MSC.Software Corporation, 2011). 

However and so far as the author is aware, there are no publications including information 

about the functionalities of MSC SimManager to support and manage multi-disciplinary 

simulation data and process (MSC.Software GmbH, 2012). Again, as above, there is no 

evidence to show that effective functionalities to support and manage multi-disciplinary 

simulation data and processes have been integrated.  

Similarly, and as far as the author is aware, there are also no publications incorporating the 

functionalities of Altair Hyperworks to support and manage multi-disciplinary simulation 

data and process (Altair Hyperworks, 2012). So the same conclusion can be drawn that the 

effective functionalities to support and manage multi-disciplinary simulation data and 

process have not been integrated. 

As for Siemens TEAMCENTER, unfortunately, the author has not been able to find any 

publications about the functionalities that fully support and manage multi disciplinary 

simulation data and process (Siemens Product Lifecycle Management Software Inc, 2012). 

There is some low level integration however.  For example, different individual simulation 

models can be related to each other. The interaction of individual simulation models during 

an inter- and multi-disciplinaery simulation could be represented by such relation. In 

addition, TEAMCENTER provides technologies for managing CAE data and EBS (equation 

based simulation) data and TEAMCENTER provides special technologies to configure 

implementation and cooperation with external authoring software tools. On this way 
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different simulation authoring tools and different simulation individuums could be 

supported. 

The evaluation shows that none of the five leading SDPM tools provides the functions to fully 

support and manage multi-disciplinary simulation data and process. However, the evaluation 

identified that among these five tools, two SDPM tools provide some basic functions for the 

data integration management. One system is provided by Dassault Systems Company and the 

second system by SIEMENS Industry Software GmbH & Co.KG. The Dassault Systems 

Company focuses on specialised simulation authoring tools, whilst the SIEMENS Industry 

Software GmbH & Co.KG system is open to integration with other simulation authoring tools. 

This difference is important because the latter system offers more opendess of a new 

framework for supporting and managing multi-disciplinary simulation data and process. 

Notwithstanding, commercial but specialised applications for system-simulation data 

management are available and these are discussed in the next section. 

 

II. Commercial System-Simulation Data Management Applications 
 

Few software tools address the data management of system-simulation data. Those 

companies that require system-simulation data management tend to create and program 

their own solutions, such as the work of Bindick, Lange & Lund (2012) and Bauer, Stüber, 

Meller & Gruber (2012). The leading vendor of system-simulation data management is LMS 

with its product Imagine.Lab SysDM.  

“LMS Imagine.Lab SysDM is the solution to manage system data originating from LMS 
Imagine.Lab AMESim and other system-simulation tools, providing a collaborative 
environment for Model-Based Systems Engineering data. […] The management of 
multiple representations of components and subsystems in a system is enabled with 
‘variant’ management, allowing the instantiation of a system model, function of the stage 
of development, and the purpose of the simulation (LMS International, 2012).”  

So, LMS Imagine.Lab SysDM is a data management tool focused on behaviour models such as 

those from LMS Imagine.Lab AMESim or Matlab/Simulink. Additionally, CAE data of other 

simulation authoring or solving tools such as Nastran input decks are storable. So LMS 

Imagine.Lab could manage different kinds of simulation data. However, LMS Imagine.Lab only 

supports the modelling of simulation models created with LMS Imagine.Lab AMESim. This 

means LMS Imagine.Lab SysDM cannot be used for simulation data and process management 

in general (for all kinds of models) because the support of the modelling processes is 

restricted. LMS Imagine.Lab AMESim is an exception because this simulation authoring tool is 

supported in an SDPM context with LMS Imagine.Lab SysDM. As result, only the executable 

files generated by external simulation processes are stored in LMS Imagine.Lab SysDM with 

exception of LMS Imagine.Lab AMESim simulation processes. Additional, LMS Imagin.Lab 

SysDM is not integrated into a PLM system. 
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The main focus of LMS Imagine.Lab SysDM is on system-simulation data that is modelled and 

used at the system level. The system level defined by the system engineering methodology is 

assumed in this context. LMS noticed in the context of system engineering and the usage of 

LMS Imagine.Lab SysDM (LMS International, 2011): 

”Model-based systems engineering relies on system level models to simulate the overall 
performance and behaviour of new intelligent products made of complex interactions 

between mechanical, hydraulic, pneumatic, thermal and electric, electronic phenomena.” 

Simulation models that simulate system behaviour, such as a simulation model created in 

system engineering context, are called behaviour models. Behaviour models represent the 

behaviour of functions. Multiple behaviour models are mostly dependent upon each other. 

This is similar to multiple functions that are dependent upon each other. Multiple functions 

also interact with each other. To represent such interaction of functions, the behaviour 

models could interact (assuming the required interfaces are available) with each other as an 

inter-disciplinary simulation. This will be discussed in more detail in section 4.8.1 and 

4.8.2. For the modelling of the behaviour models, EBS authoring tools will be used. The 

EBS authoring tools provide a multi-physical (disciplinary) modelling environment. So, 

the behaviour model technique will often be used for multi-disciplinary and inter-

disciplinary simulation. Nevertheless, the EBS technique will be restricted in the 

accurateness and detailing of the reality. The modelling of EBS models with high 

accurateness and detailing will be often uneconomical. Other simulation techniques such as 

FEM (finite element mothod), MBS (multi body simulation), SPM, CFD (computational 

fluid dynamics), etc. provide bether technologies for improved accurateness and detailing. 

In some cases simulation models with improved accurateness and detailing will be required 

in multi-disciplinary and inter-disciplinary simulation context. As a result, model-based 

systems engineering will use behaviour models for validation and verification of both 

products and the underlying product development processes. Thus the combination of 

systems engineering methodology and system-simulation can be seen to improve the 

development process, which will be discussed in Section 2.7.  

TEAMCENTER can be used for the data management of behaviour models. TEAMCENTER 

supports the modelling of simulation models with Matlab/Simulink and the system-

simulation generation with Matlab/Simulink simulation models. However, the behaviour 

model’s technology is limited to the context of Matlab/Simulink. The architectural concept 

provides possibilities to add the support of other simulation authoring tools, but this requires 

API configuration (Siemens Product Lifecycle Management Software Inc., 2012). A detailed 

data acquisition of the behaviour modelling technology in TEAMCENTER will be documented 

in Section 4.8.  The behaviour model technology is fully integrated into TEAMCENTER and, 

consequently, into a PLM system. 

Another system-simulation data management system is the model library that can be added 

to the simulation middleware ICOS. This system is provided by the international research 
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centre “Virtual Vehicle” in Graz (Zehetner, Wenpu Lu, Watzenig & Bernasch, 2012). The 

system is rather a research object than a commercial product and designed solely for internal 

use by the Virtual Vehicle Company. The system stores EBS library models generated by 

functional departments. Data management is achieved using metadata. The metadata points 

to stored library models. This package can then be populated in the system-simulation data 

management system. The library models and metadata are re-used for the generation of 

system-simulation models. The system-simulation models are project-oriented (the data is 

dedicated logically to the project). The software can be seen as a central data store system to 

manage models and additional simulation artefacts. Only the metadata and the executable 

simulation files are stored in the presented software.  As a result, it is not integrated into a 

PLM system. 

 

From the discussion above, it can be seen that there is no system-simulation data 

management software that fully supports a variety of simulation models and system-

simulation models. None of them provide an open approach to support the simulation 

modelling process. This means that no system-simulation data management software can be 

used to provide SDPM functionalities even though the behaviour model technology of 

TEAMCENTER provides the integration function to a PLM system.  Inevitably, this system-

simulation data management system only provides the lowest interaction with other 

simulation authoring tools. 

 

  

2.7 THE SYSTEM ENGINEERING METHODOLOGY  
 

The purpose of the system engineering or system engineering process is to provide a process 

that transforms requirements into technical specifications that support a development from 

the product architecture concept to the detailed virtual product description (Department of 

Defense, Systems Management College, 2001).  The system engineering process summarises 

and details the needs and requirements from customers into sets of development-level-

dependent product and process descriptions. The development-level-dependent sets of 

requirements and specifications could be compared with the functional description of a 

system or other kinds of virtual product descriptions. On each level of development, the 

requirements, specifications, virtual product and process descriptions become more and 

more detailed. The virtual product and process descriptions can be a functional description of 

the system, and CAD or CAE models. The system engineering methodology usually progresses 

through multiple development levels such as the concept level, the system level, then the 

subsystem and the component level shown in Figure 2-3. 
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Figure 2-3 Levels of System Engineering 

At each level there is a level-related product description, such as functional or design data. 

The product development process is verified at the beginning of each step from one level to 

the next. This verification is to evaluate the fulfilment of the requirements and specifications 

of the level-related system solution. The verification procedure is a design synthesis and 

often follows mini-V model (Berry, 2011; Department of Defense, Systems Management 

College, 2001) as shown in Figure 4-2. The verification process compares the requirements of 

a system or subsystem against the achieved functions of the product design. This should be 

done at each development level. The engineering product design normally starts at the 

system level with the generation of functions. Then CAD geometrical models will be created 

during the development process. 
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Requirements Synthesis

Product design

Requirements driven design Function given by design

Test fulfillment of requirements

 

Figure 2-4 Mini V-Model for Verification 

The system engineering methodology supports the development of mechatronic systems 

(Vyatkin, Hanisch, Cheng, & Chia-Han, 2009). The detailing of the product requirements from 

one development level to the next creates improved input for each subsequent development 

process step. The INCOSE International Council on System Engineering (2013) comes to the 

consensus that  

 
“Systems Engineering is an engineering discipline whose responsibility is creating and 
executing an interdisciplinary process to ensure that the customer and stakeholder's 
needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant 
manner throughout a system's entire lifecycle.”  
 

This definition integrates the viewpoints of the three main standards: MIL-STD-499A 

“Engineering Management”, EIA Standard IS-632 “System Engineering” and IEEE P1220 

“Standard for Application and the management of the Systems Engineering Process. 

 

In addition to the verification of the development process, a validation of the system or 

product is supported by the system engineering methodology. This verification is used to 

check the development process against the achievements of an expected system or product 

development step.  Katasonov & Jyväskylä (2008) wrote about the verification:  

 

“Am I building the right product? Checking a work product against higher-level work 
products or authorities that frame this particular product.”  

 

As for the validation of a product, a system or product prototype has to be developed. That 

means the validation process can only be done at the end of the system or product design 
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process. Activities such as testing and the simulation of virtual prototypes belong to the 

validation process. 

 

The validation process can be based on a component, a subsystem or a system. The checked 

requirements and specifications of a validation test or validation simulation are dependent 

contextually to the prototype and the development level (component, subsystem, system). So, 

a subsystem prototype will mostly be checked against the requirements and specification 

that should be achieved by the subsystem. The validation of the system and product 

requirements should be checked at all the development levels. In Figure 2-3 the development 

levels start with the concept level and go down to the component design development level. 

At each downward step, a verification of the development process in the mini V-model (see 

Figure 2-4) will be carried out. Subsequently, the system or product validation process goes 

upwards beginning with the simulation and testing of component prototypes concluding with 

the testing of the end system or product. This is called the big V-model and is shown in Figure 

2-5. 

 

 
Figure 2-5 Big V-Model 

 

Multi-disciplinary system-simulation plays an important role in the system engineering 

methodology. It can be used for validation and verification (Zaeh & Baudisch, 2003). 

Therefore, simulation has to represent a system, subsystem or component (Hui, Liping, Li, & 

Tifan, 2011). The representation of a system, subsystem or component requires the 
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simulation of multiple physical disciplines.  The simulation models should be kept simple 

because there is a gap in the access, availability and identification of interacting simulation 

models. With increasing complexity of the simulation models the requirements to close these 

gaps will increase also. A common framework ought to close these gaps. Additionally, a 

common framework should help to plan the simulation models of a system, subsystem or 

component. For example, a common framework could represent the relationships between 

data, and support the distributed simulation model generation process with this associated 

information. So, different simulations could work on a common simulation with sub-ordered 

simulation models, and be based on system or product descriptions such as functions or CAD 

models (Zaeh & Baudisch, 2003). However, the most common basis of a behaviour simulation 

will be functions which will help to keep the simulation model simple as many boundary 

conditions could be ignored.  In several instances, this kind of base will be not ideal although 

it will reduce the gap of missing data relations, data interaction and data availability. As 

stated earlier, a common framework should close these gaps and provide better support for 

such simulations. In addition there is another gap in the support of simulation data lifecycle: 

The simulation sources, simulation requirements, simulation authoring tools and solving 

tools changes during the lifecycle.   Simulations are achieved for a specific moment in the 

development process. Often such a moment in the development process will be a milestone. 

Therefore, a simulation specific view on the simulation data lifecycle is not always required. 

However, system engineering integrates both verification and validation technology during 

the product development lifecycle. So, the simulation technologies would be used to check 

system, subsystem or component behaviours against requirements during each development 

level. As such, the simulations will be dependent upon the development process and the 

different development levels and those simulations will be dependent upon the products or 

functions lifecycle. Additionally, the representation of the required simulation accuracy 

changes during the development process. To address these changes the simulation authoring 

tool will require modifications during development processes. Nevertheless, the simulation of 

the same system, subsystem or component will be applied multiple times with different levels 

of accuracy throughout different development levels during the product or function 

development process. This will mean that the simulation underpinning its own lifecycle and 

will be dependent upon the product or function lifecycle. Again, there will be gaps in the 

support of lifecycle dependencies and a common framework should remove these gaps and 

provide improved support. 

  

The new framework to improve the support and management of multi-disciplinary 

simulation data should provide the data management of the system engineering process with 

verification and validation simulations. That means that the new framework has to support 

and manage system-simulation data. 

 

In summary, the system engineering methodology shows that future product development 

methodologies will require an interaction between different disciplines. This idea of 

combining different disciplines is similar to that of the PLM system. The TEAMCENTER PLM 

system of Siemens Product Lifecycle Managment Software Inc. (2011) supports that:  
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“complex. […] Products require a systems-driven approach to product 
development that combines systems engineering with an integrated product 
definition […]” 

 

 

Ergo systemengineering theory should be integrated into the product development process 

and hence in the product lifecycle.  

 

From the above discussion, it can be seen that there are considerable gaps between existing 

functions of systems and software and those required for achieving full system integration to 

support and manage multi-disciplinary and inter-disciplinary system simulations in a PLM 

environment (Zaeh & Baudisch, 2003). The discussion about how to deal with this gap will be 

examined in Section 2.8. 

 

  

2.8 PROBLEM DISCUSSION 
 

This Section will discuss the gaps between the functional requirements of supporting and 

managing multi-disciplinary and inter-disciplinary system-simulation in a PLM environment 

with those of existing commercial products. The gaps are:  

 

- the functions for implementing the universal support of multiple simulation 

authoring tools in a multi-disciplinary environment 

- the functions for supporting the cooperation and interactions between multiple 

simulations (inter-disciplinary simulation) in a PLM and SDPM environment 

- the functions for supporting the different system or product descriptions in multi-

disciplinary system-simulation  

- the functions for supporting the interactions between different development 

disciplines involved in a product development process  

  

2.8.1 FUNCTIONS FOR THE SUPPORT OF MULTIPLE SIMULATION AUTHORING TOOLS 
 

Most of the current SDPM systems are focused on geometry-based FEM (Finite Element 

Method) simulation. However, SDPM systems should also be open to other kinds of 

simulations such as EBS simulation in a controller simulation.  Furthermore, it would be ideal 

if SDPM supports all kinds of CAE software (Dr. Ing. Sippel & Dipl. Ing. Niederauer, 2010, S. 

209). The support of different simulation authoring tools includes the ability to execute them 

and the opening of the simulation models (see Section 2.6 I). Some of the evaluated SDPM 
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tools meet this requirement. However, only TEAMCENTER for Simulation can offer a high 

level of transparency when interacting with different simulation authoring tools. 

The requirement for SDPM applications exists in the support and management of multi-

disciplinary simulation. Multi-disciplinary simulation requires simulation models from 

multiple simulation authoring tools. But SDPM applications do not currently support and 

manage multi-disciplinary simulation. Instead of SDPM tools, system-simulation data 

management tools (see Section 2.6 II) can be used. However, the system-simulation data 

management solution does not support and manage all kinds of simulation authoring tools 

(see Section 2.6 II). So, system-simulation data management software solutions are not 

supporting the generation of system-simulation models interacting with individual 

simulation models generated by different authoring tools.  In addition, the system-simulation 

data management software solutions preclude the interaction with PDM and PLM. 

The previous discussions show that no existing tools can be used to support multiple 

simulation authoring tools across the required breadth of different domains. 

  

2.8.2 FUNCTIONS FOR THE SUPPORT OF THE COOPERATION AND INTERACTION BETWEEN 

MULTIPLE SIMULATIONS 
 

In the case of multi-disciplinary-simulation, the different simulation disciplines and 

simulation tools have to be coupled (Zaeh & Baudisch, 2003). This can be a serial or parallel 

coupling (for detail see Chapter 6). Parallel coupling is called co-simulation (Geimer, Krüger, 

& Linsel, 2006). A co-simulation requires multiple simulation models running in parallel. In 

the case of multi-disciplinary simulation, the data of multiple simulation models has to be 

managed. Each of the simulation models is generated in a single simulation process that 

generates a large quantity of files and data (see Section 2.3). The data management of multi-

disciplinary simulations includes the management of all these files and data of interacting 

single simulation models involved in the multi-disciplinary simulation. 

Actually, some SDPM tools can support the generation of single simulation models that are 

CAE vendor-independent. By comparison, no system-simulation data management tools 

support the generation of single simulation models that are CAE vendor-independent. The 

CAE vendor independence is important for a common framework because multi-disciplinary 

simulations mostly require multiple CAE vendor simulation authoring tools. As a result 

current data and information of an individual simulation and of system-simulations are often 

not managed by one tool. Importantly, the simulation data has to be managed in a way that 

the dependency is tracked and traceable (Ulrich, 2011).  An individual simulation will be 

refollowable in the SDPM but not in the system-simulation data management tools. 

Consequently, traceability from the system-simulation model to the individual simulation 

model source will fail.  Essentially, there is a gap because the cooperation of and interactions 

between multiple simulations are supported by system-simulation data holding tools, but the 
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holding of the data in such a system will lose the support of the simulation process and its 

relationship to those simulation sources.  Hence, there will be a gap between the functions of 

SDPM and PLM in supporting the cooperation and interactions between multiple simulations. 

Therefore, in addition to the traceability of individual simulation models, the multi-

disciplinary simulation should be traceable to different system or product descriptions. 

 

2.8.3 FUNCTIONS IN THE SUPPORT OF DIFFERENT SYSTEM OR PRODUCT DESCRIPTIONS 
 

Every kind of simulation requires large, varying amounts of different input data and 

information. The simulation result quality is dependent upon the quality of this data and 

information. A high quality of the input data and information will result in superior 

simulation results, thereby making the simulation more realistic.  

Not only mono-disciplinary simulations, but also multi-disciplinary simulations require input 

data and information. In a system engineering methodology, a multi-disciplinary simulation is 

used for validation or verification of systems or products. The systems or products can be 

described in different ways such as CAD models or function descriptions (see Section 2.7). 

Multi-disciplinary simulations are based on these system or product descriptions (Zaeh & 

Baudisch, 2003).  

Changes of simulation sources during the development process could considerably affect 

simulation results. Therefore, simulation source changes have to be reflected by the 

simulation responses. This requires traceability of the simulation data and information to its 

associated input data and information. Traceability is also required in the case of reviewing a 

frozen simulation. A frozen simulation means that all data will be freezed and unchangeable. 

Freezed data will be required for example to support on-going processes in production and 

restrict uncontrolled parallel data changes. Freezing will keep all data and information at a 

fixed stage, thereby making a simulation reviewable, checkable and traceable back from the 

simulation model to those simulation sources.  

Most current SDPM systems are focused on geometry-based FEM simulations, i.e. they are 

focused on CAD model sources. System-simulation data management tools are focused on 

managing simulation source metadata information rather than on simulation source data and 

information. LMS Imagine.Lab supports an additional interface to generate the metadata 

imported from sysml-files (OML SysML, 2012). However, there are no tools that are 

supported by several system or product descriptions in the context of multi-disciplinary 

simulation data management. SDPM can help make individual simulation unique and 

traceable to source data.  Source data holding systems are normally PDM and PLM systems. 

However, no technologies are available to make multi-disciplinary system-simulation unique 

and traceable to that source. 
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2.8.4 FUNCTIONS FOR THE SUPPORT AND INTERACTION BETWEEN DIFFERENT 

DEVELOPMENT DISCIPLINES 
 

As mentioned above, the generation of simulation requires high amounts of input and 

information. Such data and information are generated during the development process and 

different development tasks. These tasks can be completed by different departments and 

experts. 

There are different kinds of product description information and data. Typical examples are 

functional descriptions of systems or products and concept descriptions such as sketches or 

concept models, detailed by mechanical or electrical CAD authoring tools. Correspondingly, 

the formats of these descriptions are different. So, the production process of a system or 

product can influence the lifecycle of a system or product’s approach. This is the reason why 

the production process should be both considered, and included, in the simulation. Since this 

data, information and knowledge are generated by different departments, the corresponding 

simulation should have access to the data and information of those departments. 

In Section 2.7 it was ascertained that validation and verification affect the development 

process. Simulations could be used for those validation and verification tasks. To make 

verification or validation simulations effective during the development process, the 

information and data flow of the simulation to other departments should be properly 

organised. This could be achieved manually or automatically. A data management system 

should assist the data and information during a data flow process, for example in data and 

information push, pull, input and export. As such, the data and information flow are 

important for system simulation. So, other simulation systems in the development process 

should be able to access the data and information of the simulation. In this area of system 

functions, there is an issue. That is, SDPM, PLM, PDM and system-simulation data holding 

approaches do not support and manage the interactions between different development 

disciplines in the case of multi-disciplinary system-simulation. 

The idea of a cooperative development and department-overlapping database is discussed in 

Section 2.5.  PLM systems try to provide the functionality for cooperative data management 

between different development departments. But few commercial PLM systems include 

SDPM systems. The evaluation identified that TEAMCENTER is a leading PLM system. 

However, a PLM system supporting multi-disciplinary simulations was not identified. 

Similarly, system-simulation data management tools are independent tools and do not have 

the functionality to interact with PLM tools.  

So a new and improved framework for supporting and managing multi-disciplinary 

simulation data is required. This will be discussed in Section 2.9. 
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2.9 PROPOSITION OF A NEW FRAMEWORK 
 

As discussed in Section 2.8, there are gaps between the functions of the system for fully 

supporting and managing the data and information, and those of the existing systems in a 

PLM environment. These disparities result in a reduced efficient product development 

process and lowerd quality developed systems or product. Therefore, it is important to 

propose and develop a new framework to minimise discrepancies. The new framework can 

be used to support and manage multi-disciplinary simulation data and to improve 

development processes and systems or products. Additionally, such a new framework could 

be used to support development methodologies, for example, the system engineering 

methodology discussed in Section 2.7 could be improved to be a system-simulation based 

system engineering methodology (see Section 9.4). This means that the validation tasks in the 

system engineering methodology could be executed by simulations throughout the 

development process and at each engineering level. For the support of the system 

engineering methodology, it will be necessary to integrate the support and management of 

multi-disciplinary simulation integrated in a PLM environment (see Section 2.8.4).  

As mentioned in Section 1.1, the full development of this new framework is impossible in the 

given time and with the given budget of the research project. Multiple resources such as 

programming experts, IT specialists and software architects are necessary for the full 

development. But the costs of these resources are well beyond the project budget. However it 

is feasible to conceptualise and design the new framework. It is expected that the 

conceptualisation and design of the new framework will provide enough information and 

knowledge to find the answers to the research questions presented in Section 1.2 and hence 

to achieve the corresponding research objectives. 
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3 RESEARCH METHODS  
 

3.1 INFORMED TOPICS 
 

An improvement of multi-disciplinary simulation could be achieved by the management and 

support of multi-disciplinary simulation models. This will include the support of overlapping 

process tasks such as the pre-, post- and solve-processes (Bäuerle-Mahler, 2011, S. 6) (see 5.1 

Simulation Process Basics). Existing technologies of the individual simulation process tasks 

and existing data management solutions could be re-used. Nevertheless, there will still be a 

lack in the support of overlapping cooperations in the case of multiple simulations and their 

tasks. A complex system simulation will require multiple experts and multiple software 

applications to achieve multiple simulation process tasks. The idea is to conceptualise a new 

framework to support and manage multi-disciplinary system-simulation in a PLM 

environment. 

The research of conceptualizing such a new framework could be achieved based on the post-

positivist research philosophy. 

 

3.1.1 ONTOLOGICAL VIEWPOINT 
 

Davison (1998) discusses:  

“Two major research philosophies have been identified in the Western tradition of 
science, namely positivist […] and interpretive. […]Positivists believe that reality is stable 
and can be observed and described from an objective viewpoint. […]Interpretivists 
contend that only through the subjective interpretation of and intervention in reality can 
that reality be fully understood.” 

In the discussion, the positivist likes to analyse phenomena which should be isolated and the 

observations should be repeatable:  

“Positivist researchers believe that they can reach a full understanding based on 
experiment and observation. Concepts and knowledge are held to be the product of 
straightforward experience, interpreted through rational deduction.” (Davidson, 1998) 

In the research project, the new framework should solve the phenomena of supporting and 

managing multi-disciplinary simulation. The observation will be based on the analysis of 

multi-disciplinary simulation case examples. Davison(1998) also discusses:  

“This often involves manipulation of reality with variations in only a single independent 
variable so as to identify regularities in, and to form relationships between, some of the 
constituent elements. [...] Predictions can be made on the basis of the previously observed 
and explained realities and their interrelationships.”  
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Variations of variable (variable-studies) will not be realised. Nevertheless, analysis of the 

case examples will identify regularities of multi-disciplinary simulation processes.  

Ryan(2006) discusses the two main positivistic philosophy views. The post-positivistic 

philosophy view will be discussed: “Post-positivist research principles emphasise meaning 

and the creation of new knowledge”. The research of the post-positivist will create “[…] 

movements that aspire to change the world”. The new framework should change the world of 

multi-disciplinary-simulation using new knowledge about multi-disciplinary simulation data 

management. Ryan (2006) continues elaborating on post-positivistic research: “Research is 

broad rather than specialised – lots of different things qualify as research”. In order to 

conceptualise the new framework, multiple influences on the multi-disciplinary simulation 

process coming from different disciplines have to be analysed. Theory and practical case 

examples will be combined in the research project to conceptualise a new framework:  

“Theory and practice cannot be kept separate. We cannot afford to ignore theory for the 
sake of ’just the facts’. […] The researcher’s motivations for and commitment to research 
are central and crucial to the enterprise” (Ryan, 2006 ).  

The research project will use the ontological perspective of a post-positivist approach. The 

use of the post-positivistic viewpoint will influence the ontological base. This will be 

discussed in Section 3.1.2. 

  

3.1.2 ONTOLOGICAL BASE 
 

The ontological base can be described by research types such as discussed in Kothari (1990). 

The main types are: 

 Analytical vs. Descriptive  

 Applied vs. Fundamental 

 Quantitative vs. Qualitative 

 Conceptual vs. Empirical 

 

I. Analytical / Descriptive Research 
 

In (Ryan, 2006) it is stated that the post-positivist approach concentrates on learning, not on 

testing. This means that post-positivist researchers mostly use available facts and 

information to create new knowledge: 

“Post-positivist researchers believe that positivist research methods predominantly 
mirror the representational ideology of the positivist researchers. Where the positivist 
researcher might strive to discover objectively the truth hidden in the subject’s mind […]” 
(Ryan, 2006).  
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In contrast to the analytic research, a descriptive research could be done. Descriptive 

research will include surveys and different kinds of fact-finding enquiries. The user of this 

research type has no control over the variables. He/she can report what has happened. An 

analytic researcher will use available facts or information. He/she analyses these facts and 

information to make a critical evaluation (Kothari, 1990).  

The research project will re-use multi-disciplinary simulation case examples from industry. 

The existing data will be analysed. The required information is available as industry or 

research-oriented reports or self-made project work. The research project will use the 

analytic research. 

 

II. Applied/ Fundamental Research 
 

Principally, the applied research type will be used to find solutions for immediate problems 

facing a society, industrial or business organization. The applied research type will be used, 

for example, for marketing research. In contrast to the applied research, the fundamental 

research type takes care about generalizations and the formulation of theories, specifically 

for natural phenomena or pure mathematics (Kothari, 1990). 

The analysis of the multi-disciplinary simulation case examples will be based on a case 

example description.  Sources of case example descriptions will be of the applied research 

type. Therefore, I will analyse documents that are based on the applied research type to 

create a generalised framework to support and manage multi-disciplinary simulation data. 

This kind of work is a fundamental research type.  

 

III. Quantitative/Qualitative Research 
 

This research project will not carry out validation test work because the new framework will 

not be fully developed. It will also not be possible to measure the relationships between the 

different disciplines taking part in multi-disciplinary simulation. Kothari (1990) states that 

the quantitative research type will be “based on measurement of quantity or amount. It is 

applicable to phenomena that can be expressed in terms of quantity.” So, the quantitative 

research is not ideal for the research project.  

On the other hand, Kothari(1990) discusses the qualitative research type: “Qualitative 

research, […] is concerned with qualitative phenomenon […]”. The multi-disciplinary case 

examples will be based on reports and documents that discuss the workflow and tools of 

multi-disciplinary case examples. These case example sources and descriptions will include 

more qualitative than quantitative information which means that the qualitative research is 

more suitable to this project. Kothari (1990) also discusses the qualitative research type: 
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“Qualitative research is especially important in the behavioural sciences where the aim is to 

discover the underlying motives of human behaviour.” So, the research project focuses on 

qualitative research. 

  

IV. Conceptual/ Empirical Research 
 

The conceptual research type seems to be closed to the conceptualisation of the new 

framework.  According to Kothari (1990), the conceptual research type will be “[…] related to 

some abstract idea(s) or theory. It is generally used by philosophers and thinkers to develop 

new concepts or to reinterpret existing ones.” At first sight, this perspective seems to be 

similar to the planned research project. However, the new framework is based on existing 

case examples with existing solutions. There will be individual solutions available for specific 

technical problems.  

Different case examples will be used to identify general consistencies of a general concept. 

These will be closer to the empirical research type. The empirical research type is described 

by Kothari (1990) as relying “[…] on experience or observation alone, often without due 

regard for system and theory” and “it is data-based research, coming up with conclusions 

which are capable of being verified by observation or experiment.” The case examples will 

therefore provide an observation and experimental base which will be used to identify and 

verify a general concept of the new framework.  Consequently, the empirical research type 

will be used in the research project. 

The ontological base will help to keep focused on a clear research. However, to keep the 

clarity of the research work within boundaries, an ontological structure should help. This 

ontological structure will be discussed in Section 3.1.3. 

 

3.1.3 ONTOLOGICAL STRUCTURING OF THE RESEARCH PROJECT 
 

The research project is influenced by a variety of research themes. To structure the research, 

a solution will not be found through a classical ontological approach. Fernandez-Lopez & 

Corcho( 2004) wrote: “Until the mid-1990s”, the ontology development process “was an art 

rather than an engineering activity.” Since 1990, designers are working on an ontological 

development process that will also be useful for engineering: 

“In 1996, the first workshop on Ontological Engineering was held in conjunction with the 
12th European Conference on Artificial Intelligence. Its goal was to explore a suite of 
principles, design decisions, and rules of good practice from which other ontology 

designers could profit.”  Fernandez-Lopez & Corcho( 2004) 
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One improvement of ontological engineering is a more precise definition of special terms. 

Terms like methodology, method, technique, process and activity are used in literature 

indiscriminately (Hoog, 1998). The Institute of Electrical and Electronics Engineers(IEEEI) 

(1990) defines these terms succinctly: 

 The methodology is “a comprehensive, integrated series of techniques or methods 

creating a general systems theory of how a class of thought-intensive work ought to 

be performed.”  

 The method is a set of “orderly process(es) or procedure(es) used in the engineering 

of a product or performing a service.”  

 A technique is “a technical and managerial procedure used to achieve a given 

objective.”  

Ontological engineering could help to link the information and results of different activities 

and tasks. 

The research project used four processes to identify and detail gaps/disparities which are 

discussed in Section 2.8. These gaps will be re-used as processes which will be described as 

“what to do’s” instead of research questions according to a view of engineering research.  

 Process 1: Conceptualisation of a useful supporting framework interacting with 

multiple simulation authoring tools.  

 Process 2: Conceptualisation of a useful supporting framework for the cooperation of 

simulation models generated by multiple simulation authoring tools.  

 Process 3: Conceptualisation of a useful supporting framework for the interaction of 

multiple system and/or product-describing structures. 

 Process 4: Conceptualisation of a useful supporting framework for relating data and 

information of different development-disciplines involved in a product development 

process.  

These processes will now be discussed in more detail from an ontological engineering 

perspective. 

 

I. Conceptualisation of a Useful Supporting Framework Interacting with 

Multiple Simulation Authoring Tools 
 

This process starts with the sampling of case examples of multi-disciplinary simulations. The 

simulation models and the sources should be managed by a PLM system. The PLM system 

should provide a capability to manage data of multiple simulation authoring tools. These case 

examples will be analysed from the viewpoint of the interaction between the data storing 

system and the simulation models generated by multiple simulation authoring tools. 

Therefore, the previous PLM system has to be evaluated from the simulation data 
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management point of view. Subsequently, the analysis results can be re-used for the 

conceptualisation of the new framework. 

  

In Process 1, there are four activities, as follows: 

 Activity 1.1: Sampling of multi-disciplinary simulation case examples  

 Activity 1.2: Data acquisition of the simulation data management possibilities 

of the PLM system  

 Activity 1.3: Analysing the case examples simulation authoring tools 

interaction. 

 Activity 1.4: Conceptualisation of the new framework 

 

II. Conceptualisation of a Useful Supporting Framework for the 

Cooperation of Simulation Models Generated by Multiple Simulation 

Authoring Tools 
 

This process starts with the sampling of case examples of multi-disciplinary simulations.  The 

simulation models and sources should be managed by a PLM system. The PLM system should 

provide a capability to manage data of multiple simulation authoring tools. These case 

examples will be analysed from the viewpoint of multi-disciplinary simulation process and of 

data export and import. Therefore, the previous PLM system has to be evaluated from the 

viewpoint of simulation data management. Afterwards, the results obtained from the analysis 

can be re-used for the conceptualisation of the new framework. 

The sampling of the multi-disciplinary simulation case examples and the evaluation of the 

simulation data management provided by the PLM system can be overtaken from Process 1. 

In Process 2, there are five activities, as follows:  

 First Activity of Process 2 using Activity 1.1: Sampling multi-disciplinary 

simulation case examples  

 Second Activity of Process 2 using Activity 1.2: Data acquisition of the 

simulation data management possibilities of the PLM system  

 Third Activity of Process 2 completed in Activity 2.1: Analysing the multi-

disciplinary simulation process of the case examples. 

 Fourth Activity of Process 2 completed in Activity 2.2: Analysing the ex- and 

import during the multi-disciplinary simulation process of the case examples. 

 Fifth Activity of Process 2 using Activity 1.4: Conceptualisation of the new 

framework 
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III. Conceptualisation of a Useful Supporting Framework for the Interaction 

of Multiple System and/or Product-describing Structures  
 

This process starts with the sampling of case examples of multi-disciplinary simulations. The 

simulation models and the sources should be managed by a PLM system. These case 

examples will be analysed from the viewpoint of the different system or product descriptions 

and the interaction between the system and product descriptions. The analysis results can be 

re-used for the conceptualisation of the new framework. 

The sampling of the multi-disciplinary simulation case examples can be taken from Process 1. 

In Process 3, there are three activities, as follows: 

 First Activity of Process 3 using Activity 1.1: Sampling multi-disciplinary 

simulation case examples  

 Second Activity of Process 3 completed in Activity 3.1: Analysing the system 

and product descriptions of the case examples. 

 Third Activity of Process 3 using Activity 1.4: Conceptualisation of the new 

framework 

Process 3 could re-use the analysed results of Processes 1 and 2 as input for the Activity 3.1. 

Therefore, the analysis results of the simulation authoring tool interaction with the SDPM  

and the multi-disciplinary simulation process can be re-used for the analysis of the system 

and product descriptions. 

 

IV. Conceptualisation of a Useful Supporting Framework to Relate Data and 

Information of Different Development-Disciplines involved in a Product 

Development Process 
 

This process starts with the sampling of case examples of multi-disciplinary simulations. The 

simulation models and the sources should be managed by a PLM system. These case 

examples will be analysed by relating the different data and information of the systems or 

products with the simulation. Therefore, the previous PLM system has to be evaluated using 

simulation data management. Subsequently, the analysis results can be re-used for the 

conceptualisation of the new framework. 

The sampling of the multi-disciplinary simulation case examples and the evaluation of the 

simulation data management provided by the PLM system can be taken from Process 1. 

In Process 4, there are four activities as follows: 
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 First Activity of Process 4 using Activity 1.1: Sampling multi-disciplinary 

simulation case examples  

 Second Activity of Process 4 using Activity 1.2: Data acquisition of the 

simulation data management possibilities of the PLM system  

 Third Activity of Process 4 completed in Activity 4.1: Analysing the data and 

information relations of the case examples. 

 Fourth Activity of Process 4 using Activity 1.4: Conceptualisation of the new 

framework 

Activity 1.4, the last Activity in processes 1 to 4, could re-use the previous activity results of 

each process as input. Therefore, the analysis of the simulation authoring tool interaction 

with the SDPM, the multi-disciplinary simulation process and the analysis of the system and 

product descriptions can be re-used to analyse information relationships. 

 

3.2 USED METHODOLOGY AND METHODS 
 

The research project is based on case studies. According to Davison (1998), the methodology 

and method of case studies will “[…] involve an attempt to describe relationships that exist in 

reality[…].” Therefore, data has to be collected and analytical techniques should be employed. 

Relationships of data will be one of the main focuses of the research project.  

Case studies are discussed by Benbasat, Goldstein, & Mead (1987) and Davison (1998). The 

researcher can ask “how” and “why” questions, so as to understand the nature and 

complexity of the processes taking place. Such questions are answered by analysing case 

examples. Multiple case examples will be sampled, as discussed in Benbasat, Goldstein, & 

Mead (1987):  

“A case study examines a phenomenon in its natural setting, employing multiple methods 
of data collection to gather information from one or a few entities […].”  

The case examples are not controlled or manipulated by the analysis as discussed in Davison 

(1998): “[…] [I]f there is a need for control or manipulation of variables, then the case study 

would not be appropriate.” 

So, the case study methodology and method will be useful for all activities. There are three 

different types of sampling in the ontological structuring of the research project. The first one 

is the sampling of the case examples used in Activity 1.1. The second one is the sampling of 

data viaabout the simulation data management in Activity 2. 1 and the third sampling is the 

re-use of analysis data, and of previous analysis activities and tasks such as those in the 

Processes 3 and 4. 

The sampling was discussed in Davison (1998): “[C]ase studies require multiple data 

collection methods, whose results hopefully converge, in order to establish construct 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 64 of 347 
 

 

validity.”  Yin (1984) explains that sampling can be done with documents (written, printed or 

electronic) as well as records and charts about companies and their operations or their 

previous use of technology. The research project will use papers, project documents and 

personal knowledge. The documents and personal knowledge will largely be based on the 

author’s own previous business projects, i.e.,  the sampling technology of the case examples of 

Activity 1.1. 

The methodology and method of protocol studies are similar to case studies. Protocol studies 

are discussed in Green, Kennedy & McGown (2002):  

“Engineering design research has often placed credence in data taken from observation of 
designers […] Protocols involved observation of designers at work.”  

This fits this project, but they also explained: “Almost all of these studies are based on what 

we might call ‘experimental data’[…].” However, this will not be the case in this thesis because 

the sampled protocols do not describe the experimental process; they describe simulation 

processes or the use of data management. Dwarakanath & Wallace(1995) and Green, 

Kennedy & McGown (2002) explained: 

“[R]ecognise the shortcomings of such experiments in saying that it is ‘less representative 
for analysis of how design actually takes place in practice’. Acknowledgement of this 
caveat helps to bolster the credibility of their protocol studies, and their claim that a 
laboratory environment ‘usefully restricts the influences on the design processes’”   

According to  Green, Kennedy & McGown (2002): 

 “The resulting range of paper reveals that even though they might be based on evidence 
gained in ‘controlled laboratory environments’, there are still many ways of interpreting 
the results.”  

If the simulation is considered as a virtual art “controlled laboratory environments” then the 

methodology and method of protocol studies describes the work in the research project. The 

analysis in Activities 1.3 and 1.4 plus the conceptualisation of all activities will re-use the 

protocols of the case examples and their activities. In this case, protocol study means to 

analyse experimental protocols. Simulations can be seen as a virtual experiment. So protocol 

studies can be considered as an analysis of simulation protocols. The sampling of Activity 2 

will re-use protocols of data management systems, which cannot be viewed as precise 

experimental documentations but instead as a manual to make data management. 

In order to generate new knowledge in multi-disciplinary simulation data management, the 

case study and protocol study methodology and methods will be used. With these 

methodologies and methods, existing data management technologies will be compared with 

multi-disciplinary simulation case examples. Therefore, data sampling of case examples as 

well as data management technologies are required. The data sampling will be discussed in 

Section 3.2.1. 
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3.2.1 DATA SAMPLING FOR THE DATA ACQUISITION OF DATA MANAGEMENT 

TECHNOLOGIES 
 

The sampling of data on simulation data management technologies is complex, due to the 

different software tools and systems that could be in use. A reduction to one relevant data 

managing system should help keep the research project focused. An evaluation of different 

systems will help to identify the relevant data management system. Based on this data 

management system, the possibilities of simulation and multi-disciplinary simulation data 

management should be achieved. These will present the actual possibilities of simulation and 

multi-disciplinary simulation data management. 

The acquired data will provide the basis to understand the data management of the multi-

disciplinary simulation case examples. Additionally, such data provides the possibility to 

compare those case examples with the existing technology of simulation and multi-

disciplinary simulation data management. 

This kind of work will divide Activity 1.2 into four tasks: 

 Activity 1.2: Data acquisition of  simulation data management possibilities of 

the PLM system  

o Task 1.2.1: Data sampling of existing data management systems 

o Task 1.2.2:Evaluation of  data management systems 

o Task 1.2.3:Data sampling of simulation data management of a selected 

data management system 

o Task 1.2.4:Data acquisition of simulation data management technology 

The first two tasks (1.2.1 and 1.2.2) will be included in the theoretical discussion of the 

research project in Chapter 2.  Tasks 1.2.3 and 1.2.4 will be discussed in Section 4. The data 

sampling of Task 1.2.3 will be the easier option. This data sampling is focused on data that 

describes the handling of a data management tool. Documents such as product manuals and 

guides, online help, workshops, training documents and marketing papers will form the basis 

of this data acquisition, and as such, will be based on an evaluation of the data management 

systems.  

In contrast to this, the data sampling (Task 1.2.1) will be much more complex. Different kinds 

of data management tools are on the market and can have different effects on users. So, a 

theoretical discussion on data management and its effects according to the different 

approaches and the user requirements should achieve a better understanding. Therefore, 

documents such as whitepapers, marketing documents or other product descriptions and 

data management survey documents and papers about data management will be used. This 

will provide the basis for the evaluation of data management systems. 
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Data acquisition of simulation data management will help review and analyse the used data 

management of case examples. This will be carried out in the case study of the research 

project. The case study will be discussed in the following section. 

 

3.2.2 DATA SAMPLING FOR THE ANALYSIS OF THE CASE EXAMPLES AND CASE STUDY 
 

In these case studies, the data and processes of the case examples will be in a data-managed 

mode. The acquisition of the data management tool in Activity 1.2 will help to understand the 

case examples. The case studies will be analysed to figure out:-  

 the support technology of simulation authoring tools interaction (Activity 1.3) and  

 the support technology of multi-disciplinary simulation process (Activity 2.1) and 

 the support technology of data export and import during the multi-disciplinary 

simulation process (Activity 2.2),  

 the support of system and product descriptions (Activity 3.1) and 

 the support of data and information relationships (Activity 4.1). 

The sampling of the case examples plays an important role. They define the basis for analysis 

and usability of the new framework. In order to define an optimistic basis for a new 

framework, the case examples should provide a robust state of technology for future 

technologies.  The examples should have authenticity and represent the actual interest of the 

German market for system-simulation data management. The intention is to identify case 

examples that are relevant for a market with growing potential. My work as CAE consultant at 

Siemens Industry Software GmbH & Co.KG was helpful in identifying case examples. The 

following four projects have been identified to meet both requirements and boundaries: 

 Customer: Semi-finished goods producer (unpublished customer name), South-

Germany  

Project: Benchmark of simulation tools. This benchmark should identify an ideal 

simulation tool. An improved development process of extrusion section production 

tools was achievable with Siemens simulation products.  

 Customer: Engineering company SCHMIDT Gesellschaft für Werkzeug- und 

Formentechnik mbH; Nürnberg 

Project: Creation of a moulding tool system-simulation vision for moulding tool 

optimization.  

 Customer: Automotive Company (unpublished customer name), South-Germany 

Project: The one-vendor-benchmark project. In this project, a multi-disciplinary and 

mechatronic system-simulation of a car luggage door system had to be achieved.  

 Customer: Automotive Company (unpublished customer name), South-Germany 

Project: A research project called “Interdisciplinary Model-based Development 

Process”. This research project included a multi-disciplinary and mechatronic system-

simulation of a car windows lifter system.  
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These four case examples will be presented and discussed in Section 5. Sub-ordered sections 

will also include analysis of the case examples.  More case-example-overlapping analysis will 

be carried out in Section 6. This analysis will provide the basis for the conceptualisation of 

the new framework to support and manage multi-disciplinary simulation data. The 

conceptualisation will be discussed in Section 3.2.3. 

 

3.2.3 CONCEPTUALISATION OF THE NEW FRAMEWORK 
 

Section 6 will conceptualise the new framework which will be based on case example 

analysis. However, the conceptualisation cannot be achieved in one step. Multiple 

improvements and architectural instance-concepts need to be discussed and presented. The 

final architectural approach should summarise the different architectural instances and 

improvements.  

The new framework could achieve different benefits and can be validated based on these 

benefits. So, the benefits of the new framework should be tested in relation to the case 

examples. The benefits and the validation will be discussed in Section 6.6.  

Unfortunately, the new framework could not be built up, generated and completed during the 

research project because of lack of time and funding. So testing and validation of the realistic 

framework will not be possible. Instead, a validation of benefits achieved by the new 

framework should be carried out which will be achievable through impact analysis. The 

impact analysis will be completed by analysing the improvements of case examples data 

management using the new framework.  

 

This kind of work will divide Task 1.1.4 into three tasks: 

 Activity 1.4: Conceptualisation of the new framework 

o Task 1.4.1: Architectural new framework approach 

o Task 1.4.2: Detailed new framework approach 

o Task 1.4.3: Impact analysis of the case example data management with 

the new framework concept 
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4 DATA ACQUISITION OF THE SIMULATION SUPPORTING 

SYSTEMS AND TECHNOLOGIES IN TEAMCENTER  
 

This section describes the acquisition of simulation data management technologies. Multiple 

software tools, systems or applications can be used for the acquisition. However, as discussed 

in previous sections, there is no ideal software for such acquisition.  

The requirement for a data management tool that supports multi-disciplinary simulation data 

embedded in a PLM system was determined in Chapter 2. The evaluation and analysis 

determined the PLM system TEAMCENTER as a leading technology which includes SDPM 

described in Sections 2.6 through 2.9. The existing SDPM of TEAMCENTER Univied 

Architecture 9.1 appears to be the best data collection system for the proposition of the new 

framework.  

The data acquisition will be analysed to obtain detailed knowledge about SDPM technologies 

employed in TEAMCENTER Univied Architecture 9.1. 

First, an overview of the data models in TEAMCENTER will be generated, which will form the 

basis of those models, i.e. the fundamental knowledge that is necessary to understand the on-

going simulation data models with the specific CAE ITEMs and CAE Relations. 

 

4.1 DATA ACQUISITION OF THE BASIC DATA MODEL OF TEAMCENTER 
 

The data model of TEAMCENTER is based on items.  

“Items, item revisions, documents, parts, and designs are business objects, and as such, 
are fundamental data objects used to manage information in TEAMCENTER. Items are 
structures that are generally used to represent a product, part, or component. Item 
revisions are data objects used to manage changes (revisions) to items. The item type is 
the parent type for many objects, including document, part, and design types” (Siemens 

Product Lifecycle Management Software Inc., 2012) 

The ITEM does not change throughout the lifecycle of a product, part or component, although  

changes to products, parts or components can occur, based on the concept that a product, 

part or component is optimised to fulfil specific requirements. During the engineering 

lifecycle, changes are realised, for example through optimization of stress or deformation and 

creating ideal interfaces between products, parts or components, by designing screw holes or 

other geometrical features. In the released status, it could be necessary to change suppliers of 

the product, parts or components or to improve them. In summary, the description of 

products, parts or components will change throughout the lifecycle. In most cases, changes of 

those products, parts or components need documenting and such documentation will prove 

to be significant since multiple users will often be working with the same product, part or 
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component. Used data will need to be checked and tracked for authenticity and release status.  

Therefore, TEAMCENTER provides item revisions. Multiple item revisions will be structured 

under each item. The changed product, part or component (after the competition of the 

change, which could have duration of hours or days) is managed under a new item revision. 

“An item in TEAMCENTER is a structure of related objects. The basic structure of any item 
consists of the following minimum objects:  

Item: 

Collects data that is globally applicable to all revisions of the item. 

Item Master (Form): 

A form object that is often used to extend the stored property data for an item to include 
data unique to the customer. 

Item Revision: 

Collects data that is applicable to a single revision of the item. 

ItemRevision Master (Form): 

“A form object that is often used to extend the stored property data for an item revision to 
include data unique to the customer.” (Siemens Product Lifecycle Management Software 
Inc., 2012) 

The Figure 4-1 monitors the data model. 

 

Figure 4-1 Basic Minimum Structure 

 “Some applications provide specific items. For example, the TEAMCENTER simulation 
process management applications use CAEModel items, CAEGeometry items, and others. 

[…]There are typically many pieces of information that describe or are related to an item 
or item revision. TEAMCENTER uses relations to define the correlation between data 
objects and items or item revisions. 

[…] 
Many item or item revision relations are automatically defined when you create or add 
certain objects to an item or item revision structure. For example, when you add a new 
item revision to an item, the new item revision is automatically defined as a revision 
relation.” (Siemens Product Lifecycle Management Software Inc., 2012) 

Item 

Item Master 
(Form) 

ItemRevision 
ItemRevision 

Master (Form) 
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In the case of strings, additional files, data or information are added to an item or item 

revision. In the case of global files, data or information, the dataset is linked to the item. In the 

case of files, data or information that could change during the lifecycle is linked to the item 

revision.  

 

“The Dataset object represents an actual data file on the operating system or in 
TEAMCENTER. Datasets are typically authored content of some sort, such as Microsoft 
Office files or CAD data files.” (Siemens Product Lifecycle Management Software Inc., 

2012) 
 

 

Figure 4-2 Item revision – Dataset Structure 

The hierarchical structure of assemblies is realized in TEAMCENTER through a hierarchical 

structure of CAD ITEM Revisions as shown in Figure 4-2. In the case of an assembly, a data 

structure including the subordinated CAD ITEM Revision is stored.  

“When you add a component to an assembly, you are creating an occurrence of that item 
or item revision in the assembly, which is stored on the BOM view revision. This 
occurrence is displayed as a BOM line. A BOM view revision is a single-level structure that 
contains occurrences of its immediate children. A multilevel structure is built up from 
many single line BOM view revisions. “ (Siemens Product Lifecycle Management Software 
Inc., 2012) 
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These technologies are also used for the simulation data model in TEAMCENTER. Special 

ITEM types are available to manage special files, data and information. The simulation data 

model in TEAMCENTER is discussed in Sections 4.2. 

 

4.2 DATA ACQUISITION OF THE SIMULATION DATA MODEL IN TEAMCENTER 
 

Simulation files, data and information should be easily identified as simulation objects in the 

PLM system. Therefore, the simulation files, data and information are items derived from the 

basic data model of TEAMCENTER.  

“CAE items are the fundamental workspace objects in TEAMCENTER used to manage CAE 
information. […] CAE items are generally used to maintain the CAE representation of a 
product, part, or component. They also maintain the definition of the analysis performed 
on these items, and the results of the analysis.” (Siemens Product Lifecycle Management 
Software Inc, 2012) 

The simulation data model of TEAMCENTER uses four items. Each of these items stores data 

on another level in the simulation process. The simulation process is structured as pre-

process, solve-process and post-process. Pre-process prepares the data for the solve run. The 

solve run calculates a mathematical solution of the problem and the post-process visualises, 

interprets and analyses the simulation results. Data generation is dissimilar to the simulation 

process. TEAMCENTER supports four phases of data-generation in a standard configuration:  

1. The first phase is the generation of a geometrical model in the pre-processing phase: 

This geometrical model or geometrical description will prepare data for the 

abstraction made in the next step. For example, the generation of a given CAD model 

could include the deletion of simulation-unimportant holes or blends, such as holes 

and blends with a small radius. Holes and blends with a small radius have no or 

minimal effect on the simulation result. Therefore it makes no sense for the 

simulation result to include them, plus deletion of these unimportant holes and 

blends reduces the abstraction work and simulation solve time. These files, data and 

information are managed by the CAEGeometry item and item revision. 

2. The second phase is the abstraction to a mathematical geometrical description in the 

pre-processing phase: Based on the (for abstraction) prepared geometrical data, the 

data is abstracted to a mathematical geometrical description format. Dependent on a 

simulation discipline such as FEM, MBS or others, the geometrical description is 

based on the mathematical handling used by the simulation discipline. For example, 

in the case of FEM, the mathematical handling is based on finite elements and finite 

elements are geometrically described by finite element meshes, i.e. the idealised 

geometrical data is abstracted to the description of the geometry by finite element 

meshes. These files, data and information are managed by the CAEModel item and 

item revision. 
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3. The third phase is the modelling of load cases, boundary conditions and the adding of 

solution parameters in the pre-processing phase: The abstract description of the 

geometry is not the description of the simulation. Load cases and boundary 

conditions are missing. Load cases such as forces on nodes (which are the element 

edge points) or boundary conditions such as freedom degrees on nodes are required 

to fulfil the abstract description of the simulation. For example, the mesh of a beam  

bounded on a wall and on the other side a load force represents the force influence of 

a moving mass. Additionally, parameters required for the simulation solve run are 

required. Based on the geometry abstraction data, the load cases and boundary 

conditions and the solve parameters data are added. These files, data and information 

are managed by the CAEAnalysis item and item revision. 

4. The fourth phase is the results of data generated during the solve- and post-

processing phases. Based on the pre-processing phase, the simulation is solvable. A 

solve run of a simulation generates result files. The data generated by the solver is 

linked to the solve run phase, for example, the stored files of the calculated stress or 

deformation in the solve run. The on-going work on the result files to visualise, 

interpret or analyse the simulation results are linked to the post-processing phase. An 

example of this could be a diagram of the stress or deformation, and appraisal 

documentation produced by the analyst. These files, data and information are 

managed by the CAEResult item and item revision. 

Other solutions to support simulation phases are possible and additional kinds of supporting 

simulation phases are configurable with TEAMCENTER. The Table 4-1 gives an overview of 

the different simulation ITEM types. 
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Table 4-1 CAE Item Classes (Siemens Product Lifecycle Management Software Inc, 2012) 

CAEITEM – 
Classes 

Purpose 

CAEGeometry “Contains the idealised geometry used to generate model data for 
performing engineering analysis. 
 
The contents of the CAEGeometry item can be created from the 
geometry contained in a non-CAE item revision. It can often have 
simplifications such as feature suppressions to the original 
product geometry to facilitate the analysis process. CAE geometry 
acts as a source representation upon which a CAE model is built.” 
(Siemens Product Lifecycle Management Software Inc, 2012) 

CAEModel “Defines the model used for performing engineering analysis. In 
the case of finite element analysis, this model is likely to be in the 
form of mesh data. In general, any type of model is supported. 
 
A CAEModel item revision can have a relationship to the target 
product item revision. It can also have a relationship to a source 
CAEGeometry item revision or a source non-CAE item revision. A 
CAEModel item can participate in a hierarchical structure that 
defines a CAE structure. The datasets attached to the CAEModel 
item revision store the mesh representation of the assembly or the 
component.” (Siemens Product Lifecycle Management Software 
Inc, 2012) 

CAEAnalysis “Defines the type of analysis to be done and the solver used to 
perform the analysis. 
 
A CAEAnalysis item revision consists of solver parameters and the 
relationship to the CAEModel and CAEResult item revisions. The 
datasets attached to the CAEAnalysis item revision store the 
solver-specific input deck file and/or the tool-specific simulation 
file.” (Siemens Product Lifecycle Management Software Inc, 2012) 

CAEResult “Used for managing results of the CAE analysis from different 
solvers. The CAEResult item revision can have a relationship to the 
driving CAEResult item revision .” (Siemens Product Lifecycle 

Management Software Inc, 201) 
 

Simulation items are used to manage simulation-focused files, data and information. The base 

for the simulation is often a geometrical description such as a CAD-model. These files, data 

and information are not managed by the simulation items. In Figure 4-3 the additional Item is 

called CAD item (Kondragunta, 2010). This graphic is also an example of the data 

management in TEAMCENTER. The CAD item or CAD item revision is provided by a designer. 

The monitored CAD model file is stored in the UGMASTER dataset under the CAD item 

revision. This CAD model file is the starting point of the simulation process. The CAD model is 

ideal to create an ideal CAD model for the later meshing. This CAD model is managed under 

the CAEGeometry item revision. In the case example, the designed CAD model under the CAD 

item revision has to be reduced. So, the CAD model of the CAEGeometry item revision 
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includes only a small section of the original data. This section is marked with a red ellipse in 

Figure 4-3. The reduced CAD model file is stored under the CAEGeometry item revision in a 

CAEGeom dataset. The CAD model of the CAE Geometry item revision is ideal for meshing. 

The mesh result is stored under the CAEModel item in the CAEMesh dataset. Additional load 

cases, boundary conditions and solver parameter definitions are necessary. These are stored 

under the CAEAnalysis item revision in the CAESolution dataset. With these, the generation of 

the bulk data deck and the solver input deck is possible. These files, data and information are 

also stored under the CAEAnalysis item in the CAESolution dataset or optional dataset types. 

With the solver input deck, the solve run is possible. The solve run produces multiple result 

and log files. These files are stored under CAEResult item in the CAESolution dataset. The 

resultant files of the solve run are visualised, interpreted and analysed. These files, data and 

information are also stored under the CAEResult item in the CAESolution dataset or optional 

dataset types. 

 

 

Figure 4-3 CAE Item Graphic (Kondragunta, 2010) 

The simulation-data-management-structure is universal and also useable for manual analysis. 

An example is presented in Figure 4-4. Under the CAD item in the master dataset, a sketch of 

the product is stored in this example. Information on the sketch can be converted to the 

minimum required data such as dimensions, which are managed under the CAEGeometry 

item in the CAEGeom dataset. From the converted data, engineering data such as stiffness or 

section modulus can be calculated. The management of these files, data and information can 

be managed under the CAEModel item in the CAEMesh dataset. The documentation and 
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description of the analysis process, including answers to questions such as ‘How will the 

analysis be done and what equations, as well as the definition of the variables and 

parameters, will be used?’ These files, data and information can be stored under CAEAnalysis 

item in the CAESolution dataset. The calculated results or the files, data and information of 

the calculation (such as a MS Excel document) of the analysis and the interpretation can be 

stored under CAEResult Item in the CAESolution dataset. 

 

 

Figure 4-4 Manual Data Structure Example (Kondragunta, 2010) 

 

The files, information and data change during the lifecycle. So, they have to be revisable. The 

revision technology of TEAMCENTER is presented in Section 4.3. 

 

4.3 DATA ACQUISITION FROM THE REVISION OF CAE ITEMS 
 

In the product lifecycle, the data changes through an on-going development process or a 

change process. In order to handle the change of the data, the items are sub-ordered into item 

revisions by the data management in TEAMCENTER (see Section 4.1). Changes can also 

influence the simulation. If a simulation is closed and the simulation input data changes to a 

new item revision, the analyst has to decide if the closed simulation is valid or if the 

simulation has to be revised. Therefore, all the CAE items are also organised in CAE items and 

CAE item revisions as in Section 4.1.  
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“CAE items are the fundamental workspace objects in TEAMCENTER used to manage CAE 
information. […] CAE items are generally used to maintain the CAE representation of a 
product, part, or component. […] CAE item revisions are workspace objects used to 
manage changes (revisions) to CAE items during the product design lifecycle.” (Siemens 
Product Lifecycle Management Software Inc, 2012) 

The following is a list of CAE item classes and CAE item revision classes in TEAMCENTER 9.1: 

CAE item – classes: 

 CAEAnalysis 

 CAEGeometry 

 CAEModel 

 CAEResult 

CAE item revision classes: 

 CAEAnalysisRevision 

 CAEGeometryRevision 

 CAEModelRevision 

 CAEResultRevision 

The ordering and structuring of the CAE items is similar to the normal ordering and 

structuring of the items. Figure 4-5 presents the ordering and structuring of the CAE items 

which is similar to Figure 4-2. 

In most documents, the meaning of CAE item and CAE item revision is not separated from 

each other. For the most part, CAE item means CAE item revision. For example, the document 

of Kondragunta (2010) used as a source for the Figure 4-3 and Figure 4-4.  

 

Figure 4-5 CAEItem Data Structure 
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The CAE item revisions do not directly include files. They are stored under datasets. So, the 

CAE item revision points to datasets, as discussed in Section 4.4. 

 

4.4 DATA ACQUISITION OF DATASETS TECHNOLOGY IN TEAMCENTER 
  

The files, information and data belonging to a specific CAE item revision are stored in 

attached datasets. This is also discussed in Section 4.1 and monitored in Figure 4-5. In this 

section, some special dataset types will be presented. In the case of simulation data and 

process management with TEAMCENTER, five specific CAE datasets are available which are 

listed in Table 4-2 CAE Dataset Type (Siemens Product Lifecycle Management Software Inc, 

2012). 

Table 4-2 CAE Dataset Type (Siemens Product Lifecycle Management Software Inc, 2012) 

Dataset Type Purpose 

CAEGeom Contains a model geometry file. 

CAESolution Contains a simulation file. 

CAESolver Contains a solver-specific data deck. 

CAEMesh Contains a mesh file. 

CAEResult Contains the result files for a defined analysis. 

 

Normally, the datasets are dedicated to the specific CAE item revision like the CAEGeom 

dataset to the CAEGeometry item revision or the CAEResult dataset to the CAEResult item 

revision. The datasets are not restricted to this kind of usability; other kinds of dedications 

are possible. For example in Figure 4-3 and Figure 4-4, the CAESolution dataset is dedicated 

to a CAEResult item revision. 

The SDPM of TEAMCENTER is configurable and achieves a high level of flexibility in usability. 

It also includes a standard data model. In Section 4.5, this standard simulation data model 

will be described. 

 

4.5 DATA ACQUISITION OF THE STANDARD SIMULATION DATA MODEL OF 

TEAMCENTER 
 

The high number of different simulation processes appearing on the market should be 

supported by the standard simulation data model of TEAMCENTER. In this section, a 

standard simulation process of a finite element analysis is listed. This example is similar to 

the simulation discipline neutral simulation process presented in Section 2.3. 
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1. A standard simulation process starts with CAD geometry. The CAD geometry data has 

to be managed via TEAMCENTER. 

2. This CAD geometry was improved to make it ideal for meshing. The idealised CAD 

geometry data has to be managed via TEAMCENTER based on the CAD geometry data. 

3. Based on the idealised CAD geometry, the mesh is generated and, as such the mesh 

data has to be managed via TEAMCENTER. 

4. Load cases, boundary conditions and solver parameters are added to the mesh 

information. During this step, the analysis data is fully defined and solvable. The 

analysis data has to be managed via TEAMCENTER and based on the mesh data. 

5. The solve run generates results and protocol files. The result and protocol data has to 

be managed via TEAMCENTER and based on the analysis data. 

 

This simulation process is supported by the standard simulation model of TEAMCENTER. 

Item types manage the data. The numbering of the item types is directly related to the 

previously presented simulation process:  

1. CAD ITEM  

2. CAEGeometry ITEM  

3. CAEModel ITEM  

4. CAEAnalysis ITEM  

5. CAEResult ITEM.  

Each of these simulation items is sub-ordered into item revisions (see Section 4.3) and 

datasets (see Section 4.4). The standard simulation model is monitored in Figure 4-6. 

 

Figure 4-6 Standard Simulation Data Model 

The use of this standard simulation data model is flexible. For example, in some cases a 

geometrical idealization in front of the abstraction, such as meshing, is not necessary. In this 

case, the used simulation data model can be set in a way that the CAEGeometry ITEM level is 

ignored. In other cases, the simulation authoring tool may not support separate files during 

simulation process steps and simulation data model levels. Therefore, the standard 

simulation data model of TEAMCENTER can be customised to the required simulation data 

model. A third example is the case of NX Advanced Simulation, where the results and the 

analysis data are stored under the CAEAnalysis ITEM revision in the CAESolution dataset 

instead of storing the results under the CAEResult ITEM revision. In summary, the standard 

simulation data model of TEAMCENTER can support nearly all simulation disciplines and 

simulation tools. This is achieved by the configurability of the simulation data model in 
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• and / or other 
dataset 

CAEGeometry - ITEM 

• CAEGeometryItemRe
vision 

• CAEGeometryRevi
sion 
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TEAMCENTER. The configured simulation data model does not have to include all CAE ITEM 

levels or dataset levels provided by TEAMCENTER. 

For the configurability, the relationships between the different CAE items play an important 

role, which will b discussed in Section 4.6. 

 

4.6 DATA ACQUISITION OF THE RELATIONSHIPS TO ORGANISE THE SIMULATION 

DATA MODEL 
 

In order to keep the simulation data models flexible, they should not be organised in a fixed 

or static way. The standard simulation data model in TEAMCENTER is represented in Figure 

4-6. In order to achieve a dynamic and flexible simulation data model, the relationships 

between the CAE item levels are managed separately from the simulation data. 

The relationships can be organised in three different use cases: 

1. Relationships between the simulation data models 

2. Relationships between CAE ITEM revisions and CAE datasets 

3. Relationships between simulations 

 

4.6.1 RELATIONSHIPS BETWEEN THE SIMULATION DATA MODEL  
 

Relationships should represent the dependencies between item revisions. A relationship also 

includes the information relating to relation category. Two kinds of information are included 

in relationships: 

 What item is dependent on the other item and  

 Is it a data dependency or an organised dependency? 

For the simulation data model in TEAMCENTER, seven relation types are available and are 

listed in Table 4-3 CAE Relation Type Source: (Siemens Product Lifecycle Management 

Software Inc, 2012). 
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Table 4-3 CAE Relation Type Source: (Siemens Product Lifecycle Management Software Inc, 2012) 

Relation Type Description Primary 

Object 

Secondary 

Object 

CAE Criteria 

Relationship 

Defines the relationship between a 

CAEModel ITEM revision and an ITEM 

revision that contains the criteria file. 

CAEModel 

ITEM revision  

Any item 

revision 

CAE Defining 

Relationship 

Defines the relationship between a 

CAEAnalysis ITEM revision and 

CAEModel ITEM revision. 

CAEAnalysis 

ITEM revision  

CAEModel 

ITEM revision 

CAE Include 

Relationship 

Defines the relationship between 

CAEAnalysis ITEM revisions to another. 

It indicates that a named reference in a 

CAESolver dataset associated to a 

CAEAnalysis ITEM revision contains 

and/or includes statements that refer 

to another named reference of a 

CAESolver dataset attached to a related 

CAEAnalysis ITEM revision. 

CAEAnalysis 

ITEM revision 

CAEAnalysis 

ITEM revision 

CAE Parameter 

Relationship 

Defines the relationship between a 

CAEModel ITEM revision and an item 

revision that contains the meshing 

parameter file. 

CAEModel 

ITEM revision 

Item revision 

containing 

the meshing 

parameter file 

CAE Results 

Relationship 

Defines the relationship between a 

CAEAnalysis ITEM revision and 

CAEResult ITEM revision. 

CAEAnalysis 

ITEM revision 

CAEResult 

ITEM revision 

CAE Source 

Relationship 

Defines the relationship between: 

 A CAEModel ITEM revision and 

an ITEM revision representing 

product geometry. 

 A CAEGeometry ITEM revision 

and an ITEM revision 

representing product geometry. 

CAEModel 

ITEM revision 

or 

CAEGeometry 

ITEM revision 

CAEGeometry 

ITEM revision 

or any item 

revision 

representing 

product 

geometry 

CAE Target 

Relationship 

Defines the relationship between: 

 A CAEModel ITEM revision and 

an ITEM revision representing 

product geometry. 

 A CAEGeometry ITEM Revision 

and an ITEM revision 

representing product geometry. 

 A CAEAnalysis ITEM revision 

and an ITEM revision 

representing product geometry. 

CAEModel 

ITEM revision 

or 

CAEGeometry 

ITEM revision 

or 

CAEAnalysis 

ITEM revision 

ITEM revision 

representing 

product 

geometry 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 81 of 347 
 

 

 

The important relationships for the standard simulation data model are the CAE Target, 

Source, Defining and Result Relationship which are discussed in the following: 

 CAE Target Relationship 

o This relationship should answer the question: “What Item (CAEGeometry 

ITEM revision or non-CAE ITEM revision) will these CAE items (CAEModel 

item revision or CAEGeometry item revision) represent?” This is from the 

perspective of the higher levelled simulation data model ITEM revision of the 

relationship. 

o This relationship should answer the question: “What CAE item (CAEModel 

item revision or CAEGeometry item revision) will represent this item 

(CAEGeometry item revision or non-CAE item revision)?” This is from the 

perspective of the lower levelled simulation data model ITEM revision of the 

relationship. 

o Additionally, this relationship should describe an organizational relationship, 

which describes the representation of a lower levelled item by a higher 

levelled item in the simulation data model. The relational points form a 

CAEModel item revision or CAEGeometry item revision to a non-CAE item 

revision or CAE Geometry item revision.  

o This relationship is used between the following items (the relational ordering 

will be from the first listed ITEM to the second): 

 CAEGeometry item revision and non-CAE item revision 

 CAEModel item revision and CAEGeometry item revision 

 CAEModel item revision and non-CAE item revision 

 CAE Source Relationship 

o This relationship should answer the question: “What was the source item 

revision (CAEGeometry item revision or non-CAE item revision) to build up 

these CAE item (CAEGeometry item revision or CAEModel item revision)?” 

The perspective is from the higher levelled simulation data model ITEM 

revision of the relationship. 

o This relationship should answer the question: “What CAE item (CAEModel 

item revision or CAEGeometry item revision) is created based on this item 

(CAEGeometry item revision or non-CAE item revision)?” The perspective is 

from the lower levelled simulation data model ITEM revision of the 

relationship. 

o This relationship is a dependency relation and should describe the source of a 

CAEModel item revision or CAEGeometry item revision to a source input item. 

o This relationship is used between the following items (the ordering is from 

the first listed item to the second): 

 CAEGeometry item revision and non-CAE item revision 

 CAEModel item revision and CAEGeometry item revision 

 CAEModel item revision and non-CAE item revision 
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 CAE Defining Relationship 

o This relationship should answer the question: “What was the source of the 

CAEAnalysis item revision?” The perspective is from the higher levelled 

simulation data model CAEAnalysis item revision of the relationship. 

o This relationship should also answer the question: “What CAEAnalysis item 

revision will be created based on this CAEModel item revision?” The 

perspective is from the lower levelled simulation data model CAEModel item 

revision of the relationship. 

o This relationship is a dependency relationship and describes the source 

relation from a CAEAnalysis item revision to a source input CAEModel item 

revision.  

o This relationship is used between the following items (the ordering is from 

the first listed item to the second): 

 CAEAnalysis item revision and CAEModel item revision 

 CAE Results Relationship 

o This relationship should answer the question: “What was the source of the 

CAEResult item revision?” The perspective is from the higher levelled 

simulation data model CAEResult item revision of the relationship. 

o This relationship should also answer the question: “What CAEResult item 

revision will be created based on this CAEAnalysis item revision?” The 

perspective is from the lower levelled simulation data model CAEAnalysis 

item revision of the relationship. 

o This relationship is a dependency relation and describes the source relation 

from a CAEAnalysis item revision to an result output CAEResult item revision  

o This relationship is used between the following items (the ordering  is from 

the first listed item to the second): 

 CAEAnalysis item revision and CAEResult item revision 

 

 

Most of the previous, theoretically described relationships are used in the following example: 

The example represents an FEM simulation of a moulding tool. The geometrical description in 

the form of a CAD model is stored under the non-CAE item revision 000094/A. This non-CAE 

item revision is related with a CAESource and CAETarget relationship to the CAEGeometry 

item revision 000096/A. In the CAEGeometry item revision 000096/A, the reduced and 

idealised geometrical CAD model-file is stored in the CAEGeom dataset. This derivation is 

required to generate a geometrical CAD model that will be ideal for meshing. Therefore, this 

CAD model is derived from the non-CAE item revision 000094/A. The CAEGeometry item 

revision is related by a CAESource relationship to the CAEModel ITEM revision 000095/A. 

The mesh model is stored under the CAEModel item revision in the CAEMesh dataset. The 

FEM mesh model, in this example, does not include the load cases, boundary conditions and 

solver parameters. The CAEModel item revision is related to a CAETarget relationship, to the 

non-CAE item revision 000094/A. These CAETarget relationships monitor the representation 
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of the CAD model by the mesh model managed under the CAEModel item revision. The 

CAEModel item revision is related with a CAEDefining relationship to the CAEAnalysis item 

revision 000094.sim1/A. The load cases, boundary conditions and solver parameters and, in 

this example, the solver input deck, result and log files, are stored under the CAEAnalysis 

item revision in the CAESolution dataset. The relationship browser of TEAMCENTER helps to 

monitor the dependencies and make them easy to re-examine. An example is shown in Figure 

4-7. The background is from the relationship browser of TEAMCENTER.  

 

 
Figure 4-7 Simulation Data Structure Example 

Relationship technology provides the possibility of a flexible, intelligent and efficient 

generation of standardised and individual simulation data models. Relationship technology is 

also used to relate items and item revisions to the datasets. This will be discussed in Section 

4.6.2. 

 

4.6.2 RELATIONSHIP BETWEEN CAE ITEM REVISION AND CAE DATASETS 
 

The relationship technology in TEAMCENTER is not only used to link item revisions to others 

but also to link the datasets to those items and item revisions. For example, in the case of 

linking a CAESolution dataset to a CAEAnalysis item revision, a CAESpecification relationship 

is used in the standard simulation model. The CAESpecification relationship points from the 

CAEAnalysis item revision to the CAESolution dataset. The CAESolution dataset can store 

multiple files. Each file managed in the dataset is linked by a reference type to the dataset. 
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With Reference type, a file can be dedicated to a specific functional type. Figure 4-8 shows an 

example where a Nastran bulk data file is managed, by the described technology, to manage 

datasets and relate them. 

 

Figure 4-8 CAESpecification Relationship 

The technology to manage datasets and relations of the datasets to items and item revisions 

does not influence the research project. However, to understand how TEAMCENTER manages 

and stores the files, this technology has to be discussed in order to understand the dataset 

technology without going into further detail. The relationship technology supporting the 

standard, individual simulation data model and the technology of the dataset relations must 

be established.  The significant question is: How can TEAMCENTER support actual 

relationships between different simulations? This will be discussed in Section 4.6.3. 

 

4.6.3 RELATIONSHIP BETWEEN DIFFERENT SIMULATIONS 
 

The relationship technology of TEAMCENTER makes the simulation data model flexible and 

configurable. This makes the management of different simulation models simple and 

supports multiple simulation authoring tools and means that multiple simulation models 

have to interact with each other because one simulation model will be dependent on another 

simulation model. So, the CAEInclude relationship type is available in TEAMCENTER 

(Siemens Product Lifecycle Management Software Inc, 2012). However, this CAEInclude 

relationship is not uncomplicated enough to support inter-disciplinary simulations with more 

than three dependent simulation models. The CAEInclude relationship only represents the 

dependency of a simulation model to another. 

Therefore, the CAEInclude relationship should point from a CAEAnalysis item revision to 

another CAEAnalysis item revision. This relationship can be retraced from both CAEAnalysis 

item revisions. With the CAEInclude relationship, two CAEAnalysis item revisions can be 
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coupled. Multiple CAEInclude relationships are possible from a CAEAnalysis item revision. 

Figure 4-9 shows a CAEAnalysis item revision (000097/A) with two CAEInclude relationships 

to two other CAEAnalysis item revisions (000022.sim1/A and 000094.sim1/A). 

 

Figure 4-9 CAE Include Relationship Example 

 

The relationship technology and the simulation data model help to export both files and data. 

The export of the data is required in order to run a simulation or to work on the files. The 

relationships, items, item revisions and datasets help to identify the right files and data and 

export them. The technology for exporting files and data for on-going work from the 

TEAMCENTER database will be discussed in Section 4.7. 

 

4.7 EXPORT OF FILES AND DATA FOR EXTERNAL PROCESSES FROM THE 

TEAMCENTER DATABASE 
 

In order to run or edit a simulation model, the files and data have to be exported from the 

database managed by TEAMCENTER. In this way, the files are provided to load them into the 

solver or simulation authoring tool. Therefore, the files are usually exported to a file 

directory. The simulation authoring tools and solvers can be forced by a routine to start and 

load the data from this file directory. So, working on the files and data is possible. Using 

simulation authoring tools and solvers, changes of the data and files or the generation of new 

files can be achieved. The files and data have then to be re-imported to the TEAMCENTER 

database. Therefore, TEAMCENTER checks the files and data and if necessary, the files and 

data are uploaded to the database. This import can be into an existing or a newly generated 

dataset of the item or item revisions. All this is achieved in a managed mode by 

TEAMCENTER.  

Important for the export of the required files and data is their identification. The simulation 

data model (items, item revisions and dataset) as well as the relationship technology aid their 

identification. In order to organise the export, TEAMCENTER Simulation Process 

Management provides a framework called “Simulation Tool Configuration”. The data export 

and import, as well as the external simulation authoring tool and solver execution, can be 

configured there.  This framework will be discussed in the following section. 
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TEAMCENTER provides a framework called “Simulation Process Management” to configure 

external processes. This includes the configuration of data exports and imports as well as the 

execution of external processes such as pre-, post- or solve-processes. Siemens Product 

Lifecycle Management Software Inc. (2012) describes the framework as follows:  

“Simulation Process Management provides a framework for the configuration and 
launching of external processes such as pre-, solver and post-processes. It allows 
you to: 

 Define and organise specific tools to gather process inputs. 

 Create TEAMCENTER objects to hold tool output. 

 Import tool output into TEAMCENTER. 

 Configure a simulation tool to specify an object (item, item revision, or dataset) 
in the data model as the object to hold the output data files. 

 Define rules to navigate from the primary input object to the output object 
through a combination of relationships where the originating item revision is 
either the primary or secondary object of the relationship. 

 Define a naming pattern for each of the objects (item, item revision, or dataset) 
that are created during the tool launch.”  

 

In order to launch an external simulation process from TEAMCENTER, five steps are 

required: 

 Identification of the data and files. 

 Export of the files and data from the TEAMCENTER database to the external file 

directory. 

 Force the launching of the simulation authoring tools or solvers, and often, also the 

load of the simulation data and files. 

 Checking the file directory after data changes. 

 If required, re-import of the data and files from the file directory to the TEAMCENTER 

database. 

 

An example that should help to understand how TEAMCENTER supports such external 

processes: 

In Figure 4-10 an example of CAE file export and import is given. This example is based on 

Kondragunta (2010). The example runs a batch solve with NX Nastran. TEAMCENTER forces 

this external process, provides the necessary data and re-imports the new generated files. 

The necessary file for the NX Nastran batch run is the input deck (*.dat file). The file is 

required by the NX Nastran solver which gets its solve job and data from the input deck. This 

file is stored as a NASTRAN bulk data reference type in the CAESolution dataset of a 

CAEAnalysis item revision. TEAMCENTER is configured in a way that the launch of the NX-

Nastran solve-process is only possible in the case of a selected CAEAnalysis item revision. In 

the case of other selections, a launch of the process is not possible. Due to this pre-selection of 
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a CAEAnalysis item revision, the identification of the required input deck file can be done in 

two steps. TEAMCENTER is configured to follow from a source object with a relationship 

(which can also be a reference) to a goal object: 

1. Following the CAESpecification relationship from the pre-selected CAEAnalysis item 

revision to the CAESolution dataset. TEAMCENTER is configured to follow the source 

object CAEAnalysis item revision (which has to be pre-selected) down to a relationship 

which is a CAESpecification relationship that points to a goal object which has to be a 

CAESolution dataset. 

2. Following the NASTRAN bulk data reference type from the CAESolution dataset down to 

the Nastran input deck file. TEAMCENTER is configured to follow the source object 

CAESolution dataset (which is identified in step 1) down to a relationship which is a 

NASTRAN bulk data reference type that points to a goal object which is the Nastran input 

deck file. 

Using this pre-configuration of search regulations, TEAMCENTER provides a technology to 

identify the required files and data. TEAMCENTER can then export the identified file to a 

predefined temporary file directory. 

TEAMCENTER can force NX Nastran to start by using a pre-created and pre-configured batch 

routine (Siemens Product Lifecycle Management Software Inc., 2011). The batch routine gets 

parameters from TEAMCENTER as inputs. In this example, two parameters are important. 

These parameters define the location of the exported file as well as the naming of the 

exported file. With the implementation of these parameters in the batch routine, the start of 

NX Nastran can be combined with the loading of the input deck (exported from 

TEAMCENTER). 

After and during the solve-process done by the NX Nastran solver, additional files such as 

result- (*.op2) and log-files (*.log, *.f06) (Siemens Product Lifecycle Management Software 

Inc., 2011) are generated. The *.op2 and the *.f06 file should be imported to the 

TEAMCENTER database. However, these files should be managed under a CAEResult item 

revision in a CAEResult dataset.  

 

The reference types for the import files are: 

 The Nastran_output2_binary – reference-type for the *.op2 file and  

 The Nastran_result_log – reference-type for the *.f06 file. 

TEAMCENTER can be pre-configured by defining a source object, relationship and goal object. 

The relationships flow from the source object to the last goal object identifies the position of 

the file that should be managed. Missing objects can be automatically generated by 

TEAMCENTER. In this example, four steps will be necessary: 
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1. The start will also be the pre-selected CAEAnalysis item revision. Following a 

CAEResult relationship from this CAEAnalysis item revision to the CAEResult item 

revision: TEAMCENTER is configured to follow the source object CAEAnalysis item 

revision (which is the pre-selection) down to a relationship which is a CAEResult 

relationship that points to a goal object which is a CAEResult item revision. 

TEAMCENTER is configured to generate new CAEResult items, CAEResult item 

revisions as well as the CAEResult relationships if these objects are not available. 

2. Following the CAESpecification relationship from the CAEResult item revision down 

to a CAEResult dataset: TEAMCENTER is configured to follow the source object 

CAEResult item revision (identified in step 1) down to a relationship which is a 

CAESpecification relationship that points to a goal object which is a CAEResult 

dataset. TEAMCENTER is configured to generate a new CAEResult dataset and a 

CAESpecification relationship if these objects are not available. 

3. Following the Nastran_output2_binary reference-type from the CAEResult dataset 

down to a NX Nastran result file (*.op2): TEAMCENTER is configured to follow the 

source object CAEResult dataset (identified in step 2) down to a relationship (a 

Nastran_output2_binary reference-type) that points to a goal object (a NX Nastran 

result file (*.op2)). TEAMCENTER is configured to generate a new 

Nastran_output2_binary reference-type if this object is not available, as well as to 

import the *.op2 file located in the pre-configured temporary file directory. 

4. Following the Nastran_result_log reference type from the CAEResult dataset down to 

a NX Nastran log file (*.f06): TEAMCENTER is configured to follow the source object 

CAEResult dataset (identified in step 2) down to a relationship  (a Nastran_result_log 

reference type) that points to a goal object (a NX Nastran log file (*.f06)). 

TEAMCENTER is configured to generate a new Nastran_result_log reference type if 

this object is not available, as well as to import the *.f06 file located in the pre-

configured temporary file directory. 

The configuration of TEAMCENTER achieves external process execution as well as data 

export of required files and data, and data import. The imported file *.op2 is managed under 

the Nastran_output2_binary – reference type and the *.f06 file under the Nastran_result_log – 

reference type ordered under the CAEResult dataset which is itself ordered under the 

CAEResult item Revision. This example can be seen in Figure 4-10. 

In addition to the product “Simulation Process Management” integrated in TEAMCENTER, the 

technology of “Behaviour Models” is available. In the previous sections, the TEAMCENTER 

product “Simulation Process Management” was discussed. In Section 4.8, the TEAMCENTER 

“Behaviour Models” technology will be discussed. 
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Figure 4-10 Data Export and Import 

 

4.8 DATA ACQUISITION OF THE BEHAVIOUR MODELS TECHNOLOGY  
 

 The Behaviour Models technology is not part of the TEAMCENTER “Simulation Process 

Management”. However, it is part of the “Mechatronics Process Management” product 

integrated within TEAMCENTER. With the TEAMCENTER “Mechatronics Process 

Management” product, the following point should be focused on:  

 

“Siemens PLM Software believes that today’s complex […] products require a systems-
driven approach to product development that combines systems engineering with an 
integrated product definition […]” (Siemens Product Lifecycle Managment Software Inc., 
2011) 

 

In this sense, Siemens PLM Software (2011) declares that the TEAMCENTER “Mechatronics 

Process Management” product: 

 

“establish[es] a collaborative environment for developing products comprised of 
mechanical, electronic, software and control (electrical interconnect) technologies[…] a 
common data model that crosses multiple engineering domains and a product lifecycle 
management (PLM) framework that manages the entire lifecycle process, these solutions 
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enable domain-specific teams to retain their mechanical, electrical, electronic or software 
focus while working together to meet overall product development goals.” 

 

In other words, the Behaviour Models technology is focused to support a mechatronic 

development process. This will be discussed in Section 4.8.1. 

 

 

4.8.1 DISCUSSION: THE BEHAVIOUR MODELS TECHNOLOGY IN THE CONTEXT OF 

MECHATRONIC DEVELOPMENT PROCESSES 
 

Behaviour models represent the behaviour of functions. The behaviour model data 

management framework manages the behaviour models dependent upon the functions. 

Multiple behaviour models are dependent upon each other which is similar to multiple 

functions that are dependent upon each other. The summary of models and dependencies 

represent a system. The models represent the behaviour of sub-ordered functions. These 

dependencies are also managed by the behaviour model technology.  

 

“The TEAMCENTER behaviour modelling tool integration framework is a generic 
integration framework and can integrate with any behaviour modelling tool […] 
TEAMCENTER currently supports integration with the MATLAB Simulink tool.” (Siemens 
Product Lifecycle Management Software Inc., 2012).  

 

 

Siemens Product Lifecycle Management Software Inc. (2011) discusses the requirement of 

technologies and products such as “Mechatronics Process Management” and “Behaviour 

Models”: 

 

“The continued introduction of electrical, electronics and software components into the 
product development process has created the need for more efficient and effective 
integration of all participating engineering disciplines. Previously, much of this cross-
domain knowledge was held in the heads of individual engineers. But that is no longer 
possible […] because of that complexity, it takes a long time to be absolutely sure the […] 
supply chain has covered everything and understands the impact that individual 
decisions are having on other aspects of the product design or its manufacturing 
processes.  

 

This product complexity makes it difficult to reach the customer driven product 

requirements. New processes and structures have to be installed like: 

 

“[a]dvanced modelling and simulation, the ability to derive engineering requirements 
from user needs and validate that your engineering specifications fulfil these needs early 
in the product development process […] Complex software-driven electronics play a 
major role in many products’ most advanced features. To address the product 
development issues that arise from these complexities, TEAMCENTER’s suite of 
mechatronics process management solutions facilitates a collaborative environment that 
enables disparate engineering disciplines to work together as they develop products 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 91 of 347 
 

 

comprised of multiple mechanical, electronic, software and electrical interconnecting 

components.” (Siemens Product Lifecycle Managment Software Inc., 2012)  
 

A theoretical example of a mechatronics system is pictured in Figure 4-11. This figure shows 

that the mechatronics system consists of mechanical and electronic, as well as software and 

controller disciplines. Also, sensors and the actuators are part in the mechatronic system. The 

volatility of the mechatronics system requires an information flow between the different 

elements and those different elements are developed by different departments.  

 

“To address the product development issues that arise from these complexities, 
Mechatronics Process Management solutions facilitate a collaborative environment that 
enables different departments to work together as they develop products comprised of 
multiple mechanical, electronic, electrical, and software interconnecting components.” 
(Siemens Product Lifecycle Management Software Inc., 2012). 

 
 

 
Figure 4-11 Mechatronics System (Siemens Product Lifecycle Management Software Inc., 2012) 

 

Therefore, TEAMCENTER supports mechanical design integration, electrical design 

integration, software design integration as well as wire harness design integration.  

 

“To enable you to manage and control your source code development assets, 
TEAMCENTER integrates with IBM Rational ClearCase. Equally important, TEAMCENTER 
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provides best-in-class support for signal/message management, calibration and 
configuration parameter management, as well as software design component 
management.” (Siemens Product Lifecycle Managment Software Inc., 2012) 

 

The behaviour model theory is also part of the support of a mechatronic development 

process. TEAMCENTER, together with the MATLAB/Simulink simulation authoring tool, can 

support the behaviour model theory. Poldermann & Willems (1998) mentioned the following 

about behaviour equations:  

 
“We therefore speak of behavioural equations when mathematical equations are 
intended to model a phenomenon. It is important to emphasise already at this point that 
behavioural equations provide an effective, but at the same time highly non-unique, way 
of specifying behaviour. Different equations can define the same mathematical model.” 

 

It follows that a behavioural equation recognises a result as output data in relation to input 

data. This mathematical equation can be integrated into a mathematical model by using an 

equation based simulation (EBS) tool. These mathematical models are called behaviour 

models because they represent the behaviour, for example, of functions, products or systems.  

 

 

Giese, Graf & Witz (1999) discuss the benefits of the behaviour models:  

 
“Today’s software systems for business, telecommunication and industry often obtain a 
high inherent complexity concerning their structure and behaviour. Their development 
demands construction techniques like multi-layer architectures, fine grain class 
structures, distribution, concurrency, reactivity, etc. to meet their requirements and 
change over time. The resulting software architecture has to support maintenance and 
configuration aspects. The object-oriented modelling principle allows to abstract and 
(de)compose system properties systematically. It offers tools to transform these 
properties into appropriate object-oriented structures and behaviour. […] Its rich set of 
notations allows to express system requirements, system structures and behaviour 
independent from any specific software development processes.”  

 

This shows that the behaviour model does not need the exact solution of the phenomena. In 

order to build a behaviour model of a software solution, the software code of the solution is 

not required; it is enough to know the phenomena that result in the solution. The behaviour 

model can be generated much earlier in the development process than the software code. The 

behaviour models can be used to detail the software code of the phenomena during the 

development process. 

 

The behaviour models can also support the model-based mechatronic development 

methodology. Based on a design-loop, an optimization of the mechatronic concept can be 

realised at an early stage of the development process (Lennon, 2007;Klotzbach, Oedekoven & 

Grassmann, 2011). The model-based development process integrates a holistic approach in 

this early phase. In front of the discipline-oriented development phases, a holistic 

mechatronic system phase is implemented. This holistic mechatronic concept phase works 

out a pre-optimised system-concept based on the behaviour models.  The behaviour models 
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are at a high abstract level representing the function but not the constructive solution. The 

constructive solution is worked out later in the development process. Based on this 

mechatronic concept phase, a verification of the system concept is achievable. If the check 

seems to be positive, the next step of the development process can be started.  

 

 
Figure 4-12 Model-Based Mechatronic Development Methodology (Mahler, Framework for System-

Simulation based System Engineering Development Methodology, 2012) 

 

The model-based mechatronic development methodology has progressed to a model based 

system engineering development methodology. The behaviour models used in the context of 

the model-based mechatronic development methodology are also useable in the context of 

the model-based system engineering development methodology. This will be discussed in 

Section 4.8.2. 

 

4.8.2 DISCUSSION: THE BEHAVIOUR MODELS TECHNOLOGY IN CONTEXT TO SYSTEM 

ENGINEERING 
 

Combining behaviour models with the model-based mechatronic development methodology 

is an effective step to reduce errors in hardware and software at late development stages, 

which create costly delays, and save development time (Lennon, 2007;Klotzbach, Oedekoven, 

& Grassmann, 2011). As such, an improvement to the model-based mechatronic development 

methodology can be achieved.  

Stark, Beier, Wähler & Figge (2010) discuss the system engineering methodology:  

“The system engineering process is a comprehensive, iterative and recursive problem 
solving process which is suitable for the development of mechatronic products. […] First 
step is the analysis of customer requirements in order to derive functional and 
performance requirements. Subsequently, functions are identified, decomposed and 
allocated to the requirements. During synthesis the product is defined in terms of 
physical and software elements and afterwards verified against the requirements [...].”  
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Mahler(2012) discusses the improvement of combining the model-based mechatronic 

development methodology with the system engineering methodology:  

“The model-based mechatronic development methodology and system engineering will 
get married together to model-based system engineering (Eigner, Gilz, Hollerith, & 
Zafirov, 07. Nov. 2011). The model idea of model-based mechatronic development 
methodology (like CAD models or executable models like equation based models) will 
help to verify the requirements generated in the system engineering development 
methodology. This check of the requirements against an early development stage will 
identify miss functions.”  

This means that behaviour models will be used for verification of the development process by 

checking the product concepts or constructive solution during the development process.  

“Behavioural models […] play a critical role in cascading customer needs down into 
engineering requirements. For example, a customer-driven need might be to reduce 
vibration during engine idling. […] How then can the customer's need for a smooth idling 
experience be translated into engineering requirements for the suspension and the 
suspension bushings? Systems-level models can play a very useful role in this process. 
Models can be built to capture the frequencies of the main subsystems.” (Siemens Product 

Lifecycle Managment Software Inc., 2011) 

 

The case examples of behaviour models can begin with an early development level or state. 

For example, functionalities of systems or subsystems can be modelled within the behaviour 

models (Oliver, Kelliher, & Keegan, 1997). Therefore, these behaviour models can exclude the 

technical solution to achieve this functionality. Multiple behaviour models representing 

functions can be linked to each other to represent the community of the system by simulating 

their functions. In this way, the function of the system concept can be checked without deep 

knowledge about how to solve the functionality. For example on the system level, a solution 

to achieve the function of the system is worked out. Behaviour models can be used to 

compare the mathematical abstraction of different possible function solutions. Also, 

verification and validation are possible with behaviour models because their simulation 

results are comparable with the defined needs and requirements of the simulated system, 

subsystem or component. The integration of behaviour models into the system engineering 

methodology creates the model based system engineering methodology. Brown & 

IBMCorporation (2011) mention that the integration of behaviour models into system 

engineering provides improved possibilities to validate and verify the development process 

or product.  The significant issue is in understanding the validation and verification of the 

process due to the different and, consequently, complex perception of document phraseology. 

Nevertheless, behaviour models help to improve the development process as well as to 

support verification and validation.  

The case example of the behaviour models in the system level of system engineering is 

similar to the case example of the mechatronic concept level in the model based mechatronic 

development methodology described in Section 4.8.1. Notably, in this early development 

stage, simulations cannot be CAD-based because the CAD models are not yet created or 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 95 of 347 
 

 

detailed enough. The representation of the product has to be non-CAD-model-based but 

represent the behaviours. The behaviour representation of functions or abstracted 

constructive solutions is based on mathematical descriptions. The deeper integration of 

mathematical abstraction and formulation requires a mathematical equation based 

simulation (EBS). Today, the use of EBS models begins with the generation of system 

representing behaviour models at system-level (Lennon, November 21, 2007). “As a simple 

illustration, consider the use of spread sheet software” (Brown & IBMCorporation, 2011). 

Spread sheets can be used in a smart way because big systems require enormous manual 

work to model all the formulae. 

 

TEAMCENTER supports the behaviour model technology, independent of case examples or 

the development process methodology. The behaviour model technology will be discussed in 

Section 4.8.3. 

 

4.8.3 DATA ACQUISITION OF THE BEHAVIOUR MODELS TECHNOLOGY IN TEAMCENTER 
 

In order to support the behaviour model theory, TEAMCENTER provides a technology for the 

data management of the behaviour models. The modelling of the behaviour models is 

achieved using EBS authoring tools. Currently, an interface for the simulation authoring tool 

Matlab/Simulink is standardised.  

 

“With the integration of behaviour modelling tools with TEAMCENTER, you can use the 
behaviour modelling tool for model authoring and TEAMCENTER for model management. 
[…] The TEAMCENTER behaviour modelling tool integration framework is a generic 
integration framework and can integrate with any behaviour modelling tool. […] 
TEAMCENTER currently supports integration with the MATLAB Simulink tool” (Siemens 
Product Lifecycle Managment Software Inc., 2012).  

 

The behaviour model technology of TEAMCENTER provides special objects of item and item 

revision as well as an interface, connection, relation and occurrence note type (Siemens 

Product Lifecycle Managment Software Inc., 2012). The behaviour ITEM class is called a 

behaviour model item and includes relationships of a model file from an EBS authoring tool.  

 

During the design lifecycle, files and data change. In order to manage changes to the files and 

data, revision technology is used (see Section 4.1). If the simulation model attached to the 

behaviour model item is edited and the simulation model file is changed, the analysts must 

decide if the edited behaviour model file has to replace the file of the behaviour model item or 

behaviour model item revision, or if the behaviour model item revision itself has to be 

revised. For the revision, all the behaviour model items are organised in the behaviour model 

item revision.   
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The behaviour model attached to the behaviour model ITEM revision can require input as 

well as output data. The interface requirement of the input and output data is represented as 

ports related to the behaviour model item revision. Two port types are available (Siemens 

Product Lifecycle Managment Software Inc., 2012): 

 Behaviour Model Input Port (Object Type: Bhm0InPort) representing the input 

interface of the model 

 Behaviour Model Output Port (Object Type: Bhm0OutPort) representing the output 

interface of the model 

The ports provide data about ‘What input as well as output ports are required?’ In order to 

view the input and output information flow between different item revisions, the ports have 

to be connected to each other. Information about the connection of the ports between 

different behaviour model item revisions is managed by the behaviour model connection 

(Object type: Bhm0Connection). The behaviour model connection points from a behaviour 

model output port to a behaviour model input port. 

 

The linking of multiple behaviour models with behaviour model connections requires a 

hierarchical structure of the behaviour model item revision.  In the case of CAD assemblies, in 

addition to the dataset, a data-structure including the subordinated behaviour model item 

revisions are stored (Siemens Product Lifecycle Management Software Inc., 2012). This is 

called bill of material view (BOM view).  

 

The ports of the behaviour model ITEM revision are stored under the BOM view as behaviour 

model input port or behaviour model output port. Also, the behaviour model connection, 

linking two behaviour model ports, is stored under the BOM view. However, the behaviour 

model connection only connects ports of subordinated behaviour model item revisions, i.e. 

the connecting of ports is not possible on the behaviour model item revision level where the 

port is created. The earliest opportunity to connect ports is one level higher in the BOM view 

than the behaviour model item revision that provides the port for the connection. An example 

is shown in Figure 4-13.   

 

 
Figure 4-13 Ordering of the Behaviour Data Model 
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With the integration of input and output ports as well as with the port connections between 

behaviour model item revisions, it is possible to create horizontal and vertical structured 

model-based system engineering models. The horizontal structure connects models at the 

same level and the vertical structure connects the subordinated models. The data model of 

the behaviour models overfills the recursive modelling of model-based system engineering as 

described in Brown & IBMCorporation (2011). An example is shown in Figure 4-14. 
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Figure 4-14 Structure of Model-Based System Engineering Models 

  

The generation of the behaviour data models requires a mutual cooperation between the 

behaviour model authoring tool and TEAMCENTER. This integration is achieved between 

Matlab/Simulink and TEAMCENTER. The interface of Matlab/Simulink is set up through a 

behaviour model management common client framework. Therefore, TEAMCENTER is 

connected to the behaviour model management common client framework and the behaviour 

model management common client framework is connected to the Matlab/Simulink 

connector (see Figure 4-15). With this interface architecture, a generic integration 

framework is reached. Currently, only the interaction between TEAMCENTER and the 

simulation authoring tool Matlab/Simulink has been achieved. 
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Figure 4-15 Matlab/Simulink Behaviour Model Interface Architecture (Siemens Product Lifecycle 

Management Software Inc., 2012) 

In order to manage the files, dataset technology is used.  Datasets are attached to behaviour 

model items or behaviour model item revisions. In the case of global information, the dataset 

is attached to the behaviour model item and, in the case of changing information, the dataset 

is attached to behaviour model item revisions.  

 

“The Dataset object represents an actual data file on the operating system or in 
TEAMCENTER. Datasets are typically authored content of some sort, such as Microsoft 
Office files or CAD data files.” (Siemens Product Lifecycle Management Software Inc., 
2012).  

 

The Matlab/Simulink simulation behaviour model file is stored as a dataset under the 

behaviour model item revision. The datasets are linked to the behaviour model item revision 

by using Specification relationships. This technology is similar to the CAESpecification 

relationship discussed in Section 4.6.2. The behaviour data model of TEAMCENTER is shown 

in Figure 4-16. 
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Figure 4-16 Behaviour Model Item Structure 

 

The data acquisition of the simulation data management technology and behaviour model 

technology should help to understand and analyse case studies. These case studies will be 

discussed in the Chapter 5. 
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5 CASE STUDIES OF MANAGEMENT OF THE DATA OF MULTI-

DISCIPLINARY AND INTER-DISCIPLINARY SIMULATION 
 

As discussed in Chapter 2 and Chapter 5, the current state of simulation data management 

should be improved to achieve a multi-disciplinary simulation data management. The case 

study methodology should help to compare multi-disciplinary and inter-disciplinary 

simulation examples with the previous data acquisition of the simulation supporting 

technologies in TEAMCENTER. So, multi-disciplinary and inter-disciplinary simulation 

examples will be sampled. The examples are multi-disciplinary simulations whereby the data 

is managed with TEAMCENTER. These examples are analysed from the viewpoint of multi-

disciplinary simulation data management. The data sampling method of the multi-

disciplinary simulation examples is described in Section 3.2.2.  

Each case study should be worked out and discussed based on the same process. This process 

should make the work easier and reviewable.  The process is described as follows: 

1. The first step is the data acquisition and description of the multi-disciplinary 

simulation application example. This will make the example comprehensible.  

2. In the second step, the simulation process is detailed which should include the 

detailing of the simulation process and the simulation models and steps.  

3. Then, in the third step, the files, data and information, used or generated during the 

simulation process, are detailed and mapped over the simulation process. Therefore, 

the case study examples are analysed from the viewpoint of information and data 

flows. This is done for each case and multi-disciplinary simulation example. 

4. In the fourth step, the previously acquired and analysed files, data, information and 

data/information flow is mapped in/with the TEAMCENTER data management 

system. This will map the case study onto the actual state of simulation data 

management technology. Missing functionalities, data management objects or 

workarounds should become identifiable. 

The case studies will use current available software. Such software will be used to generate, 

edit and manage the data. Authoring software such as NX could be used to generate and edit 

the data. This kind of software will include pre-processing, post-processing and solver 

functionalities. The data management software will be TEAMCENTER. TEAMCENTER is a 

leading technology that includes SDPM (see Section 2.6 till 2.9). TEAMCENTER seems to be 

the best system for the data collection for the proposition of the new framework. 

Nevertheless, all sorts of software will be used to generate, edit or manage the data. The 

generation, editing and managing of this data will be necessary in order to process 

implementation into the multi- and inter-disciplinary simulation case study examples. These 

case studies will provide the basis for the new scientific knowledge. Such new knowledge will 

be generated in the architecture, as well as ordering and relating rule sets for the new 

framework to manage and support multi- and inter-disciplinary simulation.  Therefore the 
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new knowledge will help to generate an improved way for ordering and relating data, 

generated by current available authoring software. The current available data management 

software by TEAMCENTER will provide the leading software for data management and a 

basis for the case studies. TEAMCENTER also provides an implementation environment for 

improved data ordering and relating.  Nevertheless, the goal will be to improve the work on 

multi- and inter-disciplinary simulation by generating new scientific knowledge for an 

improved architecture, encompassing ordering and relating rules for the multi- and inter-

disciplinary simulation support and management. Therefore the case studies analyse the 

work and its processes on and off multi- and inter-disciplinary simulations. 

In Section 3.2.2, four case studies and multi-disciplinary simulation examples have been 

discussed. The four examples that will be discussed in the next four sections are: 

1) Example 1: SCHMIDT Gesellschaft für Werkzeug- und Formentechnik mbH; Nürnberg: 

Creation of a moulding tools simulation vision for moulding tool optimization.  

2) Example 2: Semi-Finished Goods Producer, (unpublished customer name), South-

Germany  

Project: Benchmark of simulation tools. This benchmark should identify an ideal 

simulation tool. An improved development process of extrusion sections production 

tools is achievable with Siemens simulation products. 

3) Example 3: Automotive Company (unpublished customer name), South-Germany 

Project: The one-vendor-benchmark project. In this project, a multi-disciplinary and 

mechatronic system-simulation of a car luggage door system had to be realised. 

4) Example 4: Automotive Company (unpublished customer name), South-Germany 

Project: A research project called “Interdisciplinary Model-based Development 

Process”. This research project includes a multi-disciplinary and mechatronic system-

simulation of a car windows lifter system. 

For most of the examples the customer name will not be published. Indeed the publishing of 

the customer name could be in breach of the compliance regulations of the researcher’s 

employer.  

In Sections 5.2 through 5.5, four case studies including multi- and inter-disciplinary 

examples, will be discussed.  A preliminary introduction into standard simulation process 

workflow will be discussed in Section 5.1. 

 

5.1 SIMULATION PROCESS BASICS 
 

A simulation process usually has three steps. The first step is called pre-process and creates a 

simulation model. This process deals with the opening or importing of input files and brings 

them into a simulation model that is runnable by a solver. The second step is called solve-

process. In this step, the simulation model obtained from the first step is used by a solver that 
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executes the mathematical procedures of the simulation and produces the results. 

Meanwhile, solver-run-files are generated and are called log-files that record the process of 

the solver. The third step is called post-process. Here, the results generated by the solver, are 

graphically presented. These visualisation techniques are used to aid the analysis and 

interpretation of the results. Usually, the simulation is documented (Roensch, 2010). This 

process will be shown in the Figure 5-1. 

 

Figure 5-1 Basic Simulation Process 

 

In Sections 5.1.1 through 5.1.3, these three processes will be discussed in detail. 

  

5.1.1 PRE-PROCESS 
 

The pre-process abstracts the objects or processes that should be simulated to a solver 

understandable format. Each solver has its specific mathematical base which defines the kind 

and type of abstraction (Dehning & Wolf, 2006, p. 8). So, the pre-process stage can include 

multiple process steps. The steps and number of steps are dependent on the kind and quality 

of the pre-process input data. The more modern approach is to use geometrical CAD data as 

input (Roensch, 2010). Input data can also be mathematical dependencies or simply an idea. 

Mathematical dependencies often appear in the case of equation based simulation (EBS). An 

idea can be modelled directly into pre-process because the documentation of the idea is not 

in a useable format here. Usually, specialists in geometrical CAD data inputs have to prepare 

this data to be ideal for the abstraction process (Roensch, 2010). Afterwards, the data can be 

transformed to the abstracted format. For a better understanding of abstracted formats, the 

following cases are given as examples:  

 For an FEM simulation, the abstraction will be a mesh (with nodes and elements). The 

mesh represents finite elements (Roensch,2010). Then, the finite elements are 

transformed by the solver into a matrix. The matrix is used in the solve-process to 

generate results. 

 For a CFD simulation, the abstraction will be a mesh. The mesh represents volume 

elements (Roensch,2010). Then, the volume elements are transformed by the solver 

into a matrix. The matrix is used in the solve-process to generate results. 

pre-process solve-process post-process 
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 For an MBS, the abstraction will be object-linked information (such as drill point and 

axe) and parameters (such as velocity), representing links between bodies, bodies 

representing information (such as mass or volume) and parameters (Kecskemèthy, 

31/2007), representing the geometrical bodies. Afterwards, the link and body 

information and parameters are transformed by the solver into a matrix. The matrix 

is used in the solve-process to generate results. 

 For an EBS, the abstraction will often be an object-oriented, mathematical 

formulation of the dependencies or workflows (Zimmer, 2010) and the parameters 

for the equations. Afterwards, the mathematical formulations are used by the solver 

to generate results. 

The abstraction of the pre-process input data requires a high number of parameters and 

variables describing the simulated process or product. Roensch (2010) discusses the 

necessity of parameters or variables, for example, parameters could be used to describe the 

elasticity as materials parameters, friction parameters, damping parameters or spring 

parameters. Additionally, the definition of load cases and boundary conditions has to be 

generated during pre-process.  

A summary of a basic pre-process workflow is represented in Figure 5-2 Basic Pre-Process   

 

Figure 5-2 Basic Pre-Process Workflow 
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adding boundaries 
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abstraction of the system  
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But could be also ideas that will be directly 

modeled to the abstracted form 
or it could be mathematical dependencies 

(special in the case of EBS) 

geometrical idealization to optimize the abstraction 

Inputs are mostly geometrical CAD models or an idea will be directly geometrically modeled 
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This basic pre-process is dynamic and can be changed to attain an optimised solution. The 

generated files are dependent on the optimised pre-process-workflow and the used 

simulation authoring tool (pre-process simulation tool).  

In most simulation authoring tools (pre-process simulation tools), the solver is not directly 

integrated. However, the solve-process can be executed directly by the pre-process 

simulation authoring tool. In these cases, the simulation authoring tool has to generate an 

input deck for the solver. This input deck is a summary of the model describing abstraction 

and the parameters, variables, constraints and loads. The input deck has to be in a solver 

understandable format. The data of the input deck is required for the mathematical 

computation in the solver. For example: In the case of the SIEMENS product NX Advanced 

FEM, the pre-process workflow is handled as described above (Siemens Product Lifecycle 

Management Software Inc., 2011). This structure is the same in the case of an FEM or CFD 

simulation. The example is shown in the Figure 5-3. 

 

Figure 5-3 Basic Pre-Process-File-System of NX Advanced FEM 
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In Section 5.1.2, the solve-process in context of a basic simulation process will be discussed.  

 

5.1.2 SOLVE-PROCESS 
 

The solve-process needs fewer interactions with the user than the pre- or post-process. 

Usually, the input for the solver is the input deck. The input deck includes multiple files. In 

some cases, there is a direct transport of the information from the pre-process to the solver. 

In these cases, the input deck does not need to be generated. Most solvers document the 

solve-process in protocol files and store the results into result files. Some solvers also 

generate additional files such as files that can be used for a solve-process restart. The Fiugure 

5-4 shows the files and data generated during the solve-process (Roensch, 2010) 

Figure 5-4 Files in the Solve-Process 

If we use NX Nastran as an FEM solver, this solver handles the files and data described in the 

previously presented solve-process. In Table 5-1, the main files and data generated during 

the solve-process of the NX Nastran solver are listed (Siemens Product Lifecycle Management 

Software Inc., 2011). 
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Table 5-1 Main NX Nastran Files 

File Type File Suffix 
Input deck DAT 
Protocol files F04 and F06 and LOG 
Result files OP2 
 

The results generated by the solve-process are used in post-process which will be discussed 

in Section Post-Process. 

 

5.1.3 POST-PROCESS 
 

The result files generated during the solve-process include a large amount of information. 

Reading through these files is almost impossible. However, visualisation and mapping of the 

results onto the pre-process information and data greatly improves interpretation of the 

results. So, the post-process visualises the results (Roensch, 2010). The result files are 

visualised in relation to the abstracted data and information of the pre-process. The results 

are in either two-dimensional or three-dimensional form and in coloured- mode data format. 

A graphical presentation is an efficient way to make the results much easier to understand 

and provide a means of interpretation in a reviewable format. This process is shown in Figure 

5-5. For the most part, the interpretation of the results will also be documented. Such 

documentation i.e., during and after the result interpretation belongs to the post-process.  

 

Figure 5-5 Post-Process Visualisation 

 
 

Post - 

Process 

Result Files 

Abstraction 

Files 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 107 of 347 
 

 

The pre-, solve- and post-process constitute a basic simulation process. In the following 

examples, multiple simulations are combined. The represented basic simulation process 

should help to understand the following case studies and examples discussed in Sections 5.2 

through 5.5. 

  

5.2 CASE 1: CREATION OF A MOULDING-TOOL-SIMULATION-VISION FOR MOULDING-

TOOL-OPTIMIZATION  
 

SCHMIDT Gesellschaft für Werkzeug- und Formentechnik mbH is an engineering company 

specialising in the design of moulding tools.  SCHMIDT Gesellschaft für Werkzeug- und 

Formentechnik mbH is under pressure from its competitors.  So, the company undertakes to 

secure its place in the market by positioning itself as a high-end, high quality engineering 

business fully capable of offering a comprehensive, technically superior service 

encompassing the conception and design of moulding tools using optimised development 

processes.  This can be achieved with simulation of the moulding tools. That will mean the 

simulation of the tool set and not mould-simulation. A benchmark should be employed to 

identify the ideal simulation tool.  

The CAD models of the moulding tools will be provided as basis for the simulation by 

SCHMIDT. Thereby, the moulding tool set, as well the moulding process itself, should be 

addressed by the simulation. Additionally, the simulation should be reproducible by CAD-

modelling-experts as opposed to simulation-experts.  

Following this benchmark has established a unique relationship between SCHMIDT 

Gesellschaft für Werkzeug- und Formentechnik mbH and Siemens. In fact, greater knowledge 

about moulding tool simulations and their potential has been realised through this 

collaborative effort.  The simulation work was carried out by me. Mahler & Schmidt(2012) 

analysed and evaluated the findings from this project. The materials in the paper will directly 

be integrated into the PHD thesis. 

   

5.2.1 DISCUSSION OF MOULDING TOOL SIMULATION 
 

Moulding tools are used extensively throughout the industry.  
 

“Injection moulding is an ideal process for fabricating large numbers of geometrically 
complex parts. Many daily used items are injection moulded: mobile phone housings, 
automobile bumpers, television cabinets, compact discs and lunch boxes are all examples 
of injection moulded parts.” (Kennedy, 2008). 

 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 108 of 347 
 

 

However, the moulding tools are expensive to develop and produce. In order to reduce costs, 

high volume production is necessary whilst retaining and guaranteeing quality of work 

Therefore, in order to manufacture competitive plastic parts economically, the forming errors 

have to be reduced and the forming speed has to be increased (Clusterland Oberösterreich 

GmbH, 2012). This affects the forming process. 

 
I. Forming Process 

 

“Injection moulding is a cyclic process. Initially, the mould is closed to form the cavity 
into which the material is injected. The screw then moves forward as a piston, forcing 
molten material ahead of it into the cavity.[ ...] When filling is complete, pressure is 
maintained on the melt and the packing phase begins. The purpose of the packing phase 
is to add further material to compensate for shrinkage of material as it cools in the cavity. 
At some time during packing, the gate freezes and the cavity is effectively isolated from 
the pressure applied by the melt in the barrel. This marks the beginning of the cooling 
phase in which the material continues to cool until the component has sufficient 
mechanical stiffness to be ejected from the mould. […] When the moulded part is 
sufficiently solid, the mould opens and the part is ejected. The mould then closes and the 
cycle begins again.” (Kennedy, 2008).  

This process is shown in Figure 5-6. 

 
 

Figure 5-6 Case 1: Moulding Process 
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II. Improvement of the Forming Process and Moulding Tool 
 

The following are meaningful findings that can be used to increase the forming speed: 

1. In the mould closing phase, the parts are moving. This causes extra load and results in 

stress and deformation of moulding tools and parts. In order to speed up the closing 

process, the mass of the parts of moulding tools and parts should be reduced and the 

drive force should be increased.  

2. The injection temperature could be high since the injection material’s property is 

improved. So the injection can be done with a higher injection velocity and higher 

pressure (WÜRTELE, LANGE & HUNGERKAMP, 2004). Similarly, the injection 

pressure and mould material temperature cause increased applied loads and results 

in stress and deformation of moulding tools and parts.  

3. The pressure during the packing phase is increased (WÜRTELE, LANGE & 

HUNGERKAMP, 2004). This should reduce the errors due to material shrinkage. 

However, increased pressure causes higher applied loads and results in stress and 

deformation of moulding tools and parts. 

4. The cooling process can be carried out more rapidly and in a controlled manner 

(Seidel, Brunner & Wißuwa, 2009) by using cooling pipes in the moulding tools. 

Unfortunately, rapid cooling causes higher applied loads and resultant stress and 

deformation of moulding tools and parts. 

5. The ejection process can be improved in the same way as the mould closing process 

in Phase 1. The mass of the parts should be reduced and the drive force should be 

increased. However, mass movement causes higher applied loads and results in the 

stress and deformation of moulding tools and parts. 

In summary, speeding up the process by reducing the mass of the moulding tools and 

increasing the applied loads on the moulding tools and parts result in increased forming 

errors and lower lifespan of the tools. A proper optimization of process parameters and tool 

sizes is necessary. This can be achieved with a coupled physics analysis, taking into account 

of all mechanical and thermal loads during a complete moulding cycle. 

 

In Section 5.2.2, the simulation process and information flow to achieve such a simulation will 

be discussed. 
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5.2.2 DISCUSSION OF THE SIMULATION PROCESS AND INFORMATION FLOW IN CASE 1 
 

The moulding tool simulation requires cooperation between the thermal, flow, structure and 

durability simulation disciplines. These four simulation disciplines can be integrated into a 

simulation in three phases: 

1. Co-simulation of the thermal and flow simulation discipline.  

a. The movement of the coolant is simulated with the flow simulation.  

b. The temperature of the coolant and moulding tool is simulated with the 

thermal simulation.  

c. The thermal and the flow simulation are directly coupled to a co-simulation to 

simulate the interaction of the moving coolant and the temperature of the 

coolant and the moulding tool.  

2. Subsequently, the temperature results can be used to simulate the deformation and 

stress of the moulding tool caused by all applied mechanical and thermal loads.  

3. The stress of the moulding tool causes damage. In a last step, the durability of the 

moulding tool is simulated based on previously generated stress results. 

Incidentally, the source CAD models of this case study will include a high number of holes and 

blends. The influence of most holes and blends will be negligible for the simulation. Therefore 

the study will describe how to select which holes and blends should be ignored for the 

simulation thereby enhancing ease and performance. Additionally, the study will define how 

to select and blend a radius-limit-filter. It should be noted that only holes and blends in areas 

with low stress-peaks will be selected, whereas holes with force or boundary influences will 

not be selected and kept in the simulation. It has also to be observed that the lower moulding 

toolset will be fixed to the ground but the higher moulding toolset (the moving toolset) will 

be not fixed. Instead a closing force will be applied.  By applying a closing force the simulation 

will resemble the behaviour of the moulding tool. The closing force influences the 

deformation and if the closing force is too low, the deformation of the moulding tool will be 

too high. In such case the gap between the higher and the lower moulding toolset could 

become too great and the work piece will not be produced to the required thickness 

tolerance. Such a case can be seen in Figure 5-8. Nevertheless, all these case example specific 

simulation influences, such as the hole and blend influences or the closing force influences, 

will have no impact on the PhD research project. The PhD research project will not concern 

itself with the simulation model details because the focus on the work and the work process 

will not be impacted using such a detailed viewpoint. 

In the following, the three phases of the actual case study will be discussed. 
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I. Discussion of Phase 1: Thermal and Flow Analysis  
 

The simulation of the moving coolant is necessary to get the right cooling of the moulding tool 

caused by the coolant. So, it is required to couple the flow simulation of the coolant with the 

thermal simulation of the coolant which is achieved with NX CAE products such as NX Flow 

and NX Thermal (Ruel, 2011). The fluid volume of the coolant channels is derived from the 

solid model of the moulding tool (Siemens PLM Synchronous Technology Part2/2, 2008). 

Geometric models, the flow and the moulding tool are meshed. The coolant mesh has to be 

coupled to the moulding tool mesh for the thermal simulation, using NX surface to surface 

coupling (Inc., NX 8 Hilfe NX Nastran User Guide, 2011). Afterwards, the loads and 

boundaries are added. The applied loads, boundaries and solver parameters are: 

 As load, the initial temperature of the injection mould is applied to the contact faces of 

the injection material. 

 As boundary, the free convection of the moulding tool to the environment is defined. 

 As load, the coolant is described between the inlet and outlet as recirculation loop 

with a predefinition of flow velocity and the heat exchanger parameters such as heat 

transfer coefficient, convection area and temperature. This achieves a coupling of 

thermal and flow 3D and 1D simulation. The meshed coolant volume is used for the 

3D simulation. The two open ends of the meshed coolant volume are linked together 

by a mathematical formulation and represent the events between the two open ends. 

This will be possible by implementing a small 1D simulation solution in the used 

simulation authoring tool NX Advanced Simulation and NX Advanced Thermal. 

 As solver parameters, a mixing length turbulence model has been chosen as the 

solvers mathematical handling of the numerical mathematic.  

 As solver parameters, the simulation is done as a steady state simulation. This means 

that the temperature and flow simulation represent the constant state. The constant 

state appears when the losing and loading energy are both constant and similar to 

each other. So, the stress difference between the warmest and coldest temperatures 

in one production cycle process can be considered as negligible. 

Figure 5-7 shows the result of this simulation case study.  
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Figure 5-7 Result of Phase I Case 1 

The thermal loads cause deformation and stress in the moulding tool. This deformation and 

stress will be simulated in Phase 2 

 

II. Discussion of Phase 2: Structure Analysis 
 

For the structural analysis, only the solid mesh of the moulding tool is required. In order to 

generate the mesh of the moulding tool, the physical setup from Phase 1 is cloned. The clone 

is directly re-used to build the structural simulation. The mesh of the fluid volume and other 

data is deleted. On the mesh of the moulding tool (generated by cloning the solution of Phase 

I and editing the clone) the thermal distribution, generated in Phase 1, is applied as the load. 

The temperature field of the thermal analysis is used as an initial condition. In order to 

complete the physical setup of the structural analysis, bolt connections, pressure loads from 

the mould injection, closing forces and bolt preload forces, as well as the fixing of the ground 

plate are added. Contacts are also required.  Contact face pairs are detected automatically.  In 

most cases, the contacts are defined as surface-to-surface contacts with friction. Contacts are 

necessary to accurately measure the movement in the contact areas and the contact 
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pressures. The simulation is done with the linear solver NX Nastran SOL 101 (Inc., NX 8 Hilfe 

NX Nastran User Guide, 2011). Two sub cases have to be defined:  

 Sub case 1 - to generate stress results of the warmed up moulding tool: Thermal loads 

representing the steady state thermal loading of the working moulding tool  once a 

day. 

 Sub case 2 - to generate stress results of a lot production: Additional loads are 

required. These constitute the closing force and injection pressure caused by one 

production cycle  for each work piece.  

A result of Sub case 2 is shown in Figure 5-8. 

The deformation and stress results are focused in this phase. They help to identify critical 

design positions. Additionally, they help to decide if further analysis is required.  

 

Figure 5-8 Result of Phase 2 Case 1 

The stress results of the Sub case 1 and Sub case 2 cause damage to the moulding tools and 

parts material. This damage can be simulated. In Phase 3, this is done as a fatigue simulation.  
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III. Discussion of Phase 3: Fatigue Simulation 
 

The fatigue simulation is based on the stress results of Phase 2.  A fatigue simulation requires 

a high quality mesh.  So, NX Advanced Simulation was selected to provide an automatic mesh 

refinement algorithm taking into account local stress error deviations (Siemens Product 

Lifecycle Management Software Inc., 2011). The mesh refinement also causes a large number 

of data and file sizes, and hence requires lengthy time and resource investments. The fatigue 

simulation does not require all the parts used in Phase 2 - only one part is necessary. A 

reduced simulation model can be generated by cloning and editing the simulation of Phase 2. 

This clone includes only the required part for the durability simulation. The simulated 

deformation (Sub case 1 and 2) of this part, completed in Phase 2, can be applied locally as a 

constraint. The refinement of the mesh and the deformation loads generates the stress results 

with the required high quality for the fatigue simulation. The fatigue should represent one 

production day. So, two load cases are summarised: 

 One cycle of Sub case 1 that represents the fatigue damage of warming the moulding 

tool and 

 {Number of produced work pieces a day} cycles of the Sub case 2 that represent the 

damage caused by the loads of one production lot. 

The fatigue results should help to optimise the design of the moulding tool. In order to 

optimise the moulding tool, only relative and non-absolute fatigue results are necessary. 

However, it is common practice to compare relative fatigue results in order to compare 

different design variants. This practice is used to improve the moulding tool.   

The result of the fatigue simulation is shown in Figure 5-9. 
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Figure 5-9 the Result of Phase 3 Case 1 

The simulation process during Phase 1 to Phase 3 uses and generates multiple files, data and 

information. The handling of these files, data and information plays an important role to 

realise this simulation process. This will be discussed in Section 5.2.3. 

 

5.2.3 DISCUSSION ABOUT THE USED AND GENERATED FILES, DATA AND INFORMATION 

OF CASE 1 
 

In this section, the used and generated files, data and information will be discussed and 

described. This will be carried out for each phase of the simulation process. 

 

I. Phase 1: Thermal and Flow Analysis 
 

The source of the simulation is CAD geometry models stored in multiple files. These files are 

organised to represent the hierarchical order as assemblies and parts.  NX is the used CAD 

and CAE tool. NX provides the possibility to generate idealized parts directly in the CAE 

system. The behaviour of this file should be to generate geometry that is idealized for 

meshing. For each CAD part, if it is required in the simulation, an idealized part is generated. 
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The meshing is done in the next step. In NX, the meshing is done in an extracted file, called 

FEM file. The FEM files are dependent upon the idealized parts. The FEM files mesh the 

individual idealized parts, whereby, the modelled idealised parts are based on individual CAD 

parts. The moulding tool is an assembly. So, an assembly mesh called AFM file is generated. 

The AFM file is dependent on the assembled CAD model. In the AFM file, the FEM files are 

sampled hierarchically, similar to the CAD assembly and dependent upon the CAD model that 

includes the assembly information. Using the information from the dependent CAD model 

(assembly), the AFM mesh knows how to position the individual FEM files in a three-

dimensional form. The original assembly of the moulding tool combines 134 CAD part files. 

The simulation of the moulding tool requires only 15 CAD parts, and the top assembly. For 

each of these 15 parts, an idealised part file and an FEM file are generated. The idealised parts 

are also used to generate the cooling pipes volume which means that the parts are able to 

include multiple geometrics such as cooling pipe volume and moulding tool volume. Also, the 

FEM file can include multiple meshes.  Subsequently, an AFM-file is generated dependent 

upon the CAD assembly part. This AFM file organises the 15 FEM files associated with the 

CAD assembly. Dependent upon the AFM file, a SIM file is generated. The SIM file is used to 

apply loads and constraints, and solver parameters. The described file structure is shown in 

Figure 5-10. The simulation for the coupling of the thermal and flow simulation for Phase1 is 

achievable using only one SIM file and one solver.  

 

Figure 5-10 Phase 1 Simulation Structure of Case 1 

The simulation of Phase 1 is achieved with NX Advanced Simulation as the pre-processor and 

NX Thermal and NX Flow as solvers. The pre-process of Phase 1 produces an input deck file 
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readable by the coupled NX Thermal and NX Flow solvers. The solve-process generates 

results and protocol files. NX Advanced Simulation, used for the pre-process, is also used for 

the post-process of the results. The important result is the thermal distribution in the 

moulding tool. For the re-use of this result, the thermal distribution is extracted and stored 

with the NX Advanced Simulation as a single file (ASCII format). The thermal distribution in 

this file is used as input for the simulation of Phase 2 and Phase 3. 

 

II. Phase 2: Structure Analysis 
 

In order to generate stress and deformation results, a structure simulation is carried out in 

Phase 2. This simulation requires the same structure as was generated in Phase 1. In 

additionally, most files and data from Phase 1 can be re-used. Changes are required in the SIM 

file, AFM file and one FEM file. In order to re-use the data and files, NX Advanced Simulation 

provides clone technology so these three files are cloned and saved under new names. By 

using this clone functionality in addition to file cloning, the hierarchical dependencies 

between existing files from Phase 1 are assumed. In Figure 5-11 the structure of Phase 2 is 

shown. 

 

 

Figure 5-11 Phase 2 Simulation Structure of Case 1 
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As mentioned above, there are changes in the three cloned files. These changes are: 

 In the cloned FEM file 1, the coolant meshes are deleted.  

 In the cloned assembly AFM file, the FEM file1 is replaced by the cloned FEM file 1. 
The other FEM-files are the originals from the original AFM file. The replacement of 
the cloned FEM file 1 affects the coolant meshes which are included in the structure 
simulation of Phase 2.  

 In the cloned SIM file, the AFM file is replaced by the cloned AFM file. Additionally, the 
predefined simulation definitions of Phase 1 is deleted and replaced by a structure 
simulation definition (see also Phase 2: Structure Analysis). 

An unusual case is the thermal load case defined in the cloned SIM file. The thermal 

distribution is based on an additional file. This file is generated in the post-process of Phase 1. 

Here, the thermal distribution is extracted from the results of Phase 1 and saved in a 

specialised file. This is shown in Figure 5-12. 

The structure simulation of Phase 2 simulates the stress and deformation results of the 

moulding tool assembly. Two different simulation sub cases (see also Section 5.2.2 II) are 

generated. Both of them generate an input deck for the solver, the results and log files during 

the solve-process. Based on the resultant data, the staff responsible for this can decide if a 

fatigue simulation is required. Post-processing in Phase 2 can be used to identify additional 

local constraints and loads for the fatigue analysis which is stored in a specific file, similar to 

that carried out in Phase 1. The used and generated files of the fatigue simulation in Phase 3 

will be discussed next in Phase 3. 

 

III. Phase 3: Fatigue Simulation 
 

In Phase 3, the fatigue simulation is focused on one or two critical moulding tool parts, 

specifically, this is the CAD Part File 1.  So, the existing FEM file 1 is dependent on the Part 

File 1 and will be cloned. In order to achieve a high mesh and result quality, the mesh is 

automatically refined. The refinement of the mesh is done in a loop until a predefined target 

is achieved. During the adaptive mesh refinement, control files are written which are deleted 

at the end of the adaptive re-meshing. The solver result, protocol files and the cloned FEM file 

1 are overwritten.  This planned refinement means that a direct use of the original FEM file 1 

can change the FEM file 1 used in the simulation of Phases 1 and 2 (see 5.2.2 III). So, a cloning 

of the FEM file 1 is required for Phase 3. Based on the cloned FEM file 1, a SIM file is 

generated. Similar load cases, boundary conditions or solver parameters of the simulation 

(SIM-file) in Phase 2 are applied. Furthermore, the thermal load case with the additional 

thermal distribution file is applied. The derived constraints of the simulation results of Phase 

2 can be a forced deformation of local points, such as holes. The deformation dimension is 

identified by the post-process of Phase 2. The solver parameters are similar to the structure 
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simulation of Phase 2 using the NX Nastran SOL101 solver. The results show the deformation 

and stress for the simulation model in Phase 3 but with a higher quality than in Phase 2. 

Refined mesh with a better result quality is used for a fatigue simulation. Two structure 

simulation sub cases are required to summarise the fatigue of two different types of fatigue 

damages. Both of the structure simulation sub cases generate an input deck for the solver, the 

results and log files during the solve-process. Based on the result files and the fatigue solver 

parameters, the fatigue solver generates results and log files. The fatigue simulation 

definition is also realised in the SIM file and with NX. 

These files, data and information of the moulding tool simulation should be managed by 

TEAMCENTER. In Section 5.2.4, the data management with TEAMCENTER for this case 

example will be discussed. 

 

Figure 5-12 Simulation Structure of Case 1 
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5.2.4 DATA MANAGEMENT OF CASE 1 WITH TEAMCENTER  
 

The case study includes an integration of the system-simulation into the PLM framework 

TEAMCENTER. The management of all the required files and the support of the simulation 

process should be achieved. 

In Phase 1, multiple CAD models are managed as CAD item Revisions. 15 idealized parts (to 

generate the ideal geometry for meshing) are generated on 15 CAD item Revisions. Each 

idealized part is stored as dataset under a new CAEGeometry item Revision. A CAESource and 

CAETarget relationship is used to link each of the 15 new CAEGeometry item Revisions to the 

responding CAD item Revision source (Siemens Product Lifecycle Management Software Inc, 

2012). Each individually idealised part is the source for a FEM file (to generate the mesh of 

the geometry). The 15 FEM files are stored as dataset under 15 new CAEModel item 

Revisions. In order to represent the source dependencies of a FEM file, a CAESource 

relationship points from each CAEModel- item Revision to the source CAEGeometry item 

Revision. Additionally, to define the represented original geometry of the FEM file, a 

CAETarget relationship points from each CAEModel item Revision to a CAD item Revision 

(Siemens Product Lifecycle Management Software Inc, 2012). In order to combine the 15 FEM 

parts, they are subordinated by an AFM part. This AFM part is dependent on the assembled 

CAD model including the underlying CAD models. The AFM part file is stored as a dataset 

under a new CAEModel item Revision. In order to manage the dependency to the assembled 

CAD model, this CAEModel item Revision is linked to a CAE Source and a CAETarget 

relationship pointing to the CAD item Revision with the assembled CAD model dataset. The 

hierarchical structure of the 15 CAEModel item Revisions with the single FEM parts to the 

new CAEModel item Revision with the AFM part are managed with BOM view technology 

(Siemens Product Lifecycle Management Software Inc., 2012). The BOM view of the 

CAEModel item Revision with the assembled FEM part ordinates the 15 individual CAEModel 

item Revisions. The thermal simulation is stored as SIM file (called thermal SIM file). The 

thermal SIM file is stored as a dataset under a new CAEAnalysis item revision. The source of 

the thermal SIM file is the assembled FEM part. This is represented by a CAEDefining 

relationship pointing from the CAEAnalysis item Revision to the CAEModel item Revision 

with the AFM part. Based on the thermal SIM file, a solve run of the simulation is executed. 

The result files, generated by the solve run, are stored as datasets under the CAEAnalysis 

Revision. With post-processing, an additional file should be generated. This file should 

include the description of the thermal distribution and should be importable for later 

simulation steps. The extracted file is managed as a dataset under the CAEAnalysis item 

revision of the thermal SIM file. The items, as well the relationships and the datasets, are 

shown in Figure 5-13. 

In Phase 2, the CAEModel-Item Revision 1 including the FEM file 1 is cloned. The FEM file 1 

includes the mesh of the geometrical CAD model part. However for the next simulation, the 

mesh has to be changed. In order to keep the existing simulation model constant and have a 

changeable item and dataset, the CADModel item revision 1 has to be cloned. A new 
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CADModel item revision and dataset including a copy of the FEM file 1 is generated as a result 

of the cloning. This new item is the CADModel item revision 1a and the underlying dataset 

FEM file 1a. The source of the new generated CADModel item revision 1a is the same as the 

original CADModel item revision source. This dependency is represented by a new CAE 

Source relation from the new CAEModel- item revision 1a to the CAEGeometry item revision 

1. The represented CAD item revision of the new CAEModel item revision 1a is also the same 

as in the original CAEModel item revision 1. This dependency is represented by a new CAE 

Target relationship from the CAEModel item revision 1a to the CAEGeometry item revision 1. 

The changes of the mesh can now be completed. 

 

 

Figure 5-13 Metadata Structure of Case 1 Phase 1 
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In Phase 2, the AFM file of Phase 1 also needs to be cloned. The cloning and the behaviour of 

the cloning are similar to the cloning of the FEM file. A new CAEModel item revision is 

generated, called CAEModel item revision 0a and a copy of the dataset (thermal FEM 

assembly file) is generated, the FEMassembly file. The assembly mesh of the CAEModel item 

revision 0a requires the new generated part mesh of the CAEModel item revision 1a instead 

of the part mesh of the CAEModel item revision 1. The hierarchical ordering is changed and 

leads to the change of the BOM view of the CAEModel item revision 0a. 

Based on the data of the CAEModel item revision 0a, the structured SIM file is built. This SIM 

file is stored under a new CAEAnalysis item revision as a dataset and the CAEDefining 

relationship is pointing to the CAEModel item revision 0a. The SIM file generation requires 

the thermal distribution file generated in Phase 1 as input. The thermal distribution file is 

managed as a dataset under the CAEAnalysis item revision of Phase 1. This dependency is 

represented by a CAEInclude relationship pointing from the CAEAnalysis item revision of 

Phase 2 to the CAE Analysis item revision of the Phase 1.  

However, the CAEInclude relationship does not point to the dataset used as input for Phase 2 

simulation and for this reason, this relationship is not precise. Additional information to 

identify the precise dataset and file in the CAEAnalysis item revision of the Phase 1 is -

required. So, an out-of-the-box solution is not available. Customization would be useful. 

Additionally, the support of the CAEInclude relationship is not given in the case of the 

simulation authoring tool NX Advanced Simulation. In this case, the thermal distribution file 

dataset of the CAEAnalysis Item Revision in Phase 1 is exported manually. 

The result files generated by the solve run of Phase 2 is stored in datasets under the 

CAEAnalysis item revision. The post-process of the result files does not produce additional 

files.  

The items and the relationships and the datasets are shown in Figure 5-14.  
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Figure 5-14 Metadata Structure of Case 1 Phase 1 and 2 
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The re-use of the thermal derivation file generated in Phase 1 as input for Phase 3 is similar 

to the re-use of the thermal derivation file as input in Phase 2. This means that the relation to 

the thermal derivation file is not precise enough and requires additional information. As 

discussed in Phase 2, the solution is that the thermal distribution file dataset of the 

CAEAnalysis item revision in Phase 1 are exported manually.    

In Phase 3, three simulation sub cases are created. The first sub case should generate stress 

and deformation results caused by the thermal and pressure loads. Based on the first 

simulation sub case, the second simulation sub case should automatically improve the mesh 

quality. The mesh is reworked automatically. The improvement of the mesh also improves 

the quality of results from Sub case 1. The simulation Sub case 2 runs the mesh refinement 

and simulation from Sub case 1 in a loop process. After achieving a predefined mesh quality, 

an additional simulation sub case is created based on simulation Sub case 1. The third 

simulation sub case should generate durability results. The results files and data of the three 

simulation sub cases are stored in datasets under the CAEAnalysis item revision of Phase 3. 

The post-process of the results do not produce additional files.  

The items, relationships and datasets are shown in Figure 5-15.  

In summary, TEAMCENTER provides good support and management of individual simulation 

models. Traceability of the individual simulation model and its sources and represented 

product parts are achieved. Nevertheless, TEAMCENTER does not support multi-disciplinary 

and inter-disciplinary interaction of individual simulation models. The unique traceability of 

multi-disciplinary and inter-disciplinary interaction will not be achieved and the required 

data will neither be provided nor identifiable.  Furthermore, the unique review of the multi-

disciplinary and inter-disciplinary interaction between the individual simulation models with 

TEAMCENTER will not be achieved. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 125 of 347 
 

 

 

Figure 5-15 Metadata Structure of Case 1 Phase 1, 2 and 3 
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company searched for a solution to achieve the die optimization. The use of simulation was 

also investigated. 

Siemens Industry Software provides simulation applications that are ideal for a semi-finished 

goods producer. The customer was interested in benchmarking the possibilities with tools 

from Siemens Industry Software. My responsibility, from a Siemens Industry Software 

perspective, was to take care of the use case implementation and I determined an 

optimization of the development process by combining the simulation with the design 

applications in NX. In order to understand the data management issues associated with this 

case study, the extrusion section production process has to be presented at the outset. This 

will be discussed in Section 5.3.1. 

 

5.3.1 DISCUSSION OF EXTRUSION SECTION PRODUCTION PROCESS 
 

As discussed above, the main concern is to optimise the extruded section. This requires the 

optimization of the die tool. So, the extrusion section production environment and the 

working environment of the die have to be integrated into the development process. 

Temperature differences have a considerable influence on the die and extrusion section 

production process. The manufacturing environment temperature of the die is around 20° 

Celsius but the temperature of the extrusion section production process is much higher. The 

extruded section variation to the expected form is also influenced by this temperature 

discrepancy. It is assumed that it is possible to simulate the geometrical characteristics of the 

die at the extrusion section production process and the die manufacturing process. In this 

case, geometrical characteristics dictate the geometrical deformation of the die. The extrusion 

section is influenced by the big difference of the temperature discrepancies. The extrusion 

section should achieve an expected form at room temperature but the extrusion section 

production process is at a much higher temperature. In the following, the extrusion section 

production process will be explained in more detail. 

In the extrusion section production process, which is the working phase of the die, a  

“material is pushed or drawn through a die of the desired cross-section. The two main 
advantages of this process over other manufacturing processes are its ability to create 
very complex cross-sections and work materials that are brittle, because the material 
only encounters compressive and shear stress. It also forms finished parts with an 
excellent surface finish.” (WIKIPEDIA, 2012) 

 

Udomphol & Technology (2012) explains: “Most metals are hot extruded due to large amount 

of forces required in extrusion.” The use case of the semi-finished goods producer optimises 

the development process of the die used for a hot extrusion. 
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In the extrusion process, the machine is loaded with hot material. A punch forces the hot 

material “to flow in the same direction as the punch (Udomphol & Technology, 2012).” The 

flowing hot material has to pass through the die tool. The die tool forces the hot material to 

change the form. This process is shown in Figure 5-16 and Figure 5-17. 

 

Figure 5-16 Extrusion Process (Udomphol & Technology, 2012) 

 

Figure 5-17 Extrusion Process (WIKIPEDIA, 2012) 
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The product coming out of the extrusion machine is the hot extrusion section. However, the 

end-product demanded by customers of the semi-finished goods producer, is the cold 

extrusion section.  Therefore, the customers define the exact design and tolerances of the cold 

extrusion section. Besides, the hot production process of the extrusion section causes a 

difference between the expected and produced geometrical characteristics of the extrusion 

section. The geometrical material form changes during temperature changes. Therefore an 

improvement in the die development process can be optimised to reduce the differences 

between expected and produced semi-finished goods. Section 5.3.2 will discuss how a 

simulation process and an information flow will improve the development process. 

 

5.3.2 DISCUSSION OF THE SIMULATION PROCESS AND INFORMATION FLOW IN CASE 2 
 

Simulations can help to develop the hot extrusion section and expected extrusion section at 

room temperature, as required by the customer. Simulations can also be used to design a cold 

die tool produced at room temperature. So, the simulation calculates the deformation 

difference between the cold extrusion section (initial temperature is room temperature) and 

the hot extrusion section (load temperature is production process temperature of the 

material). This deformation can be used to demonstrate the difference between the 

geometrical description (available as a CAD model) of the cold extrusion section and the 

geometrical form of the hot extrusion section.  

The die shapes the hot material into the geometrical form of the hot extrusion section. So, the 

hot extrusion section geometric is included at the end of the die as a negative form. In the 

case of the production process, the die and the extrusion section are in a hot state, required 

for the production process. The temperature distribution of the die volume is inconsistent. On 

the contrary, the hot material and the fresh extruded hot extrusion section can be seen as 

loaded with an even and constant temperature. The die is warmed up on the inlet side by the 

hot blank material and cooled down on the outlet by water, oil or air. This causes an 

inconsistent thermal distribution in the die. The hot extrusion section volume is also cooled 

down outside of the forming area. In the forming area, the temperature distribution of the hot 

extrusion sections could be seen as even. This is because the hot extrusion section will be 

warmed up in an oven prior to the extrusion process. 

Contrary to the hot production process of the extrusion section, the die is manufactured at 

room temperature. The die is in a cold state. The design data and information is also based on 

the cold state of the die.  An enhancement in the optimised die development process is that 

the first design geometric is not an exact design of the die. It includes a boundary form of the 

die and an approximated position of the negative hot extrusion section form. This first design 

should provide the geometrical base to generate a simulation for the thermal distribution of 

the hot die volume. Hence a steady state simulation of the thermal distribution of the die is 

achieved. The temperature of the hot blank material is integrated into the simulation as 

thermal load and the cooling of the die as convection in the environment. The temperature of 
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the hot blank material and the convection caused by cooling is ascertainable based on prior 

experiences or measurements on pre-developed machines and projects. The steady state 

simulation means that the energy inflow is in balance with the energy outflow of the 

simulation. The results obtained from the thermal distribution in the hot die volume can be 

used to calculate the deformation caused by the thermal loads. So, a subsequent structure 

simulation of the first die design includes the thermal distribution over the volume of the die. 

The result of the structure simulation is the deformation of the first and cold die design 

caused by the thermal loads of the production process. The deforming of the first die design 

geometric model (available as a CAD model) results in the geometrical form of the die design, 

(a derived CAD model) in the hot state. Simulation and CAD modelling operations are 

accomplished with NX applications.  

With the previous simulations, the first die design and the extrusion section in the hot state of 

the extrusion section production process are achieved. The hot first die design and the hot 

extrusion section are now available as CAD geometrics. With a Boolean operation, the hot 

extrusion section geometric can be subtracted from the hot first die design geometric. This 

Boolean operation produces a new die design. The new hot die design is also available as a 

CAD model because it is generated with CAD functionalities. The new hot die design includes 

the hot extrusion section as negative form. This achieves the forming of the hot extrusion 

section at the production. 

The next task is to build a CAD model of the new die design useable for the manufacturing of 

the die at room temperature. The thermal difference between the hot state (extrusion section 

production process temperature) and the cold state (die manufacturing temperature) cause a 

deformation of the die. The new die design in the cold state is achievable by a structure 

simulation based on the geometry of the new hot die design. The temperature distribution of 

the die at the extrusion section production process, determined in the first die design 

simulation, is used as initial temperature. The room temperature of the die manufacturing is 

the thermal load. The result of this structure simulation is the deformation of the die caused 

by the temperature difference. In order to reach the cold new die design, the hot new die 

design has to be geometrically deformed. So, the simulated geometrical deformation results 

are mapped onto the CAD model geometric of the hot new die design. The CAD functionality 

deforms the CAD model of the hot new die design based on the simulated deformation. This 

functionality is used to generate the CAD model geometry of the cold new die design. The 

resulting data is required for the production of the die. 

This improved development process is shown in Figure 5-18. The development process is 

work done by the author of this these when carrying out consultancy work for the customer 

(Mahler, Presentation at Wieland Werke, 2010).  
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Figure 5-18 Simulation Process of Case 2 

 

5.3.3 DISCUSSION ABOUT THE USED AND GENERATED FILES, DATA AND INFORMATION 

OF CASE 2 
 

In the previous section, it was discussed that two different simulation disciplines are required 

- thermal and structure simulation. Thermal simulation is used to simulate the temperature 

distribution in a volume. Structure simulation is used to simulate the deformation of a 

volume. In some cases, the temperature distribution of the thermal simulation result is used 

as the input for the structure simulation. This kind of simulation does not require a co-

simulation because the thermal and structure simulation run serially. The deformation result 

is used to deform the geometry stored as CAD model. Similar to the simulation process, the 

geometrical manipulation of the CAD models runs serially. The CAD manipulation runs after 

the serial process of the simulation. In conclusion, the new development process of the die is 

a serial process.  Parallel starts are possible from the following two starting bases: 

(1) The CAD model file of the extrusion section and 

(2) The CAD model file of the first die design. 
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As discussed before, it is possible to start with the CAD model of the extrusion section or with 

the CAD model of the first die design. Alternatively, it is also possible to start with both of 

them in parallel way.  The following discusses the procedures of both starting points: 

(1) Starting with the CAD model of the extrusion section: The geometry of the extrusion 

section included in the CAD model file is idealised for meshing. This results in an 

idealised part (so-called in the used simulation tool NX Advanced Simulation). The 

idealised part provides the geometry for the meshing. The mesh is stored in a mesh 

part. The mesh part is used as a base for a simulation part. In this simulation part, the 

settings for a structure simulation, the simulation parameters, load cases and 

constraints are added. Based on these settings, the deformation of the extrusion 

section is calculated. This deformation results from the temperature difference 

between the cold (expected geometrical form of the extrusion section at room 

temperature) and the hot state (temperature of the extrusion section at the 

production). The solve run generates multiple result files which are viewable via the 

NX post-processor. This post-processor integrates the functionality to generate a 

deformation-matrix-file of the extrusion section. With the CAD functionalities of NX, 

the deformation-matrix-file is importable and re-used to determine the changes of the 

geometry of the cold extrusion section. This new geometry describes the hot 

extrusion section geometry. The changed geometry is stored as a new CAD model file. 

This serial process is shown in Figure 5-19. 

(2) Starting with the CAD model of the die design: The geometry of the first die design 

included in the CAD model file is idealised for meshing. This results in an idealised 

part.  The idealised part provides the geometry for the meshing. The mesh is stored in 

a mesh part. The mesh part is used as a base for a simulation part. This simulation 

part includes the settings for a thermal and structure simulation. The thermal 

simulation has to be run first to generate the thermal distribution result of the first 

die design during the extrusion section production process. This simulation includes 

thermal boundaries such as convection in the environment (cooling of the die) and 

the thermal load caused by the hot material (heating of the die). The solve run 

generates multiple result files which are viewable via the NX post-processor. This 

post-processor integrates the functionality to generate a thermal-distribution-file of 

the die and this result file is re-used as thermal load in the structure simulation. 

Accordingly, the structure simulation has to be run after the thermal simulation. The 

structure simulation generates deformation results of the die caused by the thermal 

difference between the cold (room temperature where the die is manufactured) and 

the hot state (temperature of the die at the extrusion section production). The solve 

run generates multiple result files which are viewable via the NX post-processor. This 

post-processor integrates the functionality to generate a deformation-matrix-file from 

the cold first die design. With the CAD functionalities of NX, the deformation-matrix-

file is importable and re-used to deform the geometry of the cold first die design. This 

new geometry describes the hot first die design geometry. The deformed geometry is 
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stored as a new CAD model file. This serial process is shown in Figure 5-19. 

 

These two starting points can be started independently from each other. So, the two starting 

points can be handled in parallel. However, the process itself is serial because the steps are 

made serially and the two starting points are achievable because they are independent from 

each other. The on-going work is also serial and combines the two arms of the starting points. 

The two new generated CAD models, describing the hot extrusion section and the hot first die 

design, are assembled into a new third CAD model. The new third CAD model is used for a 

Boolean operation. This Boolean operation subtracts the hot extrusion section from the hot 

die design. The result of the Boolean operation is the hot die design geometry with the 

negative form of the hot extrusion section. This hot die design can form the hot extrusion 

section in the production process. The geometry of the hot die design is idealised for meshing. 

The idealised part provides the geometry for the meshing. The mesh is stored in a mesh part. 

The mesh part is used as the base for a founded simulation part. This simulation part includes 

the settings for a structure simulation. This structure simulation generates deformation 

results of the new die design between the hot and cold states. So, the temperature-

distribution-file developed during the thermal simulation of the first die design is re-used as 

the initial thermal boundary. In addition to the initial thermal boundary (starting 

temperature), the room temperature during die manufacturing is added as thermal load (end 

temperature). The structure simulation generates the deformation results of the hot new die 

design caused by the thermal difference between the hot and cold states. The solve run 

generates multiple result files which are viewable with the NX post-processor. This post-

processor integrates the functionality to generate a deformation-matrix-file of the hot new 

die design. With the CAD functionalities of NX, the deformation-matrix-file is importable and 

re-used to deform the geometry of the hot new die design. This new geometry describes the 

cold new die design geometry. The deformed geometry is stored as a new CAD model file. 

This serial process is shown in Figure 5-19. 

These files, data and information of the modelling tools simulation should be managed by 

TEAMCENTER.  TEAMCENTER data management, for this case example, will be discussed in 

Section 5.3.4. 
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Figure 5-19 File Structure of Case 2 

 

5.3.4 DATA MANAGEMENT OF CASE 2 WITH TEAMCENTER 
 

This case study includes an integration of the system-simulation into the PLM framework of 

TEAMCENTER. The management of all the required files and the support of the simulation 

process should be achieved. 

The case study starts with two independent CAD models of the cold extrusion section and the 

first die design. This involves two independent starting points that could run in parallel until 

the data is combined. The two parallel process arms are similar to each other. Each of the 

CAD models is managed as a dataset under a CAD item revision. Based on each of the CAD 

model part files, the idealised part files are generated and managed as datasets under new 

CAEGeometry item revisions. Each CAEGeometry item revision has a CAESource and 

CAETarget relationship pointing to the source CAD item revision (Siemens Product Lifecycle 

Management Software Inc, 2012). The two idealised part files are the source for the two 

associated mesh files. Based on each of the idealised part files, the mesh files are generated 

and managed as datasets under new CAEModel item revisions. In order to link the new 

CAEModel item revision to the appending CAEGeometry item revision and appending CAD 

item revision, each CAEModel item revision has a CAESource relationship pointing to the 

appending CAEGeometry item revision and a CAETarget relationship pointing to the 

appending CAD item revision (Siemens Product Lifecycle Management Software Inc, 2012). 
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Based on each of the mesh files, simulation files are generated and managed as datasets 

under new CAEAnalysis item revisions. In order to represent the dependency to the 

associated mesh file, each CAEAnalysis item revision has a CAEDefining relationship pointing 

to the appending CAEModel item revision. The simulation-file of the extrusion section 

includes a structure simulation solution. The simulation file of the first die design includes 

both a thermal and a structure simulation solution. The result files generated by the solve run 

are stored in datasets under the appending CAEAnalysis item revision. In the case of the 

extrusion section, the result files of one thermal simulation are managed. In the case of the 

first die design, the result files of one thermal and one structure simulation are managed. The 

post-process of the cold extrusion section results produces an additional deformation file. 

This deformation file is managed as a dataset under the CAEAnalysis item revision of the cold 

extrusion section and is re-used later for CAD model deformation functionality. The post-

process of the cold first die design generates an additional thermal distribution file. The 

temperature distribution file is managed as a dataset under the CAEAnalysis item revision of 

the first die design simulation. This file is re-used during later simulation steps. The post-

process of the first die design also generates an additional deformation file. This deformation 

file is managed as a dataset under the CAEAnalysis item revision of the cold first die design. 

This file is re-used later for CAD model deformation functionality. In order to deform the CAD 

model geometry of the extrusion section and the die design, the CAD model files are cloned. 

The CAD models are available in the cold state. The two cloned CAD model files are managed 

as datasets under two new CAD item revisions. With CAD functionalities, the two cloned CAD 

model geometrics are transformed based on deformation files. This transformation re-uses 

the two deformation files to transform the cold state geometry into a hot state geometry. The 

cold first die design geometry is transformed (based on the deformation file of the die design) 

into the hot first die design geometry and the cold extrusion section geometry (using the 

extrusion deformation file) to the hot extrusion section geometry. The hot state describes the 

extrusion section production state, the cold state the room temperature state. 

However, there are no relationships between the two new generated CAD item revisions and 

the appending deformation file datasets under the CAEAnalysis item revision. So, this process 

cannot be uniquely retraced. So sometimes it is required to use a trace-link.  

“A trace link establishes a path in which one object takes precedence over another. The 
trace link creates a directional relationship between the two objects, a relationship 
conveyed by the terms defining and complying.” (Siemens Product Lifecycle Management 
Software Inc., 2012).  

However, this link is not precise because it is not pointing to the dataset of the CAEAnalysis 

item revision. Additional information to identify the precise dataset is required. So, an out-of- 

the-box solution is not available. Customization can be used, but is not representative for 

general applications. An automated data appropriation is not possible. So, the deformation 

file datasets of the CAEAnalysis item revisions has to be applied manually.    

There is also missing functionality in the case of the first die design. The simulation file 

includes two sub cases: the thermal and the structure sub case. The op2 result file of the 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=appendant&trestr=0x8004
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thermal sub case is used for input in the structure sub case. This is not monitored in 

TEAMCENTER. This input is achievable with NX and TEAMCENTER because the necessary 

data is available. Unfortunately, this process is not retraceable in the data management level.  

The described data management is shown in Figure 5-20.  
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Figure 5-20 Metadata Structure of Case 2 Phase 1 
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The two new CAD models are assembled into a new third CAD model. This CAD model 

includes the geometry of the hot extrusion section and hot die design managed as a dataset 

under a new CAD item revision. With a Boolean operation, the hot extrusion section is 

subtracted from the hot die design. The result of the Boolean operation is a hot die design 

geometry with the negative form of the hot extrusion section. This hot die design can form 

the hot extrusion section in the production process. The new CAD model of the hot new die 

design is the source for meshing. The generated mesh files are managed as datasets under a 

new CAEModel item revision. In order to link the new CAEModel item revision to the 

appending CAD item revision, the CAEModel item revision has a CAESource relationship and 

a CAETarget relationship pointing to the appending CAD item revision (Siemens Product 

Lifecycle Management Software Inc, 2012). Based on the mesh file, a simulation file is 

generated and managed as a dataset under a new CAEAnalysis item revision. In order to 

represent the dependency to the depending mesh file, the CAEAnalysis item revision has a 

CAEDefining relationship pointing to the appending CAEModel item revision. The simulation 

file includes a structure simulation solution. As explained in Section 5.3.3, this structure 

simulation requires the thermal distribution file of the cold die design as input. A CAEInclude 

relationship points from the new CAEAnalysis item revision to the CAEAnalysis item revision 

of the cold first die design where the thermal distribution file is included as a dataset. The 

CAEInclude relationship can help to appropriate the thermal distribution file manually or 

automatically. However, the CAEInclude relationship points to the CAEAnalysis item revision, 

not to the dataset. In this case, it is easier to make the appropriation manually. The solve run 

generates multiple result files managed as datasets under the CAEAnalysis item revision. The 

post-process of the hot new die design results produces a deformation file. This deformation 

file is managed as a dataset under the CAEAnalysis item revision of the hot new die design. 

This file is re-used later for CAD model deformation functionality. The CAD model of the hot 

new die design is cloned to a new CAD model managed as a dataset under a new CAD item 

revision. This CAD model is used to generate the geometry of the new die design in the cold 

state. With CAD functionalities, the geometry of the new CAD model is geometrically 

transformed based on the deformation file of the structural hot new die design simulation. 

This transformation re-uses the deformation files to transform the hot state geometry into a 

cold state geometry. The hot new die design geometry is transformed (based on the 

deformation file of the hot new die design) into the cold new die design geometry. The hot 

state describes the extrusion section production state and the cold state, i.e., the room 

temperature state where the die is manufactured. However, there is no relationship between 

the two new generated CAD item revisions and the appending deformation file datasets 

under the CAEAnalysis item revision. So, this process is not uniquely retraceable. There is the 

possibility to use a trace-link. However, this link is not precise because it is not pointing to the 

dataset of the CAEAnalysis item revision. Additional information is required to identify the 

precise dataset. So, an out-of-the-box solution is not available. Customization can be used, but 

is not suitable for general use. An automated data appropriation is not possible. So, the 
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deformation file datasets of the CAEAnalysis item revisions have to be appropriated 

manually.    

The described data management is also shown in Figure 5-21.  

In summary, TEAMCENTER provides good support and management of individual simulation 

models. In so doing, traceability exists in an individual simulation model from its sources to 

its significant product parts.  Nevertheless, TEAMCENTER does not support multi-

disciplinary and inter-disciplinary interaction of individual simulation models. The unique 

traceability of multi-disciplinary and inter-disciplinary interaction will not be achieved and 

required data will neither be identifiable or available. Consequently, a unique review of multi-

disciplinary and inter-disciplinary interactions between individual simulation models with 

TEAMCENTER is not possible. 
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Figure 5-21 Metadata Structure of Case 2 
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5.4 CASE 3: SYSTEM-SIMULATION OF A LIFT GATE 
 

An automotive company in the south of Germany sought a benchmark to identify the best 

PLM and CAx system (Computer Added system with x standing for the multi functionalities 

like design [CAD], analysis [CAE] and manufacturing [CAM]) for their companies. The 

benchmark was partitioned into different projects and work packages. One project was called 

‘future engineering’. In the ‘future engineering’ project, the work package ‘system-simulation 

of a car luggage door’ was involved. The simulation of the lift gate was to represent and 

include the mechatronic systems of the lift gate product. The result of the simulation should 

be to generate knowledge about the functionality and parameter values describing the lift 

gate product. So, this system-simulation required a linking of different simulation models and 

solvers coupled to a co-simulation. The lift gate is shown in Figure 5-22. 

 

Figure 5-22 Car Lift Gate (Wuttke, Bohn, & Suyam-Welakwe, 2011) 

 

5.4.1 DISCUSSION ABOUT THE LIFT GATE SYSTEM  
 

Although, the lift gate is only a subsystem of the car, in this example it is considered a system 

in its own right. The lift gate itself is built on multiple subsystems. The system, the 
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subsystems and the dependencies between the subsystems are shown in Figure 5-23 and 

discussed in this section.  

 

Figure 5-23 Lift Gate System Architecture 

Each subsystem of the lift gate can be run on its own. So, the simulation of subsystems should 

be run on its own. Due to this requirement, the missing inputs of the bordering subsystems 

have to be predefined as the input values. In the following, the individual subsystems and the 

interaction of the subsystem in the lift gate system are discussed: 

1) Controller subsystem: 

The controller controls the electrical motor and the latch. The controller receives 

information about the latch status. So, the controller ‘knows’ if the latch is in the 

opened or closed state. The closed state of the latch prohibits the powering of the 

electrical motor. The controller also receives incremental angle information from the 

incremental sensor of the electrical motor and the used current of the electrical 

motor. This information is used to detect impacts during the movement of the lift 

gate. So, the change of the current and the angle change are interpreted by the 

software of the controller. Based on this information, the controller controls the 

electrical motor. 
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2) Electrical motor (Sui & Hirshey II, 2000;Boberg, 2008):  

The electrical motor offers drilling speed and momentum. The connection to the 

electrical power is guided and controlled by the controller. The electrical motor 

transforms electrical energy to rotational energy that is initiated in the gear system. 

3) Gear subsystem (Boberg, 2008): 

The gear transforms the rotational energy of the electrical motor into a translator 

energy and generates a three dimensional movement of the connecting rod. This 

energy transformation provides a low speed, high force energy as output by 

transforming the high speed and low momentum energy input of the electrical motor. 

So, the gear system transforms the rotation speed and momentum energy and 

provides output to the connecting rod converting the rotational energy into a 

transferable energy. This connecting rod is ultimately linked to the hinge system.  

4) Hinge subsystem: 

Two hinges are available to connect the door to the chassis. Each of the hinges is 

divided into two main parts; one of them is fixed to the chassis and the other to the 

door. These two parts are linked together by a joint that provides a rotational 

movement around the joint axis. The hinges enable the lift gate door to rotate around 

the joint axis. One of the two hinges, the part that is fixed to the lift gate door, is also 

linked to the connecting rod of the gear system. This connecting rod initiates the 

transferable energy (which includes force and movement of the connecting rod) to 

this part of the hinge. In this way, the transferable energy of the connecting rod can 

force a movement of the lift gate door. 

5) Lift gate door subsystem (Boberg, 2008): 

The lift gate includes all the bodies and parts that have to be moved by the system to 

open the trunk. By using the bodies and parts, the required mass and inertia of the lift 

gate can be abstracted. The lift gate door is fixed to the hinge system. Due to the 

forced movement of the second part of one hinge, the lift gate is forced to open or 

close.  Moreover, a gas spring is fixed to the lift gate. Additionally, the lift gate door 

can be in contact with the seals. The lift gate door can be fixed by the latch system. 

6) Seal subsystem:  

The seal subsystem binds water ingress to a lagged area. It also dampens noise and 

acceleration resulting in relative movements between the chassis and the lift gate 

door. The damping effect of the seals between the lift gate door and the chassis cause 

a force when the lift gate is at the nearly closed or the closed position. The seals also 

act like a spring. The spring force orientation of the seals lifts the lift gate door. The 

seals are fixed to the chassis but can also be in contact with the lift gate door. 

7) Gas spring subsystem (Sui & Hirshey II, 2000): 

On one side, the gas spring system is connected to the chassis and on the other side to 

the lift gate. The gas spring reacts with forces dependent on the relative position and 

relative velocity between the lift gate door and the chassis. The force, dependent on 

the velocity, causes damping effects to the moving lift gate door and, dependent upon 

the position, causes spring effects.  
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8) Latch subsystem: 

The latch influences, the possible movement of the lift gate. In the closed state it fixes 

the lift gate to the chassis.  It fixes its position in the closed state to the chassis by a 

hook that is in contact to an eye fixed to the chassis. In this state, the opening of the 

lift gate is impossible. In contrast, the open state is a disconnected state between lift 

gate door and chassis, which allows movement of the lift gate door. In the closing or 

opening procedure, the contact between the hook (connected to the lift gate door) 

and the eye (connected to the chassis) changes their contact force. The force appears 

at the nearly closed or closed position of the lift gate. The latch forces orientation 

closes the lift gate. The latch forces work against the seal forces. 

Each subsystem is designed to work its own. A huge number of the subsystems will constitute 

supplier parts. This is illustrated in Figure 5-24. The integration of a supplier into the system-

simulation of the lift gate is not part of the benchmark required by the automotive company 

but is an important aspect in the planning of future multi-disciplinary data management 

tools. Nybacka, Törlind, Larsson & Johanson (2006) discussed a concern of companies to 

implement ‘black-box-simulations’ of suppliers into system simulations. The suppliers should 

generate simulation models of the subsystem they deliver. The guarantor of the entire system 

uses subsystem-simulation models and integrates them into their system-simulation model. 

Usually, suppliers would keep their simulation secret. The simulation model includes know-

how that shouldn’t be publicised to other companies or persons. So, the simulation model 

should be a ‘black-box-simulation’ excluding know-how of the companies. In Link (2012), the 

integration of possible ‘black-box-simulations’ using the MODELISAR FMI (functional mockup 

interface) interface is shown in Figure 5-24. The future of lift gate simulation integrates 

simulation models of suppliers, but not the actual system-simulation example.  

 

Figure 5-24 Supplier Integration (Link, 2012) 

 

In Section 5.4.2, the simulation process and information flow of the lift gate system will be 

discussed. 
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5.4.2 DISCUSSION OF THE SYSTEM AND SUBSYSTEM-SIMULATION OF CASE 3 
 

In order to keep the subsystems separate and to support a subsystem-oriented development 

process, each subsystem should be generated as an independent simulation model. So, each 

subsystem has its own simulation model. In order to build the lift gate system-simulation, the 

subsystem-simulation models are merged or connected. The merging and connecting is 

completed in two steps:  

(1) The first step is to merge subsystem-simulation models that are generated in the 

same simulation authoring tool into a merged simulation model. 

(2) The second step is to connect the merged simulation model and the unmerged 

subsystem-simulation models to a system-simulation by coupling the different 

simulation models and solvers. The coupling of the solvers is necessary to execute 

simulation models of different simulation authoring tools. 

For the generation of the subsystem-simulation models, a useful simulation discipline has to 

be identified for each subsystem. The simulation discipline required for this system-

simulation can be specified in flexible bodies, rigid bodies and logical simulations (Mahler, 

2012): 

(1) Flexible bodies are bodies where the self-deformation of the body is important (such 

as the deformation of a softball dropping to the ground).  

(2) Rigid bodies will not self-deform.  So, the self-deformation has to be negligible (such 

as the negligible deformation of the ground where a softball has dropped).  

(3) The logical and mathematical oriented elements such as controller or software belong 

to a logical simulation discipline (Tian, Yan, Parkin, & Jackson , 2008); they will be 

based on simulated equations.  

Based on this hierarchy, subsystems can be ordered to simulation disciplines. The controller 

subsystem-simulation and the software subsystem-simulation belong to the logical 

simulation discipline. The electrical motor also belongs to the logical simulation discipline. It 

has to be controlled based on used current. This control requires a logical controller model. 

The energy transformation is described by a mathematical model of the electrical motor. Such 

mathematical descriptions are ideal for equation-based simulation models. So, EBS models 

can be structured to a logical simulation discipline. The self-deformation of the gear system, 

latch and lift gate system is negligible. So, these subsystem-simulation models can be 

generated with a rigid body simulation discipline. Such rigid body simulation models are 

usually generated with MBS tools.  In contrast, the self-deformation of the seals and gas 

spring system is significant. In these cases, the resulting effects like forces of the self-

deformation are known. These effects are summarised in fields that describe spring forces or 

damping forces dependent upon self-deformation or moving velocity. The resultant 

knowledge of the seal-subsystem-spring-curve, gas-spring-subsystem-spring-curve and gas-

spring-subsystem-damping-curve can be used in the simulation. The curves can be used in 

rigid body simulation disciplines as nonlinear spring or damping curves. Based on these 
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curves, the deformation or movement of the gas-spring-subsystem or seal-subsystem is 

calculated. In contrast to seal and gas-spring subsystems, the self-deformation of the hinge 

system is important. The actual deformation of the hinge is small but has a big influence on 

the movement of the lift gate.  Even though the hinge self-deformation is minimal, the lift gate 

oscillates. Due to the lift gate arm of the lever, the self-deformation of the hinge is 

transformed to a higher movement at the lift gate end. In order to integrate this self-

deformation, the hinge has to be modelled as a flexible body (Mahler, Vickeres, Hasse, 

Traulich, Schmerr & Hitzer, 2010). Flexible body simulation disciplines are ideally generated 

using finite element analysis (FEA). The role of the subsystems within the simulation 

discipline is shown in Figure 5-25. 

 

Figure 5-25 Simulation Discipline Architecture Case 3 

 

The three simulation disciplines (flexible body, rigid body and logical simulation) can be 

achieved with the tools described in Table 5-2 and Figure 5-26. 
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Table 5-2 Case 3: Table of Simulation Tools 

Simulation Discipline Simulation Tool 
Flexible body simulation NX Advanced Simulation and NX Flexible 

Body 
Rigid body simulation NX Motion and add on NX Motion Control 
Logical simulation Matlab and add on Simulink 

 

Figure 5-26 Case 3: Simulation Tool Architecture Source 

 

The discussion regarding simulation generation of each subsystem is protracted and the 

details are irrelevant for the case study.  So, Section 5.4.3 will focus on a discussion regarding 

simulation architecture and system-simulation generation. 
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5.4.3 DISCUSSION OF THE SIMULATION ARCHITECTURE AND SYSTEM-SIMULATION 

GENERATION OF CASE 3 
 

This section discusses the simulation architecture and the generation of the system-

simulation. The first three parts will elaborate on the data architecture of each simulation 

discipline used in this case example. Afterwards, Section 5.4.3 IV explains the assembling of 

subsystem-simulation models to the system-simulation. 

 

I. Architecture of the Logical Simulation Discipline of Case 3 
 

In order to generate the logical simulation models of the case example, Matlab/Simulink is 

used as the simulation authoring tool. The subsystem controller, software and electrical 

motor are modelled and solved using the simulation tool Matlab/Simulink. This simulation 

model was prepared by the aforementioned automotive company. The three subsystems 

were not modelled as separate simulation models. A summarised simulation model of these 

three subsystems was provided by the same automotive company. This simulation model is 

stored in a Matlab/Simulink mdl-file-format. 

So, the logical simulation discipline does not include the architecture of simulation models or 

data because it was provided externally in a prepared, single format.   

 

II. Architecture of the Rigid Body Simulation Discipline of Case 3 
 

The simulation models of the rigid body simulation were implemented with the MBS tool, NX 

Motion, from Siemens Industry Software. Simulation models of the gear, gas spring, latch, lift 

gate and seal subsystem were generated. Each of these subsystems was modelled as an 

independent simulation model. The pre-modelled CAD geometry parts were provided by the 

automotive company as input for the independent simulation models. In Table 5-3 the 

independent simulation models are listed with predefined input-data, output and modelling 

annotations. 

 

  



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 147 of 347 
 

 

Table 5-3 Independent Rigid Body Simulation Models of Case 3 

Subsystem Input Modelling Annotation Output 
Gear CAD 

geometry 
NX Motion can read all necessary information to 
define the rigid bodies from the CAD geometry. 
The joints to link the rigid bodies can be defined 
based on the CAD geometry. The different gear 
ratios between gear wheels were determined 
from the CAD geometry. 

Gear system-
simulation 
model 

Gas spring CAD 
geometry, 
gas spring 
fact sheets 

NX Motion can read all necessary information to 
define the rigid bodies from the CAD geometry. 
The joints to link the rigid bodies can be defined 
based on the CAD geometry. The spring 
parameters as well as the damping parameters 
were determined from the gas spring fact 
sheets. 

Gas spring 
system-
simulation 
model 

Latch CAD 
geometry 

NX Motion can read all necessary information to 
define the rigid bodies from the CAD geometry. 
The joints to link the rigid bodies can be defined 
based on the CAD geometry. The latch includes 
an electrical motor for energy generation. This 
requires a controller. The latch should not be 
detailed in depth. So, the control of the motor 
was modelled by a signal and PMDC-motor 
without a factual conclusion. The control of the 
signal and the electrical description of the PMDC 
motor are modelled. The control signal to start 
the engine manually is stored in a separate AFU-
file which is readable by NX. This signal 
substitutes the control of the latch. 

Latch system-
simulation 
model, 
AFU-file to 
substitute the 
control of the 
latch 

Lift gate CAD 
geometry 

NX Motion can read all necessary information to 
define the rigid bodies from the CAD geometry. 
The joints to link the rigid bodies can be defined 
based on the CAD geometry. 

Lift gate 
system-
simulation 
model 

Seal force CAD 
geometry, 
measured 
spring 
force 
curve by a 
seal test 

NX Motion is able to add additional design 
objects to the existing CAD geometry base. This 
is used to model two lines. The seals chassis side 
as well as the lift gate door side is represented 
by these two lines. Between these two lines, 
multiple springs are modelled. The springs have 
a non-linear spring reaction force dependent on 
the deformation. The spring force curve defines 
the force as null in the case of a seal positioned 
without contact between seal and lift gate door. 
In the position where the seal is in contact with 
the lift gate door, the seal force curve is 
generated based on a measured spring force 
curve. This resulting spring force curve is stored 
in a separate AFU-file which is readable by NX. 

Seal force 
system-
simulation 
model, 
AFU-file 
describing the 
spring-force-
curve 
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III. Architecture of the Flexible Body Simulation Discipline of Case 3 
 

The hinge has to be simulated as a flexible body. The self-deformation of the hinge is 

transformed by the lift gate arm of the lever to a much higher movement. This movement has 

to be analysed by integrating it into the simulation. So, the self-deformation of the hinge has 

to be considered which requires the modelling of the simulation as flexible body. The 

generation of the simulation model is made using the FEA tool NX Advanced Simulation from 

Siemens Industry Software. The hinge consists of two main parts linked together by a bolt. In 

the case of the hinge, a decision has to be made as to whether both main parts of the hinge are 

required as flexible bodies or only one of them. The decision was to integrate only the main 

part connected to the lift gate door as a flexible body. This was not a technically verified 

decision but one where it was deemed necessary to keep the work minimal so as to present 

the capabilities of the software. The flexible body requires a rigid body simulation model to 

be capable of being integrated into a co-simulation, i.e. a simulation model for the flexible 

body has to be generated which makes it possible to be coupled to a predefined rigid body 

simulation model. So, the meshing and generation of the flexible body have to respect 

predefined points. These points are also predefined for the MBS simulation model. In the FEA 

simulation model, these points are transformed to nodes and linked or integrated with the 

mesh of the hinge part. Moreover, free or fixed boundary degrees of freedom are added as 

constraints to these nodes. The nodes and the constraints of the flexible body simulation 

model, and the points of the rigid body simulation model, provide the opportunity to act as 

communication points (Siemens Product Lifecycle Management Software Inc., 2011).  

After generating the FEA simulation model, the pre-processor is able to generate an input 

deck for the FEA solver. Using this input deck, it is possible to execute the solve run.  

The solve run reduces the mathematical matrix to a fast operational dimension that 

maintains the representation of the simulation model. The result is a flexible body reduced 

simulation model matrix of the hinge (Siemens Product Lifecycle Management Software Inc.) 

in the rfi-file-format. In NX Motion, a rigid body can be replaced by a flexible body. So, the 

communication points have to be congruent and the flexible body has to be expressed as a 

reduced simulation model matrix such as in the rfi-file-format (Nowakowski, Fehr & 

Eberhard, 2011). This replacement of the rigid body by a flexible body is solvable by the 

interaction between the MBS and FEA solver of NX.  

 

IV. Assembling of the Simulation Models of Case 3 
 

The assembling of different simulation models and simulation disciplines is carried out in 

multiple steps. These steps are dependent on the simulation discipline. In some simulation 

disciplines, the merging of simulation models is possible. This will be discussed for each 

simulation discipline: 
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 Flexible body simulation discipline: 

The hinge is considered to be in the flexible body simulation discipline. The solve 

run of the finite element simulation model generates the necessary rfi-file. In 

order to get a corresponding flexible body, predefined points are integrated into 

the flexible body as communication points to a rigid body simulation model. This 

rfi-file is used to exchange a rigid body by a flexible body represented by the rfi-

file. In the current example, the rigid body representing the second part of the 

hinge is replaced by the flexible body described by the rfi-file. 

 Rigid body simulation discipline: 

The five individual MBS simulation models, representing the gear subsystem, lift 

gate body subsystem, gas spring subsystem, latch subsystem and seal subsystem, 

can be merged into one MBS simulation model. The individual MBS simulation 

models are appended to the product structure. The sub-ordered MBS simulation 

models in the product structure can be merged into higher-ordered MBS 

simulation models in the product structure. These sub-product structures, 

representing the subsystems, are included at the top product structure of the lift 

gate system. An MBS simulation is created at the top of the product structure with 

NX Motion. Based on the product structure and subordinate subsystems, NX 

Motion can identify the dependent MBS simulation models of the subsystems. The 

MBS simulation models of the subsystems can be integrated to the top MBS 

simulation using the ordering of the product structure. The links, joints and 

parameters of the sub-simulation models are merged into the top simulation 

model (Siemens Product Lifecycle Management Software Inc., 2011).  A few of 

special simulation information cases of the top MBS simulation, require additional 

work to be done to rebuild missing or lost imported simulation information.  

 Logical simulation discipline: 

The automotive company provides a summarised Matlab/Simulink simulation 

model including all the subsystems that should be simulated in the logical 

simulation discipline. NX Motion Control provides the possibility to link the NX 

Motion MBS simulation model to a Matlab/Simulink simulation model. So, the 

Matlab/Simulink simulation model has to integrate an s-function to the 

Matlab/Simulink simulation model that couples the two solvers to each other and 

organises the parameter exchange during the co-simulation. The s-function 

generation is automated and supported by NX Motion Control and 

Matlab/Simulink. This s-function has to be integrated into the original 

Matlab/Simulink file which results in a new Matlab/Simulink simulation model. 

The new generated Matlab/Simulink simulation model is saved as a new mdl-file 

with predefined name regulations by NX Motion Control. The NX Motion 

simulation model and the new Matlab/Simulink simulation model are runnable as 

a co-simulation between NX Motion and Matlab/Simulink. 

The assembled simulation model consists of three simulation models: the NX Motion model 

for the rigid body simulation, the RFI file for the flexible body simulation and the 
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Matlab/Simulink model for the logical simulation. All three simulation models can be coupled 

with NX. The coupling makes co-simulation possible between the three solvers of NX Motion, 

NX Nastran and Matlab/Simulink. The host of the co-simulation can be NX Motion or 

Matlab/Simulink. The host controls the simulation sampling rate and communication 

between the three solvers.  This system-simulation architecture is shown in Figure 5-27. 

 

 

Figure 5-27 Simulation Model Architecture of Case Example 3 

 

The files, data and information of the lift gate system-simulation should be managed by 

TEAMCENTER. In Section 5.4.4, the TEAMCENTER data management for this case will be 

discussed. 

 

5.4.4 DATA MANAGEMENT OF CASE 3 WITH TEAMCENTER 
 

The case study includes the integration of the system-simulations into the PLM framework 

TEAMCENTER. The management of all the required files and the support of the simulation 

process should be achieved. 

The starting point is the CAD model, hierarchically ordered in CATIA-format, and the 

provided Matlab/Simulink simulation model. By using NX as a simulation authoring tool, the 

CAD model has to be transformed and imported into NX-format (Siemens Product Lifecycle 
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Management Software Inc., 2011). This import also includes the hierarchical ordering of the 

imported CAD models in NX-format. The CAD models in NX-format are the new base. In the 

following, only the main parts and structure are included. The CAD models are managed as 

datasets under CAD item revisions. Similarly, each of the assembly files is stored as a dataset 

under a CAD item revision and, additionally, a BOM view to suborder the hierarchical CAD 

model structure (Siemens Product Lifecycle Management Software Inc., 2012). 

 
I. Rigid Body Simulation Models 

 

The simulation process generates five NX Motion MBS simulation models as shown in Figure 

5-27. These five NX Motion MBS simulation models represent: the gear subsystem, the gas 

spring subsystem, the seal subsystem, the latch subsystem and the lift gate door subsystem. 

An additional NX Motion MBS simulation model for the hinge subsystem will be created to 

optimise the integration of the flexible body into the summarised system simulation. The 

sources for these six NX Motion MBS simulation models are the CAD assembly models of 

these subsystems. The six CAD assembly models are subordinated under the lift gate system 

CAD assembly model. The lift gate system CAD assembly model is used for the summarised 

NX Motion MBS model where the six NX Motion simulation models are merged by automated 

integration functionalities to a higher-ranked simulation model (described in Section 5.4.4 

IV). 

The NX Motion simulation model is managed as an NX Motion dataset directly to the 

appending CAD item revision (Siemens Product Lifecycle Management Software Inc., 2011). 

The CAD item revision refers to the CAD model dataset and the NX Motion dataset. The NX 

Motion dataset includes the NX Motion simulation model and the afu-files appended to the 

simulation model. These afu-files are listed in Table 5-3 Independent Rigid Body Simulation 

Models of Case . Result files of a subsystem MBS simulation solve run are also stored in the 

appended NX Motion dataset of the CAD item revision. Figure 5-28 illustrates the 

architecture. 

CADItem Rev. 
Gas spring 

- Part-File dataset
-NXMotion dataset

CADItem Rev. 
latch 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Lift gate door 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
seal 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
hinch 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Gear 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Lift gate system 

- Part-File dataset
- NXMotion dataset

BOM view revision

Import by copying

CADItem Rev. 
...

- Part-File dataset

 

Figure 5-28 Rigid Body Architecture of Case 3 
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II. Flexible Body Simulation Models 
 

One part of the hinge subsystem has to be a flexible body (see Section 5.4.4 III). So, a finite 

element simulation model has to be generated. The source is the CAD item revision including 

the dataset with the part that has to be represented as a flexible body. This CAD item revision 

is subordinated under the CAD item revision of the hinge subsystem including the BOM line. 

Based on the CAD model part file, an idealised part file is generated and managed as dataset 

under a new CAEGeometry item revision. The CAEGeometry item revision receives a 

CAESource and CAETarget relationship pointing to the source CAD item revision (Siemens 

Product Lifecycle Management Software Inc, 2012). The idealised part file is the source for 

the dependent mesh-file which is managed as dataset under a new CAEModel item revision. 

In order to link the new CAEModel item revision to the appended CAEGeometry item revision 

and CAD item revision, the CAEModel item revision receives a CAESource relationship 

pointing to the appended CAEGeometry item revision and a CAETarget relationship pointing 

to the appended CAD item revision (Siemens Product Lifecycle Management Software Inc, 

2012). Based on the mesh file, a simulation file is generated and managed as a dataset under a 

new CAEAnalysis item revision. In order to represent the dependency of the depending mesh 

file, the CAEAnalysis item revision receives a CAEDefining relation pointing to the appended 

CAEModel item revision. This simulation is built upon a solution to generate a reduced 

flexible body of the hinge subsystem part. The solve run produces a file including the reduced 

matrix stored in the rfi-format. The result files generated by the solve run are managed in 

datasets under the appended CAEAnalysis item revision. The post-process results do not 

produce additional files. 

The item revisions, the relationships and the datasets are shown in Figure 5-29. 
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Figure 5-29 Metadata Architecture of the Flexible Body in Case 3 
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III. Logical Simulation Models 
 

The simulation model of the logical simulation discipline is provided by the customer. This 

simulation model is a monolithic simulation model comprising multiple subsystems including 

the controller, the software and the electrical engine (motor) subsystem. The supplied 

simulation model is generated using the Matlab/Simulink simulation authoring tool. 

Nevertheless, the supplied simulation model does not mirror a resultant simulation model of 

the real development process. The customer develops different subsystems from individual 

development departments (Link, 2012) which causes the generation of separate and focused 

simulation models of each subsystem.  So, each subsystem simulation of the logical simulation 

discipline is generated in reality, individually and is not assembled. 

It is possible to assemble these simulation models manually into one simulation model.  As a 

result, the simulation models have to be generated using the same simulation authoring tool. 

However, this requires the simulation authoring tool functionality for assembling or 

connecting different simulation models provided by the Matlab/Simulink simulation 

authoring tool (MathWorks, Inc., 2011).  

For the system-simulation, the monolithic logical simulation model is re-used. However, this 

does not represent the requirements of real data management where the logical simulation 

model consists of multiple subsystem simulation models. In order to integrate the generation 

process of such a logical simulation model, an empirical development process of the logical 

simulation model is used for the case study. This empirical development process generates 

the logical simulation model based on three subsystems: controller, software and electrical 

motor. These subsystems can be provided by a supplier. The idea is that the supplier also 

provides the simulation model of its system such as an electrical motor subsystem and the 

controller subsystem.  Hence, the suppliers deliver the product descriptions and a 

Matlab/Simulink simulation model representing their subsystem. This is similar to the vision 

discussed in Link (2012).  

The responsibility for the software subsystem can be partitioned. In the case of software 

development, the logical simulation model is generated before software code generation and 

detailing. The challenge is to derive the software source code from the logical simulation 

model. Such a function is provided, for example, by the simulation authoring tool 

Matlab/Simulink (MathWorks, Inc., 2012). This saves time and reduces errors. However, the 

software code of a subsystem is complex. In order to keep the software as simple as possible, 

the software subsystem is sub-ordered to multiple subsystems. A function model helps to do 

this beforehand and supports the work on the subsystems by keeping the system and 

subsystem easily viewable. In Case 3, the functional ordering of the controller software can 

include the functionality of the electrical engine, the controller and the software, whereby, 

the software functionality suborders multiple sub functions of the software. The hierarchical 

ordering of the Matlab/Simulink simulation models can correspond to the function model 

order. This means that the top simulation model integrates the sub-assembled simulation 
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models. This empirical ordering of functions or Matlab/Simulink simulation models is shown 

in Figure 5-30. 

 

Figure 5-30 Empirically Logical Matlab/Simulink Ordering 
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Figure 5-31 Behaviour Model Structure of Case 3 
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The logical subsystem can achieve a complex hierarchy. The empirical data of this case 

example is kept simple and understandable, but the reality can be much more complicated. 

The organization of the hierarchical ordering of logical models is supported by a previously 

generated functional hierarchy. 

The lift gate system simulation requires logical simulation and additional simulation models 

of other disciplines. The following will explain the assembly of multiple simulation 

disciplines. 

  

IV. Summarised Simulation Architecture 

 

The lift gate simulation requires a combination of the logical, flexible and rigid body 

simulation disciplines. As discussed before, the simulation disciplines, generated models and 

data management were discussed. In order to generate the lift gate system simulation, these 

three simulation disciplines and their simulation models have to be collected, assembled and 

connected. Data management should support the collection of the simulation models. 

Afterwards, the collected simulation models are provided for system-simulation pre-

processing. This means that the simulation models are assembled and connected to prepare 

the system-simulation solve run. NX motion provides the functionality to assemble and 

connect different simulation disciplines. This achieves a co-simulation of the three simulation 

disciplines. NX motion is also used to model the simulation models of the rigid body 

simulation discipline. 

The interaction of the flexible body with the rigid body is achieved by the exchange of a rigid 

body link via a flexible body description. So, the rigid body link of a part in the hinge 

subsystem is exchangeable with a pre-generated flexible body. The process and the required 

rfi-file were discussed in Section 5.4.4 II: Flexible Body Simulation Models and III: 

Architecture of the Flexible Body Simulation Discipline of Case 3. The connection points of the 

rigid body link and the flexible body are congruent. Using these congruent points provides 

the possibility of exchanging the deformation and force parameters of the congruent points 

between the flexible and rigid body simulation disciplines and solvers.  

The data management structure to achieve the co-simulation interaction of the rigid and 

flexible simulation discipline is shown in Figure 5-32. This figure combines Figure 5-28 and 

Figure 5-29. The combination of both enables the re-use of the rfi-file of the flexible body 

generation simulation. This rfi-file is the reduced matrix representing the reduced flexible 

body of the hinge subsystem part. By exchanging the rigid body link, which represents this 

hinge subsystem part in the rigid body simulation, achieves the co-simulation of the rigid 

body simulation solver and model with the flexible body simulation solver and model. The 

integration of the reduced flexible body matrix file (rfi-file) is not provided automatically by 

TEAMCENTER. The reduced flexible body matrix file has to be copied manually into the NX 

Motion dataset of the lift gate system CAD item revision. The copying causes duplication and 
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loses the dependency between the copied and the original source. If there is a change to the 

original source, the copied source will not be changed and there will be no dependency to 

check the veracity of the copied source.  
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Figure 5-32 Integration of the Flexible Body 

 

Furthermore, the co-simulation of the rigid body and logical simulation discipline can be 

defined with NX Motion. Siemens offers an add-on tool with NX Motion Control  that provides 

the capability of interaction between the NX Motion solver and Matlab/Simulink. So, 

Matlab/Simulink and NX Motion has to be configured. This configuration is mainly carried 

out in NX Motion where the input and output parameters to the Matlab/Simulink model are 

defined. NX Motion generates a temporary interface integration model for Matlab/Simulink 

including an s-function block. This s-function block, provided in the temporary interface 

integration model, includes a configuration for the solver interaction and can be re-used in a 

pre-generated Matlab/Simulink simulation model.  Via drag and drop, the s-function block 

can be re-used and integrated into a Matlab/Simulink simulation model that should be 

coupled. This is shown in Figure 5-33. The temporary interface integration model is not saved 

because it is only required for the drag and drop procedure into the pre-generated 

Matlab/Simulink model. 

 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 159 of 347 
 

 

CADItem Rev. 
Gas spring 

- Part-File dataset
-NXMotion dataset

CADItem Rev. 
latch 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Lift gate door 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
seal 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Hinge 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Gear 

- Part-File dataset
- NXMotion dataset

CADItem Rev. 
Lift gate system 

- Part-File dataset
- NXMotion dataset

BOM view revision

Import by copying

CADItem Rev. 
...

- Part-File dataset

Temporary 
Interface-

Integration-
model  

Matlab/
Simulink

Autmatic generation

 

Figure 5-33 Temporary Interface Integration Model for Matlab/Simulink 

 

The s-function block from the temporary interface integration model has to be assimilated 

into the Matlab/Simulink model of the summary simulation model. The integration of the s-

function block into the summary simulation model file is achieved in the co-simulation of the 

rigid body simulation and the logical simulation. The summary simulation model is a single 

file. However, the empirical viewpoint (see Section 5.4.4 III) of the logical simulation model 

brings the summary simulation model into a simulation model that consists of subordered 

simulation models. The s-function block from the temporary interface integration model is 

integrated per drag and drop into this logical simulation model. However, this coupling is not 

uniquely reviewable in the data management tool. The dataset under the behaviour model 

item revision which can be used for the logical simulation data management is not uniquely 

identifiable. Additionally, there is no automatic provision for subordinated behaviour model 

item revisions at a top level behaviour model item revision. Manual copying of the logical 

simulation data to the NX Motion dataset of the CAD item revision is the easiest way to 

provide the required data. However, this causes the loss of a dependency between the copied 

and original source. If there is a change to the original source, the copied source will not be 

changed and there will be no dependency to check the veracity of the copied source. This is 

shown in Figure 5-34. 

The collection of the simulation data and the assembly and connection of different simulation 

models was discussed earlier. The system-simulation combines the simulation of multiple 

solvers with a co-simulation. The NX Motion and the Matlab/Simulink solvers are directly 

coupled. The flexible body simulation discipline was archived by a reduced matrix of the 

finite elements representing the flexible body. The reduced flexible body is solved directly 

and integrated into the NX Motion solver. Flexible body results of a few predefined points are 

generated. In order to generate all results of the flexible body simulation model, a down-

streamed finite element solve run is carried out. In the case of NX Motion and NX Motion 

Flexible Body, this finite element solve run occurs automatically because the results of the 

finite element solve run can directly be post-viewed with NX Motion Flexible Body. 
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Figure 5-34 Summary Data Management of Case 3 
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provide a general solution. Additional customizations can reduce flexibility. The 

customization requires special resources such as administrative TEAMCENTER specialists. 

These specialists are not simulation specialists. This makes the organization and the 

management of the customization project difficult and causes the configuration to provide a 

solution for recurring simulation works to have a high rate of recurrence. However, 

configurations are not a solution for simulation work with low recurrence rates. 

The new framework for the support and management of multi-disciplinary simulation data 

embedded in a PLM environment should improve this situation. In Section 5.4.5, Case 3 will 

be empirically integrated into the new framework. 

 

5.4.5 EMPIRICAL VALIDATION OF THE NEW FRAMEWORK AND CASE 3 
 

The new framework for the support and management of multi-disciplinary simulation data 

embedded in a PLM environment should improve the actual possibility of multi-disciplinary 

simulation data management. The files, data and information should be uniquely dependent 

and traceable.  So, two new structures will be integrated: 

1) The system simulation structure (System simulation item revision) to manage the 

multi-disciplinary system simulation structure. This structure uses BOM view 

technology to suborder the required simulation model item revisions. The simulation 

discipline or tool of the simulation models is independent of the sub-ordering of the 

simulation model item revisions. In  Case 3, the sub-ordered simulation models will 

be  

a. the item revisions of the flexible body simulation model that merged the sub-

ordered rigid body systems,  

b. the rigid body simulation model, including the rfi-file, and  

c. the logical simulation model.  

2) The second added structure of the new framework is the system simulation result 

structure to manage the result files, data and information produced by the system 

simulation solve run. This structure is based on System Simulation Result item 

revisions. These System Simulation Result item revisions can be generated for each 

simulation model that takes part in the system simulation solve run. BOM view 

technology helps to order the System Simulation Result item revisions. The files, data 

and information generated by the solve runs of the single simulation models are 

managed as datasets under the System Simulation Result item revisions. 

 

These two new items require a dependency representation. The source system-simulation 

relationship points to the source item revision of the (system-) simulation item revision. The 

target system-simulation relationship points to an item revision that is represented by the 
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(system-) simulation. So, the sources and represented items of a simulation item, which can 

take part in a system-simulation or be a system-simulation on its own, are uniquely traceable. 

In Case 3, there are three source and target system-simulation relationships: 

1) The logical (top) behaviour model is based on the top functional description. This is 

represented by a system-simulation source relationship pointing from the behaviour 

model item revision to the functional item revision. Additionally, the system-

simulation target relationship with the same linking objects and direction denotes 

that the behaviour simulation model represents the top function. 

2) The flexible body simulation is based on the hinge subsystem. This is represented by a 

system-simulation source relationship pointing from the CAEAnalysis item revision to 

the CAD item revision. Additionally, the system-simulation target relationship with 

the same linking objects and direction denotes the flexible body simulation model 

which represents the hinge subsystem. 

3) The rigid body simulation model is based on the CAD models. This is represented by a 

system simulation source relationship pointing from the CAD item revision to the CAD 

item revision. Additionally, the system-simulation target relationship with the same 

linking objects and direction denotes the rigid body simulation model that represents 

the summarised CAD assembly. It this case, the rigid body simulation model is 

managed as dataset under the CAD item revision. Optionally, the rigid body 

simulation model can also be managed as a dataset under a NX Motion item revision 

which can achieve an enhanced overview of the data management solution. 

The second new item is the system simulation result item revision. This item is linked by a 

CAE Result relationship pointing from the system simulation result item revision to the item 

revisions of the result generation responsible simulation models. These result generation 

responsible simulation models are the rigid body dataset holding item revision, the flexible 

body dataset holding CAEAnalysis item revision and the behaviour simulation model item 

revision. Based on these relationships, the existing results of the system-simulation and sub-

ordered simulation models can be identified.  

The new framework provides a superior and clearly organised data management of the data, 

files and information taking part in the system simulation of Case 3. Functionalities, included 

in the new framework, can now provide the required data, files and information for the 

simulation process. It has to be understood that the validation of the new framework with the 

Case 3 is empirical.  
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Figure 5-35 Empirical Structure of Case 3 in the New Framework 

 

System simulation can also be seen dependent upon a model-based development process. 

This will be discussed in the next case example and section. 
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5.5 CASE 4: PROJECT: “INTERDISCIPLINARY MODEL-BASED DEVELOPMENT 

PROCESS” 
 

The development of a complex system can be improved by integrating a system-simulation of 

this system into an early development stage. This is achieved using the model-based 

development methodology. The concept of the system should be optimised by an early 

system-simulation. Afterwards, the discipline-oriented development departments start the 

detailing of the system. An automotive company in the south of Germany invests in the 

integration of this methodology. For the system simulation, the different simulation tools and 

different physical disciplines have to interact with each other. A research project should help 

to verify and validate existing commercial tools from the view point of interdisciplinary 

model-based development methodology.  However, the goal is not to identify the best tool. 

The focus is on the improvement of simulation software tools in response to the development 

methodology in order to create an optimal and generic interdisciplinary model-based 

development process. So, the electrical front door windows lifter system of the automotive 

company was used as the case study. 

 

5.5.1 DISCUSSION OF THE ELECTRICAL FRONT DOOR WINDOWS LIFTER SYSTEM 
 

In the “Interdisciplinary Model-Based Development Process” project, an improved 

development process should be developed.  The electrical front door windows lifter system 

was used as a case example. This electrical front door windows lifter system is the product of 

multi-disciplinary and inter-disciplinary subsystems. The following describes the 

subsystems:  

 The electrical engine subsystem creates torque and drilling movement. 

 The gear subsystem transforms the drilling movement and torque into lower drilling 

speed and higher torque. 

 The cable pull subsystem transforms the high torque and lower drilling speed into a 

three dimensional translator force and movement. The cable pull also includes a 

damping effect on the movement of the windows lifter system. 

 The glass panel subsystem protects the passenger. It includes protection against 

forces from air or crash, as well as protection against water and temperature. The 

glass panel should also optimise driving resistance to reduce driving energy. 

 The seal subsystem protects the passenger. It includes the protection of the glass 

panel. The seals also provide a flexible link between the glass panel and the chassis. 

The material properties and the movement of the glass panel require a flexible link 

between chassis parts and glass panel. 

 The chassis subsystem provides a framework where the parts can be positioned and 

fixed. 
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 The controller subsystem manages and controls the movement of the glass panel. 

This includes the protection of humans in the case of moving glass panels. 

 

Figure 5-36 Electrical Front Door Window Lifter System 

 

Mahler(2012) discussed and presented the system:  

“The controller will influence the engine and get movement information back from the 
engine. Based on the data from the engine the controller will calculate the electrical input 
for the engine. The engine will move the gear. Caused by the movement the gear will react 
with resistance. This resistance will be generated by the movement of the cable pull, glass 
panel and seals. The cable pull is a complex system […] extremely complex in mechanics. 
Springs will strain the cable. There is a lot of friction caused by the guide of the cable. The 
cable on its own will be also a spring system. These spring- and friction-factors will cause 
a spring-damper-system. This spring-damper-system has a great influence on the action-
reaction between gear and glass panel.  Controlling input will neither be proportional nor 
similar to the glass panel movement which should be controlled by the controller. The 
glass panel will be forced to move by the cable pull. But movement of the glass panel will 
react to guide and friction forces in the seals. A system like this will be extremely hard to 
control. Small changes in the system, like lesser friction, will cause a significant change in 
the controller.”  
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This system and subsystem are used as system-simulation cases. Additionally, work results 

on the interdisciplinary model-based development process of the automotive customer 

project are integrated into this system-simulation case. In Section 5.5.2, the case example will 

be specified, and the simulation and the sub-simulations, discussed. 

 

5.5.2 DISCUSSION OF THE SYSTEM- AND SUBSYSTEM-SIMULATION OF CASE 4 
 

The system of the electrical front window lifter of a car door is sub-ordered into the following 

subsystems: 

1) Seal system 

2) Glass panel system 

3) Chassis 

4) Controller system 

5) Software system 

6) Cable pull system 

7) Gear system 

8) Electrical engine system 

The interdisciplinary model-based development process should help to develop the 

subsystems of the electrical front window lifter system from concept through to prototype. 

For the development process, a system-simulation is required. So, the subsystems can be 

modelled independent of each other. In the following paragraphs, the useable simulation 

tools and their cooperation will be discussed. The multiple simulation models of the 

subsystems will be summarised in the simulation architecture.  

I. Structure of the Simulation Architecture 
 

The structure of the simulation architecture is influenced by the simulation models of the 

subsystems. Mahler(2012) discussed that:  

“Necessary are different mathematical bases to simulate the different subsystems. The 
mathematical simulation base could be specified in flexible bodies, rigid bodies and 
logical. […] The things like controller or software will be logical; they have direct 
influence on one or more rigid or flexible bodies. […] Flexible will be the seals because the 
force caused by the movement of the glass panel in the seals will be dependent on the 
deformation of the seals. The glass panel deformation could be negligible. The seals will 
also be forced and deformed by the clamping into the chassis. For simulating this attitude 
a model including flexible seals, the chassis influencing parts as well the glass panel has to 
be built up. The flexibility of the seal will be complex. Requirements for the high level of 
nonlinear material attitude have to be solved by the simulation – tool. This flexible 
attitude will mostly be caused by nonlinear contact that will be additional a requirement 
for the solver.”  
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This means that the seal, glass panel and some chassis parts are treated as flexible body 

simulations because the flexibility of the bodies is important. On the contrary, the flexibility 

of the cable pull, gear and electrical engine is negligible and can be treated as rigid body 

simulation. The controller and the software represent a logical behaviour of the system 

instead of a body-oriented behaviour; these subsystems are represented as logical models 

and are illustrated in Figure 5-38. 

 

Figure 5-38 Case 4: Simulation Discipline Architecture (Mahler, 2012) 
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The three simulation disciplines, flexible body, rigid body and logical simulation, can be 

achieved with the tools described in Table 5-4 and Figure 5-39. 

 

Table 5-4 Case 4: Table of Simulation Tools 

Simulation Discipline Simulation Tool 
Flexible body simulation NX Advanced Simulation and add on Solver 

NX Nastran Advanced Nonlinear 
Rigid body simulation NX Motion and maybe add on NX Motion 

Control 
Logical simulation Matlab and add on Simulink 
 

 

Figure 5-39 Case 4: Simulation Tool Architecture (Mahler, 2012) 

For a system-simulation, these simulation tools have to be coupled. The MODELISAR 

consortium(2010) discussed that the MODELISAR interfaces are able to couple simulation 

models and solvers vendor-independently on a parameter exchange base. So, the MODELISAR 

interface makes it possible to couple all the systems of Case 4. In the case of NX Motion and 
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NX Motion Control, the existing interface to Matlab / Simulink is superior because this 

technology can be used without configuration of the software. In the case of using 

MODELISAR functional mock-up interface (MODELISAR consortium, 2010), the simulation 

tool NX Advanced Simulation and the add-on solvers NX Nastran Advanced Nonlinear and NX 

Motion have to be improved to support the MODELISAR functional mock-up interface 

(Mahler, 2012). So, this tool set does not support this technology. Nevertheless, the existing 

coupling technologies of NX Motion are useable. 

In the case of the flexible body simulation, this simulation can take a long solve time because 

the required simulation model is nonlinear. So, an alternative way for a simulation coupling 

can be of interest. In this case, a field of force, which moves the window, is identified 

dependent upon the window panel position and the window panel velocity. In order to 

generate this field, an independent and flexible body simulation has to solve multiple 

occurrences with different velocity and position parameters of the window panel. The results 

are useable to work out the field of force, dependent upon the window panel position and the 

window panel velocity. The moving forces, dependent upon position and velocity, span a 

response surface. This means that a response surface should be derivable from the flexible 

body simulation model of the seals system. This can be achieved much more comfortably 

with the new technology described in Dr. Hartmann & Mahler (2013). Nevertheless, this 

technology was not given at the working stage of the case example. So, the seals simulation 

has to run manually and which is extremely time consuming for the user.  The response 

surface has to be generated manually, as well. 

A fourth possibility of communication is the use of simulation middleware which provides 

interfaces to the different simulation solvers. So, simulation solvers can interact with the 

simulation middleware. Such an interface could be via the MODELISAR FMI/FMU (Functional 

Mock-up Interface / Functional Mock-up Unite) interface. However, such interfaces are not 

implemented into NX Motion or NX Advanced Simulation. This means that the simulation 

tools, NX Advanced Simulation and NX Nastran Advanced Nonlinear solver and NX Motion, 

have to be modified to support such interfaces to simulation middleware. 

The next section explains how the simulation tools should work together in a simulation 

process. 

 

II. Co-Simulation and Simulation Process Concept 
 

For a system simulation of the electrical front window lifter of a car door, multiple simulation 

models and simulation disciplines have to cooperate simultaneously. The necessity of three 

simulation models was described and explained in Section 5.5.2 I and shown in Figure 5-38 

and Figure 5-39. These three simulation models are based on specific simulation disciplines 

and include: 
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 a rigid body simulation model for the cable pull, gear and engine; implemented with 

the NX Motion simulation tool, 

 a flexible body simulation model for the seal, glass panel and parts of the chassis; 

implemented with the NX Advanced Simulation tool and 

 a logical simulation model for the controller and software; implemented with 

Matlab/Simulink. 

The rigid and flexible body simulation model would be based on CAD models as well the 

product structure. However, the logical simulation model is based on the controller and 

software model. The controller and the software are not described as CAD models. In order to 

describe controller and software functionalities, an industrial approach is to use functional 

descriptions and structures. Nevertheless, the three simulation models can be generated 

individually and independently from each other.  

One result is that each of the three simulation models is solvable on its own. This provides 

multiple possibilities to handle the communication and cooperation of the simulation models 

for system-simulation generation. There are three possibilities reviewed to couple the 

simulation tools: 

(1) There is an interface provided with NX Motion control that supports the co-

simulation between NX Motion and Matlab/Simulink simulation models. Flexible 

bodies can also be integrated with NX Flexible Body. This interface supports reduced 

flexible bodies. In this case, the seals have to be modelled as a nonlinear FEA 

simulation model. A nonlinear FEA simulation model would not be reducible to a 

reduced flexible body. This kind of FEA simulation model has to be integrated as a full 

flexible simulation model. The integration of the nonlinear FEA simulation model as a 

full flexible body is not supported by NX Motion. Figure 5-40 shows the cooperation 

between the described interfacing technologies. 

 

 

Figure 5-40 Assembling Version1 of Case 4 
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(2) There is a possible alternative for the missing interface of the FEA simulation model. 

The FEA simulation model runs separately with predefined and quantified input 

parameters. These action input parameters represent the missing interface input 

parameters, mainly coming from the rigid body simulation model. The reaction 

parameters, which are the output parameters of the interface, have to be stored 

dependent upon the input parameters. These action and reaction parameters of the 

FEA simulation model run can represent the missing FEA simulation interface 

parameters. So, the reaction parameters are saved dependent upon the action 

parameters in a parameter file or a field file.  Figure 5-41 shows the cooperation 

between the described technologies. 

 

 

Figure 5-41 Assembling Version 2 of Case 4 

(3) Another solution is to use a neutral interface. The MODELISAR FMI is independent 

from the simulation software vendors. It supports a framework that can achieve an 

interaction between all three individual simulation tools via the MODELISAR function 

mock-up interface. Other tools such as Dymola or Matlab/Simulink can interact with 

MODELISAR function mock-up interfaces. However, the simulation tools NX Motion 

and NX Advanced Simulation do not support the MODELISAR FMI and cannot create 

the MODELISAR FMUs. Nonetheless, the MODELISAR FMUs can also be created 

manually, the disadvantage being that manual creations require additional work and 

reduce stability.  

 

As an alternative to the direct interaction of some simulation tools, the use of 

simulation middleware is possible with the MODELISAR FMI and FMU technology. 

The simulation middleware allows communication between different running 

simulation models and solvers.  It also synchronises the system-simulation solve run 

with the sub-ordered simulation models and solvers. This will be shown in Figure 

5-42. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 172 of 347 
 

 

 

 

Figure 5-42 Assembling Version3 of Case 4 

 

The aforementioned automotive customer showed an interest in Version 3. With this 

solution, the solver tools are more flexible which means that simulation software such as 

Matlab/Simulink can be replaced by another simulation tool. Due to the missing functionality 

of the NX tools, this communication version was not feasible. A feasible communication 

version seems to be Version 2 with constraints. The field generation of the fully flexible body 

simulation was not achieved due to a high investment in solver run times and manual field 

generation work.  Instead, the case example uses a generic field. 

Nevertheless, Case 4 should focus on researching the communications within Version 3. This 

communication version is more flexible and future-oriented. This flexibility is required to 

support a system-simulation during the development process. 

 

III. System-Simulation during the Development Process 
 

One result of the project “Interdisciplinary Model-Based Development Process” was that the 

system-simulation of the electrical front window lifter of a car door is required during the 

whole development process. The development process is triggered and controlled by 

milestones.  A result of the project revealed that a system-simulation of the electrical front 

window lifter of a car door could provide an improvement to some milestones. This kind of 

development methodology can be called “System-Simulation Driven System Engineering”. 

For the system-simulation driven system engineering development methodology, system-

simulation models are used at different stages of the development process. The first system-

simulation is used for the verification and validation of the mechatronic concept of the 

electrical front window lifter of a car door. Mahler(2012) discussed:  
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“The mechatronic system concept will be worked by using simulations to optimise the 
concept. But in the reality, systems with high influence and complexity between the 
subsystems will be not safe to fail. An improvement of the development methodology will 
be useful to optimise the development of systems as described before. Those systems will 
have mostly high subsystem-controller dependences (Dr.-Ing. J., Dipl.-Ing. S., & Prof. Dr.-
Ing. H., 2010) where small tolerances in the subsystems could cause system failure. To 
identify a failure of a system in the case of maximum tolerances will be not integrated in 
the system-engineering-process. So, the idea is to control the development process by the 
maturity of the virtual product. This should identify a failure of the system in an early 
state and reduce failing in a late state and keep the development in time.”  

System-simulations are used for maturity control. System-simulations can generate 

quantitative and qualitative data and information that can be compared to expected data and 

information. The expected data and information are defined through requirements that are 

part of the system engineering methodology, and can provide the basis of the maturity 

calculation. 

However, the use of system-simulations during the development process causes changing 

bases for the single simulation models. The bases for simulation models in an early 

development stage are rare. Data such as CAD models are not available. Usually, the system-

simulation for mechatronic concepts is only based on functional structures describing the 

functions of subsystems. Logical simulation models at this development stage are ideal. Later, 

the first but less detailed CAD models are available. Detailed simulation models are 

counterproductive because their inputs are less detailed. So, there are simplified simulation 

models based on the less detailed CAD models. For each progressive step in the development 

process, the available base data for the simulation becomes more detailed. This improved 

data, generates simulation models of higher precision and quality. These improved 

simulation models, which represent the same subsystem, reflects the improved quality down 

through the hierarchy by changing the sub-simulation models of the system-simulation 

during the development process. This means that the system-simulation changes step-by-

step in the development process. New generated subsystem-simulation models based on the 

improved subsystem replace previous simulation models in a revision of the system-

simulation.  

However, old subsystem-simulation models are unusable with these improvements. 

Dependent on the requested system-simulation results, simplified sub-simulation models can 

improve the system-simulation performance. Often, existing sub-system-simulation models 

have to be improved and revised. However, they are smarter with less precision than those 

detailed simulation models with high precision and higher solve times. Improved and more 

detailed sub-simulation models are not required for all system-simulation results; sometimes 

the earlier and simplified generations can be more economical. So, it is possible that earlier 

generated simulation models are overworked based on these improved sub-systems, such as 

improvement of simulation parameters, which can cause multiple variants of simulation 

models describing the same subsystem, to pop up during the system development process.  
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There were not enough project resources to initiate an actual discussion into the case of the 

electrical front door window lifter system. However, the described boundaries of “System-

Simulation Driven System Engineering” can empirically influence Case 4. 

 

In Section 5.5.3, the description of the system-simulation will be detailed. The simulation 

architecture and system-simulation generation of Case 4 will be discussed. 

 

5.5.3 DISCUSSION OF THE SIMULATION ARCHITECTURE AND SYSTEM-SIMULATION 

GENERATION OF CASE 4 
 

This section will discuss the simulation architecture and the generation of the system 

simulation. The first three sections will discuss the data architecture of each simulation 

discipline used in this case study.  Section 5.5.4 will explain the linking of the subsystem-

simulation models to the system simulation. 

 

I. Logical Simulation Model of Case 4 
 

The subsystems controller, software and electrical motor have to be modelled and solved 

with the equation based simulation tool Matlab/Simulink. This EBS tool can be supported by 

an existing interface integrated in NX Motion Control. However, Matlab/Simulink is not the 

main EBS tool of the automotive company. As an alternative to Matlab/Simulink, the 

automotive company is endorsing logical simulation models achieved with Modelica 

simulation authoring tools. Chrisofakis, Junghanns, Kehrer & Rink (2011) discussed:  

“Daimler uses Dymola and also SimulationX to edit and process Modelica models.  Since 
Modelica version 3.1 there is full compatibility of the plant models both in Dymola 7.4 as 
well as in SimulationX 3.4. Models and libraries are stored on hard disk as .mo files. Both 
tools are able to read these files with no specific modification, i.e., they use exactly the 
same files for displaying exactly the same structure.” 

In order to achieve such an openness of the system-simulation, the simulation tools and the 

data management have to mirror this kind of openness and support multiple authoring tools. 

This openness is also required to support the simulation model change affected by the 

ongoing system development during the development process. The logical simulation is 

driven by the idea to optimise, tune, validate and debug the system and its subsystems. The 

paper by Chrisofakis, Junghanns, Kehrer & Rink (2011):  

“...presents technology targeted toward the late stages in the development process, like 
tuning, validating and debugging the entire controller software in closed loop with 
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simulated plant models. Virtualizing these later engineering tasks requires plant models 
with increasingly higher quality […] and near-production controller software […].”  

The paper believes that the increasing level of simulation model quality at the increasing 

development process state and the simulation creation is supported by Modelica:  

“This short development is partly credited to good properties of the Modelica language, 
which provides outstanding support for the re-use of component models, mainly by 
providing powerful means to parameterise models and built-in support for a causal 
modelling.”  

With the Modelica language, it is possible to assemble individual Modelica simulation models. 

These simulation models can be built by individuals from different functional areas within 

the company. The assembled Modelica simulation model can include simulation models of 

different software and controllers. Chrisofakis, Junghanns, Kehrer & Rink (2011) explained 

this necessity: “Automotive control software for a single ECU typically consists of dozens of 

software modules, developed independently by a team of developers.”  

 

The MODELISAR FMI and FMU provide an improved openness in simulation model 

cooperation. Other solutions also achieve similar results for logical simulation models. 

However, automotive companies “[…] started recently to use the FMI developed within the 

Modelisar project as an export format for Modelica models. This standard is supported by the 

latest versions of SimulationX, Dymola, and Silver (Chrisofakis, Junghanns, Kehrer,& Rink, 

2011). An empirical and theoretical simulation model structure realizable with the Modelica 

language is shown in Figure 5-43. Another example based on Modelica is discussed by 

Commerell, Mammen, Panreck & Haase (2008). A more realistic structure for the electrical 

front door window lifter system example is not available. Instead, an empirical and 

theoretical structure is used. This empirical and theoretical structure is based on multiple 

sub-ordered Modelica simulation models. The sub-ordering represents three levels. 

This logical simulation model technology is not only used for the description of controller and 

software subsystems. In the early development stage, no CAD models are available. So, the 

system is described by functions and functional structures. These functions and functional 

structures provide the base for logical simulation models. This was mentioned and discussed 

previously in Section 5.5.2 III. This means that logical simulation models can be and are used 

to describe the behaviour of other disciplines in a system-simulation approach such as 

mechanical or thermo-mechanical disciplines (especially at an early stage of the 

development). In a later development stage, CAD models appear in the development process. 

These CAD models provide a base for rigid and flexible body simulations. In the following, the 

rigid body simulation of the electrical front door window lifter system will be discussed. 
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Figure 5-43 Theoretical Modelica Simulation Model Structure of Case 4 

 

II. Rigid Body Simulation Model of Case 4 
 

The rigid body simulation discipline is accomplished using the MBS simulation tool NX 

Motion.  Everything belonging to the rigid body simulation discipline is integrated into a 

monolithic simulation model. This simulation is based on an assembly, including all required 

parts and subassemblies. Included in this simulation model is the cable pull, gear and 

electrical engine, and the window panel as a moving object (as shown in Figure 5-39). A 

detailed discussion about simulation generation is not required for the data management 

case study.  

A particular difficulty relating to this simulation model was the modelling of the cable pull. 

The cable pull is a complex subsystem on its own. Many parameters for describing the effects 

of damping were missing. Investment is required to generate this missing information. 

Alternatively, the simulation of the cable pull can also be realised with EBSlike, described in 

Mammen (2012). In this presentation, the creation of a Modelica simulation model based on 

the Dymola simulation tool is discussed. An example of such a cable pull is illustrated in 

Figure 5-44 Example of a Cable Pull . 
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Figure 5-44 Example of a Cable Pull (dajo Autoteile, 2013) 

This system is not developed by the automotive company; it is a supplier part. The idea of the 

automotive company is to integrate a black-box simulation of the customer instead of 

creating their own simulation model. However, the supplier keeps the parameters secret. 

This can be achieved with a Modelica simulation model that is compiled. The compiling of 

Modelica simulation models is possible because they are c-source-codes and can be compiled 

in the same way as normal c-source-codes. This compiled c-source-code of the simulation can 

then interact with other simulation tools using the MODELISAR FMU/FMI technology. The 

idea of black-box simulations is also discussed by Nybacka, Törlind, Larsson& Johanson 

(2006). In addition, a black-box simulation was not available for Case 4. Nevertheless, the 

example depicts the requirement to support interaction with supplied simulation models 

using the MODELISAR technology. 

Instead of rigid body simulation, where deformation of the mechanical parts is negligible, 

flexible body simulation is required for the system simulation of the electrical front door 

window lifter system. The flexible body simulation will be discussed next. 

 

III. Flexible Body Simulation Model of Case 4 

 

The seals consist of hyper-elastic material which provides the possibility of high elastic 

deformation. In order to represent the self-deformation of the seals, they have to be 

simulated as flexible bodies. The seal CAD models describe the seal geometry in an un-

deformed and force-less state. This geometry represents the production geometry of the 

seals. However, the seals are constrained to the chassis door. Additionally, the montage of the 
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window panel deforms the hyper-elastic seals. The foundation state of the seals appears in 

the case of the installed window panel. A pre-simulation is required to work out the 

foundation state of the seals. After the pre-simulation, the moving of the glass window panel 

along the seals can be simulated. This simulation has to be based on the pre-simulation 

because the start of the simulation has to be the foundation of the seals. This kind of 

simulation is realizable with the NX Nastran advanced non-linear solver. 

In order to generate easier manageable meshes, the functionality mesh assemblies in NX 

Advanced Simulation are used. This functionality provides an opportunity to create 

independent meshes for a part or an assembly in a product structure. Each mesh is associated 

and dependent on the source part or assembly. In a higher level assembly, a mesh assembly 

can be generated. This mesh assembly can identify a mesh or mesh assembly dependent on a 

part or assembly at a lower level in the product structure. The identified mesh can be 

connected to the mesh assembly. This assembling also positions the meshes dependent on 

the product structure, positioned source parts or assemblies (Siemens Product Lifecycle 

Management Software Inc., 2011). Four seals are required for the simulation of the seals and 

the windows panel: 

 One seal is positioned in the front of the door (red line in Figure 5-45).  

 One seal is positioned in the bag of the door (magenta line in Figure 5-45). 

 Two seals are positioned in the middle of the door (green and yellow line in Figure 

5-45) 

 

CAD models provide the base to mesh the seals. CAD geometry has to be idealised for 

meshing. So, NX Advanced Simulation provides a file format called idealised geometry (see 

Section 5.1). Based on the idealised geometry, the mesh is generated and stored in a mesh 

file. Based on the mesh, the boundary conditions, forces and solver parameters are applied in 

the simulation file (Siemens Product Lifecycle Management Software Inc., 2011). This 

simulation model structure is shown in Figure 5-46. 
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Figure 5-45 Seals in Case 4 

 

 

Figure 5-46 Flexible Body Simulation Model of Case 4 
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In order to reach the basic form of the seals, a first nonlinear simulation has to be created. 

Here, the window glass panel is positioned dependent on the seal contact forces, and the seals 

are deformed until they are in contact with the glass panel. Both the window glass panel and 

the seal’s contact forces, have to be in balance. In order to use the result in the next 

simulation solve run, the solver has to generate a restart file in addition to the result files. The 

second simulation and solve run is concerned with the movement of the window glass panel 

in the seals. Movement is defined through velocity and a movement way. The velocity and the 

movement way should be provided by the rigid body simulation. In future, this data and 

information should be provided through interfaces from external solve runs in a co-

simulation. Currently, this data and information is provided by a parameter or field file. This 

compromise is required because co-simulation is unprofitable.  

The input for the window panel moving simulation is the input deck and the restart file of the 

foundation seals form simulation. Based on the restart file of the foundation seals form 

simulation, the window panel moving simulation is done. For easier handling, the window 

panel moving simulation is split into two sections: the opening procedure simulation and the 

closing procedure simulation. As described earlier, the opening procedure simulation is 

based on an input deck and a restart file generated by the foundation seals form simulation. 

Similarly, the closing procedure simulation is based on an input deck and a result file 

generated by the opening procedure simulation. These restart files are also copied and 

renamed. The process is shown in Figure 5-47. 

By using the restart files, it is possible to restart multiple times. This provides the possibility 

of restarting the opening procedure of the window glass panel using different movement 

velocities. So, the required force to move the glass panel dependent on position and velocity 

can be calculated. This is the base to generate a response surface or response curve. The data 

is useable as input for the rigid body simulation. 

The flexible body simulation is a subsystem-simulation of the system-simulation. So, the 

subsystems have to be linked to a system-simulation. 
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Figure 5-47 Flexible Body Simulation Process of Case 4 

 

IV. Assembling of the Simulation Models of Case 4 
 

The assembling and co-simulation of the simulation models should be based on MODELISAR 

interfaces. The MODELISAR consortium (2010) discussed:  

 

“FMI for Co-Simulation is designed both for the coupling of simulation tools (simulator 
coupling, tool coupling), and coupling with subsystem models, which have been exported 
by their simulators together with its solvers as runnable code[…] FMI for Co-Simulation 
defines interface routines for the communication between a master and individual 
simulation tools (slaves) in a co-simulation environment. A simulation tool or the part of 
it prepared for co-simulation by implementing the FMI is called an FMU (Functional 
Mock-up Unit)”  

 

Two types of MODELISAR functional mock-up interfaces are proposed on the market:  
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 MODELISAR FMI for model exchange discussed in MODELISAR consortium (January 

26, 2010): 

 
“[…] specifies a standardised Functional Mock-up Interface (FMI) for the coupling 
of two or more simulation models in a co-simulation environment (FMI for Co-
Simulation). Co-simulation is a rather general approach to the simulation of 
coupled technical systems and coupled physical phenomena in engineering with 
focus on instationary (time-dependent) problems. FMI for Co-Simulation is 
designed both for the coupling of simulation tools (simulator coupling, tool 
coupling), and coupling with subsystem models, which have been exported by 
their simulators together with its solvers as runnable code.” 
 

This type is shown in Figure 5-48. 

 

 
Figure 5-48 MODELISAR FMI for Model Exchange (Blochwitz & Otter, 2011) 
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 MODELISAR FMI for co-simulation discussed in the MODELISAR Consortium 

(September 30, 2010): 

 

“[…] defines the “Functional Mock-up Interface for Model Exchange”. The intention 
is that a simulation authoring environment can generate C-Code of a dynamic 
system model that can be utilised by other simulation authoring environments. 
Models are described by differential, algebraic and discrete equations with time-, 
state- and step-events. The models to be treated by this interface can be large for 
usage in offline or online simulation or can be used in embedded control systems 
on micro-processors. It is possible to utilise several instances of a model and to 
connect models hierarchically together. A model is independent of the target 
simulator because it does not use a simulator specific header file as in other 
approaches.”  

 

This type is shown in Figure 5-49. 

 

 
Figure 5-49 MODELISAR FMI for Co-Simulation (Blochwitz & Otter, 2011) 

 

Additional discussions on the usage of MODELISAR FMI and FMU were completed by the 

MODELISAR Consortium (January 26, 2010):  

 
“The FMI (Functional Mock-up Interface) defines an interface to be implemented by an 
executable called FMU (Functional Mock-up Unit). The FMI functions are used (called) by 
a simulator to create one or more instances of the FMU, called models, and to run these 
models, typically together with other models. An FMU may either be self-integrating (co-
simulation) or require the simulator to perform numerical integration.”  

 
Both types of MODELISAR interfaces can be used for the system-simulation generation of the 

electrical front door window lifter system.  What is of interest to the automotive company is 

the coupling of the three simulation disciplines, rigid body simulation, flexible body 

simulation and logical simulation, via MODELISAR interfaces. In the earlier discussions, three 

main sub-simulation models, used for the electrical front door window lifter system example, 

were discussed. However, each of the sub-simulation models was solved by another solver. In 

the case of the logical simulation discipline, additional sub models emerged (see Section 5.5.3 

I). It has to be mentioned that this system simulation description is used for a specific stage in 

the development process. At other stages in the development process, this structure can be 

different. For system-simulation generation, a hierarchical interaction of MODELICA 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 184 of 347 
 

 

simulation models can be achieved using MODELISAR FMI for Model Exchange. This interface 

forces a direct interaction between the Modelica c-source-codes and the Modelica simulation 

models.  

 

In order to connect the flexible body simulation and rigid body simulation, the MODELISAR 

FMI for Model Exchange is not useable. The flexible body and the rigid body simulations have 

to use their specific solver and the solver has to be integrated into the MODELISAR interface. 

So, the MODELISAR FMI for co-simulation has to be used. Sub simulations within MODELISAR 

FMI are assembled and ordered in a hierarchical structure. This structure is shown in Figure 

5-50. 

 

 
Figure 5-50 FMU-Structure of Simulation of Case 4 

Data management should support this kind of system-simulation. This will be discussed in 

Section 5.5.4 

 

5.5.4 DATA MANAGEMENT OF CASE 4 
 

This case study does not include an integration of the system-simulation example into the 

PLM framework TEAMCENTER. A system-simulation of the electrical front door window lifter 

system is produced, but this system-simulation is not viable due to missing functionality 
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between co-simulation interfaces in the simulation authoring tools. Data management of the 

system-simulation has no chance of improving this situation. So, the integration of the 

system-simulation example into the PLM framework TEAMCENTER could not be completed. 

In addition to this, the changing system-simulation during the development process of the 

electrical front door window lifter system was not transposed. This means that changes of the 

system-simulation structure and simulation models during the development process were 

modelled. However, the new framework should support this kind of development process, 

that is, the “system-simulation-based system engineering development methodology”.  

Therefore, data management has to support two areas of functionality: 

1) Data management of the changing system-simulation and sub-ordered simulation 

models:  

The use of system-simulations during the development process causes source 

changes in system-simulations. Product data becomes more detailed at each 

progressive level in the development process. This product data is the source for the 

simulation models. In order to achieve an improvement in the result quality (to bring 

them closer together with the reality), these simulation models should be based on 

improved product data. Thus the simulation models can be revised and based on 

improved product data, or the simulation models can be regenerated based on this 

improved product data. Simulation models can be single simulation models as well as 

system-simulations. This was discussed in Section 5.5.2 III. 

2) Data management of the system-simulation variants due to multiple simulation 

models describing the same subsystem: 

Dependent on the requested system-simulation results, simplified sub-simulation 

models can improve system-simulation performance. Sometimes, these simplified 

sub-simulation models are generated at early development stages. They can be 

overworked. Such simplified simulation models can be more economical for system-

simulation. This causes the multiple variants of simulation models that describe the 

same sub-system to appear in a system-simulation. 

The system-simulation requires the support of these different variants and versions of the 

subsystem-simulation models in the system-simulation structure. It follows that each, 

system-simulation is given its own unique version and has a positive influence on the 

management of the simulation results. The simulation results have to be traceable to the 

simulation models responsible for the results and to the system-simulation. 

The new framework for the support and management of multi-disciplinary simulation data 

embedded in a PLM environment can be used to solve this problem. In Section 5.5.5, Case 4 

will be empirically integrated into the new framework. 
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5.5.5 EMPIRICAL VALIDATION OF THE NEW FRAMEWORK AND CASE 4 
 

The new framework for the support and management of multi-disciplinary simulation data 

embedded in a PLM environment can be used to enhance the actual possibility of multi-

disciplinary and inter-disciplinary simulation data management. The files, data and 

information should be uniquely dependent and traceable. 

An empirical start of the product development process can be the generation of functions and 

a functional structure (light blue in Figure 5-51). This provides a base for behaviour 

simulation models realizable in tools such as Modelica or Matlab/Simulink (light green in 

Figure 5-51). During the development process, these functions and functional structures can 

be improved and revised (dark blue in Figure 5-51). The improved functions and functional 

structures provide a base to improve behaviour simulation models (dark green in Figure 

5-51). Further in the development process, the product describing data is produced. Such 

data can be in the form of CAD models (light orange in Figure 5-52). This data is detailed 

step-by-step in the development process (dark orange in Figure 5-52). Parallel to the 

modelling and designing, simulation models based on the product data, such as CAD models, 

are generated (yellow in Figure 5-52).  

The paragraph above demonstrates that multiple simulation data is generated during the 

development process. Not all are useable for system-simulations. In order to make those 

useable simulation models identifiable for system-simulation, they are linked by a system-

simulation source to their source base. A system-simulation target relationship helps to 

identify and trace the simulation models representing a system or product (blue connections 

in Figure 5-53). In order to depict the system-simulation source and target relationship, the 

functions, function structure, products and product structures are positioned to the right and 

the simulations, independent from the source and discipline, are positioned to the left in 

Figure 5-53. 
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Figure 5-51 Functions and Behaviour Models during the Development Process 
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Figure 5-52 Product and Simulation Data during the Development Process 
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Figure 5-53 Simulation Model Traceability of Represented and Sourced System 
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The simulation models, identifiable so as to represent a product or function in a system-

simulation approach, are used in sub-ordinated way in the system-simulation structure. The 

system-simulation structures sub order the different simulation models by using BOM 

technology. The simulation discipline, simulation authoring tool or item type managing the 

simulation model are not important. The available simulation models, useable in a system 

simulation approach, are more EBS discipline-oriented and managed as behaviour models at 

an early development stage (see System-Simulation item revision 1 in Figure 5-54). With an 

ongoing product development process, other simulation models can replace previously 

generated simulation models. These simulation models can be more geometrically based such 

as rigid body or flexible body simulation disciplines. So, the system-simulation structure has 

to be revised to create a changed version including other sub-ordered, more recent, 

simulation models (see System Simulation item revision 2 in Figure 5-54). The system-

simulation structure may be required in different versions. One version might include more 

detailed, sub-ordered simulations whereas other versions might use another simulation or a 

curve (see Variant A including the electrical engine as behaviour simulation and Variant B 

excluding the electrical engine simulation; pictured in Figure 5-54). The revision and version 

changes of the system-simulation structure create simulation results. The simulation results 

have to be traceable back to the simulation models responsible for the results and to the 

system simulation. With the generation of extracted system simulation result items, the 

management of the results are dependent on the revision or version of the system-simulation 

structure achieved (see Figure 5-54). These system-simulation results can be organised to 

represent a system-simulation result structure equivalent to the system-simulation structure. 

Traceability is achieved via a CAEResult Relationship pointing from the system simulation 

result to the source or target. This kind of simulation result management supports the 

generation of system-simulation results for each version and revision of the system-

simulation structure. Multiple system-simulation results can be managed for the same 

version or revision, which may be needed for system-simulation parameter studies. 
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Figure 5-54 System-Simulation and Result Management 

 

As discussed above, the findings from the four case studies can be used to generate, validate 

and verify the new framework. The new framework will be discussed in the Chapter 6.  
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6 A NEW FRAMEWORK FOR IMPROVING THE SUPPORT AND 

MANAGEMENT OF MULTI-DISCIPLINARY SIMULATION DATA 

IN A PLM ENVIRONMENT 
 

A new framework can be used to improve the support and management of multi- and inter-

disciplinary simulation data.  The first and foremost improvement should be the integration 

of the new framework into a PLM system.  Other improvements can be achieved by 

optimizing technologies and architectural designs. In Section 6.6, these improvements will be 

discussed.  

 

6.1 INSTITUTION OF A SYSTEM-SIMULATION STRUCTURE 
 

From a traditional, administrative point of view, a multi-disciplinary simulation is organised 

as a process (van Beek, Rooda, Engell & Zaytoon, 2000). This kind of view is popular due to 

the integration of multiple models, singularly generated by specialised departments and 

experts, into a simulation process. In contrast, the behaviour system-simulation methodology 

uses a simulation structure to manage sub-ordered simulation models. In the case of the 

behaviour methodology, the top and sub-ordered simulation models are generally modelled 

using the same simulation authoring tool. The simulation authoring tool used independently 

of simulation structure can improve the approach. In Section 6.1.1, the case examples will be 

analysed from this perspective. 

 

6.1.1 ANALYSIS OF THE CASES 
 

In Cases 3 and 4 discussed in Chapter 5, the simulation models are generated independently, 

subsystem-oriented and exchangeable. The sources of the system-simulation models are CAE 

simulation models (managed in SDPM or PDM) as well as behaviour simulation models 

(managed in behaviour data management). Afterwards, the subsystem-simulation models are 

coupled or merged. This coupling and merging generates the system-simulation. The system-

simulation is based on a system description including subsystems. Each of the coupled or 

merged simulation models simulates a specific component or subsystem of the system. This 

subsystem or component can be based on specific functionalities or specific assemblies of the 

system. The summary of the coupled or merged simulation models represents a subsystem or 

system.  An example of a system simulation that is based on system architecture is illustrated 

in Figure 5-27. The figure shows which system component is represented by the simulation 

model and which merging hierarchy is used to generate the system-simulation model. 
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Another example is represented in Section 5.5.5. So, the simulation models can be generated 

individually and then interact with each other afterwards in a system-simulation structure. 

A multi-disciplinary simulation consists of systems, products or processes. The individual 

simulation models can be built based on a hierarchy of systems, products or process. So, the 

multi-disciplinary simulation is usually a system-simulation. The sources for the simulation 

models are descriptions of the products, functions and processes. In all case studies, the 

dependencies on the product description are given. In Cases 3 and 4, the dependency on the 

functional descriptions is also used to generate the simulation models. Especially in the early 

development phase, the functional structure is used to generate the system-simulation 

structure such as in Case 4. 

Based on product or function description, the individual simulation models can be (pre-) 

defined. These defined individual simulation models can be arranged into a system-

simulation structure. This kind of arrangement has been discussed in all case studies. Here, 

the product and/or function structure is congruent to the system-simulation structure. In 

addition, any existing simulation models can be re-used and ordered into the system 

simulation structure. This requires the identification of simulation models based on the 

source data such as function or product items. The identified simulation models have to be 

checked from the perspective of reusability to see if the requirements for the new multi-

disciplinary simulation are fulfilled. Case 4 demonstrates that behaviour models are re-used 

for later system-simulations. If any simulation models are missed, new simulation models 

have to be generated or existing ones have to be modified. Changes to existing simulation 

models have to be based on the sub-product or sub-function that should be represented by 

the new simulation model. These kinds of changes were carried out in Cases 3 and 4 where 

the NX Motion simulation model was generated as an independent simulation to investigate 

the mechanical property of the product. The existing simulation of the mechanics was 

changed in some areas to make it work as part of a system-simulation. So, the system-

simulation structure can be used to organise the administrative work in more efficient way. 

Dependent on the integrating simulation middleware (such as was necessary in case example 

4) or simulation authoring tool (such as NX Motion in case example 3), the integrating 

simulation model data has to be managed. Such a simulation authoring tool or simulation 

middleware acts as a simulation integrator coupling different simulation models. Due to the 

integrator functionality, these kinds of simulation models represent the top level of the 

system-simulation structure. So, the system-simulation structure can help to outline the 

administrative simulation work more easily. 

Case examples 1 and 2 are different at this stage. They do not fulfil the necessity of linking 

individual simulation models to be run as co-simulations. These two case examples describe a 

system-simulation as a serial process. In contrast to the first two case examples, case 

examples 3 and 4 describe system-simulation examples in a parallel process. In the following, 

the system-simulation of a system-oriented multi-disciplinary simulation process is 

discussed to achieve a more unique understanding. 
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Figure 6-1 System-Oriented Simulation Process 

 

The generation of system-simulations assembles multiple individual simulation models to a 

system-simulation structure. The system-simulation structure describes a system, not a 

process. The system-simulation structure can be based on the system description. 

Afterwards, the required and useable individual simulation models can be identified or 

generated. These simulation models have to be integrated into a co-simulation. The run of the 

co-simulation requires multiple solvers that communicate with each other. Each individual 

simulation model is run with its own solver properties. A simulation middleware or 

simulation solvers, that provide interfaces to other simulation solvers, take the data provided 

by the individual simulation solver and provide data needed by the individual simulation 

solver. Each simulation solver produces simulation results or protocols. The review of these 

simulation results or protocols is completed in the post-process. However, the review of 

results is dependent on the simulation model’s authoring tools. Some authoring tools provide 

general result formats, others, specific formats. The understanding of the results is dependent 

on the expertise of the reviewer. Accordingly, multiple experts and post-processors are 

required (Zaeh & Baudisch, 2003). Also, the simulation integrator (such as simulation 

middleware) can produce result and protocol files. Usually, this data is focused on 

Defining the goal of the multi-disciplinary simulation 

Defining the base of system- simulation  

•sources are product structure and/or function structure 

Defining the system simulation structure 

•ordering of the subsystems or submodels 

Sampling or generation of the simulation models 

•defining of the individual simulation models 

• if individual simulation models are available sampling of the models 

•else the simulation models have to be generated 

Defining the system simulation architecture 

•defining the communication / interaction of the individual simulation models 

•defining the constraints and loads of the system simulation 
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parameters and stored in a more general way. The reviewer does not need special expertise 

of specific simulation authoring tools to be post-processed. The previously described system-

simulation process is shown in Figure 6-1. 

 

6.1.2 THE SYSTEM-SIMULATION STRUCTURE APPROACH 
 

The new framework should support the interaction of system-simulation structure, 

simulation model sources and a simulation integrator such as described in Section 6.1.1.  The 

three cores - system-simulation structure, system model sources and simulation integrator, 

interact with each other. The system model sources can be understood as databases storing 

simulation models in their files and metadata. The system-simulation structure should be 

understood as hierarchical descriptions of the required simulation models and a database for 

the system-simulation integrator data. The simulation integrator is a simulation middleware 

or a simulation authoring tool with the functionality to integrate different simulation tools or 

data to a common or interacting co-simulation. These are shown in Figure 6-2. 

The new framework makes it possible to search for simulation models in the simulation 

model sources. After checking the usability of the models for re-use, these models should be 

linked as sources to the system-simulation structure. It is possible that not all required 

simulation models in the system-simulation structure are identifiable. When simulation 

models are missed, a metadata set in the simulation model sources should be added and 

linked to the system-simulation structure. The added metadata set is an empty container and 

will be filled later with the required simulation model data and files. The generation of the 

individual simulation model and other required files are carried out in/by the specific 

simulation authoring tool by a responsible person with the specific expertise (Zaeh & 

Baudisch, 2003).  
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Figure 6-2 Multi-Disciplinary Simulation Data Management Cores 

 

Structural handling of the data is a technique for structuring the previously described data 

management. With this handling of the models, the new framework can be used:  

 to reduce data repetition by integrating all required data into one database. The 

database has to combine PDM, SDPM and behaviour model management with system-

simulation data management. Additionally, the product and functional descriptions 

have to be integrated into this approach. All this can be addressed by a PLM system. 

 to support the sampling of simulation models by linking metadata information. The 

simulation models are managed by different data holding approaches. Such data 

holding approaches can be SDPM, PDM and behaviour model management. 

Additionally, all these data holding approaches can also be used to manage metadata 

information. In the case of searching and sampling, the metadata can be re-used. This 

requires one common and/or multiple interacting databases. 

 to improve the administration of the simulation models and sources in the context of 

multi-disciplinary simulation. Such an administrative improvement is, for example, 

traceability of the system-simulation structures to their sources as well as to the 

interacting simulation models. The traceability can be achieved by linking dependent 

metadata information. The link can be followed to check, for example, the veracity of 

the source. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 197 of 347 
 

 

 

Figure 6-3 Improved Approach of System-Simulation Source Dependencies 

The previous analysis (especially in Cases 3 and 4) as well as the process discussions results 

in a requirement to adapt system-simulation structures. System-simulation structures can 

interact with other system-simulation structures (sub-ordered) and simulation models. 

Sources for the simulation models can be SDPM or PDM and behaviour simulation model 
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management approaches. The sampled simulation models are linked to the system-

simulation structure. So, the data does not need to be duplicated and is uniquely traceable. 

The simulation models should relate to their own sources such as product or function 

descriptions. So, there is also a link to their sources. Such an approach is part of common 

development strategies and most effective in combination with PLM approaches. PLM 

systems can provide multiple data (such as PDM, SDPM and behaviour model management, 

data management of product and function descriptions). This approach is shown in Figure 

6-3. 

This framework is a new and improved approach, when compared to current system-

simulation managing tools such as the IMAGINE.Lab SysDM application from the LMS 

Company. System-simulation managing tools are not PLM-implemented tools and focus on 

the support of behaviour or one-dimensional-simulation models. A unique traceability to 

simulation model sources cannot be achieved due to the PLM native approach. So, there are 

no interactions between system-simulation data managing approaches and other data 

holding approaches, and data has to be copied and duplicated from other sources. The focus 

of such tools on behaviour or one-dimensional-simulation models results in a lack of support 

from other simulation disciplines.  This type of approach is shown in Figure 6-4. 

With the new approach, a copying and duplication of simulation models and other sources 

would no longer be required. The system-simulation structure makes the sub-ordered 

simulation models traceable by linking their metadata. The new framework keeps the 

simulation models traceable to their sources. 

For example, an empirical system-simulation structure consists of an MBS model and an EBS 

model. Both are sub-ordered within the system-simulation structure. The data of the MBS 

model is managed by PDM. The CAD model sources are also managed by PDM. The EBS model 

is managed by behaviour model management and dependent on a specific function. The new 

approach achieves the traceability from the system-simulation structure to the individual 

simulation sources. This example is shown in Figure 6-5. Similar examples are given in Case 3 

(see Section 5.4.5) and Case 4 (see Section 5.5.5). 
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Figure 6-4 Existing Approach of System-Simulation Source Dependencies 
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Figure 6-5 Traceablity-Example of the New Approach 

  

The system-simulation structure has to provide the support of the system lifecycle during the 

development process, i.e. changes to the system-simulation during the development process 

have to be managed. So, a revision of the system-simulation structure is required. 

TEAMCENTER provides the revision with standard functionalities. Section 6.1.3 will discuss 

the new approach in more detail.  

 

6.1.3 TECHNICAL DETAILING OF THE APPROACH 
 

The system-simulation structure can be similar to a product structure management within 

TEAMCENTER.  TEAMCENTER is a PLM system and useable as the integration platform for 

the new framework.  In TEAMCENTER, the base for the data ordering and storing is a single 

object called Item.  
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“Items are the fundamental objects used to manage information in TEAMCENTER. They 
represent parts and other objects that you want to manage within a lifecycle. Items 
generally represent data that is configuration controlled by revisions. Items collect a 
variety of different types of business data, for example, CAD design files for parts, 
document files such as specifications, reports, and forms for metadata. An item can be 
thought of as a package that contains all data related to that item. Each item has at least 
one item revision and a label containing two pieces of information: 

[…] 
Overview of product structure 

• Item ID 
A unique identifier for the item. No two items can have the same item ID. An 
item ID may be the part number or the document number of the object it 
represents. 

• Item name 
A short description that is usually a logical name such as Bolt, Bracket, or 
the title of a document. 

 
The term Item generically describes all types of items that exist in TEAMCENTER. To 
effectively manage many types of item, you should create specific types of item 
appropriate to your business. 
 
You should also distinguish between the item and its associated item revisions, as 
follows: 

• Item 
An item commonly represents manufactured product such as parts, 
assemblies, end items, and tools. It is an abstract container that holds item 
revisions and general documents that apply to the product, rather than to a 
particular revision. You cannot build or test an item. 

• Item revision 
An item revision represents a physical entity and is a unique, specific 
revision of a previously created item. It may have associated CAD models, 
drawings or specifications that are applicable only to this revision. You can 
release an item revision with a workflow or through change management. 
This action applies a Released status to the item revision, preventing further 

edits and allowing TEAMCENTER to maintain product history (Siemens 
Product Lifecycle Management Software Inc., 2012).” 

 

This is useful in finding the right object to describe a system-simulation structure. The above 

extract mentions that items and item revisions have to be specific. In the case of system-

simulation, a new item and item revision is required to represent the system-simulation 

structure. In this thesis, this will be called item ‘Sys-Sim item’ and the item revision ‘Sys-Sim 

item revision’. 

The product structure begins with a top item Revision such as a CAD item revision. A 

structure is created by sub ordering additional item revisions. The sub-ordered item 

revisions can be a structure on their own including further sub-ordered item revisions. The 

depth of the structure is limitless. This means of building structures is also required for the 

system-simulation structure. The means of structuring is achieved by a BOM View Revision. 

“[…,] you create a product structure, sometimes loosely called a bill of materials (BOM).  
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[…] In their designs, engineers group parts together in assemblies to allow re-use of the 
same assemblies elsewhere in the product or in other products. An assembly can contain 
components that are piece parts or other assemblies. In this way, you can model a 
complete product structure as a hierarchy of single-level assemblies. From the 
TEAMCENTER perspective, piece parts and assemblies are both represented by items, 
and each item has at least one revision (Siemens Product Lifecycle Management Software 
Inc., 2012).” 

 
One requirement of the system-simulation structure is the reusability of individual 

simulation models. This is similar to the re-use of components and parts in the product 

structure. The BOM view technology of TEAMCENTER can also meet this requirement. 

  

 
“You can create assemblies that are precise and reference a specific revision of each 
component; you can also create dynamic assemblies in which current revision rule 
determines the configuration of the assembly. Dynamic assemblies are sometimes 
referred to as imprecise assemblies. The hierarchical structure relationship between the 
immediate parent assembly and its child component item or item revision in a precise 
assembly is represented by an occurrence (sometimes called a relative occurrence) 

revision (Siemens Product Lifecycle Management Software Inc., 2012).” 
 
This perspective was not included in the case studies, but it is realistic in the case of using 

system-simulation structures. In the case of freezing a system-simulation structure, which 

means that a product goes into production and the data remain unchanged, the system-

simulation structure has to be reloaded precisely (dependent upon the frozen state). 

However, the product will change for example, the design, parameters, materials or supplier. 

Such design improvements could be caused by product optimization or supplier changes. 

This will cause the product description to change. Therefore, the system-simulation structure 

needs to make it possible to be loaded non-specifically.  

 
“When you add a component to an assembly, you are creating an occurrence of that item 
or item revision in the assembly, which is stored on the BOM view revision. This 
occurrence is displayed as a BOM line. A BOM view revision is a single-level structure that 
contains occurrences of its immediate children. A multilevel structure is built up from 
many single line BOM view revisions (Siemens Product Lifecycle Management Software 
Inc., 2012).” 

 

The ordering possibility of a BOM view technology is monitored as a neural example in Figure 

6-6. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 203 of 347 
 

 

 

Figure 6-6 Ordering of the System-Simulation Structure 

 

The technology of the BOM view is enormously useful for the system-simulation structure. 

The BOM view is independent from the used items and item revision types. So, different items 

and item revisions can be used for the Sys Sim item and Sys Sim item revision. However, the 

Sys Sim item revision sub orders different item revision types. Different item revision types 

have to be sampled by the BOM view of system-simulation structures because the different 

simulation models are managed under different item types. The different item revision types 

are listed in Table 6-1 Item Types used in the System-Simulation Structure. 

 

Table 6-1 Item Types used in the System-Simulation Structure 

Source ITEM Type 
Simulation or simulation structure managed 
in SDPM 

CAEAnalysis ITEM Revision or CAEModel 
ITEM Revision 

Simulation models managed in PDM  ITEM Revision (for example the CAD ITEM 
revision mentioned in the case studies) 

Behaviour model as simulation model Behaviour model ITEM Revision 
 

The SDPM technology of TEAMCENTER manages simulation models via two different types of 

item. These may be a CAE Analysis item revision and CAE Model item revision. In the case of a 

CAE Analysis item revision, no direct structuring is available. It is possible to follow 

dependencies of the CAE Analysis item revision to get more details, but there is no BOM view 

available.  In the case of a CAE Model item revision, a BOM view can be available. However, 

the BOM view is not a requisite for the CAE Model item and CAE Model item revision.  

This is similar to simulation models in the PDM environment. In the PDM environment 

simulation models can be stored as datasets under a CAD item revision or other item 

revisions. An item revision can include a BOM view as discussed above. However, the 

Revision BOM View (linked ITEM Revisions) BOM view (Linked ITEM Revisions) BOM view (Linked ITEM Revisions)

Sys-Sim Item

└---------------------------------------------------------- Sys-Sim ITEM Revision (A)

| └---------------------------------------------------------- CAE Analyses Item Revision

| └---------------------------------------------------------- CAE Model Item Revision

| | └---------------------------------------------------------- CAE Model 1 Item Revision

| | └---------------------------------------------------------- CAE Model 2 Item Revision

| | └---------------------------------------------------------- CAE Model 3 Item Revision

| | | └---------------------------------------------------------- CAE Model 3.1 Item Revision

| | | └---------------------------------------------------------- …

| | └---------------------------------------------------------- …

| └---------------------------------------------------------- Model ITEM Revision (z. B. CAE ITEM Revision)

| | └---------------------------------------------------------- Model 1 ITEM Revision (z. B. CAE ITEM Revision)

| | └---------------------------------------------------------- Model 2 ITEM Revision (z. B. CAE ITEM Revision)

| | └---------------------------------------------------------- Model 3 ITEM Revision (z. B. CAE ITEM Revision)

| | | └---------------------------------------------------------- Model 3.1 ITEM Revision (z. B. CAE ITEM Revision)

| | | └---------------------------------------------------------- …

| | └---------------------------------------------------------- …

| └---------------------------------------------------------- behaviour model Item Revision

| └---------------------------------------------------------- behaviour model 1 Item Revision

| └---------------------------------------------------------- behaviour model 2 Item Revision

| └---------------------------------------------------------- behaviour model 3 Item Revision

| | └---------------------------------------------------------- behaviour model 3.1 Item Revision

| | └---------------------------------------------------------- …

| └---------------------------------------------------------- …

|

|

└---------------------------------------------------------- Sys-Sim ITEM Revision (B)

└---------------------------------------------------------- CAE Analyses Item Revision

└---------------------------------------------------------- CAE Model Item Revision

…
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simulation model managed under an item revision is usually independent from the BOM view 

of the item revision. 

The behaviour simulation models are managed as behaviour model item revisions. They can 

be sub-ordered by a BOM view. This sub-ordering is used in Cases 3 and 4 for the software 

and controller unit. In this case, the BOM view of the behaviour model item revision can be 

used in the system simulation structure to get more details about the simulation model. 

A representation of the system-simulation structure is achievable with:  

 the technology of items and item revisions to generate the data managing objects and  

 the BOM view technology to manage the sub-ordered simulation models.  

However, the system simulation structure can change during the lifecycle. Two main reasons 

are: 

 the first one is the historical change of system-simulation structures. Such historical 
changes can be the changes during development processes. 

 the second one is the representation of product variants. 
  
 
The historical change is caused by the on-going development process of the products. 

Changes to a product can cause changes to the simulation model representing the product. 

This means that a simulation of the product or sub-product in multiple stages of the 

development process might be required. An example of this is Case 4. In this case, simulation 

models of an early development process as well as simulation models of a late development 

process have to be integrated into data management. In order to manage the change of the 

data, the revision technology is used by TEAMCENTER (see Section 4.1). If a simulation is 

frozen, no changes are allowed. However, the simulation source (e. g. CAD model) data does 

change and leads to the new item revision. The analyst has to decide if the frozen simulation 

is valid or if the simulation has to be revised. The editing of the simulation model can be done 

on the revised level whereby the original will be saved. Therefore, the data management of 

simulation models is also manageable with the revision technology (see Section 4.1). The 

system-simulation model or the system-simulation structure can be edited using revision 

technology. 

 
In the publications of Zehetner, Wenpu Lu, Watzenig & Bernasch (2012) and of LMS 

International (2011), the integration of version management and variant management was 

deemed an important function. The representation of variants only arose in a reduced 

dimension in Case 4.  However,  IMAGINE.Lab SystemSynthesis (LMS International, 2011) 

also provides the possibility to build variants of the system-simulation structure. These 

variants are used to exchange a subsystem by using another equivalent subsystem. Variants 

can be used, for example, to build a system-simulation of the thermal management of a 

vehicle where a subsystem (for example, the combustion engine) is exchangeable (for 

example, different power intensive combustion engines). TEAMCENTER also provides the 
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possibility of variant management based on a structure. The re-use of this technology for a 

system-simulation structure has the functionality to build multiple variants based on one 

system-simulation structure. Additionally, the variant management of TEAMCENTER does 

not require multiple versions of the structure. Using a 150% structure and configuring the 

structure achieves the data management of a configuration. Filtering the structure based on 

the configurations results in multiple variants of the structure.  
“You can define sophisticated revision rules that allow you to configure the structure in 
different ways. This allows you to create a single structure and re-use it many times, for 
example, for different versions of the product. Revision configuration depends on the 
release status of an item revision, and its related effective date, effective unit number, or 
the release date. It allows you to reproduce a configuration that was effective at a certain 
date in the past or recreate the configuration of a specific unit revision (Siemens Product 

Lifecycle Management Software Inc., 2012).” 

 
The revision aspect in the variant technology of TEAMCENTER is well established and 
available in a wide range of TEAMCENTER use cases. This technology meets the necessary 
requirements of a flexible system-simulation structure.  However, the existing technology of 
versioning and variant building is not the focus of this research.  Additionally, the case studies 
of this research are not focused on improving this technology. In order to be focused on the 
main issues of this project, this technology will not be discussed in detail.  
 
In Section 6.2, the difference between system-simulation structures and process-oriented 
simulation processes, and how system-simulation structures can support the process-
oriented simulation process will be analysed. 
  
 

6.2 COMBINATION OF SYSTEM-SIMULATION STRUCTURE WITH PROCESS-ORIENTED 

SIMULATION PROCESSES 
 

As discussed above, from a traditional and popular administrative view, a multi-disciplinary 

simulation is organised like a process. Usually, the specialised departments and experts are 

focused on their specific problems and not on the system (Tian, Yan, Parkin & Jackson, 2008). 

This causes them to have a blurred system-view but a focused view on their simulation 

models and the interaction to other simulation models. They view the linking of individual 

models into a multiple-disciplinary model as a process. So, the traditional understanding of 

multi-disciplinary-simulations is more a simulation process than a system view. 

Nevertheless, the process-view can be suitable to system-simulation. The simulations 

responsible for multi-physical CAE-simulations often do not see the system-simulation from a 

system view. Section 6.2.1 will analyse the Cases from both system-simulation and simulation 

process points of view.  
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6.2.1 ANALYSIS OF THE CASES 
 

Cases 1 (See Section 5.2) and 2 (see Section 5.3) can be organised as simulation processes. 

Figure 5-12 shows a serial simulation process from Phase 1 to Phase 3 (also shown in Figure 

6-7). The phases can also be subordinated in serial simulation processes.  

 

Figure 6-7 Serial Simulation Process of Case 1 

Similar to Case 1, Case 2 is also a serial process. However, Case 2 can be parallelised. This is 

shown in Figure 5-18. The parallelisation is possible because there are two independent 

branches at the beginning. This parallelisation of the process ends when the branches have to 

be merged. 

Both examples create multiple simulation models during the process. These simulation 

models are built and solved in the chronological order of the process. It is possible that this 

chronological process is parallelised. In the case of parallelisation, there is no dependency to 

other branches in the process.  

Both simulations of Cases 1 and 2 are barely generated based on a system or subsystem 

structure. This is in contrast to Cases 3 and 4 analysed in Section 6.1.1. The focus of Cases 1 

and 2 is process-oriented. The process can be a product development process or a production 

process. All of the Cases are multi-disciplinary simulation processes. However, the difference 

between Cases 1 and 2 and Cases 3 and 4 is the process or the system orientation.  

The system-oriented Case 4 also includes a montage-oriented simulation process. The 

simulation process is shown in Figure 5-47. The seals of the electrical front door window 

lifter system are deformed by the montage. The simulation model reflects the virtual seals as 

unloaded. So, a pre-load causing the pre-deformation of the seals is required. This simulation 

process has to be based on the system-simulation where the flexible body simulation of the 

seals is involved. In Case 4, a simulation process and a system-oriented simulation are 

required. 

Simulation processes and system-oriented simulations have to be supported by the new 

framework. However, the focus of the new framework is not on the support of simulation 

processes. The focus will be on the data management of the multi-disciplinary simulation. 

Multi-disciplinary simulation in this case is rather the data management of the system-

simulation and system-simulation models. The new framework should support the re-use of 

• Generate Simulation 
model for the thermal 
simulation 

• run the thermal 
simulation solve run 

• generate a post-
processor result file 

Phase I: 
thermal 

simulation  

• generate the 
simulation model for 
the structure 
simulation based on 
results of the phase I 

• solve the structure 
simulation 

Phase II: 
structure 

simulation 

• generate the 
simulation model for 
the durability 
simulation based on 
results of the phase II 

• solve the durability 
simulation 

Phase III: 
durability 
simulation 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 207 of 347 
 

 

this data for process-oriented simulation processes. In the following, the process-oriented 

multi-disciplinary simulation of a system-simulation process will be discussed to achieve a 

greater understanding (see Figure 6-8). The process-oriented multi-disciplinary simulation 

process is in contrast to the system-oriented multi-disciplinary simulation process discussed 

in Section 6.1.1 and shown in Figure 6-1. 

 

After the generation of individual simulation models, the information flow of the simulation 

process must be organised. This means that the different and individual simulation models 

receive the required input data. Therefore, the data has to be provided to run a process-

oriented simulation based on inputs of a previous simulation, for example. This is different to 

the system-simulation process where the core technology was the co-simulation. A system-

simulation can be part of the process-oriented simulation process. With the achievement of 

(simulation) models and the data information flow between them, a serially structured 

ordering of the simulation workflow can be achieved. This is called the simulation process. 

The simulation process can also consist of parallel branches such as in Case 2. The simulation 

process can be automated. This requires an active management of the data flow; the 

execution of the individual simulation models embedded in the simulation process. Each 

individual simulation model is run with its own solver properties. 

So, such data flow and simulation execution of process-oriented simulation processes require 

following functions: 

 Transportation of previously generated results from a previous action (maybe 

simulation) to the following action (maybe simulation), for example, supporting the 

result file push and pull from a thermal analysis to a structural analysis, as discussed 

in Cases 1 and 2. This is called “data run”. 

 Support or (possibly automated) execution of simulation solve runs, for example, 

directly opening a simulation that provides the required source files in the authoring 

or solving tool. Another example could be the opening of the structural analysis with 

the required thermal result files for execution, as discussed in Cases 1 and 2. This is 

called “simulation run”. 

 Support or (possibly automated) execution of processes such as analysis of results 

and generation of changed parameters or matrices, for example, providing data of 

previous simulations; actions like result files to run an analysis; interpretation of the 

data either in a self-made script or using interpretation software and the retrieval of 

data produced by the analysis or interpretation. This can also be a data extraction 

from simulation results, for example to deform geometry like in Case 1. This is called 

“interpretation run”. 

 Support or (possibly automated) execution of processes to change something based 

on sources, for example, to change parameters, expressions or to run scripts in other 

tools by self-made scripts or process software, in order to realise geometrical changes 

or parameter changes, as discussed in Case 1. This is call “change run”. 
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Each simulation solver produces simulation results or protocols. The review of these 

simulation results or protocols is completed in the post-process of each individual simulation 

model. The input of the pre-solved simulation models is also stored as the input in the 

individual simulation models. So, these simulation models can be handled in the pre-process 

and in the post-process of the individual simulation model as an independent simulation 

model. In comparison with a system-oriented simulation process, the simulation models are 

interacting with a co-simulation. The parallel system-simulation process is shown in Figure 

6-8. 

 

Figure 6-8 Process-oriented Simulation Process 

In Section 6.2.2, an approach to combine the process-oriented simulation process with the 

system-simulation structure will be discussed. 

 

6.2.2 THE PROCESS-ORIENTED SIMULATION APPROACH 
 

It would be ideal if the system-simulation and the process-oriented simulation processes 

were implemented in the PLM environment. The architecture of the multi-disciplinary 

simulation data management should be focused on the system-simulation process. However, 

Defining what should be simulated with the multi-disciplinary 
simulation 

Defining the base of the process oriented simulation  

• Sources are product structure and/or function structure 

• as well as process to be simulated 

Defining the simulation workflow 

• chronological ordering of push and pull of data as well model runs 

Sampling or generation of the simulation models 

• defining of the individual simulation models (what should be simulated by them and what 
will be the requirements to the each individual simulation model) 

• if individual simulation models will be available sampling of the models 

• else the simulation models have to be generated 

Run the simulation process 

• therefore the individual simulation models have to be run in the pre-defined order 

• the information flow to the next ordered simulation step have to be organized 
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the generated system-simulation models should also be useable for a process-oriented 

simulation process. Additionally, process-oriented simulation processes are also used to 

make product optimizations based on CAE results. Commercial products supporting 

simulation processes are available on the market. Some of these tools include restricted 

simulation integrators to integrate system-oriented simulations. 

The integration of such a tool into simulation data management can provide a solution for the 

process-oriented simulation process support. Simulation process tools are used in a 

commercial way and can be prepared to use system-simulation instead of individual 

simulation models. The data management is not considered to be complex enough to justify a 

research project. So, there will be no focus on process-oriented simulation processes in the 

research project.  

However, an architectural approach to achieve simulations combining system- and process-

orientation could be worked out in the research project. Cases 1 and 2 are, and Case 4 

includes, process-oriented simulation processes. The implementation of the optimization of 

system-simulation models requires the interaction with process-oriented simulation 

processes. Such an approach can be achieved by using a closed system-simulation as 

simulation model in a process-oriented simulation.  

Simulation process authoring tools such as Isight (Dassault Systems, 2012) are commercial 

products designed to support, manage and generate simulation processes (Wenzel, 

Gondhalekar, Balachandra, Guenov & Nunez, 2010). On the whole, the simulation process 

authoring tools are flexible in the usage of the simulation models taking part in the modelled 

simulation process. Special functionalities such as parameter changes can limit this flexibility. 

Such limitations can be observed in the case of optimization processes. Nevertheless, the 

simulation models are re-used as individual simulation models. In some cases, multiple 

individual simulation models can be combined with simulation process authoring tools using 

a provided simulation integrator (Dassault Systems, 2012). However, the provided 

simulation integrator of a simulation process authoring tool is restricted. Such an approach is 

shown in Figure 6-9. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 210 of 347 
 

 

 

Figure 6-9 Existing Approach of Simulation Process Authoring Tools and Simulation Integrators 

 

With the determination of system-simulation structure and process-oriented simulation 

processes, this existing monolithic approach can be improved. Therefore, the new approach 

can be used to determine between: 

 system-simulation structures representing virtual systems that consist of multiple 

sub-simulation models and 

 process-oriented simulation process representing a chronological process of dataflow 

and model execution (also possible with parallel branches of the process). 

An architectural approach can combine system-simulation structures with process-oriented 

simulation processes. With such an architectural approach, the following improvements can 

be achieved: 

 The process can be better reviewed and handled. This helps to administer the work. 

 The system-simulation can be executed externally from the simulation process 

authoring tool. So, the system simulations are independent from the simulation 

process authoring tool. The restrictions of co-simulations by simulation process 

authoring tools are negligible because the simulation integrator is external and 

independent of the simulation process authoring tool. 

 So, the responsibility of the simulation can be assigned to one reliable expert for 

simulation integration (taking care of the system-simulation) and another for 

simulation processes (taking care of the process-oriented simulation). Both experts 

require specific knowledge about their work. The separate handling of such expert 

knowledge is more effective and realistic than a shared handling. 

The improved architectural approach also provides the implementation of models from 

multiple sources into the simulation process. Additionally, this provides the implementation 

of a fully configured system-simulation model with a simulation process authoring tool 

independent simulation integrator. So, the simulation process authoring tool has to handle 
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the system-simulation model as an individual simulation model. If the system-simulation 

model is executed, the new framework has to handle the system-simulation work. This 

approach is monitored in Figure 6-10. 

 

 

Figure 6-10 Improved Approach of Simulation Process Authoring Tools and Simulation Integrator 

 

The above has been discussed as an architectural approach to support and manage process-

oriented simulation processes interacting with system-simulations. The process-oriented 

simulation processes are not the focus of the research. Nevertheless, a small excursion 

around some technical details that can achieve such an approach, will help to understand the 

combination capability of PLM technology.  

 

6.2.3 TECHNICAL DETAILING OF THE APPROACH 
 

Four main functions of process-oriented simulation processes were presented in Section 

6.2.1. The four functions: data flow, simulation run, interpretation and analysis, and change 

loops should be provided by a user interface embedded in TEAMCENTER. This should be a 

user interface for process-oriented simulation processes. In a user interface, similar to MS 

Visio, the lines represent the data flow and the boxes represent the simulation run, 

interpretation and change run. Each function and its representation are discussed in the 

following: 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 212 of 347 
 

 

Data run line: 

The data run line has a starting point, an end point and a direction. The 

starting point shows where the data is collected and the end point shows 

where the data is provided. The line should also include information about 

what the data is (file, parameter, etc.) and dependent upon that, the 

specification of the data file and dataset as well as parameter name and type. 

The push and pull of data can be achieved by linking the source dataset (under 

the source item) to the end item as a linked dataset. This dataset presents data 

to each item to which it is linked.  So, the dataset linked to each item that 

requires the data.  

The data of the data run line should be managed as a dataset under a 

simulation process item. 

 

Simulation run box: 

The simulation run box can have input and output ports. Input ports receive 

data from a data run. The output ports provide data for a data run. The 

simulation model can include predefined data types and data names. 

Therefore, the input and the output ports should include the definition of the 

kind of information (file, parameter, etc.) and dependent upon that, the 

specification of the data file and dataset, parameter name and type. This can 

be used to rename, for example, a parameter or a file, so there is no necessity 

to make changes in the simulation models. The simulation run box should 

provide all necessary data. Maybe, it should also open the simulation in the 

simulation authoring tool. In the case of an automated run of a simulation, the 

simulation run box can be automated by using the simulation configuration 

tool (included in TEAMCENTER for Simulation). This configuration of the 

automated simulation run can be re-used in the simulation run box. Therefore, 

the simulation run box has to call the configured simulation run based on the 

item or dataset that should be used. The required item or database also needs 

to be defined in the simulation run box. The simulation run box should also be 

stored as a dataset under a simulation process item. 

Interpretation run box: 

The interpretation run box requires an input port. This input port has to 

deliver the required data for the interpretation. The interpretation run box 

should include the interpretation routine and required files. This data should 

be stored under an item as a dataset. In the case of an automated run, the 

interpretation run box should execute the interpretation run. This can also be 

an execution routine that can be defined by using the simulation configuration 
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tool. Therefore, the interpretation run box should be able to execute the 

routine predefined in the simulation configuration tool. The interpretation can 

produce output data which should also be provided for re-use as an output 

port in the interpretation run box. 

The interpretation routine can include predefined data types and data names. 

Therefore, the input and the output ports should include the definition of the 

information category (file, parameter, etc.) and its dependents, specification of 

the data file and dataset as well as parameter name and type. This can be used 

to rename, for example, parameters or files and reduce the necessity to change 

anything during the interpretation routine. 

Change run box: 

The change run box is similar to the interpretation run box. The difference is 

that the change run box includes a definition of the object that should be 

changed during a simulation process. This object should be a dataset of an 

item. Mostly, this dataset is opened and parameters or expressions are 

changed by using the authoring tool. The change run box should provide all 

necessary data and, if possible, open the change object in the authoring tool. 

The input port should provide information about any changed parameters or 

data.  

In the case of an automated run, the change run box should execute the change 

run. This can also be a routine that can be defined by the simulation 

configuration tool. So, the change run box should be able to execute a routine 

predefined by the simulation configuration tool. This routine can provide 

output data. However, the required output data should also be provided for 

re-use as an output port in the change run box.  

The change routine can include predefined data types and data names. So, the 

input and the output port should include the definition of information 

category (file, parameter, etc.) and its dependents, the specification of the data 

file and dataset as well as parameter name and type. These can be used to 

rename, for example, parameters or files and reduce the necessity to change 

anything in the interpretation routine. 

Most functions described previously, can be achieved with TEAMCENTER. However, 

TEAMCENTER does not provide ordering and managing of the simulation process workflow, 

i.e. the ability to support and manage process-oriented simulation processes requires a 

specialised ordering of functionalities to represent the simulation process workflow. 

Therefore, a user interface is required. In addition to this, an item and dataset are required to 

manage the elements representing the simulation processes workflow. 
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The detailing of an architectural approach to support process-oriented simulation processes 

does not produce new knowledge. Commercial software tools are available on the market and 

provide approaches. An approach, or an improved approach, of supporting process-oriented 

simulation process is not the focus of this research project. Section 6.3 will discuss the 

collaboration of the system-describing structures. 

 

6.3 COLLABORATION OF THE SYSTEM-DESCRIBING STRUCTURES 
 

Traditionally, products are described by product data, and functions by functional data. Both 

represent the system. Similarly, the system-simulation structure represents the system. In 

the following, these descriptions will be discussed. 

 

6.3.1 ANALYSIS OF THE CASES 
 

In Cases 1 and 2, a system-simulation structure is not required. Nevertheless, even in Case 1, 

the product structure is used to order the simulation models and process. The product 

structure includes the ordering of the CAD models in assemblies and individual parts. 

In Cases 3 and 4, the product structure plays an important role in the simulation structure 

generation. Here, most simulation was carried out in geometry-oriented way. The geometrics 

were stored in CAD models. The CAD models were organised by the product structure. 

Nevertheless, in Cases 3 and 4, EBS models were integrated into the multi-disciplinary 

simulation. The base of the EBS simulation models were functions. The function hierarchy 

was organised by function structures. 

So, manual sampling of the required simulation models is based on system-describing 

structures such as product and function.  Then, the subsystem simulation models are coupled 

or merged. This coupling and merging generates the system simulation. Each of the coupled 

or merged simulation models simulates a specific component or subsystem of the system. 

This subsystem or component can be based on a specific functionality, a specific assembly or 

part of the system.  Examples of a system simulation based on a system architecture is shown 

in Figure 5-27. The figure shows which system component is represented by the simulation 

model and which merging hierarchy is used to generate the system-simulation model. 

Another example is represented in Section 5.5.5. 

So, the product structure represents the system from the product view, and the function 

structure from the function view. The system-simulation structure represents the system 

from the simulation view. In summary, there are three system-describing structures. These 

system-describing structures are: 
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 the system-simulation structure 

 the product structure and  

 the function structure 

In Section 6.3.2, an approach of interaction between the system-describing structures will be 

discussed. 

 

6.3.2 THE STRUCTURE RELATIONSHIP APPROACH  
 

The generation of a system-simulation starts with the idea to generate a simulation of a 

product or system. The need for individual simulation models is driven by the product or 

system. Sampling of the simulation models is done by identifying the simulation models 

belonging to a product or function. The relationships are often not managed effectively and 

the sampling is complex, incomplete and incorrect. Mostly, the source of the system-

simulation structure is not traceable. 

A traceability of sub-ordered simulation models within a system-simulation structure was 

achieved by the approach presented in Section 6.1. However, additional improvements have 

to be achieved to make the system-simulation traceable.  

Based on the product structure, the function structure or a combination of both, the system-

simulation structure can be (pre-) defined. So, based on the product or function structure, the 

simulation models, sub-ordered to the system-simulation structure, can be sampled. The 

sampled simulation models are arranged in the system-simulation structure. This means, 

existing simulation models can be re-used or be placeholders for required simulation models. 

This requires the identification of simulation models based on the source data such as 

function or product items. Existing models can be checked for usability. In addition, a new 

simulation model has to be generated or an existing one has to be changed. In the case of 

changing an existing simulation model or generating a new simulation model, it should be 

aligned to the source product or function that should be represented by the simulation model. 

The source-products or source–functions are sub-ordered to the product or function 

structure providing the base for the system-simulation. 

So, it is necessary to link the system-simulation structure and the sample simulations to the 

system-describing data sources (product, function structure). However, the product and 

functional sources are influenced throughout the lifecycle. For example, changes of data can 

appear during the development process. So, the data has to be linked to each other to make 

them traceable and show dependencies. This new approach is shown in Figure 6-11.  

In contrast, existing systems such as LMS IMAGINE.Lab SysDM and LMS IMAGINE.Lab System 

Synthesis provide the possibility to import (and duplicate) function sources. With the 

duplication of the function structure, synchronisation and authenticity checks are not 
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possible. Additionally, the data is duplicated and managed multiple times. This old approach 

is shown also in Figure 6-11. 

 

Figure 6-11 left a) New Approach – right b) Old Approach to Link System-Describing Structures 

With such a new architectural approach, relationships between the metadata can be 

generated for representing the dependencies of the data. These relationships can be used to 

make sure that: 

 the unique traceability of the simulation structure to the sources is documented. So, 

the data has to be managed in one and/ or interacting databases. 

 The data duplication is not required anymore due to the linking and relating of the 

metadata. 

 the relationships can also be used to check the stage of the source data such as to 

verify the authenticity of the data. If they are not authentic, the system-simulation can 

be reworked. 

 the check can be used to synchronise the system-describing structures (system-

simulation, product and function structure). So, influences between system-

describing structures can be more easily identifiable and reworked. 

 the check and synchronization of data supports working with changing data. This 

helps the administrative work during the lifecycle and development process.  
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 this synchronization can also be used to derive simulation structures from other 

system-describing structures. 

  

 

Figure 6-12 Source and Target Relationships 

 

However, it is not easy to achieve a unique traceability. There are differences between 

sources of the simulation and represented products or functions of the simulation. A 

simulation can only be based on one source, but it can represent multiple products or 

functions. For example, a thermal simulation of a steel sheet is based on one source but can 

represent multiple other steel sheets with negligible features. The example is shown in Figure 

6-12. This example is a single model example, but it is the same for the system-simulation 

structure and all sub-ordered simulation models. In order to address the derivation of 

sources and representations, two kinds of relationships have to be implemented in the new 

framework: 

 A source relationship relating to the source of the simulation model, as well as 

 A target relationship relating to the represented products or functions. 
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Figure 6-13 Target and Source Unique Relation of the Simulation Model for Usability in System-Simulation 

 

A unique traceability to the simulation sources is achieved with the approach discussed in 

Section 6.1.2. Nevertheless, this approach is focused on the traceability to the sources of the 

simulation model. This approach does not achieve a reference of the simulation model to be 

useable as part of a system-simulation. In order to clarify the usability of simulation models 

for system-simulations, an improved approach has to be implemented. This improvement 

consists of two additional relationships called Sys-Sim-relations. The Sys-Sim-relationships 

relate simulation models that are useable in a system-simulation with each other. The 

relationships should be different between a source relationship and target relationship. Items 

1 to 4 are represented by the simulation model and as a target relationship in Figure 6-13. 

However, the simulation model is only referenced as useable for system-simulation for Items 

1 and 2 because the target Sys-Sim-relationship is used. The difference between source and 

target relationships was discussed above. The Sys-Sim-relationship should achieve:  

 a unique traceability of the simulation model to the source product or function,  

 a unique traceability to the represented products and functions (the simulation model 

is classified as useable in a system-simulation structure.),  

 the identification of useable simulation models of products or functions and  

 the derivation of system-simulation structures by sampling simulation models. 
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As far as the author is aware such relationships will not been integrated in other system-

simulation-approaches. System simulation data management tools such as LMS IMAGINE.Lab 

SysDM have not been designed to address the lifecycle of source or target data. Such a 

detailed differentiation between the relations will not be effective in these system simulation 

data management tools.  
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Figure 6-14 System-Simulation Structure Derivation of Product or Functional Structure 

The unique traceability of simulation models to the source, and to the represented products 

or functions makes it possible to derivate system-simulation structures from product or 

function structures. The derivation follows a pre-definable algorithm. The algorithm has to be 

user-definable because the derivation of a system-simulation is unique to the use case. Such 

an algorithm can be generated by defining rules. The algorithm starts with the generation of a 

new system-simulation structure and the linking to the source product or function structure. 

A rule should define the kind of relationship (source/target Sys-Sim relationship) between 

the data. Each sub-ordered product or function of the source product or function structure is 

identified. With a user-definable filtering rule, redundant functions or products can be 

identified (metadata filter such as name spelling or parameter values). The filtering can 

disregard redundant products or functions for on-going work. Each required product or 

function is checked for the existence of a Sys-Sim relationship. In the following, the Sys-Sim 

relationship identifies system-simulation-useable simulation models. User-definable rules 

can check the metadata for the relationship and for the sampled simulation models. Such 

rules can select or deselect simulation models from the sampling. The structuring of the new 

system-simulation structure can also be influenced by user-defined rules. These rules should 

describe the hierarchical sampling of the simulation models. Nevertheless, the relationship 

(Sys-Sim relationship) between the sub-ordered product or function and the simulation 
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model, and the structure of the system-simulation structure source product or function 

structure provides a unique traceability. In the case of missing simulation models, user-

defined rules can achieve the generation of placeholders and relationships to the represented 

product or function. TEAMCENTER for Simulation provides with “Structure Mapping”, a 

technology to generate algorithms based on user-defined rules for the derivation of CAE 

model structures from product structures. Functionalities of this technology can be re-used 

or improved.  An example of a system-simulation structure derivation is shown in Figure 

6-14.  

Hence, the Sys-Sim-relationships provide the possibility: 

 Of a unique traceability of data and differences between source and represented data. 

Therefore, both kinds of data are identifiable.   

 To support and interact with all kinds of data (managed as SDPM, PDM or behaviour 

model, system simulation)  

 To reduce the duplication of data by using relationships instead of direct file handling.  

 To support data changes during lifecycles (for example during the development 

process).  

 To use traceability and relationships to derive system-simulation structures from 

product or function structures. Interaction with user definable rules can be used for 

intelligent system-simulation structure derivation and simulation model sampling.  

 To generate algorithms for automated intelligent system-simulation structure 

derivation. 

During the system-simulation structure derivation, placeholders/dataholders for simulation 

models can be generated. These placeholders can be useful to manage and administer 

system-simulation projects. Experts to generate the missing simulation models of the 

placeholders can be identified and commissioned with this work. The placeholders can 

provide an ideal start for system-simulation projects.  
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Figure 6-15 Comparison of System-Describing Structures 

With the ability to differentiate between source Sys-Sim relations and target Sys-Sim 

relations, a system-simulation structure can be used relate to product and function 

structures. The relation to multiple product or function structures can be used to compare 

the structures. The system-simulation, the product and function structures represent the 

same system. So, it makes sense to compare them. The comparison can be used to identify 

missing objects (objects can be simulation models, products or functions and structures) or 

objects without relationships. This is shown in Figure 6-15. Objects with missing 

relationships could be objects that differ in the stage of actuality. Such differences can be 

caused by the development process influencing the lifecycle of objects and with that, the 

revision stage of objects. More actual revisions can be identified by the foundation technology 

of TEAMCENTER. With the comparison, the structures will be synchronised. So, an object can 

be generated or replaced by a more actual one, or a relationship can be added to relate to a 

more actual object. The synchronization can be done manually. With customer-specific 

comparison rules, it is possible to automate the synchronization. The CAE-Inspector 

technology in TEAMCENTER for Simulation provides the possibility to synchronise CAE 

model structures with product structures. This technology can be re-used or improved for the 

new framework use case. This technology provides: 

 with the Sys-Sim-relationships, the possibility to make system-describing structures 

dependent on each other. 

 the required unique traceability of data for comparison of system-describing 

structures related to a system-simulation structure.  

 the definition of customer-specific comparison rules that make the comparison 

intelligent. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 222 of 347 
 

 

 intelligent comparisons to synchronise the system-describing structures. 

 the possibility to create algorithms and automate the comparison and/or 

synchronisation. 

Section 6.3.3 will discuss the new approach in more detail. 

 

6.3.3 TECHNICAL DETAILS OF THE APPROACH 
 

The new approach implements the relationships. The relationships are ordering rules of the 

simulations and simulation structures, functions or function structures, and products and 

product structures.  

 

I. Ordering Rules to Represent the Dependency of Functions and Function 

Structures 
 

The understanding of functions and function structures in this context is discussed in 

Siemens Product Lifecycle Management Software Inc. (2012):  

“Functional models illustrate the purposes systems are intended to fulfil. When you 
design a system or product, you first identify all the functions it should perform and 
equate each to a functional block. This process creates a functional decomposition of the 
system or product. 

Functional models can be considered as an extension of functional requirements. The 
form of both is to define the set of inputs, the behaviour, and the outputs of a block of 
capability. Functional models may provide additional understanding, or a clearer picture, 
of what the system does. 

Decomposition of functional models into finer detail produces parent and child models 
within a functional architecture. These layers of models describe the functionality of the 
entire system from the major subsystems to the lowest level subsystems.” 

TEAMCENTER manages the functions by using function item revisions. The function item 

revisions can be ordered to a structure (Siemens Product Lifecycle Management Software 

Inc., 2012). The structure is built by using BOM view technology. These functions and 

function structures should be related to the source simulation models. The relationships will 

order the data, which means the data will be managed under specific objects with specific 

relationships to each other, to: 

 make the source of a simulation model (useable for system-simulation) uniquely 

traceable to a function item revision. The simulation model is managed under specific 

item revisions and based on the function or the function structure.  
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o In such cases, the simulation data requires a relationship to the source 

function.   

 The function is managed as function item revision.  

 The simulation models can be managed by three different types of 

item. They are:   

 behaviour item revisions,  

 CAE Model item revisions, and 

 CAE Analysis item revisions.  

 The relation should point from the simulation model to the function 

source (function item revision). So, the function can be the source for 

multiple simulation models. However, the simulation model can only 

be sourced from one function. 

 So, only one source Sys-Sim relationship is allowed for the simulation 

model. 

o The relationship generation is part of the simulation procedure and should be 

generated by the simulation responsible. 

o Actually, available trace link relationships are used in general manner 

(Siemens Product Lifecycle Management Software Inc., 2012). This means that 

they do not represent unique traceability. A new relationship, specific for this 

use case, is required. This new relationship is called source Sys-Sim 

relationship (there will also be a target Sys-Sim relationship discussed later.) 

 make a system-simulation structure uniquely traceable to the source function or 

function structure.  

o In such cases, the source Sys-Sim relationship should point from the system 

simulation structure (Sys-Sim item revision) to the source function item 

revision. So, the function can be the source for multiple system-simulation 

structures. However, the system-simulation structure can only be sourced 

from one function. 

o Only one source Sys-Sim relationship is allowed for the system-simulation. 

o The relationship generation is part of the simulation procedure and should be 

generated by the simulation responsible. 
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Figure 6-16 Simulation Sources and Function Sources Dependencies 

 

The new source Sys-Sim relationship can be similar to the CAE source relationship of the 

SDPM provided with TEAMCENTER for Simulation (see Section 4.6). In contrast to this, the 

new source Sys-Sim relationship should build a unique traceability between the simulation or 

system-simulation model and the function or function structure. The start point of the source 

Sys-Sim relationship is a simulation or a system-simulation. The simulation or the system-

simulation models can be managed under following item revision types: 

 CAE Analysis item revision 

 CAE Model item revision 

 Behaviour model item revision 

 Sys-Sim item revision. 

The end point of the source Sys-Sim relationship is the function or function structure 

managed by following item revision type: 

 Function item revision. 

This is shown in Figure 6-16. 

 

Nevertheless, a second type of Sys-Sim relationship is required. The source Sys-Sim 

relationship relates to a source of the simulation or system-simulation. Simulations can 

represent multiple or other functions differing from the source of the simulation. In order to 
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monitor the represented function of a simulation useable for system-simulations, the target 

Sys-Sim relationship will be implemented. Therefore, the relation points from the simulation 

model to the represented function. That means the Sys-Sim source and the target relationship 

point from the CAE Analysis item revision, CAE Model item revision, behaviour item revision 

or the Sys-Sim item revision to the function item revision. So, the target Sys-Sim relationship 

is similar to the source Sys-Sim relationship and the dialogue of the source Sys-Sim 

relationship is adoptable by the target Sys-Sim relationship. Only the naming and the 

numbers of creatable target Sys-Sim relationships differ. A simulation can represent multiple 

functions. So, multiple target Sys-Sim relationships can point from the same simulation to 

different functions. This is also shown in Figure 6-17. An exemption could be the CAE 

Analysis item revision because the source of the CAE Analysis item revision is usually a CAE 

Model item revision, i.e. the CAE Analysis item revision does not require, in standard use, a 

Sys-Sim source relation to a Function item revision. 

 

The ability to differentiate between these two kinds of relationships is based on the SDPM 

application of TEAMCENTER. There are two similar relationships: the CAE source and the 

CAE target relationship. Both relationships are required to support the lifecycle (during the 

development process). For example, an additional target relationship is generated if a CAD 

source is revised or versioned and the existing simulation model can also be re-used for the 

revised CAD model. In order to document the reusability of the simulation, the new CAD 

revision or version is linked with an additional target relation to the simulation. So, the 

reviewer knows that the source of the simulation is the earlier CAD model revision but the 

newer CAD model revision is also represented by the simulation. 

For optimal use of the ordering rules, the relationships have to be reviewable from the start 

as well as from the end of the relation. The concept of ordering rules for the relationships is 

also used for the traceability of simulation models to product-describing data. 
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Figure 6-17 Sys-Sim Source and Target Relationship to Functions 

 

 

II. Ordering Rules to Represent the Dependency of Products and Product 

Structures 
 

An assembly is a structure of multiple products. Unfortunately, this description is flexible and 

dependent on how the customer uses the product and product structure of a PLM system in 

this context. A product can also be a supplier assembly and be seen as a single part. Mostly, 

the product is the smallest part of the assembly that is not detached. It can be a single screw 

or a supplier assembly. So, a product is dependent on the PLM user’s point of view and 

managed by using item revisions in TEAMCENTER. The item revisions can be linked to a 

structure (Siemens Product Lifecycle Management Software Inc., 2012). The structure is built 

by using BOM view technology. These products and product structures should be related to 

the source or representing simulation models. The relationships will order the data, which 

means the data will be managed under specific objects with specific relationships to each 

other, to: 
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 make the source of a simulation model (useable for system-simulation) uniquely 

traceable to a product item revision. The simulation model is managed under specific 

item revisions and based on the product or the product structure.  

o In such cases, the simulation data requires a relationship to the source 

product.   

 The product is managed as item revision.  

 The simulation models can be managed by three different types of 

item. They are: 

 behaviour item revisions  

 CAE Model item revisions, and 

 CAE Analysis item revisions  

 The relation should point from the simulation model to the product 

source (item revision). So, the products can be the source for multiple 

simulation models. The simulation model can only be sourced from 

one product. 

 So, only one source Sys-Sim relationship is allowed for the simulation 

model. 

o The relationship generation is part of the simulation procedure and should be 

generated by the simulation responsible. 

o Actually, available trace links relationships are used in a general manner 

(Siemens Product Lifecycle Management Software Inc., 2012). Unfortunately, 

this means they do not represent unique traceability. A new relationship, 

specific for this use case, is required. This new relationship is called source 

Sys-Sim relationship (there will also be a target Sys-Sim relationship 

discussed later). 

  make a system-simulation structure uniquely traceable to the source product or 

product structure.  

o In such cases, the source Sys-Sim relationship should point from the system 

simulation structure (Sys-Sim item revision) to the source product item 

revision. So, the product can be the source for multiple system-simulation 

structures. However, the system simulation structure can only be sourced 

from one product. 

o Only one source Sys-Sim relationship is allowed for the system-simulation. 

o The relationship generation is part of the simulation procedure and should be 

generated by the simulation responsible. 

 monitor the represented product or product function by the simulation or system-

simulation. 

o The target Sys-Sim relationship relates the simulation to the represented 

product or product structure. 

o Therefore, the target Sys-Sim relationship points from the simulation model 

or system-simulation which can be:  

 behaviour item revisions  

 CAE Model item revisions  
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 CAE Analysis item revisions, or  

 Sys-Sim item revision. 

o to the product which is 

 item revision 

o So, the simulation can represent multiple products. Multiple target Sys-Sim 

relationships can appear and be required for the same simulation. 

o The relationship generation is part of the simulation procedure and should be 

generated by the simulation responsible. 

 

Figure 6-18 Simulation Sources and Product Sources Dependencies 

 
The relationships can be tracked from the simulation or the system-simulation to the 

product.  The start point of the relationships can be a: 

 CAE Analysis item revision  

 CAE Model item revision 

 Behaviour model item revision, or 

 Sys-Sim item revision. 

The end point of the Sys-Sim relationship is: 

 a product item revision 

This is shown in Figure 6-18. The relationships differ between source Sys-Sim relationships 

and target Sys-Sim relationships. The source points to the source of the simulation and the 

target points to the represented product. This is shown in Figure 6-19. 
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The ordering rules and relationships are the same as discussed for the functions. So, the 

ordering rules and relationships of the products and the functions to the simulation models 

are the same and can be mixed.  

 

Figure 6-19 Sys-Sim Source and Target Relationship to Functions 

 

In summary, the Sys-Sim source and target relationships are used as ordering rules to 

represent simulation model dependencies, including the system and behaviour and other 

simulation models. The Sys-Sim relationships can be used to represent relationships from 

simulations to functions and products. The Sys-Sim relationships can differ between 

simulation sources and represented functions or products of the simulation models. These 

ordering rules can be used for synchronisation and derivation. 
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III. Algorithms and Rules for Synchronisation and Derivation 
 

The ordering rules provide unique traceability of the data. This unique traceability can be 

used to review the data which makes it possible to: 

 review structures, such as a system-simulation structure, for sub-ordered objects, 

such as simulation and system-simulation objects. This review is based on BOM view 

technology used to assemble objects to the top object. Reviewing this BOM provides 

information about the sub-assembled objects. BOM view technology is used by 

TEAMCENTER for the structuring of data (such as for function, product, simulation as 

well as system-simulation and other data). Sub-assembled objects can sub-assemble 

additional structures with BOM view technology. However, these structures are also 

reviewable by the BOM view. Using BOM view technology, the ordering rules provide 

the possibility to review the structures and identify each object in the structure. 

 review dependencies of simulations and sources. Therefore, source Sys-Sim 

relationships are implemented. These relationships can be reviewed from the source, 

which is the end of the relation, and from the simulation sight, which is the starting 

point of the relation. It is only permissible for a simulation model to have one source 

Sys-Sim relationship. So, the source of the simulation and simulation models based on 

a product or function can be reviewed. 

 review dependencies of simulations and represented objects. Therefore, target Sys-

Sim relationships are implemented. This relationship can be reviewed from the 

product or function, which is the end of the relation, and from the simulation sight, 

which is the starting point of the relation. It is permissible for a simulation model to 

have more than one target Sys-Sim relationship. So, the represented object of the 

simulation and the simulation models representing a product or function can be 

reviewed. 

 

Thus, the ordering rules include new implemented objects, relations and BOM views to create 

structures. All these newly implemented objects, relations and BOM structures are based on 

existing technologies and provided using the underpinning of TEAMCENTER. Using this 

existing technology to create new ordering rules makes the new ordering rules reviewable by 

using TEAMCENTER base functionality. 

 

The ability to review the data based on the ordering rules helps:  

 to identify dependent objects, such as dependent sources of simulations or dependent 

simulation models of products.  

 to identify the dependency category, such as the difference between source or 

representation dependencies. 
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These existing technologies (in the foundation of TEAMCENTER) and the new ordering rules 

can be used to compare data. The comparison of data is based on data dependency. An 

intelligent review of data dependencies can achieve the comparison. Such intelligent reviews 

run in a serial process. For example, the following review rule sets can be adopted to compare 

a system-simulation structure with a source structure: 

1) Check if the selected starting object is a system-simulation (Sys-Sim item revision). If 

not, cancel the process. 

2) Check if the system simulation structure provides a BOM (Sys-Sim item revision BOM 

view). If not, cancel the process. 

3) Review the system-simulation structure BOM view (Sys-Sim item revision BOM view) 

and identify the assembled objects. 

4) Review each of the identified objects for the existence of source Sys-Sim relations and 

identify the source of the objects. Put the source dependency of each simulation 

object into the memory. 

5) Check if a source Sys-Sim relationship is available (source Sys-Sim relation). If not 

cancel, the process. 

6) Review the source Sys-Sim relationship and identify the source object (source Sys-

Sim relation). 

7) Check if the source object includes a BOM (product or function item revision). If not, 

cancel the process. 

8) Review the BOM view of the source object (product or function item revision BOM 

view) and identify the assembled products or function objects. 

9) Compare each assembled product or function with the source dependency of the 

simulation models (assembled under the system-simulation). The source dependency 

of the simulation models will be available through the data management memory. 

10) Monitor the comparison of both structures (the system-simulation structure and the 

source structure) in one user interaction view. In the case of a given dependency, 

mark/link the source object to the simulation object. 

Such a rule set is dependent on the use case. Multiple rule sets can be required. Thus, it is 

useful for the user to define the rules himself/herself or use predefined rule sets. Such a rule 

set generates algorithms for comparison.  

These kinds of rule sets can be improved by adding filtering rules. Filtering rules can make 

objects negligible. A filtering rule should be able to check the metadata of identified objects. 

Based on this check, it can be decided if the object should be followed up or not.  

For the synchronisation and derivation of system-simulation structures, additional rules are 

required. In both cases, it can be required to generate new items and item revisions, relations 

or existing items and item revisions have to be related or integrated to BOM views. In the 

case of the synchronisation, it can also be required to remove objects such as item revisions 

or relationships. For removing objects, a removal rule, and for the generation of objects, a 
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generation rule should be provided. In addition, a re-use rule is required to re-use objects in a 

BOM view or to relate them to other objects. 

TEAMCENTER for Simulation uses “Structure Mapping” functionality such filtering rules, 

removal, creation and re-use rules together with existing ordering rules and review 

technologies. The rule set defined by this structure mapping creates algorithms that execute 

the rule set. This technology can be re-used or improved to support the new ordering rules of 

the new framework and the new functionalities for the creation of comparison, 

synchronisation and derivation algorithms.  

 

6.4 INSTITUTION OF AN SYSTEM-SIMULATION RESULT STRUCTURE 
 

A system simulation execution generates system-simulation and a set of single simulation 

results (McLean, Riddick, & Lee, 2005). The results of a multi-disciplinary simulation are 

required to be related to the production of a simulation model.  In Section 6.4.1, the handling 

of the results will be discussed. 

 

6.4.1 ANALYSIS OF THE CASES 
 

Cases 3 and 4 require a dependency of the individual simulation models to the system-

simulation and to the individual simulation model of the FEM and MKS simulation. The 

dependency to the individual simulation model is required for the post-processing of the 

individual simulation model results. So, a specific simulation authoring tool is used as a post-

processor. Alternatively, a post-processing tool that supports different results of the 

simulation models is necessary. Unfortunately, post-processing tools are not available for 

meeting this alternative requirement.  An additional argument is that the experts, who 

created the individual simulation models, work in their used and trained environment.  

In Cases 1 and 2, the simulation results can be directly related to the simulation models. This 

is achieved through standard management of the results. The complexity of the result data 

management is low because Cases 1 and 2 are process-oriented simulations. In a process-

oriented simulation, individual simulation models can be solved in chronological order. The 

solve run is independent from other simulation solve runs. Only simulation results of the 

actual simulation solve run of a specific simulation model are generated. The simulation 

results are directly appended to the simulation model solved in the actual step. So, the 

simulation result data can be managed and directly related to the responsible simulation 

model. 

Moreover, the result files management of a system-simulation solve run is not easy. In Cases 

3 and 4, there are such system-simulation solve runs. Multiple simulation models are solved 
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in parallel and in co-simulation. So, multiple simulation models are solved at once, which 

causes the immediate generation and edition of multiple simulation result files. The result 

data should relate to the system-simulation. It should also be differentiated and related to the 

responsible individual simulation models in the system-simulation. In Cases 3 and 4, all 

simulation result files are related to the co-simulation master simulation model. Post-

processing of an individual simulation model based on the generated results during a system-

simulation run requires manual handling of the data. This manual handling is required 

because of missing relationships between simulation models produced by an individual 

simulation model during system-simulation solve runs. 

 

6.4.2 THE SYSTEM-SIMULATION RESULT STRUCTURE APPROACH 
 

A system-simulation execution generates system-simulations as well as individual simulation 

results (McLean, Riddick, & Lee, 2005). These simulation results should be stored and 

managed dependent on the system-simulation structure. However, the storing of all results in 

the system-simulation structure does not support the possibility to interpret and analyse 

them individually. Only the management of the results generated by the simulation 

middleware can to be directly managed under the level of the system-simulation structure 

head. This is the result of Cases 3 and 4 analyses in the previous section.  

The simulation results generated by individual simulation models in the system-simulation 

should be managed, based on those simulation models. This supports individual post-

processing because the simulation authoring tools of the simulation models provide the 

possibility of post-processing. They require, therefore, the simulation results. So, a new 

approach is required. Such an approach should improve the handling of system-simulation 

results and provide the possibility of organizing the results data dependent on the system-

simulation and the simulation models.  

 

 

Figure 6-20 New Approach of System-Simulation Result Structure Linking 
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simulation model 5  ----- linked -----  --------------------------------  -------------------------------- simulation model 5 results

simulation model 6  ----- linked -----  --------------------------------  -------------------------------- simulation model 6 Results

simulation model 7  --------------------------------  ----- linked -----  -------------------------------- simulation model 7 results

simulation model 8  --------------------------------  ----- linked -----  -------------------------------- simulation model 8 Results

simulation model 9  --------------------------------  ----- linked -----  -------------------------------- simulation model 9 results
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The new framework implements system-simulation result structures. The system-simulation 

result structure is structured in a similar way to the system-simulation structure. At the top 

level of the system-simulation result structure, the result of the simulation middleware 

should be managed. The structure head should be linked to the system-simulation structure 

head. Assembled to the system-simulation result head, individual simulations or sub-ordered 

system-simulations should be managed. Sub ordered result objects should also be linked to 

the responsible simulation model in the system-simulation structure. This is shown in Figure 

6-20. The newly implemented Sys-Sim-Result relationship relates the simulation object to the 

dependent simulation result object.  

These relationships present the dependencies of the individual simulation models to the 

individual simulation results. The new architectural approach of a system-simulation result 

structure and the Sys-Sim-Result-relationships can generate the dependencies of simulation 

and result data. Based on these ordering rules: 

 The simulation results can be partitioned into multiple simulation result objects. 

 The multiple simulation result objects can be sub-ordered to a simulation result 

object responsible for the system-simulation. 

 Each of these simulation result objects can be related to the responsible simulation 

model in the system-simulation. 

 

Figure 6-21 Example of Simulation Result Traceability 

Users can use these relationships to identify the simulation results of each simulation model. 

An example can be the identification of simulation results generated by a specific simulation 

model in a system-simulation. This example can be reviewed in Figure 6-21. Based on the 

ordering rules: 

 A unique traceability of simulation results (generated during a system-simulation) to 

the responsible simulation model will be given. 

 This unique traceability can improve the post-processing of the simulation results. 

The relation will provide an easy, manual review of the data.  

 The review can be automated to provide the right data for post-processing. 

 A more common collaboration environment is provided by the ordering rules. They 

improve the post-processing of system-simulation and provide the result data 

management dependent to the responsible simulation model and to the responsible 
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system-simulation. The new approach has the support of multiple simulation experts 

on multiple simulation data. Such a collaboration environment will improve the post-

processing of a system-simulation from a single level to multiple levels of sub-post-

processing. 
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Figure 6-22 Example of System-Simulation Result Management at Multiple System-Simulation Solve Runs 

The new approach to system-simulation result management can support the result 

management of multiple system-simulation solve runs. Multiple system-simulation solve runs 

can be required in the case of system-simulation structure variants or system-simulation 

parameter studies. So, multiple system-simulation result objects and multiple system-

simulation structures can be generated and related to the responsible simulations in the 

system-simulation. In the case of variant studies, the system-simulation structure can be a 

150% structure. A 150% structure means a structure that includes different variants of the 

structure. Such variants could include and exclude sub-ordered elements of the structure. So 

the structure will include more than 100% of the sub-ordered elements. So, such a structure 

will be called 150% structure. A filtering of the structure could activate or deactivate sub-

ordered elements. In the case of the system simulation structure, this means that variant 

filtering rules activate or deactivate sub-assembled simulation models. Not all assembled 

simulation models of the system-simulation take part in the system-simulation solve run. 

This is monitored in Figure 6-22.  Based on the ordering rules: 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 236 of 347 
 

 

 A unique traceability of simulation results generated during multiple system-

simulations is achievable. Multiple system-simulations mean that variant and 

parameter studies are supported. 

 The unique traceability of the multiple simulation results to the multiple responsible 

simulation models is also achieved. 

 

This system-simulation result management is not identified in the other tools. In the case of 

system-simulation data management tools, the results are usually managed under the top 

system-simulation header (see Figure 6-23). This is because such systems are focused on the 

management of behaviour simulation data. The behaviour simulation data is mostly 

integrated into one simulation model. This is possible because the simulation models are 

generated by the same EBS simulation authoring tool or use standard formats such as 

MODELICA. In some cases of behaviour simulation models, external simulation models are 

also implemented. Then, the commercial system-simulation management systems have 

copied this data from external resources. All result files are managed at the system-

simulation top object.  

 

Figure 6-23 Old Approach of System-Simulation Result Structure Linking 

 

Section 6.4.3 will discuss the new approach in more detail. 

 

6.4.3 TECHNICAL DETAILING OF THE APPROACH 
 

In the post-processing phase, the result files and result data, generated during the solve run 

of the system-simulation, have to be managed. The solve run of a system-simulation consists 

of multiple solve runs of individual and single simulation models integrated into the system-

simulation. “Should these files (log-files and result files of the solve run) be managed and 
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aligned to the individual and single simulation models or to the system simulation model?” 

The answer is: “Both.”  

In the case of the simulation data and process management environment of TEAMCENTER, 

simulation results are managed under a CAE Result item revision (see Section 4.6). However, 

the management of the data using the CAE Result item revision does not relate it to the 

system-simulation or to the responsible simulation model either.  In order to explain that the 

results are generated by a system-simulation, a new item revision type called Sys-Sim Result 

item revision should be instituted. The Sys-Sim Result item revision can be used instead of a 

CAE Result item revision. The Sys-Sim Result item revision has the same functionality as a 

CAE Result item revision. It can be linked to the CAE Analysis item revision using the existing 

CAE Result relationship. The same is done for the CAE Result item revision. However, the 

naming of the Sys-Sim Result item revision refers to the fact that the results are generated 

during a system-simulation solve run and not by an individual simulation solve run. The Sys-

Sim Result item revision can also be used in the case of behaviour simulation models or 

product item revisions. So, the Sys-Sim Result item revision is related by the CAE Result 

relationship to the responsible simulation model. 

The CAE Result relationship points from the Sys-Sim Result item revision to the source 

simulation model. A source simulation model can be a CAE Analysis item revision, CAE Model 

item revision, behaviour item revision or product item revision. For the new framework and 

ordering rules, the existing CAE Result relationships have to be improved to support all these 

named items. 

Under multiple Sys-Sim item revisions, the result files, generated during a system-simulation 

solve run for each individual simulation and also for the system-simulation, are managed. The 

traceability of the Sys-Sim Result item revision to the responsible simulation is provided by 

the CAE Result relationship.  However, the traceability of the multiple Sys-Sim Result item 

revisions to the system simulation result structure is missing. The system-simulation result 

structure is also managed as a Sys-Sim Result item revision and related by a CAE Result 

relationship to the system simulation structure. So a Sys-Sim Result item revision could be 

generated for each simulation object beginning at the top level of the system-simulation 

structure. The generated multiple Sys-Sim Result item revisions have to be hierarchically 

structured.  

The hierarchical structuring of the system-simulation result structure is achieved with  BOM 

view technology. BOM view technology assembles Sys-Sim Result item revisions of the 

subsequent lower level to a top Sys-Sim Result item revision. This can be repeated at sub-

ordered Sys-Sim Result item revisions. A hierarchical structure is realised.  

This achieves traceability of sub-ordered Sys-Sim Result item revisions hierarchically to a top 

Sys-Sim Result item revision. The top Sys-Sim Result item revision is traced by a CAE Result 

relationship to the system-simulation structure (Sys-Sim item revision). In addition, the other 

Sys-Sim Result item revisions are related by the CAE Result relationship to respective 

simulation models. So, new ordering rules including the Sys-Sim Result item revisions, 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 238 of 347 
 

 

together with the BOM technology and the relating of each Sys-Sim Result item revision by 

the CAE Result relationship, are implemented into the new framework. These new ordering 

rules provide the dependency of the results to the system-simulation and to their respective 

simulations. This is shown in Figure 6-24. 
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Figure 6-24 Ordering Rules for Sys-Sim ITEM Revision and Sys-Sim Result ITEM Revision 

 

 

6.5 THE ARCHITECTURAL CONCEPT OF THE NEW FRAMEWORK 
 
The design of the new framework for supporting and managing multi-disciplinary simulation 

data is influenced by system-simulation processes and the implementation into the PLM 

environment. The new framework should be open to multiple simulation disciplines, such as 

physical disciplines, as well as vendors and inter-disciplinary cooperation (Tian, Yan, Parkin, 

& Jackson , 2008). These factors have to be solved by a common approach to the new 

framework. Therefore, an architectural concept of the new framework has been proposed. 

This architectural concept does not include application generation. In this Section, the new 

framework and the architectural concept approach will be discussed. 

 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 239 of 347 
 

 

 

6.5.1 ANALYSIS OF THE CASES 
 

The discussion and Cases 3 and 4 shows that there can be two kinds of sources for simulation 
models: 

 Function and requirement data, such as RFLP data, originating from the system 
engineering approach. This base is in light green in Figure 6-26. 

 The product data mainly handled in PDM. This base is in dark green in Figure 6-26. 
 
These sources can provide the basis for simulation data. In all case studies, it is obvious that 

PDM can provide CAD models as sources for FEM or MBS simulation models. The same 

applies in the case of CFD (computational fluid dynamic simulation). In some cases, PDM 

manages the simulation data directly, for example, in Case 3, the rigid body simulation is 

directly ordered to the PDM. 

 
In Cases 3 (see Figure 5-30) and 4 (see Figure 5-51), the logical simulation represents 

functions or function structures. In Case example 3, the logical simulation represents a 

functional structure of a software and controller system. However, functions can also 

describe mechanical or electrical systems such as discussed in Case 4 (see sub-section 5.5.3 I 

Logical Simulation Model of Case 4). These functions can be represented by behaviour 

simulation models (see Section 4.8.1). This way, behaviour models can be generated earlier in 

the development process. Therefore, the behaviour models can be used early on in the 

development process for mechatronic concept optimization. This can appear before the 

detailed discipline-oriented development departments begin their work. So, system 

engineering data such as requirements, functions, logical and product data provide a base for 

simulation data. 

The management of the simulation data was achieved in these case examples with 
TEAMCENTER. TEAMCENTER provides three possibilities:  

 A more common solution is the simulation data and process management of 
TEAMCENTER. This solution is mainly used for FEM, CFD or MKS simulation data, but 
it is an open approach for all kinds of simulations. This base is in dark blue in Figure 
6-26.  

 A more specific solution is provided with the behaviour model management. This 
base is in light blue in Figure 6-26. 

 A direct management of simulation data as a dataset based on PDM. This base is in 
dark green in Figure 6-26. 

 
In summary, the above discussion explains the five base boxes of Figure 6-26. The top boxes 

couple different simulation models. 

The coupling of different simulation models is the challenge of a simulation middleware 

(McLean, Riddick, & Lee, 2005). A simulation middleware is not focused on generating 

simulation models. It is not an authoring tool for building or solving simulation models. The 
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focus of a simulation middleware is the organization and management of the co-simulation 

(McLean, Riddick, & Lee, 2005). Benedikt, Zehetner, Watzenig & Bernasch (2012) discussed:  

“The purpose of a co-simulation platform is to take into account the complex interactions 
between different simulation models in a proper and correct manner. The platform must 
therefore enable the precise cooperation of several simulation tools.”  

Such simulation middleware examples are ICOS from the virtual vehicle company in Graz or 

the middleware TISC Suite from the TLK-Thermo GmbH in Braunschweig. This software tool 

provides the opportunity to be independent from the used simulation solvers in a co-

simulation. This offers higher flexibility to create co-simulation models caused by the 

openness. Simulation middleware is also able to integrate correction algorithms into a co-

simulation in order to reduce errors during co-simulation (Scharff, Kaiser , Tegethoff, & Huhn, 

2012).  

The use of simulation middleware is traditionally practiced in research projects. This practice 

has increased in recent years and can be seen in the publications of Audi AG and VW (Bauer, 

Stüber, Meller, & Gruber, 2012;Bindick, Lange, & Lund, 2012). The use of simulation 

middleware in Case 4 provides the possibility of linking together all the different simulation 

models and simulation solvers. With this technology, a co-simulation becomes achievable. 

The new framework for supporting and managing multi-disciplinary simulation data 

embedded in a PLM environment should provide the possibility to cooperate with this kind of 

simulation middleware. This functionality is in grey in Figure 6-26. 

Instead of using simulation middleware technology, Case 3 used the software tool NX Motion 

and the integrated interfaces to interact with reduced flexible bodies, and Matlab/Simulink. 

The technology of predefined interfaces and connectors to other simulation tools is offered 

by many commercial simulation tools. This technology finds regular use in the industry and 

must be integrated into the new framework to support and manage multi-disciplinary 

simulation data embedded in a PLM environment as well. These simulation tools take over 

the solve run of an individual simulation model and the co-simulation work. So, data 

management has to be open to support a single simulation middleware or a simulation tool 

that includes the functionality of coupling simulation models. 

 

6.5.2 THE ARCHITECTURAL CONCEPT APPROACH 
 

The new framework has to interact with multiple sources. In the new framework the 

interaction of three main technologies can be implemented. One technology is the system-

simulation structure source. Here, the simulation models are related and ordered to generate 

a system-simulation structure. The simulation models are embedded in a second technology, 

the simulation model source. The system-simulation source and the simulation model source 

provide the required simulation models for the simulation middleware. The simulation 

middleware provides the technology for a simulation integrator. For efficient simulation 
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integration, a specific system-simulation model is created by the simulation middleware that 

is managed under the system-simulation structure. 

 

Figure 6-25 Multi-Disciplinary Simulation Data Management Cores 

 

The implementation of the new framework into a PLM environment can achieve a closer 

cooperation between the simulation experts and other experts involved in the development 

process.  So, the implementation of the new framework within a PLM environment provides 

access to a large amount of data managed in the PLM environment. TEAMCENTER provides a 

comprehensive framework to manage, organise and support engineering work (Siemens 

Product Lifecycle Management Software Inc., 2008). Therefore, TEAMCENTER assists and 

provides data management for engineers from the product conception through to 

production/customer service. System-simulation can play an important role during the 

product development process and should therefore be implemented into TEAMCENTER as 

PLM system.  

 
With the influence of system engineering (see Section 2.7), a change to the development 

process was achieved. This change improves the development of mechatronic systems. With 

system engineering, the purpose of system requirements, system functions and the logical 

diagrams were increased (Department of Defense, 2001). This was summarised under RFLP, 

which stands for “Requirement Function Logical and Physical” (Berry, 2011). TEAMCENTER 

integrates RFLP by providing specific data models and structures to manage the 

requirements, functions, logical and physical data. For example, requirement data can be 

product specifications (like length or velocity), function data can be technical descriptions of 
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processes (like transmission of energy), logical data can be the behaviour model of a technical 

function solution and physical data can be the CAD model of the solution. 

Access to all this data requires the integration of the new framework into an existing and 

given PLM system. An architectural concept of the support and management of multi-

disciplinary simulation data embedded in a PLM environment can be achieved by the new 

framework.  

 

I. The High Level Architectural Concept Approach of the New Framework 
 

In the previous sections, the requirement of a system-simulation structure was discussed. 

This discussion has to be implemented into the new framework. The system-simulation 

structure sub-orders simulation models from multiple resources (Zaeh & Baudisch, 2003). 

The new framework has to be positioned in such a way that the coupling and merging of all 

this data is possible (Hui, Liping, Li, & Tifan, 2011). Therefore, the multi-disciplinary system-

simulation data management should be positioned ahead of all source data. Source data 

holding blocks can be behaviour models, simulation data management and simulation data 

stored under product structures managed with PDM.  A test, such as hardware in the loop, 

can be a base. The source for the individual simulation models can be the product data 

management and system engineering data management including functions. Figure 6-26 

shows how the system-simulation structure or the system-simulation data management will 

be positioned.  
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Figure 6-26 Overview of the Improved System-Simulation Architecture 

 

Regardless of whether a simulation software tool includes different co-simulation interfaces 

or if the simulation middleware technology is used, the virtual models will be replaced by 

realistic models. These research projects are running to improve the collaboration between 

virtual simulations and realistic testing (Albrecht, Fremovici, Ben Gaid & Grise, 2012), this is 

also supported by previous study findings.  An online-dependency between simulation and 

testing should be achieved. Actually, this technology is also aided by the LMS Company with 

its product family (LMS INTERNATIONAL, 2012). In order to keep a realistic prototype 

traceable, it has to be described and defined. An easy way to describe realistic prototypes 

with TEAMCENTER is to derive data structures from the engineering product structure. This 

functionality is in orange in Figure 6-26. However, the integration of realistic prototypes will 

not be pursued in the research project.  

With this new architectural concept approach, following improvements can be achieved: 

 The data traceability from the function or product descriptions to the system-

simulation model. 

 A common framework that integrates the data management of 

o function models 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 244 of 347 
 

 

o product models 

o CAE simulation models 

o behaviour simulation models, and 

o system-simulation models. 

 The work on the models can be supported directly by the PLM system. Such work can 

be editing, viewing, versioning, revising, comparing, synchronizing, derivation etc.  

In contrast to the new framework, existing and commercial frameworks for system-

simulation data management such as LMS Imagine.Lab SysDM do not integrate all the data 

sources into one framework.  Their focus is the management of behaviour models and 

system-simulation models that consist of sub-ordered behaviour models. Most other data is 

integrated by copying from other sources. This is shown in Figure 6-27. 

 

Figure 6-27 Architectural Concept of Commercial System-Simulation Data Management Applications 

 

II. The Advanced Architectural Concept Approach of the New Framework 
 

For the execution of the system-simulation, the data from individual simulation models have 

to be supplied to the simulation middleware (McLean, Riddick, & Lee, 2005). The simulation 
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models should be exported from the simulation model sources. This data should be 

identifiable by the system-simulation structure where the simulation model files are linked. 

The system-simulation structure is linked with metadata technology to the simulation 

models. The PLM environment should be able to identify the required data and export it to an 

exchange folder. The simulation middleware takes the data files from the exchange directory 

and executes the simulation with all necessary sub-executions. The cooperation of the three 

cores is shown in Figure 6-25. 

 

Figure 6-28 Improved Four Cores Technology Architectural Concept Approach 

In the new framework, the system-simulation structure is one of four core technologies 

shown in Figure 6-28. The system-simulation structure has to couple and interact with the 

other core technologies such as simulation model sources, system-simulation result structure 

and system-simulation middleware. The fourth core technology is the system-simulation 

result structure. This interaction manages the simulation result data in relation to the 

system-simulation structure and to the individual simulation models. The results are 

generated during a system-simulation solve run. This core technology achieves: 

 a unique traceability of the system-simulation results to the system-simulation and to 

the responsible sub-ordered simulation models. 

The system-simulation result management is discussed, in detail, in Section 6.4. 

 

Figure 6-29 shows the improved core architecture of the multi-disciplinary simulation data 

management by combining the four core technologies: system-simulation structure, 

simulation model sources, simulation middleware and system-simulation result structure. 

The inputs, bases and sources for the system-simulation structure are system-describing 

function and product structures. The inputs, bases and sources for the simulation model 

sources are the behaviour models, simulation data and product data management. The 
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results of the system-simulation are handled by a system-simulation result structure that 

should provide the results for the individual simulation model and system-simulation model 

post-process. 

With this technology, huge and complex system-simulation structures can be handled, 

managed, supported and overviewed. Besides, the results of the system-simulations can be 

effectively managed with this technology.  

 

Figure 6-29 Improved Architectural Concept of Multi-Disciplinary Simulation Data Management 

This new framework can be used to significantly improve engineering processes. The 

generation of a system-simulation requires the cooperation of multiple persons embedded in 

the development process. Such a process can be:  
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- the generation of function models and structures to represent a system. This is part of 

a system engineering process where multiple responsible engineers and experts are 

involved. 

- simulation models to represent the behaviour of a function can be generated. The 

representation of a function can require special expertise and knowledge. Therefore, 

specialised experts are responsible to generate behaviour simulation models for 

special functions. In order to generate behaviour models for multiple functions, 

multiple simulation model generation specialists are required. The experts can be 

spread around the world and be implemented in different departments or companies 

(which can also be the supplier). The individual behaviour simulation models can be 

managed in relation to the function sources. 

- the generation of a system-simulation structure. The function or product structure 

can help to identify the structure for the system-simulation. The required sub-

simulation models can be identified based on the function structure and related 

simulation models. 

- to generate the top simulation model. This top simulation model interacts with the 

sub-ordered simulation models of the system-simulation structure. Special expertise 

and knowledge is usually required to generate such a system-simulation model. 

- to generate simulation results. These simulation results are partitioned by multiple 

simulation models. The new framework can be used to manage the simulation results 

related to the responsible simulation models and also to the system-simulation.  

- to post-process simulation results. The post-processing of the simulation results often 

requires special expertise and knowledge. This expertise and knowledge is available 

from the individual simulation model and the system-simulation. The new framework 

can also be used to obtain the support of individual post-processing. 

So the new framework can achieve:  

 a common environment supporting and managing multi-disciplinary system-

simulations. Therefore, the new framework can support and manage data from 

inception, such as the simulation source generation through to system-simulation 

model post-processing.  
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6.6 EVALUATION OF THE NEW FRAMEWORK 
 

The research project worked out a new and improved framework including solutions and 

answers to the research questions and objectives. The technical improvements achieved by 

the new framework are discussed in Section 6.1 through 6.5. The main improvements are 

summarised to benefit-improvements in the following sections: 

- Benefit of the traceability of the data. 

- Benefit of the openness to support the data management of different simulation tools 

and simulation middleware tools. 

- Benefit of the support of individual experts responsible for individual simulation 

models and system-simulation models  

- Benefit of the support of individual experts responsible for individual simulation 

model post-processing and system-simulation model post-processing. 

- Benefit of the synchronization of product-describing structures. 

- Benefit of the derivation of system-simulation structures based on function structures 

or product structures. 

- Benefit of the system-simulation structure as a 150% structure. 

 
In the following sections, the improvements are discussed individually. 
 

6.6.1 BENEFIT OF TRACEABILITY 
 
In Section 6.1, it was discussed that the system-simulation structure is created by the 

hierarchical management of individual simulation models.  Figure 6-30 shows this ordering 

(system-simulation structure is pale blue and the individual simulation models are dark 

blue.). The system-simulation structure also linked with a Sys-Sim relationship [as source or 

target relationship] to the source or represented function or product (see the lavender colour 

in Figure 6-30). This achieves a unique traceability of the simulation sources and represented 

functions or products. 

 
Additionally, a system-simulation result structure is established. The system-simulation 

result structure hierarchically manages the individual system-simulation results. The CAE 

Result relationship links the simulation results by pointing to the individual simulation model 

or the system-simulation structure. (see Section 6.4). This is shown orange in Figure 6-30.  A 

unique traceability of the simulation results to the simulation models is achieved. 

 
The entry of the additional Sys-Sim, Sys-Sim Result items, item revisions and the 

relationships Sys-Sim target and source achieve a unique traceability of the data. The 

simulation model sources (behaviour model item revision, CAEAnalysis item revision or 

CAEModel item revision) of an individual simulation model result (managed in a Sys-Sim 

Result item revision) can be identified by the CAE Result relation (see the orange-coloured 

arrow and the dark blue box in Figure 6-30).  From there, it is possible to follow the specific 

links of the item type down to the source of the simulation such as a product or function 
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(white arrow in Figure 6-30). It is also possible to identify the system-simulation result 

structure (Sys-Sim Result item revision) embedding the individual simulation result. 

Therefore, BOM view technology is used. BOM view technology helps to figure out where 

system-simulation results (Sys-Sim Result item revision) are embedded (the orange boxes in 

Figure 6-30). The system-simulation structure (Sys-Sim item revision) responsible for the 

system-simulation result structure (Sys-Sim Result item revision) can be identified by 

following the CAE Result relationship (in the pale blue box and the orange-coloured arrow in 

Figure 6-30). From there, it is possible to follow the Sys-Sim target or source links down to 

the source or represented item revision of the product or function structure (the lavender- 

coloured arrow to the lavender-coloured boxes in Figure 6-30). 

 
 

 
Figure 6-30 Management Architecture Achieved by the Ordering Rules 

 
The traceability of the structure was empirically tested by theoretically transforming Cases 3 

and 4 into the newly developed system-simulation structure.  

 
The implementation of the system-simulation structure into TEAMCENTER was not 

technically achievable in a short space of time and hence, not achievable in my research 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 250 of 347 
 

 

project time line. This means, it was not possible to test and verify the hypothesis practically. 

This work is documented in Sections 5.4.5 and 5.5.5. In this work no loss of traceability of the 

system-simulation data was identified. All data can be tracked down to their sources as well 

as to the structures in which they were used.  

 
Another improvement of the new framework is its receptivity to interact with multiple 

simulations and simulation middleware tools, as discussed in the following Section. 

 

 

6.6.2 BENEFIT OF OPENNESS FOR MULTIPLE SIMULATION TOOLS AND SIMULATION 

MIDDLEWARE TOOLS 
 
 

The openness for multiple simulation tools means that the new framework is not restricted to 

cooperating only with specific simulation tools, regardless of whether it is a simulation tool 

for the generation of an individual simulation model or a simulation middleware tool 

connecting simulation models for co-simulation (see Section 6.1.2). 

 
The ordering rules and data management are independent from simulation and simulation 

middleware tools. Existing technology of TEAMCENTER provides the execution of external 

simulation or of simulation middleware tools and includes possibilities of data export for 

external use. The data export is definable in detail. The execution technology for external 

tools and the data export is also available in TEAMCENTER for Simulation (Siemens Product 

Lifecycle Management Software Inc, 2012). The technology achieves the appropriation of 

necessary data for external simulation and simulation middleware tools and can also achieve 

the execution of external tools.  It does not matter if the simulation middleware tool:  

 is an extracted simulation middleware tool that is focused on the organization and 

execution of co-simulation solve runs. Such an example is ICOS from virtual vehicle in 

Graz, or 

 is a simulation tool with focus on special simulation disciplines but includes 

additional functionality to cooperate with other simulation tools in a co-simulation 

solve run, such as NX Motion from Siemens Industry Software Gmbh & CoKG. 

 
In my SIEMENS pre-sales project “VW Systemsimulations Demonstrator”, a pilot of conzept - 

demonstrator was generated. This demonstrator showed how the VW concept and 

framework of system-simulation could be supported (Bindick, Lange, & Lund, 2012). The 

demonstrator used the existing technologies of TEAMCENTER. In this project, the simulation 

middleware ICOS was implemented to TEAMCENTER and to see if an implementation of the 

simulation middleware TISC was possible. This demonstrator showed that the execution, 

supply and export of necessary data was possible for different simulation middleware 

authoring tools. Also, simulation tools such as OpenModelica and Matlab/Simulink and 

directly executable simulation models were integrated as single simulation models. The 

source of the model was unknown but, for example, the source could be a simulation model 
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written in the Modelica format and compiled to be executable (Vasaiely, 2009). The 

execution, supply and export of the necessary data was possible for different simulation 

authoring tools. So, this VW demonstrator validated the idea of interacting with a simulation 

integrator (middleware) and with single simulation models (see Figure 6-2). 

 
In this project, it was not possible to use the generated ordering rules of my research project. 

Still, it was tested with the existing simulation structure of TEAMCENTER described in 

Sections 4.2 and 4.6. CAE Model item revision structure was created to represent the system-

simulation structure and the CAE Analysis item revision for managing the data of the 

simulation middleware was used. In this SIEMENS pre-sales project, some points did not 

focus on system-simulation result management or the traceability of simulation models down 

to their sources. The interaction of the simulation middleware ICOS and the usability of other 

simulation middleware tools with TEAMCENTER was the focus. The requirement to support 

multiple simulation tools and simulation middleware tools was achievable due to the data 

export technology and the 3rd party software execution technology of TEAMCENTER. This 

existing technology is also implemented into the new framework to support and manage 

multi-disciplinary simulation embedded into PLM.  

  
With the “VW Demonstrator Projekt”, it was possible to validate the openness of the new 

framework. Therefore, the existing technology was used in a non-standardised way; so, the 

demonstrator was more closed to the new framework. The existing technology in 

TEAMCENTER will be re-used in the new framework. The new framework improves this 

technology to achieve more openness and traceability. In Cases 3 and 4, the new framework 

was empirically validated on the reusability of different simulation models (different 

disciplines, tools, etc.) (see Sections 5.4.5 and 5.5.5).  

 
The openness to support multiple simulation tools and simulation middleware tools is also 

important for the following improvement in supporting individual experts of individual 

simulation model generation and system-simulation model generation. 

 

 

6.6.3 BENEFIT OF SUPPORTING THE INDIVIDUAL EXPERTS OF INDIVIDUAL SIMULATION 

MODEL GENERATION AND SYSTEM-SIMULATION MODEL GENERATION 
 
 

A system-simulation connects different physical disciplines, mostly multiple simulation 

disciplines and multiple simulation tools. The individual simulation models can be generated 

by different experts with special expertise in the physical or simulation discipline or in the 

simulation authoring tool (see Section 6.5). This justifies the requirements to achieve the 

support of each individual simulation expert by providing a framework that supports his/her 

simulation model generation (pre-process) job.  
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Therefore, the simulation model has to be managed individually. The data of a managed 

simulation model has to be provided and exported to be used by an individual simulation 

authoring tool. An automated execution of the individual simulation authoring tool including 

the opening of the simulation model is useful for the experts. The achievement of the 

described requirement is one benefit of TEAMCENTER for Simulation (Siemens Product 

Lifecycle Management Software Inc, 2012). This requirement is achieved through the 

execution technology for external tools and the data export technology of TEAMCENTER for 

Simulation (see Section 6.6.2). The new framework and ordering rules re-use the individual 

simulation models. The individual simulation models can be generated in a managed mode 

with TEAMCENTER for Simulation. TEAMCENTER for Simulation provides a supporting 

framework for multiple and individual experts to generate and manage simulation models. 

This achieves the openness of the new framework to support individual experts of single 

simulation model generation. 

 
The technology for external tools and the data export technology of TEAMCENTER for 

Simulation can be re-used in the generation of the system-simulation model. Therefore, this 

existing technology should be implemented into the new framework. With the integration of 

this technology, the supplying and export of the necessary data to run the system-simulation 

is achieved, as well as the execution of the system-simulation authoring tool.  

 
An improvement will also be achieved in the case of the post-processing discussed in Section 

6.6.4. 

  

 

6.6.4 BENEFIT OF SUPPORTING INDIVIDUAL EXPERTS OF INDIVIDUAL SIMULATION 

MODEL POST-PROCESSING AND SYSTEM-SIMULATION MODEL POST-PROCESSING 
 

With post-processing, the simulation results are analysed and interpreted. Similar to the pre-

processing in the previous section, the analyst and interpreter is an expert of the simulation 

tool, the simulation discipline and the physical discipline. Due to this, post-processing should 

be carried out by multiple experts (see Section 6.5). The responsibility has to be clarified for 

each individual simulation model taking part in the system-simulation. Predominantly, post-

processing is carried out by the same experts who worked on the pre-processing of the 

individual simulation models. Invariably, the simulation authoring tools, used for the 

generation of the simulation model, are also used for post-processing.  

 
The new framework has to achieve the management of the result data in such a way that the 

result data of each individual simulation model is dependent on the simulation model. 

Therefore, the new framework can manage the result data of each individual simulation 

model in a single Sys-Sim Result item revision. The results of the individual simulation model 

are linked to the simulation model by the CAE Result Relationship. In this way, every result of 

an individual simulation model is linked to its simulation model source. The user has to 

identify whether the results of the simulation are created based on a single simulation run or 
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a system-simulation run. Managing the results by a new item type, called Sys-Sim Result item 

revision, achieves the ability to identify the results as system-simulation-based. 

 
The managing of individual simulation results of a system-simulation also requires 

traceability to the system-simulation structure and to the other results generated by a 

system-simulation. Managing multiple individual simulation results in a system-simulation 

result structure achieves the necessary dependency. The individual simulation model results 

are assembled in the system-simulation result structure and, by following the structure to the 

next higher level, helps to identify the top system simulation result. From the higher ordered 

system-simulation result, a relationship to the respective system-simulation model is 

available. The ordering rules of the new framework provide the possibility to sub-order other 

system-simulation models and system-simulation results and individual simulation models, 

as well as individual simulation results. So, the ordering rules achieve the support of 

individual experts for the post-processing stage. 

 
The new framework was tested and validated empirically in case studies 3 and 4. The used 

BOM view technology in TEAMCENTER is proved state of technology and used in multiple 

TEAMCENTER use cases. It was also used in the SIEMENS pre-sales project “VW 

Systemsimulations Demonstrator” mentioned in previous sections. 

 

The ordering rules can also achieve the interaction between the system-simulation and the 

product and function, or their structures. This will be discussed in the next section. 

 

6.6.5 BENEFIT OF SYNCHRONIZATION WITH PRODUCT AND FUNCTION STRUCTURE 
 

The system can be described by the product structure but also by the functional structure. 

The difference between the two is that the product structure includes the description and 

virtual representation of the product. In contrast, the functional structure describes the 

functionalities of systems and subsystems. The function structure does not include how and 

with which parts and assemblies the functions are realised. This is carried out in the product 

structure. With the integration of a system-simulation structure, an additional description of 

the system is incorporated. The system-simulation structure can combine both, the product 

and the functional structure, to a virtual prototype for virtual testing (see Section 6.3).  

Since the system-simulation structure is not connected to the product and to the function 

structure of a product, there is no possiblity to synchronise the structures. Lack 

synchronisation of the system describing structures cause different virtual descriptions of the 

same system and product. Different virtual descriptions of the same system and product 

cause a difference of the virtual and the physical system and product and with that lack in 

achieving the system and product requirements. With the implementation of multiple system 

descriptions in the development process, the synchronization of the three structures 

becomes more important. The synchronization improves communication between different 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 254 of 347 
 

 

departments working on different structures. To a great extent, the prime structure is the 

function structure describing the functions of the systems. This is an ideal starting point for 

the simulation and for the development departments. With the publication of a system 

function:  

 a development expert knows what he/she should achieve with his/her development 

process, and  

 a simulation expert can generate a first mathematical model of the function. 

The lack of system function knowledge forces the development and simulation experts to 

search manually (by interviewing other persons) for this unmanaged knowledge, or to 

generate this knowledge on their own. The risk of different system function understandings 

is high. 

With the new framework, the system-simulation structure can be synchronised with the 

product and function structures. This will:  

 minimise the search work for information and  

 reduce the risk of misunderstanding the represented function or product of the 

simulation. 

Therefore, the new framework links the system-simulation models with the Sys-Sim source 

relationship to their source. The Sys-Sim source relationship appears only once in a system-

simulation model and points to a product or function. This relationship makes the system-

simulation model uniquely traceable to its source. Additionally, a Sys-Sim target relationship 

can be added to the simulation model. The relationship represents function or product 

represented by the system-simulation model. Using the relationship can achieve the 

identification of source changes. The relationships can be followed down and the revision 

state of the product or function can be identified. With the existing TEAMCENTER for 

Simulation functionalities, the item and the last state or a specific state (like the last revision 

with a released status) can be identified (Siemens Product Lifecycle Management Software 

Inc, 2012). This revision can be compared to the revisions to which the Sys-Sim target or 

source relationship is pointing. The comparison can be used to identify the status of the 

system-simulation model in contrast to the function or the product structure. Therefore, the 

existing functionality of TEAMCENTER for Simulation can be re-used and implemented into 

the new framework. The functionality has to be improved to check the system-simulation 

structure against the product and the function structure. 

The actual state of the functionality can be seen as validated. Improvements to the existing 

technology could not be achieved as part of the research project. The production of a 

validation framework would have been too time-consuming.  
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The ordering rules of the new framework not only support the possibility of comparing and 

synchronizing the structures but also to deriving a system-simulation structure from a 

product structure or function structure. This will be discussed in the Section 6.6.6. 

 

6.6.6 BENEFIT OF DERIVATION OF SYSTEM-SIMULATION STRUCTURES BASED ON 

FUNCTION OR PRODUCT STRUCTURES 
 

System-simulation structures are mostly created without predefined sources. A direct 

relationship to these sources might be missing because of the lack of a shared database. This 

can cause anomalies between the system-simulation structures and the product or functional 

structures. The new framework achieves:  

 a shareable database storing the product, function, system-simulation structure, and   

 the use of ordering rules to synchronise a system-simulation structure with a product 

or function structure. 

This is a base to derivate the system-simulation structure from existing structures. A 

derivation of a system-simulation from an existing function structure or a product structure 

achieves a reduction of work. The manual and native creation of the system-simulation 

structure is time-consuming and includes a high level of information search. Additionally, the 

synchronization of the manually and natively created system-simulation to ongoing work on 

function and product structures includes high risks. An automatic and managed derivation of 

the system-simulation structure from a function or product structure can be based on 

company internal, populated regulations and can achieve similar structures. The standard 

based derivation of the system-simulation structure is subsequently easier to understand and 

similar structures can be compared more easily. Each individual function or product in a 

function or product structure can be checked for existing system-simulation models. In the 

case where a system simulation model is available, such as linked to a function or a product 

item revision, the automation can check whether they are useable derivation. This can be 

based on additional, discarded data like parameters in a PLM environment (see Section 6.3). 

Such derivation of a system-simulation structure could run parts of a simulation process 

automatically. In Chapter 6.3.2 and Figure 6-14 the automatic run of such simulation 

processes was proposed.  In this case, an automatic simulation process will be based on a 

product or function structure. Each ITEM Revision, sub-ordered to the product or function 

structure, will be filtered (see step 1 through 3 in Figure 6-31). Therefore filtering rules have 

to be defined. In this way the relevant ITEM revisions in the product or functional structure 

will be identified for the simulation process. For example a structure could include fastener, 

but such fastener should not be included in a system simulation structure. The filtering will 

identify and separate them. Each relevant ITEM revision will be checked after available and 

reusable simulation models. Therefore the relationships between source data (function or 

product) and simulation models and the metadata of those simulation models will be checked 

(see step 4 through 5 in Figure 6-31). For example an MBS Model will be available to 
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represent an engine. This engine will be implemented in the assembly of a motor (engine, 

fastener, battery, electrics, controller etc.).  The MBS data will be identified by the 

relationship between the product or function ITEM revision and the simulation ITEM 

revision. Then the identified simulation ITEM revision will be sub-ordered to the system 

simulation structure. In some cases simulation models will be missing because reusable 

simulation models were not identified. In such cases placeholders for the missing simulation 

models could be generated and related to the represented product or function ITEM revision 

(see step 6 in Figure 6-31). For example a relevant electrical product or function in the motor 

product or function structure is identified but no reusable simulation data was related. A 

placeholder for simulation data could be generated and related to the electric product or 

function. Such placeholder will contain no actual simulation data. Nevertheless, the 

simulation data could be fed to the placeholder afterwards. In addition, in the case where 

simulation data has to be generated, the placeholder could be used to describe the 

environment in which the simulation data will be used. 

 

 
Figure 6-31 System Simulation Derivation Example 

 

The proposed automatic generation of simulation structure and the proposed automatic 

simulation process will cover:  

 an automatic selection, based on predefined rules and filters, of sub-ordered elements 

in a source structure; elements such as products or functions in a product or function 

structure,  

 afterwards the automatic identification of simulation models related to the relevant 

elements of the source structure, 
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 and afterwards the selection of the simulation models after reusability, based on 

predefined rules and filters, 

 then the automatic linking of the simulation models in a system-simulation structure 

and, 

 the automatic linking, as well as generation, of the system simulation structure 

 the automatic generation of placeholder to replace missing simulation data, plus the 

linking of the placeholder. 

 

The ordering rules of the new structure relate the individual system-simulation models or 

system-simulation structures to products or product structures, or to functions and function 

structures. This is carried out by the Sys-Sim relationship. This relationship points from the 

system-simulation model to a product, product structure or to a function or function 

structure. The relationship is traceable from both sides and means the relationship can be 

used to identify a system-simulation model based on a product or product structure, or on a 

function or function structure. The ordering rules of the new framework provide the 

necessary relationships to achieve a derivation of a system-simulation structure. 

 

In TEAMCENTER for Simulation, a technology to create simulation structures based on 

product structures is implemented. This technology is called structure mapping which 

provides the capability of defining regulations (algorithms) for the creation of simulation 

structures and simulation items, based on product structures. The technology runs the 

derivation automatically based on predefined rules. Function structures are not supported by 

this technology. For a re-use in the new framework, this technology has to be improved to 

support function structures too. With the re-use and implementation of this improved 

technology into the new framework, the automated and rule-based derivation of system-

simulation structures can be achieved.  

The new framework can also provide the ability to support variants of individual system-

simulations in the same system-simulation structure. This will be discussed in Section 6.6.7. 

 

6.6.7 BENEFIT OF SYSTEM-SIMULATION STRUCTURE AS 150% STRUCTURE 
 

The new framework provides a system-simulation structure useable during the development 

process.  System simulation models can be created from the conception of a product and 

enhanced during the development process till the end. At this point, the system-simulation 

model can be used for detailed system-simulations and virtual prototypes. The virtual 

prototype can represent different worst-case scenarios, for example, the tolerance 

differences of a product resulting from the production or montage. Factors like this can be 

respected in a virtual prototype (Mahler, 2012).  
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For a detailed analysis of the virtual prototype, a high level of detail is required from the 

simulation models. The need for detailed simulation models is dependent on both the 

analysis task and the assignment of the task. The following example will help to understand 

the need for detailed simulation models in dependency to the analysis task and the 

assignmen of the task: The analysis task of stress due to inspired vibrations of a virtual 

prototype in the case of the maximum and minimum mechanical tolerances do not require a 

high detail simulation of the controller. On the contrary, the validation analyses task of 

controller routines of the virtual prototype in a working state requires a very detailed 

simulation model of the controller. But the mechanical simulation can be done by MBS 

instead FEM simulation (if no flexible body influences appears). In summary, the first 

analyses cases require very detailed simulation models of the mechanic. In constrast, the 

second analyses cases require low detailed simulation models. Both analyses cases could 

appear in the same development stage.  

It would be ideal if both analyses cases are produced based on one system-simulation 

structure. Therefore, a system-simulation structure has to be able to include variants. 

Structures that include variants are called 150% structures because they represent more 

than one structure. The representation of one structure is a 100% structure.  Siemens 

Product Lifecycle Management Software Inc. (2012) suggests that “TEAMCENTER supports 

two techniques of managing variants: classic variants and modular variants.” Both techniques 

provide an opportunity to define variants of the structure. With the integration of these 

technologies into the implementation of the new TEAMCENTER framework, the variant 

generation of system-simulation structures will be achieved.  

There is no use case that includes the needs to build variants of system-simulation structures. 

Consequently, validation of the variant generation of system-simulation structures is neither 

planned nor realised.  

Many improvements will be achieved with the new framework to support and manage multi-

disciplinary simulation.  Nevertheless, some critical points are discussed in Section 6.7. 

 

6.7 CRITIQUES ON THE NEW FRAMEWORK APPROACH 
 

The new framework to support and manage multi-disciplinary simulations will be embedded 

into a PLM environment. With the integration of this new framework to a PLM environment a 

large number of improvements and benefits can be achieved. Nevertheless, the research work 

was not able to improve everything. Focussing on data management and process support, the 

following critical points can still be improved: 

- The support of system-simulation interfaces in the new framework is missing. 

- The support of object-oriented visualisation of the system-simulation is missing. 

- The support of process-oriented simulation processes is missing.    



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 259 of 347 
 

 

These points are discussed in the following sections. 

 

6.7.1 MISSING INTERFACE DESCRIPTIONS 
 

Interfaces are required to link simulation tools, simulation solvers and simulation models to a 

co-simulation. They send the information outside a solving simulation model and receive 

information (McLean, Riddick, & Lee, 2005). The interface provides the possibility to connect 

the solving simulation model to a simulation middleware or, alternatively, to another direct 

solving simulation model. In this way, the interfaces are used to couple different simulation 

models.  

 

Therefore, the interfaces provide individual simulation model communication ports for 

simulation model input and output data (McLean, Riddick, & Lee, 2005). The behaviour 

simulation model data management includes these communication ports (see Section 4.8 

Data Acquisition of the Behaviour Models Technology) which are specified for a 

Matlab/Simulink data model. In the case of the new framework, the communication ports 

require information about:  

 the kind of port (input or output),  

 the type of interface (MODELISAR FMU, ICOS Interface, NX Motion Interface),  

 the unit of the value,  

 the limits of the value etc. 

 

An interface type could be the MODELISAR interface (MODELISAR Consortium, September 

30, 2010 &January 26, 2010). These types of communication ports are used in Case 4. The 

communication ports and their type should also be available for each simulation model that 

takes part in a system-simulation. This information should be accessible on the item revision 

level of the simulation model such as in the case of a behaviour model item revision.  

In the system-simulation structure, the individual simulation models are connected for a later 

system-simulation run. This connection links a simulation model output port to a simulation 

model input port or to a data bus to provide data. A simulation model input port is linked to a 

simulation model output port or to the data bus to receive data. The behaviour simulation 

model data management includes such connectors (see Section 4.8). The connectors 

(including the output port, input port or data bus) should also be available for each system-

simulation structure. This information should be accessible on the Sys-Sim item revision level 

of the simulation model such as in the case of a behaviour model item revision. 

The connections should be supported by object-oriented visualisations. This will be discussed 

in Section 6.7.2. 
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6.7.2 MISSING OBJECT-ORIENTED VISUALISATIONS OF THE SYSTEM-SIMULATION 
 

The structure of a system-simulation can be complex. This can be seen in Cases 3 and 4. In 

order to keep the system-simulation both workable and simple to review, object-oriented 

visualisations could be incorporated. Object-oriented visualisation means the virtual 

visualisation of the system-simulation architecture.  An example could be a visual box that 

represents a Sys-Sim item revision or a line or arrow that represents a connection between 

two communication ports. The object-oriented visualisation should monitor:  

 the structure of the system-simulations  

 the individual simulation models  

 the input and output ports of the individual simulation models  

 if available, the data bus, and 

 the connections between the output ports, input ports or data bus including the data 

flow. 

The user may require specific information such as:  

 the kind of port (input or output)  

 the type of interface (MODELISAR FMU, ICOS Interface, NX Motion Interface)  

 the unit of the value  

 the limits of the value etc. 

 

Also, dependent data may be required such as sources of a simulation, or a represented 

product or function of a simulation model.  

Object-oriented visualisation increases the usability and attractiveness of the new framework 

to support and manage multi-disciplinary simulation embedded in PLM. It helps to include 

the support of process-oriented simulation processes into the new framework and into object 

visualisation. This will be discussed in Section 6.7.3. 

 

6.7.3 MISSING FRAMEWORK FOR PROCESS-ORIENTED SIMULATION PROCESSES 
 

The focus of the new framework to support and manage multi-disciplinary simulations 

embedded in PLM is on system-simulation. The process-oriented simulation process was a 

discursive exercise (see Section 6.2). This discussion could lead to an improvement in 

existing technology. However, the integration and combination of system-simulation and 

process-oriented simulation processes is not detailed enough to be implemented.  

It should be stated that a more common and open kind of support and management of multi-

disciplinary simulation embedded in PLM will require both the support and management of 
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system-simulation and process-oriented simulation processes. This could be achieved by 

expanding the new framework. Therefore, detailing and solution analysis of supporting and 

managing process-oriented simulation processes embedded in PLM is required. A more 

detailed discussion on process-oriented simulation processes, the perceived need for it as 

well as possible achievements is available in Section 6.2. 
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7 CONCLUSION AND FURTHER WORK  
 

7.1 THE RESEARCH OBJECTIVES 
 

The overall aim of this research was to research, propose, design and develop a new 

framework that supports and manages multi-disciplinary and inter-disciplinary system-

simulation embedded in a PLM environment. The main functionalities and metadata 

structures of the new framework have been identified and optimised. Such functionalities and 

metadata structures will involve a new method for ordering and relating data in a multi- and 

inter-disciplinary simulation context (see section 7.2). The multi-disciplinary simulation data 

and their collection processes, the existing PLM software and their applications have been 

analysed. In addition, the inter-disciplinary collaboration of various simulation software 

applications has been analysed and evaluated. The new framework integrates the identified 

and optimised functional and metadata structures to support and manage multi- and inter-

disciplinary simulation in PLM system environment. To achieve the overall aim there are the 

three planned research objectives as discussed in Chapter 1: 

 

(1) The first objective of this research is to analyse and evaluate multi-disciplinary 

simulation data and their collection processes, the existing PLM software and their 

applications to identify and optimise the required functional and metadata structures 

to support and manage multi-disciplinary simulation data and processes embedded in 

a PLM environment. To achieve this objective, data holding and data managing 

software solutions are evaluated and the best software solution (the best in relation 

to the research objectives) was selected. In this PhD project, TEAMCENTER was used 

as the case study. The restriction of the research project to a reduced number of 

software applications was necessary to keep the research project on time and within 

budget. The data acquisition details the functions and metadata structures of this data 

holding and data managing software solution.  In addition, case studies with multi-

disciplinary simulations are sampled, discussed and evaluated from the viewpoint of 

data management, data dependencies, simulation processes and collection processes. 

The analyses of the case studies (including the multi-disciplinary simulations and the 

implementation to TEAMCENTER) are used to identify and optimise functional and 

metadata structures to support and manage multi-disciplinary simulation data and 

processes in a PLM environment. 

 

(2) The second objective is to analyse and evaluate inter-disciplinary collaboration of 

various simulation software to identify and optimise the required functional and 

metadata structures to support and manage inter-disciplinary simulation data and 

processes embedded in a PLM environment. Multi-disciplinary case studies are 

sampled, discussed and evaluated from the viewpoint of inter-disciplinary 

collaboration, simulation software, simulation processes and data-dependencies. As 

discussed above, the cases are implemented in the PLM environment TEAMCENTER. 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 263 of 347 
 

 

The analyses of the cases are used to identify and optimise the required functional 

and metadata structures to support and manage inter-disciplinary simulation data 

and processes embedded in a PLM environment. 

 

(3) The third and last objective is to research, propose, design and develop a new 

framework that integrates the identified and optimised functional and metadata 

structures to support and manage multi- and inter-disciplinary simulation in a PLM 

system environment. This objective can be achieved based on the results of the first 

and the second objectives identifying and optimizing the required functional and 

metadata structures to support and manage multi- and inter- disciplinary simulation 

data and processes embedded in a PLM environment. In summary, the third objective 

of the research is to implement the identified and optimised functional and metadata 

structures into a new framework. Nevertheless, the identified, optimised functional 

and metadata structures imply a new method of ordering and relating data in a multi- 

and inter-disciplinary simulation context (see section 7.2). To do this, five PLM 

environments have been evaluated and the best one (in relation to the research 

project) has been identified. The restriction of the ongoing research to this PLM 

environment was necessary to keep the research project on time and within budget. 

Furthermore, existing functions and metadata structures of the identified, best PLM 

system have been acquired. The functions and metadata structures of the identified 

PLM system have been analysed and optimised. The optimised functions and data 

structures have successfully been integrated into the new conceptual framework that 

supports and manages multi-disciplinary and inter-disciplinary system-simulations 

embedded in a PLM environment. To validate the new framework, two cases have 

been empirically implemented in the new framework with existing functions.  

   

 

The findings and achievements of this project are contributions to both new knowledge 

generation in multi-disciplinary and inter-disciplinary system simulation and the practice, as 

discussed in Sections 7.2 and 7.2, respectively. 

 

 

7.2 CONTRIBUTIONS TO THE NEW KNOWLEDGE GENERATION 
 

In Chapter 6 a new framework for improving the support and management of multi- and 

inter-disciplinary simulation data in a PLM environment was proposed. Thereby the new 

framework will use new forms of data ordering and data relationships and, based on those 

orderings and relationships, provide derivation and synchronisation bases. This could 

therefore be regarded as a new method. The new method will provide enhanced and new 

knowledge about ordering and relating rules to the support and management of multi- and 

inter-disciplinary data. Thereby the new method has achieved a level of independence. 

Additionally, the implementation of the new method will not be limited. To keep the research 
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project on time and within budget it was necessary to reduce the number of  data 

management tools (TEAMCENTER) as well as data authoring tools. So, the research project 

explored the new method and conceptually implemented it into the new framework based on 

TEAMCENTER (see Section 7.3). 

In summary, it is believed that this project has made the six main contributions to new 

knowledge generation, as follows: 

 

(1) The first contribution is the New Method and New conceptual Framework to Enhance 

the Support and Management of Multi-Disciplinary System-Simulation. The research 

project has proposed and developed the new method and new conceptual framework 

to enhance the support and management of multi-disciplinary and inter-disciplinary 

system-simulation. So, the new method contains the ordering and relating rules of 

data used to improve the traceability of the data. These ordering and relating rules 

will describe the management of data such as data-containers (the different types of 

ITEM Revisions in the new Framework) and the relations (the CAE relations and BOM 

views). The new method will improve the traceability and interaction of the data in a 

system-simulation context. The implementation of the new method will not be limited 

but is focused in the research project on the new framework (such as discussed in the 

introductory section). The new framework includes the new and enhanced orderings 

and relationships of data that have to be recognised to ensure a more universal, 

multi-disciplinary and inter-disciplinary support and management of system-

simulation data, the individual simulation models and simulation results. In addition, 

the new concept includes an approach to enhancing PLM systems for supporting and 

managing multi-disciplinary system-simulation.  

(2) The second contribution is the New System-Simulation Oriented and Process Oriented 

Data Handling Approach. This contribution differentiates between system-simulation 

oriented and process oriented simulation data management. Both categories are 

using multi-disciplinary simulation data. But these are obtained through different 

kinds of processes (parallel and serial processes). The thesis presents two different 

data management approaches for the two different kinds of processes and makes 

them distinguishable from each other.  In addition, the thesis presents new 

knowledge about the data management of both simulation categories and the 

interaction between both kinds of simulation processes. The PhD thesis discusses the 

current inability to distinguish between the two approaches through current 

methodology and commercial software applications.  A conceptual solution is 

proposed by the thesis. 

(3) The third contribution is the Enhanced Traceability of System-Simulation to Sources and 

Represented Products and Functions. It enhances the system-simulation-structure and 

the traceability to sub-ordered individual simulation data. So, knowledge is enriched 

regarding the management of different simulation data and the relationships between 
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them. In addition, knowledge is also enriched regarding the traceability between 

simulation data, source data and represented data. The new method is enhanced to 

support individual simulation model generation (and generation processes) and the 

sampling of the individual simulation models to a system-simulation structure. 

Thereby each individual simulation model could have its own source and targets and 

the system simulation structure could also have its own source and targets. The new 

method is independent of software applications such as source authoring-software, 

individual simulation model authoring-software, inter-disciplinary simulation 

software and data holding software.  So the implementation of the new method will 

not be restricted but focused in the research project on the new framework (such as 

discussed in the introductory chapter). 

(4) The fourth contribution is the New System-Simulation Derivation Approach. The thesis 

discusses a system-simulation-structure derivation approach. The new approach is 

founded on enhanced knowledge about system-simulation derivation, search 

algorithms, data traceability and derivation rules. The derivation approach is based 

on the data ordering and tracing rules of the new method. The derivation approach 

expands the new method by passing comprehensive and traceable data. The passing 

identifies relevant products or functions as well as relevant and dependent simulation 

data. The identified simulation data will be sampled under a system-simulation 

structure.  Pre-definable rules and algorithms will help to run these processes 

automatically. 

(5) The fifth contribution is the New Approach for the Synchronisation of System Describing 

Structures: The thesis presents a new approach to the synchronisation of system 

describing structures. The new approach is based on enhanced knowledge about 

system-describing data, data relations and data traceability, synchronisation 

algorithms and rules for the synchronisation. The synchronisation approach is based 

on the data ordering and tracing rules of the new method. The synchronisation 

approach expands the new method by passing comprehensive and traceable data. The 

data dependencies of the starting structure and sub-ordered elements will be 

compared to source and/or target of the starting structure/ structures and sub-

ordered elements. In this way, anomalies between compared structures will be 

identified. The anomalies should be illustrated in order to resolve them.  The 

comparison as well as the solving of anomalies could be automated using rules and 

algorithms. 

(6) The sixth contribution is the Enhanced System-Simulation Result Data Handling 

Approach. Another major outcome of the research project is the enhanced knowledge 

about simulation result data management, individual simulation result management 

and the traceability between result data and simulation data, the related individual 

simulation models and the system-simulation structure. The system-simulation result 

data handling expands the new method by adding ordering and relationship rules to 

the result data. These rules achieve a result data handling that supports the post-



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 266 of 347 
 

 

processing of the individual simulation as well of the multi- and inter-disciplinary 

simulation (system-simulation).  The implementation of the new method will not be 

restricted but focused in the research project on the new framework (such as 

discussed in the introductory chapter). 

 

The research project was focused on multi- and inter-disciplinary system simulation in a 

product development context. This puts huge constraints on the research project. 

Nevertheless, these constraints as well as the restrictions of applied software applications 

were required to keep the research project on time and within budget.  So, even though these 

restrictions had an influence on the research project, they did not hamper the research 

results. The new method to Enhance the Support and Management of Multi-Disciplinary 

System-Simulation will be applicable in multiple and different kinds of system disciplines. 

Ideas exist to map the new method to simulate financial, business or ecological systems. For 

example the new concept could be used in financial simulations such as the flow of money 

between banks.   In this case, it could be used for bank stress tests simulations such as those 

implemented after the last financial crisis.  The new method could also be applied to simulate 

the efficiency of investments and budget distribution throughout a company.  Or, the new 

method could be used to simulate the human influence on the environment to improve the 

understanding of the earth’s ecology system.  

Nevertheless, the new method will be implementable in many other systems and contexts.  

Furthermore, the new method will be a new method to generate more complex and more 

common virtual prototypes of systems closer to the reality. However, additional research will 

be required to map the method. So the new knowledge about this new method and the above 

five points will provide a solid basis for ongoing research and implementation.  

From a historical point of view behaviour models have been seen to be used for mechatronic 

or system simulation (see the sections 4.8.1 4.8.2). The behaviour models were seen to 

represent the behaviour of functions. EBS and equation based simulation authoring tools will 

provide good technologies to model the behaviour of a function. Nevertheless, other kinds of 

simulation techniques, such as FEM, MBS, CFD and others could also be used to simulate 

behaviour.  But these simulation techniques are not popular for behaviour model generation 

as they produce numerous results including behaviour representations. So the behaviour 

results have to be identified and extracted from the countless results available. Additionally, 

pre-processing, solving and post-processing will require more time and investment, leading 

to reduced flexibility for modification when compared to the EBS technique. Reduced 

interaction between these simulation techniques plus the reduced flexibility will make them 

unpopular for use in a system simulation context. But, in contrast to the EBS technique they 

will provide greater accuracy and detailed results meaning they will be popular in 

applications where such accuracy and detail is required.  Nevertheless, the new framework 

will combine the EBS model approach, with the FEM, MBS, CFD, etc. simulation model 

approach.  Furthermore, the new framework will provide increased support, management 

and flexibility for the interaction between these simulation approaches.  So the focus of EBS 
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for behaviour model generation could be expanded to other simulation techniques as well. 

Lastly, additional investments in the FEM, MBS, CFD, etc. simulation model approach into 

simulation model reduction or simulation model performance improvement would be 

advantageous.  One approach will be discussed in (Dr. Hartmann & Mahler, 2013) attached to 

section 9.4. 

In the next section the contribution to the practice and the result by the implementation of 

the new method into the new framework will be discussed.  

 

7.3 CONTRIBUTION TO THE PRACTICE  
 

The isolated subsystem-simulation has become a thing of the past; the current trend is to 

simulate increasingly complex physical systems and products as a composition of sub-

systems from multiple domains (Engelson, 2000). In order to build a multi-disciplinary 

modelling and simulation environment, it is necessary to adopt a development approach 

which moves from a single disciplinary simulation model to a comprehensive disciplinary 

simulation model of different disciplines (Ai, Chen, Wan, & Xiong, 2011). This can be achieved 

with the new framework for supporting and managing multi-disciplinary system-simulation 

in a PLM environment. So, the new framework can be used to reduce costs and investments 

involved in engineering product design and development. In particular, the potential values 

(see also the benefits in Section 6.6) of the new framework are: 

(1) Reduction of costs, resources and working time in the generation of individual 

simulation models through the more effective re-use of individual simulation models 

in system-simulation context. All of the simulation models are provided by the new 

framework. The identification of simulation models are supported by automatic 

search, derivation and relation technologies. 

(2) Reduction of costs, resources and working time in the generation of the individual 

simulation models through the effective pre-defining and preparing of individual 

simulation models. So, placeholder / data holder objects are useful when combined 

with automatable derivation and relation technologies. Such placeholder / data 

holder objects can be used to represent the required simulation model data, and can 

be related (automatically during derivation processes) to the input sources of the 

simulation. So the simulation model can be generated after the generation of the 

metadata. That means that the relations to the input source data will be present to 

provide a foundation for the simulation model generation.  

(3) Reduction of costs, resources and working time in the system-simulation review and 

authoring software through the easily reviewable system-simulation-structures with 

relations to the input-sources, such as products and / or functions. So, the system 

simulation structure adopts intelligent relation technologies. These kinds of 



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 268 of 347 
 

 

technologies relate to the embedded individual simulation models, the system 

simulation input sources, the represented products and / or functions and the system 

simulation results. 

(4) Reduction of costs, resources and working time in the re-editing of data through the 

easy and ‘authoring-software independent’ update of system-simulation-structures, 

product-structures and function-structures. So, the new framework provides a 

synchronisation and comparison technology between the related simulation, product 

and functional structures.  

(5) Reduction of costs, resources and working time in post-processing through the 

effective, distributed and cohesive post-processing and interpreting of system-

simulation-results. So, the individual simulation results and the system simulation 

results could be post-processed individually even though they are linked to each 

other. 

(6) Reduction of costs, resources and working time in documentation and data security 

through effective, easy and unique traceability of data. So, each simulation model is 

related to the source and represented data. In addition, there are relationships 

between system simulation data, individual simulation data and system-simulation 

results data. 

(7) Reduction of costs, resources and working time in workarounds and customisations 

through an increased openness and flexibility in simulation software interactions 

with the data holding system. The existing technologies of TEAMCENTER are 

implemented into the new framework. In addition, the technologies and architecture 

are enhanced for system simulation data support and management. 

Although the proposed and developed conceptual framework has not been implemented 

(that requires a considerable amount of resources), it can be expected that the above seven 

values and benefits discussed in Section 6.6 will lead to significant advances in the simulation 

of new product design and development over the entire lifecycle, bringing substantial 

practical value to the manufacturing sector.  

 

7.4 FURTHER RESEARCH 
 

Due to time and other resource limitations as well as the huge undertaking required in 

implementing the proposed new framework, it is evident there are some limitations to this 

PhD thesis.  Five areas have been identified where further work needs to be carried out in 

order to improve the quality of this project: 
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(1) The expanded industrial sector and product design, and development processes. The 

new framework was proposed and developed based on the case studies. Due to time 

and resource limitations, the case studies have been focused on limited industry 

sectors (mostly automotive) and their product development processes. Additional 

enhancements to knowledge could be achieved through expanded disciplines and 

orientations of the case studies.  Industrial expansions could be applied to other 

manufacturing sectors, and as such, system engineering and product development 

process expansion could include chemical, biological and medical processes etc.  

(2) Parameter oriented system and production description in the new framework. The new 

framework achieved the support and data management of system-simulation during 

parameter studies. However, the parameter study approach has not been 

systematically applied to the case studies.  Nonetheless, parameter studies play an 

important role in system development processes and could be used to optimise 

systems or products.  Further work should be carried out to investigate which 

parameters need to be used to represent the systems or products and how to 

integrate these parameters into the new framework.  

(3) The improved user interface design of the new framework. The application of a new 

framework may be complicated.  The new framework supports and manages data. 

But, the ordering and relating of data tends to be complex.  So, from a practical point 

of view, users have to understand the framework theory, leading to easy and intuitive 

interactions between user and this new framework. Therefore, the theoretical 

complexity of the framework has to be addressed, especially in the area of user 

interfaces. 

(4) The automation of simulation generation processes. The enhancements in the area of 

support and management of simulation generation processes will reduce effort in the 

generation of high performance processes. Besides, the industry will be interested in 

non-expert-simulation-generation-processes to achieve a considerable number of 

validation and verification simulations.  Large amounts of simulation data will 

provide more data for large amounts of system-simulations.  Automation of 

simulation processes could enhance the simulation generation process.  So, the 

automatic generation of simulation models should be implemented in such a way to 

provide a practical solution without the user having specialist simulation knowledge. 

As a result, the new framework could be used by non-experts.  

(5) Enhancement of the individual simulation models. There will be a bottleneck in the 

performance of the system-simulation. The performance of individual simulation 

models through a solve run reduces the performance of the system-simulation solve 

run.  So, a bad performance of the individual simulation model will lead to a bad 

performance of the system-simulation. In addition, suppliers of individual simulation 

models have a vested interest in keeping the context of the simulation models secret. 

Nevertheless, individual simulation models should be usable in a system-simulation 
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context through a common and universal interactive technology.  Besides, the system-

simulation requires specific interfacing technologies to interact with the individual 

simulation models. In summary, it will be necessary to enhance individual simulation 

models to provide a high performance solve run keeping the content secret yet 

interfacing through a universal approach. 
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9 APPENDIX 
 

9.1 APPENDIX A SYSTEMATIC LITERATURE REVIEW 
 

The literature research will be based on searching key words. In order to get a speedy and 

efficient search, the literature search should be organised in more effective way. Therefore, 

the search words will be organised into a search algorithm. The search algorithm will put the 

search words in a logical dependency. This logical dependency achieves a faster search result. 

The different databases use different logical functions. So, the search algorithm has to be 

optimised for each literature database. In Table 9-1 Search Functions, the search words, the 

logical search function and the two different search algorithms, optimised for the literature 

search databases, are listed: 

 
Table 9-1 Search Functions 

Search Words Logical Search 
Function 

EBSCO database 
Search Function 

Sage Journal Online 
database Search 
Function 

- system-simulation  
- system-Simulation 
- mechatronic-system-

simulation  
- mechatronic-

simulation 
- co-simulation  
- multi-disciplinary-

simulation  
- multi–domain-

simulation  
- parallel-simulation 
- system-engineering 

simulation   
 

system or 
mechatronic or co 
or parallel or (multi 
and domain or 
discipline) and 
simulation 

 

TI simulation and (TI 
system or TI 
mechatronic or TI co 
or TI parallel or TI 
multi domain or TI 
multi discipline) 

 

(simulation and 
system) or 
(simulation and 
mechatronic) or 
(simulation and co) 
or (simulation and 
parallel) or 
(simulation and 
multi-domain) or 
(simulation and 
multi-discipline) 
 

- system-simulation-
data-management  

- co-simulation-data-
management 

 

(system and 
simulation) or (co 
and simulation) 
and (data and 
management) 
 

TI data management 
and (TI system-
simulation or TI co 
simulation) 

(simulation and 
system) or 
(simulation and 
mechatronic) or 
(simulation and co) 
or (simulation and 
parallel) or 
(simulation and 
multi domain) or 
(simulation and 
multi discipline) 
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- co-simulation-
interface  

- simulation-interface  
- multi-disciplinary-

simulation-interface 
 

(co and simulation) 
or (multi and 
disciplinary and 
simulation) or 
simulation and 
interface 
 

TI interface and (TI 
co simulation or TI 
multi disciplinary 
simulation or TI 
simulation)  
 

(interface and co 
simulation) or 
(interface and multi 
disciplinary 
simulation)  or 
(interface and 
simulation) 
 

- multi–domain-
modelling  

- multi–domain-pre-
processing  

 

(multi and domain) 
and (modelling or 
pre-processing) 
 

TI multi domain and 
(TI modelling or TI 
pre-processing)  
 

(multi-domain and 
modelling) or 
(multi-domain and 
pre-processing) 

- simulation-processes  
- simulation 

middleware 
- simulation-

automation 
 

simulation and 
(processes or 
middleware or 
automation) 
 

TI simulation and (TI 
processes or TI 
middleware or TI 
automation)  
 

(simulation and 
processes) or 
(simulation and 
middleware) or 
(simulation and 
automation) 
 

 

Nevertheless, the literature search results in a protracted list of literature. This quantity of 

literature has to be filtered, as discussed in Section 9.1.1. 

 

9.1.1 SELECTION OF LITERATURE 
 

The literature research identified 39,060 documents. This is a huge number of documents 

which cannot be checked manually. Therefore, a filter is required. 

A filter should be the publication date of the documents. Computer-aided engineering is a 

relatively new discipline. The research project will work on multi-disciplinary simulations 

which are newer than computer-aided engineering.  Documents older than 20 years would 

not include new information. So, a filter could be set with a maximum document age of 20 

years. Therefore, the earliest year of population should be 1992. (The main literature search 

was carried out in 2012). 

A second filter could be the scholarly or academic filter. The documents should be focused 

and based on academic work.  

The filters were combined with the search algorithms. In some cases, the date or scholarly 

filter significantly reduced the number of documents. In such cases, the filters were not used. 

In summary, the filters could achieve effective reductions of the identified amount of 

literature. 
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9.1.2 QUALITY AND RELEVANCE OF THE LITERATURE  
 

814 literature documents were identified by the search algorithms and filters. Nevertheless, 

this number was still too high and had to be reduced. A fast review of the research results 

showed that literature was included where simulations were used to clarify technical 

operations, or where research projects were done with other objectives in mind. This kind of 

data was not relevant for this research. A filtering of the research result, based on its 

relevance to the research topic and aims, would be helpful. Therefore, the identified literature 

was evaluated. This kind of filtering was focused on relevance and brought the literature in 

line with the research. 

The evaluation of the literature had to be completed manually. This kind of evaluation was 

not possible in one step. It would have taken a long time to evaluate this amount of literature. 

So, a two-step filtering was required: 

1. The first step was to evaluate the literature titles. Literature which did not fit the 

criteria, discussed below, would be filtered. If the titles did not give enough 

information, they would be set aside for the next step. 

2. The second step was to evaluate the literature abstract. The criteria for the evaluation 

are discussed in the following. An evaluation and rating of the relevance for the 

research project will also be produced. 

The filtering criteria are used to check for a high relevance quotient of the literature for the 

research project. These criteria can be used for the filtering process of the first step: 

1. Is the main theme of the content relevant for simulation themes?  

2. Is the content relevant for the connection of different simulation tools? 

3. Is the content relevant for the management of simulation data? 

4. Is the content relevant for simulation processes? 

The filtered literature includes literature with differing relevance to the research project. This 

literature has to be evaluated and rated according to its relevance. This rating can be seen as 

a quantitative rating of the literature in response to the research project. For a quantification 

and rating, a rating level of the relevance will be necessary. Quantification-criteria are 

necessary. The criteria will represent relevant themes that are appropriate for the research. 

The criteria are as follows: 

1. multi – disciplinary – simulation – data – management  

2. multi – disciplinary – simulation – process – management  

3. multi – disciplinary – simulation – interfaces - management 

4. multi – disciplinary - post-process - management 

5. multi – disciplinary - pre-process – management  

6. multi - disciplinary – simulation - time – management  

7. multi – disciplinary – middleware – concept based on PLM 
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Each document has to be rated according to these criteria. The criteria were measured in 

three levels: high (1) – low (0) – nothing (-1). ‘High’ means the literature addresses the theme 

and ‘nothing’ means the theme is not addressed. The rating of the criteria can be compiled as 

a sum. The sum represents the quantification of relevance of the literature to the research. 

The lowest possible level was -7 and the highest level was 7. In Figure 9-1, the distribution of 

the quantification to the amount of literature is presented. In this figure, the blue colour 

represents the number of documents for each rating and the red for the number of 

documents, starting with the lowest ranking. 

 

Figure 9-1 Relevance of the Literature 

Figure 9-1 Relevance of the Literature should help to identify the most relevant literature as 

well the ideal amount of literature. Based on this kind of key word search and filtering, the 

ranking of the literature should relate to the research topic. For an initial overview of the 

research topic, the literature with rating levels 7,6,5,4 and 3 will be reviewed. The number of 

the documents with those rating levels is 13.  These documents will be listed and synthesised 

as follows: 

 A Collaborative Platform for Complex Product Development based on Multi-Domain 

Unified Modeling and Simulation by Ai, Hui; Chen, Liping; Wan, Li; Xiong, Tifan. Wuhan 

University Journal of Natural Sciences, June 2011, Vol. 16 Issue: Number 3 p. 206-212; 

Database: EJournal.  

Ai, Chen, Wan & Xiong (2011) include an interesting discussion about a system-

architecture to support multi-domain modelling and simulation. This system-

architecture summarises CAD, CAE (computational aided engineering), CAPP 

(computer aided process planning), CAM (computational aided manufacturing), SCM 

(supply chain management), ERP (enterprise resource planning) etc.  Unfortunately, 

the paper does not provide a discussion at a level to shape a functioning framework 
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that supports and manages multi-disciplinary simulation data. The paper focuses on a 

discussion of a unified management of product knowledge, a comprehensive software 

tool and system architecture.  However, the paper could help to discuss a theory of 

multi-disciplinary simulation data management.  

 

 Integrated Development of a Visualised Modeling and Simulation platform for Multi-

domain Systems by Tian, Yongli and Yan, Yunhui; Journal of Computer Aided Design and 

Computer Graphics; 2008, 20(4):526-531; Database; British Library Document Supply 

Centre Inside Serials & Conference Proceedings. 

This paper was not written in English or German.  However, the paper was also published 

in English (Tian, Yan, Parkin & Jackson , 2008). 

Tian, Yan, Parkin & Jackson (2008) introduce “the development of a software 

environment for both visualised modeling and simulation of mechatronic multi-

domain systems.” This new environment is called Vimola. It uses the Modelica 

language base. The Modelica language provides the possibility to generate a hybrid 

modelling platform for multi-domain physical system. Modelica is an open EBS  

software base and Vimola is an integrated development environment for modelling 

and simulation of multi domain physical systems. In the research project, EBS is 

considered a partial solution of a multi-disciplinary simulation. This kind of 

simulation discipline will be used in the case examples.  

 

 Development of Hybrid Modeling Platform for Multi-Domain Physical System by Yizhong, 

W. Journal of Computer Aided Design and Computer Graphics; 2009; 18(1): 120-124; 

Database: British Library Document Supply Centre Inside Serials & Conference 

Proceedings. 

This paper was not written in English or German. Only the title and abstract is 

available in English. In order to understand this document, an investment in 

translation had to be done.  The abstract of the document gave information about its 

content. The document content is the MWoks-tool implementation to the Modelica-

based hybrid modelling platform for a multi-domain physical system. Modelica is an 

open EBS software base and MWoks is an integrated development environment for 

modelling and simulation of multi domain physical systems based on Modelica (FAN-

LI, LI-PING, YI-ZHONG, JIAN-WAN, JIAN-JUN, & YUN-QING, 2006). This helps to 

understand EBS in relation to system-simulation. However, this document is not 

important for the research project because this content will be covered in (Tian, Yan, 

Parkin & Jackson , 2008). 
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 Multi-Domain Modeling, Simulation and Control by van Beek, D. A.; Rooda, J. E.; 

International Conference on Automation of Mixed Processes: Hybrid Dynamic Systems, 

(ed. Engell, S.; Kowaleswski, S.; Zaytoon, J.) 139-146 Conf: Conference; 4th; Dortmund, 

Germany Sep 2000  

Database: British Library Document Supply Centre Inside Serials & Conference 

Proceedings 

 

Van Beek, Rooda, Engell & Zaytoon (2000) discuss the use of EBS tools and the 

“interaction between simulation models written in different languages” as a suite for 

“modeling, simulation and control of systems from different application domains” The 

Chi project, which works on a multi-domain modelling and simulation language, are 

within the focus of this paper. The Chi language is evaluated, based on the Modelica 

language. Both languages are EBS languages and provide possibilities to build models 

with different physical domains such as chemical or mechanical. Such EBS languages 

and tools provide the possibility to simulate multi-domains. However, in the research 

project EBS is seen as a partial solution of multi-disciplinary simulation. This kind of 

simulation discipline is used in the case examples.  

 

 Multi-Domain and Simulation of Mechatronic Systems by Bharadwaj, A. S.; Actuators 

Automotive Electronics Series PT-74 (ed. Jurgen, R. K.) Progress in Technology; 1998, 

74:369-374 Database British Library Document Supply Centre Inside Serials & 

Conference Proceedings 

Bharadwaj (1998) focuses on the presentation of a multi-domain simulation solution 

for a pressure control solenoid system. This can be considered as a case example for 

managing the data of multi-disciplinary simulation examples. Unfortunately, the 

paper includes not detailed information about the managed data. Nevertheless, if 

required, the document will be used in discussions of the case examples.  

 

 Extend: A Library-Based, Hierarchical, Multi-Domain Modeling System by Bob Diamond. 

Winter Simulation Conference; 1993:40 Database British Library Document Supply 

Centre Inside Serials & Conference Proceedings 

Diamond (1993) “presents an overview of Extend and discusses its use for both 

continuous and discrete event modelling”. The use of EBS languages is in the focus of 

this paper. EBS languages provide the possibility to build models with different 

physical domains such as chemical or mechanical. However, in the research project 

EBS is seen as a partial solution of a multi-disciplinary simulation. Additionally, the 

paper is not up-to-date because the publication date was 1993 and the content is 

more relevant for EBS languages and tools than for the support of multi-disciplinary 

simulation data. 
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 Integration of CAD and FEA (Finite Element Analyses) Data in a PDM System: Definition of 

a Step Simulation Data Management Schema; Charles, S.; Eynard, B.; in IMACS world 

congress (ed. Borne, P.) 2005: Paper T6-I81-0302 Conf: 17th; Paris; Jul 2005 Database 

British Library Document Supply Centre Inside Serials & Conference Proceedings. 

Sebastien & Ducellier (2006) “presents the development of a Simulation Data 

Management schema linked with a KBE system. The objective of the research work is 

to define a full environment aiming to enhance collaboration between design and 

analysis activities in a PDM approach.” The paper is not focused on multi-disciplinary 

simulation but on the data management of simulation data in the context of product 

data.  SDM (Simulation Data Management) and PDM interaction is a young discipline. 

The new framework will improve SDM and PDM interaction. So, the paper could help 

to discuss theory of multi-disciplinary simulation data management.   

 

 Designing Spacelab's Data Management System with Simulation by Mellichamp, Joseph 

M.; Bengtson, Neal M.; Interfaces, May 1979, Vol. 9 Issue: Number 3 p87-93, 7p; Database: 

E-Journals 

Mellichamp & Bengtson (1979) is not up-to-date. The paper describes a multi-

disciplinary simulation use case. This use case is one of the earliest use cases for 

multi-disciplinary or multi-domain simulations. Due to the age and history of multi-

disciplinary and multi-domain simulations, this paper does not represent the present 

day and is not relevant for the research project. Additionally, the paper specialises in 

space shuttles. 

 Simulation Environment for Designing the Dynamic Motion Behaviour of the Mechatronic 

System Machine Tool by Zaeh, M F; Baudisch, T. Proceedings of the Institution of 

Mechanical Engineers – Part B – Engineering Manufacture (Professional Engineering 

Publishing); Jul 2003; Vol. 217 Issue 7; p1031-1035, 5p; Database: Business Source 

Complete 

Zaeh & Baudisch (2003) describe “a new method for setting up a model for the 

mechatronic system machine tool, with special emphasis on the design of its motion 

dynamics.”  The paper is focused on the feasibility and information flow of models 

taking place in a virtual prototype but doesn’t include the management of used data. 

However, the paper discusses some requirements of companies to generate virtual 

prototypes. So, the paper could help to discuss a theory of multi-disciplinary 

simulation data management.  

 Closed-Loop Modeling in Future Automation System Engineering and Validation by 

Vyathkin, Valeriy; Hanisch, Hans-Michael; Cheng Pang; Chia-Han Yang; IEEE Transactions 
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on Systems; Man & Cybernetics: Part C – Applications & Reviews, Feb2009, Vol. 39 Issue 

1, p17-28, 12p, Database: Business Source Complete. 

The focus of the paper is a discussion about system engineering and validation as well 

as verification in the context of system engineering and simulation. It explains that the 

“proposed ideas can be used to extend the existing engineering support software 

tools, or as a foundation of new toolsets, by combining system design with the closed 

loop validation and verification capability.” The paper is not focused on multi-

disciplinary simulations. Still, the paper could help to discuss a theory of multi-

disciplinary simulation in the context of system engineering.  

 An Architecture and Interfaces for Distributed Manufacturing Simulation by Charles Mc 

Lean; Frank Riddick; Y. Tina Lee; Simulation, January 2005, vol. 81,1 pp. 15-32. 

McLean, Riddick & Lee (2005) is focused on “an overview of a neutral reference 

architecture and data model for integrating distributed manufacturing simulation 

systems with each other […]”. The reference architecture is an architectural concept 

of a simulation middleware. This high level simulation middleware architecture 

includes the interfacing of the co-simulation runtime infrastructure and the legacy of 

simulation execution engines. This paper could help to discuss an architectural 

concept of the new framework.  

Also, the need for a data management system is discussed in this paper. This data 

model should offer the possibility of storing and managing the required data. 

However, there will not be an in-depth discussion on data management.  

 PowerDEVS: a Tool for Hybrid System Modeling and Real-time Simulation by Federico 

Bergero; Ernesto Kofman; Simulation, January 2011; vol. 87; 1-2; pp113-132; first 

published on April 28, 2010 

Kofman, Lapadula & Pagliero (2003) discuss “the main features of the PowerDEVS 

software.” The article also illustrates its use with some examples showing its 

simplicity and efficiency. PowerDEVS uses an EBS language as the simulation base. 

However, in the research project EBS is only seen as a partial solution of a multi-

disciplinary simulation. 

 

The systematic literature research could not identify any document that takes the same 

viewpoint as the research project. However, a lot of literature is available that focuses on 

subcategories of the research project. These kinds of documents could be used, for example, 

in scene setting.  

So far, a systematic literature review does not provide an effective base for the literature 

review.  Instead it lends itself to setting the scene of the research project. In summary, the 

following points have to be reviewed: 
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- Multi-disciplinary simulation 

- Simulation data management 

- Data management of multi-disciplinary simulations 

 

 

 

  



PHD Thesis 

[A New Framework  for Supporting and Managing Multi-

Disciplinary System-Simulations in a PLM Environment] 

 

 

Michael Mahler  Page 293 of 347 
 

 

 

9.2 APPENDIX B WORK PLAN 
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9.3 APPENDIX C ENHANCED GRAPHICS OFT THE PHD THESIS 
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9.5 APPENDIX E PATENT CONFIRMATION 
 

The general concept of the invention will be organisation regulars of simulation data 

including regulars to organise data and to relate data. These organisation regulars will be 

the core technology. The implementation of the organization regulars into TEAMCENTER 

could enhance TEAMCENTER to support and manage multi- and inter-disciplinary 

simulation. The organisation regulars achieve an enhanced representation of relations 

between simulation, product and function data. In addition the organisation regulars 

achieve an enhanced simulation result data handling. So, the invention makes 

relationships such as sourcing, targeting, relating and sub ordering of data in a multi- and 

inter-disciplinary simulation uniquely traceable. The patent should protect these 

organization regulars. 

The invention addresses issues in the simulation of complex products and processes. The 

simulation of such products and processes will be limited because of the complexity of the 

products, or processes will be high volume, and require interaction between multiple 

simulation models. The generation and interaction of such multi- and inter-disciplinary 

simulations will be limited because there will be a gap between the data management 

and support of such data by a company, department, etc. overlapping way. 

The invention of the organisation regulars and the implementation of the organisation 

regulars into TEAMCENTER provide a huge enhancement in the support and management 

of multi- and inter-disciplinary simulation. So, the generation of such simulation will get 

supported and managed in a PLM environment. 
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