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ABSTRACT 

 

Increased relative risk of non-contact anterior cruciate ligament (ACL) injury has been attributed 

to numerous biomechanical, anatomical and neuromuscular factors. Females are at greater 

relative risk of non-contact ACL injury compared with males. Dynamic knee stability is an 

important component required to reduce relative risk of injury, especially to the knee joint. It is 

difficult to directly measure knee stability; however the eccentric ability of the hamstrings to co-

contract to counter the torque produced by concentric quadriceps actions during knee extension is 

important in stabilising the knee (determined as the functional H/Q ratio [FH/Q]). One of the 

proposed reasons for a greater incidence of non-contact ACL injury in females is a reduced 

capacity for neuromuscular functioning to stabilise the knee joint effectively. Most injuries occur 

in the second half of an athletic event when fatigue is commonly present, therefore identifying 

fatigue as a potential risk factor for ACL injury and this may allow for the development of 

improved prevention strategies. The three experimental studies included within this thesis 

(chapter 4-6) have generated novel data on sex differences in the FH/Q ratio and neuromuscular 

performance prior to and following a downhill running fatigue task. 

 

One hundred and ten healthy males (n=55; mean ± SD 29 ± 5 yrs) and females (n=55; mean ± SD 

27 ± 6 yrs) were recruited from the university population. Isokinetic torque of the hamstrings and 

quadriceps was determined at 60, 120 and 240˚·s–1with the hip flexed at 0°. Range of movement 

of the knee joint was 90° with 0° determined as full volitional extension. Concentric (CON) 

torque was determined first followed by eccentric (ECC) torque, with the slowest velocity tested 

first. Torque was gravity corrected and filtered to only include constant velocity periods. For 

functional relevance FH/Q ratio was determined at 15, 30, 45º (as these are the joint angles where 

injury is most likely to occur) and where peak torque (PT) was achieved (to compare with the 

extant literature) for each movement velocity. Surface electromyography was recorded from the 

semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) of the dominant limb 

using an 8-channel DelSys EMG telemetry system. The biodex square wave synchronization 

pulse was configured with the EMG software via a trigger system so that EMG and torque data 

were completely time aligned. Raw EMG data were collected at a sampling frequency of 1024 Hz 

and included a common mode rejection ratio of <80 dB and an amplifier gain of 1000. Raw EMG 

data was band pass filtered at 20 – 450 Hz. The electromechanical delay (EMD) was determined 

as the time delay between the onset of muscle activation (change in activation of +15 µV) and 

onset of torque production (9.6 N·m) according to the procedures described by Zhou et al (1995).  

 

The aim of the first study (chapter 4) was to explore sex differences in the FH/Q ratio whilst 

taking into account joint angle and movement velocity. A 2 (sex) x 3 (movement velocity) x 4 

(joint angle) ANOVA was performed to determine interactions and main effects. FH/Q ratio 

ranged from 59 to 98% in females and 66 to 109% in males across joint angles and movement 

velocities. No significant differences between males and females in age but males were 

significantly taller and had greater body mass. Irrespective of sex the FH/Q ratio increased with 

joint angle and movement velocity to improve knee stability during high velocity movement and 
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near full extension. However, the FH/Q ratio is significantly lower in females compared with 

males and importantly this sex difference increases as movement velocity increases. Females 

have a lower FH/Q ratio than males close to full knee extension and during high velocity 

movements, both of which are predisposing factors for increased injury risk. This reduced FH/Q 

ratio may impair dynamic knee stability in females during fast velocity movements and may 

predispose them to a greater relative risk of knee injury. 

 

The aim of the second study (chapter 5) was to examine sex differences in the EMD of the 

hamstring muscles during eccentric muscle actions at 60, 120 and 240˚·s–1. A 2 (sex) x 3 (muscle 

group) x 3 (movement velocity) ANOVA was performed to determine interactions and main 

effects. During eccentric hamstring muscle actions there were no differences in the EMD of the 3 

muscles examined. Irrespective of sex, significant main effects for angular velocity was 

demonstrated, indicating an increase in the delay time with increasing angular velocity. This 

increased delay during fast velocity movements may account for the increased risk of injury 

during fast movements. No significant sex differences in EMD was found irrespective of 

movement velocity of muscle examined, suggesting that females do not have impaired 

neuromuscular performance of the hamstring compared with males during eccentric hamstring 

muscle actions in the rested state.  

 

The aim of the third study (chapter 6) was to examine the effects of a fatigue task on sex 

differences of the FH/Q ratio and EMD. The procedures used in study 1 and 2 were repeated pre 

and post a downhill running fatigue task to explore fatigue related effects on neuromuscular 

functioning. Each participant performed a 40 min intermittent downhill running protocol 

consisting of 5 × 8 min bouts on a -10% decline, with 2 min standing rest between each bout. 

Irrespective of sex, joint angle or angular velocity, the FH/Q ratio was lower and EMD of 

hamstrings muscle was longer post-fatigue compared to pre-fatigue. Significant interactions 

between sex and time (pre-post) for the FH/Q ratio and EMD of hamstring muscles were found. 

The interactions showed a significantly lower FH/Q ratio and significantly longer EMD post 

fatigue in females compared to males. These data suggest that functional stability of the knee is 

reduced when fatigue is present and the impact of fatigue is greater in females.  

 

The findings of this thesis indicate the importance of determining the FH/Q ratio using angle 

specific torque as well as taking into account movement velocity, rather than simply using PT 

values to monitor muscle function of the knee. The findings of the present thesis support the 

notion that fatigue compromises the stability of the knee by reducing the FH/Q ratio and 

lengthening EMD. These effects are greater in females compared to males and may predispose 

them to greater relative risk of injury. Therefore, movement velocity, joint angle and fatigue 

resistance all need to be considered when designing training programmes to reduce the relative 

risk of injury. The focus of such training should be aimed at eccentric conditioning of the 

hamstring muscles to improve both muscular and neuromuscular functioning to limit the fatigue 

related effects, especially in females. 

 

 



v 

 

 

List of Contents 

 

 Acknowledgement ..............................................................................................................II 

 Abstract .............................................................................................................................III 

 List of contents ...................................................................................................................V 

 List of tables .......................................................................................................................X 

 List of figures .................................................................................................................XIII 

 

1. Chapter 1 – Introduction 

1.1. Introduction .........................................................................................................................1 

1.2. Aims and objectives of thesis .............................................................................................8 

 

2. Chapter 2 – Literature Review 

2.1. Introduction ........................................................................................................................9 

2.1.1. Anterior cruciate ligament (ACL) injury ..............................................................11 

2.1.2. Incidence of ACL injury .......................................................................................12 

2.1.3. Mechanisms of non-contact knee injury................................................................16 

2.1.4. Factors increasing risk of knee injury ...................................................................21 

2.1.4.1. Environmental risk factors .....................................................................21 

2.1.4.2. Anatomical risk factors ..........................................................................24 

2.1.4.3. Hormonal risk factors ...............................................................................26 

2.1.4.4. Neuromuscular risk factors ....................................................................28 

2.2. The functional dynamic knee stability .............................................................................32 

2.2.1. The role of the hamstring and quadriceps muscles ...............................................36 

2.2.2. Proprioception and neuromuscular control in knee stability.................................37 

2.2.3. The role of co-activation and eccentric activity in knee joint function.................39 

2.3. The hamstring to quadriceps functional ratio ..................................................................42  

2.3.1. Assessment of isokinetic torque ...........................................................................44 

2.3.2. Reliability studies of isokinetic torque .................................................................48 

2.3.3. The force-velocity relationship .............................................................................53  

2.3.4. The effect of angular velocity and joint angle on FH/Q ratio................................55 

2.3.5. Sex differences in FH/Q ratio ...............................................................................59 



vi 

 

2.4. Electromyography (EMG) ...............................................................................................62 

2.4.1. EMG assessment of muscle function ....................................................................63 

2.4.1.1.  Skin preparation ......................................................................................64 

2.4.1.2.  Electrode placement ................................................................................65 

2.4.2. The reliability of the EMG................................................................................... 67 

2.4.3. EMD measurement ...............................................................................................71 

2.4.4. Age and sex differences in EMD...........................................................................78  

2.5. Fatigue ..............................................................................................................................81 

2.5.1. Definition of fatigue ..............................................................................................81 

2.5.2. Mechanism involved in fatigue .............................................................................82  

2.5.2.1.  Central factors in fatigue .........................................................................83 

2.5.2.2.  Peripheral factors in fatigue .....................................................................85 

2.5.2.3.  Dynamic stability and the importance of fatigue ....................................87 

2.5.3. Inducing and assessing fatigue ..............................................................................88  

2.5.4. The effects of fatigue on the FH/Q ratio ...............................................................92  

2.5.5. The role of fatigue on the neuromuscular performance ........................................96 

2.6. Summary ..........................................................................................................................99 

2.7. Hypotheses of thesis .......................................................................................................102 

 

3. Chapter 3 – General Methods 

3.1. Participants and recruitment ...........................................................................................103 

3.2. Pilot preliminary work ...................................................................................................104 

3.3. Familiarisation session ...................................................................................................105   

3.4. Procedures ......................................................................................................................105 

3.4.1. Anthropometry ....................................................................................................105 

3.4.2. Peak torque assessments .....................................................................................106 

3.4.3. Electromyography ...............................................................................................108 

3.4.4. Electromechanical delay (EMD) ........................................................................112 

3.5. Key outcome variables ...................................................................................................113 

3.5.1. Functional hamstring to quadriceps ratio ............................................................113 

3.5.2. Electromechanical Delay ....................................................................................114 

3.6. Data analysis ..................................................................................................................114 

 

 



vii 

 

4.  Chapter 4:  Sex Differences in the Functional Hamstring to Quadriceps Ratio -study 1 

4.1. Introduction ....................................................................................................................115 

4.2. Methods ..........................................................................................................................119 

4.2.1. Participants ..........................................................................................................119 

4.2.2. Study design ........................................................................................................119 

4.2.3. Familiarisation ....................................................................................................120 

4.2.4. Test session .........................................................................................................120 

4.2.4.1. Warm-up ....................................................................................................120 

4.2.4.2.  Concentric and eccentric torque measurements........................................120 

4.2.4.3.  Cool down ................................................................................................121 

4.2.5. Data analysis .......................................................................................................121 

4.3. Results of study 1 ...........................................................................................................122 

4.3.1. Physical characteristics .......................................................................................122 

4.3.2. Quadriceps and Hamstring torques at three joint angular velocities ..................122 

4.3.3. FH/Q ratio values at three angular velocities.......................................................123 

4.3.4. Sex differences in the FH/Q ratio .......................................................................124 

4.3.4.1. Influence of joint angle on the FH/Q ratio .............................................124 

4.3.4.2. Influence of angular velocity on the FH/Q ratio ....................................125 

4.3.5. Summary of results .............................................................................................127 

 

5. Chapter 5:  Sex Differences in the Neuromuscular Performance of the Knee Flexor 

Muscles -study 2 

5.1. Introduction ....................................................................................................................128 

5.2. Methods ..........................................................................................................................131 

5.2.1. Participants ..........................................................................................................131 

5.2.2. Study design ........................................................................................................132 

5.2.3. Baseline measurement ........................................................................................132 

5.2.4. EMG measurement .............................................................................................133 

5.2.5. Data analysis .......................................................................................................133 

5.3. Results of study 2 ...........................................................................................................135 

5.3.1. EMD values at three angular velocities...............................................................135 

5.3.2. Influence of sex and angular velocity on the EMD of hamstring muscles…......135 

5.3.3. Influence of hamstring muscles on the EMD across 3 angular velocities...........136 

5.4. Summary of results ........................................................................................................137 

 



viii 

 

 

6. Chapter 6: The Influence of Fatigue on FH/Q Ratio and Neuromuscular Performance in 

Males and Females -study 3  

6.1. Introduction ....................................................................................................................138 

6.2. Methods ..........................................................................................................................141 

6.2.1. Participants ..........................................................................................................141 

6.2.2. Study design ........................................................................................................141 

6.2.3. Test session .........................................................................................................142 

6.2.3.1.  Warm up ................................................................................................142 

6.2.3.2.  Familiarisation to downhill running ......................................................142 

6.2.3.3.  Downhill running fatigue protocol ........................................................143 

6.2.3.4.  Isokinetic and EMG measurements .......................................................143 

6.2.3.5.  Cool down .............................................................................................144 

6.2.4. Data analysis .......................................................................................................144 

6.3. Results of study 3 ...........................................................................................................145 

6.3.1. Physical characteristics .......................................................................................145 

6.3.2. Quadriceps and Hamstring torque pre-post fatigue ............................................145 

6.3.2.1.  Quadriceps and Hamstring torque at 60°·s-1 .........................................145 

6.3.2.2.  Quadriceps and Hamstring torque at 120°·s-1 .......................................146 

6.3.2.3.  Quadriceps and Hamstring torque at 240˚·s-1........................................147 

6.3.3. Per-post fatigue FH/Q ratio values and percentage of changes ..........................147 

6.3.3.1. FH/Q ratio values and percentage of changes at 60°·s-1.........................147 

6.3.3.2. FH/Q ratio values and percentage of changes at 120°·s-1.......................148 

6.3.3.3. FH/Q ratio values and percentage of changes at 240°·s-1.......................149 

6.3.4. Influence of fatigue on sex differences in the FH/Q ratio ..................................149 

6.3.4.1. Influence of fatigue on sex differences in the FH/Q ratio at 60°·s-1…...149 

6.3.4.2. Influence of fatigue on sex differences in the FH/Q ratio at 120°·s-1.….150 

6.3.4.3. Influence of fatigue on sex differences in the FH/Q ratio at 240°·s-1….151 

6.3.4.4. Influence of fatigue on the FH/Q of males at angular velocities ...........153 

6.3.4.5. Influence of fatigue on the FH/Q of males at angular velocities............154 

6.3.4.6. FH/Q ratio of male and influence of fatigue on angles and PT...............155 

6.3.4.7. FH/Q ratio of female and influence of fatigue on angle and PT.............156 

6.3.5. Pre-post fatigue EMD values and percentage of changes ...................................157 

6.3.5.1. EMD values and percentage of changes at 60°·s-1..................................157 

6.3.5.2. EMD values and percentage of changes at 120°·s-1................................158 



ix 

 

6.3.5.3. EMD ratio values and percentage of changes at 240°·s-1.......................158 

6.3.6. Influence of fatigue on Sex differences in the EM .............................................159 

6.3.6.1. Sex differences in the EMD of hamstring muscles at 60°·s-1 ................159 

6.3.6.2. Sex differences in the EMD of hamstring muscles at 120°·s-1 ..............160 

6.3.6.3. Sex differences in the EMD of hamstring muscles at 240°·s-1 ..............161 

6.3.6.4. Influence of fatigue on the EMD of males at angular velocities ……....163 

6.3.6.5. Influence of fatigue on the EMD of females at angular velocities..........164 

6.3.7. Summary of results..............................................................................................165 

6.3.7.1. Influence of fatigue on sex differences in the FH/Q ratio.......................165 

6.3.7.2. Influence of fatigue on sex differences in the EMD ..............................166 

 

7. Chapter 7: General Discussion 

7.1. Overview of the main findings .......................................................................................167  

7.2. Influence of fatigue on the FH/Q ratio ...........................................................................168 

7.3. Influence of sex differences on the response to fatigue for the FH/Q ratio ...................179 

7.4. Influence of fatigue on the EMD ...................................................................................185 

7.5. Sex differences in response to fatigue on EMD .............................................................195 

7.6. FH/Q ratio and influence of sex, angular velocity and joint angle.................................198 

7.7. EMD and influence of sex, angular velocity and hamstrings muscle group ..................205 

7.8. Implications for practice ................................................................................................209 

7.9. Implications for further research ....................................................................................214 

 

8. Chapter 8: Conclusions .......................................................................................................220 

 

 References ......................................................................................................................224 

 Appendices: 

1. Statistical power calculations for sample size ....................................................252 

2. Information sheet for participants .......................................................................253 

3. Informed Consent Form ......................................................................................255 

4. Health Questionnaire ..........................................................................................256 

5. Processing the completed questionnaire – a flow diagram .................................261 

6. FH/Q ratio values of male’s participants and females (pre -post fatigue)...........262 

7. EMD values of male’s participants and females (pre-post fatigue).....................270 

8. Examples of Statistical Analysis .........................................................................278 

 



x 

 

List of Figures 

Chapter 3 

Figure (1) illustrating a conceptual model of anterior cruciate ligament (ACL) injury……….…2 

 

Figure (2) adapted from figure 1 (p. 2) as the conceptual framework for the research programme 

of this thesis..................................................................................................................................100                                                                     

 

Figure (3) a calibrated Biodex System-3 Dynamometer and supine position during concentric 

quadriceps test ..............................................................................................................................106 

 

Figure (4) a participant in a prone position during eccentric hamstring test ...............................107 

 

Figure (5) a Myomonitor Wireless EMG System ........................................................................109 

 

Figure (6) analog signal access configuration via the biodex ASA program ..............................110 

 

Figure (7.a and 7.b) Positive-edge or “rising” signal and negative-edge or “falling” signal.......110 

 

Figure (8) a Trigger Port on Myomonitor System........................................................................111 

 

Figure (9) positioning of the electrodes........................................................................................111 

 

Figure (10) the process used to determine the EMD ...................................................................113 

 

Chapter 4 

Figure (11) timeline for data-collection (study 1) .......................................................................119 

 

Figure (12) (A, B and C) FH/Q ratios at 60 120 and 240·s-1 (mean ± SD) across angle (15 º, 30 º 

and 45º and PT) for males and females……………………….……………………………......125 

 

Figure (13) (A, B, C and D) FH/Q ratios of different joint angles (15º, 30º and 45º and PT) at 60, 

120 and 240·s-1 (mean ± SD) for males and females …………..………………………...……126 

 



xi 

 

Chapter 5 

Figure (14) the timeline for data-collection (study 2) ..................................................................132 

 

Figure (15) a prone position with fully relaxed for baseline measurement..................................133 

 

Figure (16) (A, B, C and D) EMD of the hamstring muscles (BF, SM and ST and Max) at 60, 120 

and 240°·s-1 (mean ± SD) for males and females………………………….……………..……..136 

 

Figure (17) EMD at 60, 120 and 240°·s-1 (mean ± SD) across hamstring muscles (BF, SM and ST 

and Max) for males and females………………….………..…………………….…..……...…..137 

 

Chapter 6 

Figure (18) the timeline for data-collection (study 3) ..................................................................142 

 

Figure (19) a participant completing the downhill running fatigue protocol................................143 

 

Figure  (18) (A, B, C and D)  FH/Q ratio (pre-post fatigue) at different joint angle and PT at 

60°·s-1 (mean ± SD) for males and females…………….……………….……………....…........150 

 

Figure (19) (A, B, C and D) FH/Q ratio (pre-post fatigue) at different joint angle and PT at 

120°·s-1 (mean ± SD) for males and females……………….……………..….......…………......151 

 

Figure (20) (A, B, C and D) FH/Q ratio (pre-post fatigue) at different joint angle and PT at 

240°·s-1 (mean ± SD) for males and females.…..............................................................…….....152 

 

Figure (21)  (A, B, C and D) FH/Q ratios at different joint angle (15 º, 30 º, 45º and PT) at 60, 120 

and 240°·s-1 (mean ± SD) for male’s pre-post fatigue……………………………..….…..…….153 

 

Figure (22)  (A, B, C and D) FH/Q ratios at different joint angle (15º, 30º, 45º and PT) at 60, 120 

and 240°·s-1  (mean ± SD) for female’s pre-post fatigue…………….…...…….…………….....154 

 

Figure (23)  (A, B and D) FH/Q ratios 60, 120 and 240°·s-1 (mean ± SD) across joint angle (15º, 

30º, 45º and PT) for male’s pre-post fatigue………………………..………………...…….…...155 



xii 

 

 

Figure (24)  (A, B and D) FH/Q ratios 60, 120 and 240°·s-1 (mean ± SD) across joint angle (15º, 

30º, 45º and PT) for female’s pre-post fatigue …………………………….………….………...157 

 

Figure (25) (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60°·s-1 

(mean ± SD) for males and females (pre-post fatigue)………………………….……….……...160 

 

Figure (26) (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 120°·s-1 

(mean ± SD) for males and females (pre-post fatigue)…………………………………...……..161 

 

Figure (27) (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 240°·s-1 

(mean ± SD) for males and females (pre-post fatigue)………………………….....……..…..…162  

 

Figure (28) (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60, 120 

and 240°·s-1 (mean ± SD) for males (pre-post fatigue) ………………..…….……...………….163 

 

Figure (29) (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60, 120 

and 240°·s-1 (mean ± SD) for females (pre-post fatigue) ……..…………..……………..……..165 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Tables 

 

Chapter 2 

Table (1) studies using video analysis to investigate mechanisms of non-contact ACL injury ....17 

 

Table (2) activities reported at the time of Non-Contact ACL Injury ...........................................18 

 

Chapter 4 

Table (3) participant physical characteristics for study 1 and 2 ..................................................122 

 

Table (4) angle specific torque values (N·m) of concentric quadriceps and eccentric hamstring 

muscle groups (mean ± SD) at three angular velocities ……………………....………………..123 

 

Table (5) FH/Q ratio values (mean ± SD) at 60, 120 and 240°·s-1 obtained as PT and knee joint 

angles (15°, 30° and 45°) for males and females. .......................................................................123 

 

Chapter 4 

Table (6) Pre-post fatigue EMD values (mean ± SD) of hamstring muscles at 60, 120 and 240°·s-1 

obtained for males and females. ..................................................................................................135 

 

Chapter 6 

Table (7) participant physical characteristics of study 3 .............................................................145 

. 

Table (8) pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and eeccentric 

hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 60°·s-1  ................................146 

 

Table (9) pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and eeccentric 

hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 120°·s-1 ………………...…146 

 

Table (10) pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and 

eeccentric hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 240°·s-1 ….....….147 



xiv 

 

 

Table (11) Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 60°·s-1 

obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. ………...….…148 

 

Table (12) Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 120°·s-1 

obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. …………....…148 

 

Table (13) Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 240°·s-1 

obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. 

…………....…149 

 

Table (14) Pre-post fatigue EMD values and percentage (mean ± SD) of changes of hamstring 

muscles at 60°·s-1 obtained for males and females. ………………………………...………..…158 

 

Table (15) Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles at 120°·s-1 obtained for males and females. ………………………….……………..…158 

 

Table (16) Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles at 240°·s-1 obtained for males and females. ………………………………………...…159 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1                                                                                                                                          Introduction 

_______________________________________________________________________________________ 

1 

 

Chapter 1: 

Introduction 

 

1-1 Introduction  

Participation in physical activity has a range of physiological and psychological benefits, 

however it also carries a risk of injury (Bahr and Krosshaug, 2005). Non-contact anterior 

cruciate ligament (ACL) injury remains one of the more common knee injuries in sport, 

and both men and women experience ruptures to their ACLs (Kernozek et al., 2008). 

Injuries to the ACL occur in athletes participating in running sports requiring jumping and 

pivoting or landing from a jump (Arendt and Dick, 1995, McLean et al., 1999).The 

primary role of the ACL is to act as a restraint to anterior tibial displacement and forms an 

integral part of the hinge joint of the knee. Injuries to this stabilizing and mobilizing 

structure of the knee occur primarily in young, healthy individuals, most commonly as a 

result of sudden changes in direction or speed during physical activities such as sports 

(Hewett et al., 2007). Approximately 70% to 80% of sports-related ACL tears are "non-

contact" injuries (Griffin et al., 2000, Hertel et al., 2004, Renstrom et al., 2008). This 

means that the injury occurs without making contact with another athlete (e.g., a tackle in 

football) or object (e.g a stick in field hockey).  

 

With the increased participation of females in sports activities over the past decade, a 

dramatic increase in the rate of knee injuries involving the ACL has been documented 

(Arendt and Dick, 1995, Oliphant and Drawbert, 1996). Female athletes are known to have 

a higher risk of injuring their ACL while participating in competitive sports (Good et al., 

1991).
 
Compared with male athletes, female athletes are reportedly 4 to 6 times more 

likely to sustain a sports-related non-contact ACL injury (Arendt and Dick, 1995, James et 

al., 2004) even when differences in rates of participation and other obvious potential 
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confounding factors are accounted for. Numerous risk factors as can been in figure 1
 
for 

non-contact ACL injuries have been identified in the literature (Hughes and Watkins, 

2006), most of the evidence suggesting a relationship between potential risk factors and 

injury incidence is based on indirect/retrospective evidence. This is especially relevant for 

the intrinsic risk factors and those that are both modifiable and non- modifiable. 

Importantly, the evidence of a relationship between neuromuscular performance capability, 

fatigue and injury incidence remains to be directly established.  

 

Figure (1) illustrating a conceptual model of anterior cruciate ligament (ACL) injury (taken 

from Minshull, 2004). 

 

Not surprisingly the focus
 
of these mechanisms has been on potentially modifiable risk 

factors relating to body positioning,
 
joint loading, and neuromuscular coordination in 

preventing and reducing the incidence of this injury. However, it is acknowledged that 

there is probably a number of non-modifiable risk factors that predispose females to this 
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greater relative risk of injury that includes anatomical (e.g intercondyle notch width) and 

biological (hormones) risk factors. Therefore the desire to elucidate the factors attributable 

to sex differences in ACL injury rate has led to many studies attempting to elicit 

physiological, hormonal, and anatomical variances that may predispose females to ACL 

injury (Loudon et al., 1996, Shelbourne et al., 1998, Wojtys et al., 1998, McLean et al., 

1999). Sex differences in neuromuscular control and biomechanical function are thought to 

be primary factors that may account for this sex bias (Griffin et al., 2000). Unfortunately, 

to date, our understanding of the mechanisms that predispose women to a greater relative 

risk of ACL injury is unclear. 

 

Dynamic knee stability is the ability of the knee joint to remain stable when it is exposed to the 

rapidly changing loads that occur during activity (Williams et al., 2001). Dynamic stability of the 

knee plays an important role in reducing the relative risk of injury from a muscular and 

neuromuscular perspective. At decreased joint angles decelerating manoeuvres involve the 

dynamic stabilisers to maintain joint stability (Wikstrom et al., 2006) since static restraints 

efficiency is reduced at this point (Senter and Hame, 2006). During knee extension the 

quadriceps contract powerfully and increase tibial rotational and anterior shear (Griffin et 

al., 2006). An adequate response to this situation is hamstrings co-activation, which 

decreases the strain on the ACL between 0.35 and 1.05 rad of knee flexion (Senter and 

Hame, 2006). However, when joint stiffness is required near full knee extension both 

quadriceps and hamstrings are in an unfavourable position to perform their function, and 

this can be observed in the action-specific length-tension relationships. Fast knee extension 

movements also appear to be a risk factor since the effectiveness of dynamic stability 

depends on their biomechanical and physiological characteristics which are impaired by 
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the requirements of the velocity of movements as can be seen in their torque-velocity 

relationships. 

 

Muscular forces are crucial in maintaining joint stability predominantly by increasing joint 

stiffness through co-contraction. In vivo exploration of hamstring or quadriceps co-

contraction suggests that it doubles or even triples joint stiffness and decreases joint laxity 

by up to 50% (Russell et al., 2007). Data from adults indicate that sidestepping and cutting 

movements are most likely to load the ACL and subsequently increase the relative risk of 

injury (Lloyd et al., 2005). In addition, the use of neuromuscular biomechanical modelling 

to understand knee ligament loading and subsequent knee joint stability has emphasised 

the importance and effectiveness of the muscles in providing this stabilisation (Lloyd et al., 

2005). During landing, when potential to injure the ACL exists, the response of the 

neuromuscular system is critical. The ACL can provide up to 86% of the resistance to 

anterior tibial translation, however it is well recognised that the internal and external forces 

incurred at the knee during landing stresses the passive ligament structures beyond their 

capacity.  

 

Most injuries happen in the second half of an athletic event when fatigue is commonly 

present (Hertel et al., 2004), and fatigue is suggested to be a factor in injury risk for both 

males and females. The functional hamstring to quadriceps ratio (FH/Q) may be associated 

with injury risk to the knee, and this assertion would be further supported if the ratio was 

reduced in the fatigued state. Fatigue-related changes in neuromuscular performance also 

may be interpreted to represent an increased risk of injury (Chan et al., 2001, Gleeson et 

al., 1998b, Mercer et al., 1998). Therefore, identifying fatigue as a potential risk factor for 
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ACL injury, and exploring the interaction between fatigue and other potential risk factors, 

may allow for the development of improved prevention strategies. 

 

Evaluation of isokinetic eccentric antagonistic strength relative to concentric agonist 

strength may be of value in describing the maximal potential of the antagonistic muscle 

group (Coombs and Garbutt, 2002). The hamstring to quadriceps ratio has conventionally 

been expressed as concentric hamstrings to concentric quadriceps strength (Lund-Hanssen 

et al., 1996) which does not reflect the functional capacity of the knee during dynamic 

movement. A FH/Q ratio of about 1.00 has been reported for fast isokinetic knee extension 

movement, indicating a significant capacity of the hamstring muscles to provide dynamic 

joint stabilisation during active knee extension (Aagaard et al., 1998). A number of studies 

have now started to report the functional ratio but are mainly limited as they use peak 

torque (PT) which tends to occur in the mid-range of the movement rather than near full 

knee extension where injury is likely to occur. Studies also tend to use PT obtained from 

CON and ECC actions that do not occur at the same joint angle and therefore tells us little 

about co-contraction and is thus not functionally relevant. The FH/Q ratio is also velocity 

and joint angle dependent (Aagaard et al., 1998). The current study builds on the work of 

Sauret et al., (2009), who suggested that the functional ratio should be calculated at 

specific joint angles to avoid differences in PT between quadriceps and hamstring due to 

varying joint angle. The sample size of related previous studies is also limited and there 

are few studies that have used female participants. Another limitation of previous studies is 

that hip position has not been taken into account and all available studies appear to have 

tested in a sitting position which is not relevant to sporting activities. This is particularly 

important as we know that torque appears to be significantly greater for knee flexion in a 

sitting position when compared to the more ecologically valid supine or prone position 
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(Black et al., 1993). An advantage of the assessment of torque in the prone and supine 

position, is that it provides a closer approximation of the length tension relationship of the 

hamstring and quadriceps muscles during many functional and sporting activities, and is 

therefore functionally relevant (Worrell et al., 1990). The exploration of sex differences in 

the FH/Q ratio, taking into account functionally relevant hip joint angle and using a range 

of movement velocities, remain to be investigated, particularly in a fatigued state, and 

might reflect predisposition to injury. 

 

High levels of neuromuscular control are also necessary to create dynamic knee stability 

(Besier et al., 2001). Neuromuscular pre-planning allows feed forward recruitment of the 

musculature that controls knee joint positioning during landing and pivoting manoeuvres 

(Besier et al., 2001). Imbalanced or ineffectively timed neuromuscular firing (including 

feedback mechanisms) may lead to limb positioning during athletic manoeuvres that puts 

the ACL under increased strain and increases the risk of injury (Myer et al., 2005b). It has 

been suggested that females display a longer latency period than males between 

preparatory and reactive muscle activation (Winter and Brookes, 1991). The 

electromechanical delay (EMD), which is defined as the time delay between the onset of 

muscle activity and onset of joint acceleration (Norman and Komi, 1979), may be 

associated with the unrestrained development of forces of sufficient magnitude to damage 

ligamentous tissue during prolonged exercise (Winter and Brookes, 1991). Sex differences 

in muscle recruitment and timing of muscle activation may affect dynamic knee stability 

(Hewett et al., 2005). It has previously been suggested that EMD will vary substantially 

due to the characteristics of the muscles being tested (e.g. architectural arrangement and 

fibre type distribution) (Viitasalo and Komi, 1981); muscle action (e.g. eccentric, 

concentric, voluntary, reflexive) (Norman and Komi, 1979, Zhou et al., 1995); and data 
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processing techniques (Corcos et al., 1992). However, a limited number of studies have 

investigated the influence of movement velocity on EMD, and only one during eccentric 

actions (Ronald et al., 1998). This is surprising given the range of movement velocities 

produced during sporting performance and that non-contact ACL injury may be velocity 

dependent. To date no studies appear to have examined sex differences in EMD of the 

hamstrings under eccentric conditions during knee extension movements, let alone under 

conditions of fatigue.  

 

Most of the literature to date evaluating the effect of fatigue on neuromuscular reflex 

behaviour has been conducted almost exclusively on males. While there are a few studies 

that have examined sex differences and EMD (Bell and Jacobs, 1986, Zhou et al., 1996, 

Winter and Brookes, 1991) and found EMD to be longer in females than males, no studies 

have explored neuromuscular reflex behaviour at the knee as a function of both sex and 

fatigue during eccentric actions. Whether EMD contributes to the greater relative risk of 

non-contact ACL injury in females is unclear as further research is needed to explore the 

sex related changes in EMD, especially during eccentric actions of the hamstrings at a 

range of velocities, and when fatigue is present. 

 

For the FH/Q ratio, if the hamstrings eccentric PT is equal to the peak concentric 

quadriceps torque then the ratio is 1:1 and the joint is supposedly not at risk whereas if the 

quadriceps are stronger, then the ratio is less than 1, and the joint is considered at risk 

(Hughes and Watkins, 2006). A FH/Q ratio of less than 0.6 has been linked with a 17-fold 

increase in the relative risk of hamstring injury (Yeung et al., 2009). Nevertheless, it may 

be hypothesised that, in the fatigued state, the FH/Q ratio would be less than in the non-

fatigued state if it is to be considered that the FH/Q ratio mediates the link between fatigue 
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and injury risk of the knee. Although fatigue has been proposed to increase the risk of 

ACL injury  (Hertel et al., 2004), there is currently no evidence to suggest that fatigue has 

a greater effect on the incidence of ACL injury in females compared with males (Hughes 

and Watkins, 2006). However, most injuries occur in the second half of an athletic event 

(Hertel et al., 2004) when fatigue is commonly present. Identifying fatigue as a potential 

risk factor for an ACL injury may allow for the development of improved prevention 

strategies. Furthermore, no studies have investigated sex differences in either muscular or 

neuromuscular knee stability, focusing on eccentric actions of the hamstrings, following a 

field based fatigue task.  

 

Therefore, this thesis proposes to examine sex differences in muscular performance (FH/Q 

ratio) and neuromuscular (EMD) performance of the hamstrings muscle that appear to be 

associated with reduced knee stability and an increased risk of ACL injury. Additionally  it 

will also investigate sex differences in the FH/Q ratio and EMD following a field based 

fatiguing task. 

 

1-2 Aims and objectives of thesis 

The following chapters will investigate variables that may be important in understanding 

potential risk factors for ACL injury. Therefore, the aims of the studies that comprise the 

present thesis will be accomplished through answering the following questions: 

1- What are the differences in the FH/Q ratio between males and females? 

2- What are the differences in the neuromuscular performance (EMD) of the knee flexor 

muscles during eccentric actions between males and females? 

3- What are the effects of a fatigue task on FH/Q ratio and EMD of the knee joint 

muscles in males and females? 
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Chapter 2: 

Literature Review 

 

2.1 INTRODUCTION  

The total number of teams sponsored by the United States National Collegiate Athletic 

Association (NCAA) institutions (men and women combined) increased 20.2%, from 

12,447 in 1987-88 to 15,582 in 1997-98. At the same time, the total number of student-

athletes rose 20.7%, from 268,776 to 338,866. Much of this increase can be attributed to 

the significant growth in women’s intercollegiate sports. While the number of male teams 

and student-athletes rose only 12.0% and 12.3%, respectively, female athletic teams and 

student-athlete participation increased by 27.8% and 33.6% respectively. During this ten-

year span, three new women’s sports were recognized (ice hockey, rifle, and water polo), 

and female participation in golf, rowing, skiing, and soccer increased over 50% (National-

Collegiate-Athletics-Association, 2004). During this same period of time, non-contact 

injuries to the anterior cruciate ligament (ACL) in physically active females increased 

proportionately. Each year, it is approximated that 80 000 to 250 000 ACL injuries  occur 

in young athletes as increasing numbers of participate in sports (Griffin et al., 2006). The 

number of female ACL injuries  also will to continue to grow as increasing numbers of 

females participate in sports. 

 

The non-contact ACL injury remains one of the more common knee injuries in sport, and 

both men and women experience ruptures to their ACLs (Kernozek et al., 2008). Colby et 

al. (2000) reported that 70% of all ACL injuries  are sport related. ACL injury rates differ 

by sex in several sports, with women experiencing two to eight times higher injury rates 

than men in the same sports (Good et al., 1991). A limited number of studies that have 
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investigated the possible reasons of the incidence of ACL injury based on time at risk and 

compared male and female athletes competing in similar activities at the same level of 

competition (Renstrom et al., 2008). Most injuries happen in the second half of an athletic 

event when fatigue is commonly present (Hertel et al., 2004), and fatigue is known to be a 

factor in injuries to both males and females. 

 

Actions of the knee joint are known to involve a combination of rolling and gliding 

movements. Knee joint stability is known to be an important factor in risk of injury 

(Blackburn et al., 2009). Dynamic knee stability is also known to be important, and high 

levels of neuromuscular control are a requirement for dynamic knee stability (Besier et al., 

2001). When high loads are placed on the ligaments and other soft tissues, for example 

during high speed sport activities, additional stabilizing forces are required to keep the 

strain in knee ligaments within safe ranges. The activation of the antagonist muscle 

provides a stabilising force, but is known to be reduced as the movement pattern becomes 

more familiar, resulting in increased efficiency of movement (Solomonow and 

Krogsgaard, 2001). The functional hamstring to quadriceps ratio may be associated with 

injury risk to the knee, and this assertion would be further supported if the ratio was 

reduced in the fatigued state. 

 

This review of literature is divided into five sections. The first section will review the 

incidence and risk factors of ACL injury. The second section will discuss functional knee 

stability. The third section will consider the importance and assessment of the functional 

ratio. The fourth section will address electromyography (EMG) and the last section will 

discuss fatigue and its role in force production and neuromuscular control. 
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2.1.1 Anterior cruciate ligament (ACL) injury 

Injury can be described in terms of its severity. Injury severity is usually classified 

according to the length of time needed for recovery. Van Mechelen et al. (1992) 

recommended the following expanded criteria to account for the degree of injury severity: 

type of injury, length of treatment, absence from training and game, work disability, 

structural and permanent changes to the body, costs of injury.  

 

Anterior cruciate ligament injury has been increasingly problematic in the lives of both 

recreational and competitive athletes, both physically and psychologically (Mandelbaum et 

al., 2005). Injuries to the ACL are frequent in athletes participating in running sports 

requiring jumping and pivoting (Arendt and Dick, 1995). The ACL role is primary to hold 

the knee intact and forms an integral part of the hinge joint of the knee. Injuries to the 

stabilizing and mobilizing structure of the knee occur primarily in young, healthy 

individuals, most commonly as a result of sudden changes in direction or speed during 

physical activities such as sports (Hewett et al., 2007). An ACL tear is most frequently a 

sports-related injury. ACL tears can also occur during rough play, motor vehicle collisions, 

falls, and work-related injuries. About 80% of sports-related ACL tears are "non-contact" 

injuries (Griffin et al., 2000, Hertel et al., 2004, Renstrom et al., 2008). This means that the 

injury occurs without making contact with another athlete (e.g., a tackle in football). Most 

often ACL tears happen when pivoting or landing from a jump (McLean et al., 1999). 

Female athletes are known to have a higher risk of injuring their anterior cruciate ligament 

while participating in competitive sports (Good et al., 1991). Unfortunately, to date, 

complete understanding as to why women are more prone to ACL injury is unclear. 
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2.1.2 Incidence of ACL injury 

Incidence and prevalence are the two common frequency rates, which have been reported 

in the sport injury literature (Powell et al., 1986). Prevalence rates concern the total 

number of cases, new or old, that exists in a population at risk at a specific period of time. 

Incidence rates concern the number of new injuries that occur in a population at risk over a 

specific period of time (Hunter, 1988). Each year, it is approximated that 80 000 to 250 

000 ACL injuries  occur in young athletes (Griffin et al., 2006). Up to two-thirds of 

patients who have complete ACL tears develop knee instability and, subsequently, damage 

to the menisci and articular surfaces, which significantly affects knee function and leads to 

a decrease in level of activity (Smith et al., 1993, Keene et al., 1993). Hughes and Watkins, 

(2006) found that in a group of individuals with rupture of the ACL, 31% of patients 

reported overall difficulty in walking alone, 44% had difficulties with activities of daily 

living including walking, and 77% had difficulties with playing sport as a direct result of 

their ACL injury (Griffin et al., 2000).   

 

Arendt and Dick, (1995) reported the incidence of ACL injury in United States collegiate 

basketball and soccer for males and females over the period 1989-93. Data were collected 

for 461 male and 278 female soccer teams and 531 male and 576 female basketball teams. 

ACL injury was reported in terms of athlete-exposure, where athlete-exposure took into 

account games and practice sessions. For soccer, female injury incidence was 0.39 per 

1000 athlete-exposures compared with 0.13 per 1000 athlete-exposures for males. For 

basketball, the incidence of ACL injury was 0.29 per 1000 athlete-exposures for females 

and 0.07 per 1000 athlete-exposures for males. Malone et al. (1993) documented the 

injuries of 402 male and 385 female basketball players from 29 institutions in three 

division one United States collegiate basketball conferences over a 5-year period. Sixty-
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two females and nine males sustained ACL injury, which corresponded to an incidence of 

16.1% in females and 2.2% in males. 

 

Inklaar (1994) reported an overall analysis of incidence rate from different studies, ranging 

from 0.5 to 45 ACL injuries  per 1000 hours of games and training. The incidence of 

reported injuries varies due to different methods of data collection, study design and 

sample characteristics, as well as different definitions for injury.  Hawkins and Fuller 

(1999) reported the ACL injury incidence (the ratio of the injuries recorded to the number 

of players taking part in all the matches analysed, expressed as a percentage) of 27.7% per 

player for all injuries in 44 games played and injury frequency rate (number of injuries per 

1000 hours of competition or training) of 6880 injuries per 100 000 hours played. With 

respect to injuries, which resulted from player contact, Hawkins and Fuller (1996) reported 

that 64% of observed injuries were as a result of contact injury, which is in agreement with 

Hoff and Martin (1986) who reported 66% and 52%, respectively.  

 

De Loes et al. (2000) studied cruciate ligament injury (ACL and posterior cruciate 

ligament “PCL” combined) in Swiss youth enrolled in a national youth sport programme 

(ages 14-20), where approximately “370,000” youth participate in the programme. Over a 

seven-year period, a total of 470 ACL/PCL injuries were reported (annual average of 67 

injuries). The incidence rate for females was 0.52 per 100,000 athlete-hours. For male, the 

rate was 0.62 per 100,000 athlete-hours. Annually, there was approximately one ACL or 

PCL injury per 5000 participants. Males accounted for 76% of the ACL/PCL injuries.  On 

the basis of these data, it is reasonable to state that the incidence in the general population 

is low.  However, even accounting for low incidence rates, the burden on the health 

systems is high.  For example, De Loes et al. (2000) found that ACL/PCL injury in the 
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study population had the highest average cost of all knee injuries. More males than females 

sustain an ACL injury caused by the greater absolute number of male participants in sport 

activities (Griffin et al., 2000). However, the risk of sustaining an ACL injury is reported 

to be two to eight times higher among female athletes compared to male counterparts 

(Arendt and Agel, 1999, Griffin et al., 2000, Hewett et al., 1999, Myklebust et al., 1998, 

Roos et al., 1995). Females also appear to obtain injuries at a younger age than men (Roos 

et al., 1995). A previous study found small sex differences in the overall risk of sustaining 

an ACL tear and sex differences in injury rates persisted when specific sports were 

compared (Mountcastle et al., 2007). 

 

For each team, the average injury incidence of moderate (see below for explanation) injury 

is estimated to be 113 per 1000 game hours (Hawkins and Fuller, 1996) and 300 per 1000 

game hours (Ekstrand et al., 1983). Hawkins and Fuller (1999) later reported 8.5 injuries 

per 1000 hours over three seasons of competition.  Ekstrand et al. (1983) estimated that the 

incidence of injury for an indiviual player during a year was 7.6 per 1000 practice hours 

and 16.9 per 1000 game hours. They reported that 256 injuries occurred among the 180 

players during the year, that 62% were minor injuries (absence from practice of less than 

one week), 27% moderate injuries (absence from practice of more than one week but less 

than one month), and 11% major injuries (absence from practice of more than one month). 

Nielsen and Yde (1989) found the injury incidence of all players was 3.6 per 1000 practice 

hours and 14.3 per 1000 game hours. Engstrom et al. (1991) reported that for players who 

participated in soccer competition for one year, the incidence of injury was 24 per 1000 

hours during the game, and 7 per 1000 hours during training. Approximately two-thirds of 

injuries occur during competition and one-third during training. This proportion has been 
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demonstrated in several investigations (Sullivan et al., 1980, Albert, 1983, Ekstrand et al., 

1983, Nielsen and Yde, 1989). 

 

In an active German population the general ACL injury incidence was 70 per 100 000 

citizens in the more physically active proportion of the population. In Sweden the 

occurrence of ACL injury in the population aged 10–64 years was 81 per 100 000 citizens 

(Renstrom et al., 2008). Due to the high intensity of activity in competition, it would be 

expected that more injuries occur during cometition than in traning. With respect to 

incidence rate and level of competiton, Nielsen and Yde (1989) found a direct relationship 

between injury incidence rate and the level of competition with the higher incidence rate 

associated with the higher level of intensity of play. In contrast, Hawkins and Fuller (1998) 

reported that there is no relationship between injury incidence rate and level of competion. 

The weight of evidence suggests that players who play at a high level of intensity can 

expect to sustain more injuries than players who take part in competitions at a lower level.  

 

In looking at a possible difference between the sexes, in 2005–2006 the Swedish Registry 

found a higher proportion of both primary ACL reconstructions and revisions in men than 

in women (59% vs. 41% and 55% vs. 45%, respectively) (Renstrom et al., 2008).  

However, there is consensus in the literature that female athletes have a greater risk of 

incurring an ACL injury than male athletes when they compete in the same sport at the 

same level of competition. However, most studies have focused on the prevalence of ACL 

injuries  associated with high-risk sports; only a limited number have calculated the 

incidence of ACL injury based on time at risk and compared male and female athletes 

competing in similar activities at the same level of competition (Renstrom et al., 2008). 
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In summary, numerous studies have found that the incidence of sports-related anterior 

cruciate ligament (ACL) non-contact injuries has increased substantially over the past 30 

years and that women in sports involving jumping and cutting movements are at higher 

risk for non-contact ACL ruptures than the men involved in those same sports even when 

differences in rates of participation and other obvious potential confounding factors are 

accounted for (Agel et al., 2005, Gwinn et al., 2000).  However, to understand fully the 

risk of injury that a player is exposed to in the sport, it is necessary to analyse the key 

factors in the game and to relate these factors to the risk they may present and the 

subsequent injuries which may result from them.  For example, most injuries occur in the 

second half of an athletic event (Hertel et al., 2004), when fatigue is commonly present. 

One study has also demonstrated that the FH/Q ratio is compromised at the end of each 

half of a football match, indicating that fatigue effects are present during the last half of the 

match (Small et al., 2010). Identifying fatigue as a possible risk factor for an ACL injury 

may allow for the development of improved prevention strategies. 

 

2.1.3 Mechanisms of non-contact knee injury 

The mechanism of ACL injury is a main focus of discussion in the injury literature, as an 

ACL tear is more often a non-contact event (Renstrom et al., 2008). Injuries to the ACL 

that happen without physical contact between athletes are referred to as non-contact ACL 

injuries  (Feagin and Lambert, 1985, Ferretti et al., 1992) and most occur where sudden 

deceleration or a change of direction, landing and pivoting manoeuvres are repeatedly 

performed (Yu and Garrett, 2007).  

 

To produce specific interventions for preventing sports injuries, it is important to 

understand the causative event or mechanism of injury, as outlined by Krosshaug and 
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Bahr, (2005b). Many different methodological approaches have been used to study the 

mechanisms of injury in sports (Krosshaug and Bahr, 2005b). Video analysis is necessary 

as it is usually the only way to obtain kinematic information from the actual event. In rare 

cases, injuries have even occurred through biomechanical experiments, but for obvious 

ethical reasons it is difficult to base any research on this as a prospective approach. Six 

studies have used video analysis to study non-contact ACL injury mechanisms in sports 

and have been summarised in Table 1.  

Table 1- Studies using video analysis to investigate mechanisms of non-contact ACL injury  

 

References 

No. of 

games 

No. of ACL 

injuries  

 

Methods 

 

Boden et al., 

(2000) 

 

 

27 

 

15 

Visual inspection and questionnaires. Videos obtained 

from professional and collegiate teams: football 

(56%), basketball (30%), soccer (9%), volleyball 

(4%). 7 women, 16 men. 

Ebstrup and 

Bojsen-Moller, 

(2000) 

 

15 

 

3 

Visual inspection. Prospective collection of videos 

from Danish indoor ball games. Two representative 

handball injuries and one basketball injury analysed. 

All women. 

 

Teitz (2001) 
 

54 

 

14 

Visual inspection. Retrospective multicentre video 

analysis: 20 basketball, 18 football, 9 soccer injuries. 

Only basketball injuries analysed. 3 men, 11 women. 

Krosshaug, et 

al., (2007a) 

 

20 

 

19 

Visual inspection and questionnaires. Retrospective 

and prospective video collection of women’s 

Norwegian or international handball competition 

Krosshaug et 

al., (2007b) 

 

39 

 

30 

Visual inspection. Retrospective video collection from 

high school, college and NBA, WNBA basketball. 13 

men, 17 women. 

 

These studies were in general agreement that injuries predominantly occur in cutting or 

landing situations. The knee joint was reported to be relatively straight (extended) at the 

point of injury. Boden et al., (2000) found that the amount of internal/external rotation at 

the time of rupture was minimal. This agrees with the findings of Olsen et al. (2004) where 

the amount of internal/external knee rotation was 10° or less in 90% of the cases. 

However, the interpretation of the result varied considerably. Olsen et al., (2004) stated 

that valgus loading in combination with external or internal knee rotation caused the injury 
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and proposed notch impingement as a plausible cause of the excessive ACL loading. 

Boden, et al., (2000) and Teitz (2001), on the other hand, hypothesised that a vigorous 

eccentric quadriceps contraction was the main cause. 

 

The traditional marker-based motion analysis method provided average hip flexion and 

knee flexion/extension data.  Krosshaug et al., (2007c) demonstrated the feasibility of 

these method using actual injury videos. Detailed time courses for joint kinematics and 

ground reaction force were obtained from a four camera basketball video and a three-

camera handball video. The valgus angle increased abruptly in both injury cases, from 4° 

to 15° within 30 ms and from 3° to 16° within 40 ms for the basketball and handball 

injury, respectively. However, to make generalisable statements on typical injury 

kinematics, a systematic approach to collecting and analysing more injury videos is 

needed. 

Table 2- Activities Reported at the Time of Non-Contact ACL Injury 

 

Reference 

Total 

observed 

sample 

Decelerating 

from running 

without changing 

direction 

Decelerating 

from running 

with changing 

direction 

 

Jump 

 

Landing 

 

Plant 

and cut 

 

unknown 

Boden et 

al., (2000) 

81 4 44  32  1 

Fauno and 

Wulff 

Jakobsen 

(2006) 

 

105 

  

66 

  

26 

  

13 

Ferretti et 

al., (1992) 

 

84 

   

46 

 

38 

  

Olsen et al., 

(2003) 

 

35 

    

16 

 

19 

 

Total 305 4 110 46 112 19 14 

Ratio % 100% 1.31% 36.07% 15.08% 36.72% 6.23% 4.59% 

  

Mechanisms of ACL injury have been investigated by interviewing those who have 

sustained an ACL injury (Table 2) (Boden et al., 2000, Fauno and Wulff Jakobsen, 2006, 

Ferretti et al., 1992, Olsen et al., 2003). Most of the injuries are reported to occur with non-

contact mechanisms, such as those involving landing from a jump and sudden deceleration 
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of the body while running, with or without a change in direction (Ferretti et al., 1992, 

Olsen et al., 2003, Fauno and Wulff Jakobsen, 2006). A general characteristic in these 

retrospective self-report studies is that ACL-injured individuals often report that the knee 

moves in multiple planes of motion (Ferretti et al., 1992; Olsen et al., 2003).  

 

An additional important characteristic appears to be the knee flexion angle at the time of 

injury. Although one group (McNair et al., 1990) reported that the ACL injury occurred 

when the knee was at or near full extension, knee hyperextension is also often reported as 

part of the mechanism (McNair et al., 1990, Boden et al., 2000). Also, the majority of non-

contact ACL injuries  were reported to happen during weight-bearing conditions (Boden et 

al., 2000, Fauno and Wulff Jakobsen, 2006, Ferretti et al., 1992, Olsen et al., 2003), a 

finding supported by Fauno and Wulff Jakobsen (2006) who noted that 104 of 105 ACL-

injured patients stated that the injury happened when the foot associated with the injured 

limb was in contact with the ground. Even with these research design limitations, 

important information about the mechanisms of ACL injury has been gained. From these 

reports, non-contact injury may be more likely when the knee is in a shallow flexion angle 

(McNair et al., 1990) or a hyper-extended position (Boden et al., 2000), and the repeatedly 

observed combined motions in both frontal and transverse planes during sudden 

deceleration motions indicate that ACL injury likely results from multi-plane knee loading 

(Boden et al., 2000, Fauno and Wulff Jakobsen, 2006, Ferretti et al., 1992, Olsen et al., 

2003). 

 

Recent studies have consistently demonstrated that the predominant forces that affect 

strain in the ACL are anterior-directed shear forces applied to the tibia (either from 

external sources such as an anterior-directed force applied to the back of the lower leg or 
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through internal mechanisms such as contraction of the dominant quadriceps muscles with 

the knee near full extension) (Berns et al., 1992, Arms et al., 1984). Important 

contributions to ACL strain values come from forces applied in the coronal and transverse 

planes of the knee (Renstrom et al., 2008). External torque applied to the knee creates 

relatively low ACL strain values. Valgus torque alone creates ACL strain only after 

significant injury to the medial collateral ligament. Interestingly, complete injury to the 

MCL was essential before significant injury to the ACL resulted from valgus torques 

applied in isolation (Mazzocca et al., 2003). These cadaver studies emphasise the 

importance of anterior shear forces in ACL injury (Renstrom et al., 2008). 

 

In summary, most of the knee injuries are reported to be a consequence of non-contact 

mechanisms, such as those involving landing from a jump and sudden deceleration of the 

body while running, with or without a change in direction (Ferretti et al., 1992, Olsen et 

al., 2003, Fauno and Wulff Jakobsen, 2006).  Fatigue may have an influence on such 

mechanisms and affect men and women differently. Under fatigued conditions, it was 

shown that males and females decrease knee flexion angle and increase proximal tibial 

anterior shear force and knee vagus moments when performing stop-jump tasks (Chappell 

et al., 2005). Decker et al., (2003) reported that women land with a more erect posture and 

rely on the ankle plantar flexors to transmit forces proximally. They hypothesized that, in a 

fatigued state, this landing strategy exhibited by the female subjects will place them at an 

increased risk of knee injury because the fatigue will further inhibit the muscles ability to 

stabilize the knee (Decker et al., 2003).  The potential role of fatigue in knee injury 

mechanisms, and the relative influence in males and females, requires further 

investigation. 
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2.1.4 Factors increasing relative risk of knee injury  

It has been well documented in the literature that injuries about the knee have a high 

incidence compared to injuries in general, and multiple studies have found anterior 

cruciate ligament (ACL) ruptures to have high incidence of associated problems (e.g., 

meniscal tear) (McKinney et al., 2008). The risk of ACL injury is affected by a number of 

factors; these factors need to be understood to devise effective preventive strategies. In the 

literature, three different classification schemes have been used when discussing risk 

factors for non-contact ACL injury. In the first, risk factors are divided into extrinsic 

factors which concern environmental conditions and the manner in which activities are 

administered (those outside the body) and intrinsic factors that distinguish individuals 

from each other (those from within the body) (Murphy et al., 2003). In the second scheme, 

Griffin et al. (2000) categorised risk factors into three intrinsic groups (anatomical, 

hormonal and biomechanical) and one extrinsic group (environmental). While these 

categories may be of some help in identifying the possible cause of an injury, in most cases 

the cause of the injury is likely to be the result of a complex interaction of intrinsic and 

extrinsic factors (Lysens et al., 1984). The third scheme, which has been selected as the 

basis of the present review, divides risk factors into the following four categories: 

environmental, anatomical, hormonal, and neuromuscular/biomechanical (Perrin and 

Shultz, 2005, Griffin et al., 2006). It is important to reinforce that the evidence linking 

most risk factors to injury incidence is linked and the suspected relationship between 

factors and injury tend to be based on indirect evidence.   

 

2.1.4.1 Environmental risk factors 

Environmental (external) factors comprise meteorological conditions, the type of surface 

(grass, hard floor, etc), the type of footwear and its interaction with the playing surface, 
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and protective equipment such as knee braces (Griffin et al., 2006). Limited concentration 

has been directed toward the potential influence of weather conditions on injury during 

competition (Griffin et al., 2000, Orchard and Powell, 2003). The majority of injuries 

occurred during conditions of no precipitation and low humidity, therefore minimizing the 

opportunity to thoroughly ascertain possible influences of various field conditions.  

 

A small cohort study of eight high school football teams in Texas noted an approximately 

50% reduction in the rate of ACL injury on the latest generation of artificial turf, relative 

to natural grass. Meyers and Barnhill, (2004) recorded only 14 ACL injuries  and did not 

include data on type of footwear worn or the traction of the surface (Meyers and Barnhill, 

2004) so this finding must be interpreted with caution.  Meyers and Barnhill, (2004) 

attempted to quantify weather conditions at time of injury, showing that the majority of 

injuries happened during dry conditions, warm temperatures, and low humidity. 

Conditions of no precipitation (dry surface) were related with 201 (88.3%) injuries on 

Field Turf and 106 (84.4%) of injuries on natural grass. Rain or wet field conditions were 

connected with 27 (11.7%) trauma cases on Field Turf and 19 (15.6%) on natural grass. 

No injuries were reported during snow or sleet conditions. Although no significant 

differences were noted between playing surfaces across temperature, interestingly, when 

analyzing data by cold days as compared to hot days, as suggested by Orchard and Powell, 

(2003), a significantly higher incidence of injury was observed during hot days on 

FieldTurf as compared to natural grass. On cold days, the occurrence of injury was similar 

on both surfaces. 

 

Regarding footwear, Lambson et al., (1996) found that the risk of suffering an ACL injury 

is greater in football athletes who have boots with a higher number of studs and an 
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associated higher torsional resistance at the foot-turf interface. Earlier studies suggested 

that shorter studs of footwear design length were associated with a reduced risk of knee 

and ankle injuries (Lambson et al., 1996, Robey et al., 1971). However, in recent years, 

there has been limited laboratory-based experimental or epidemiologic research addressing 

footwear and its interaction with the type of playing surface, possibly because of the 

complexity of this relationship, which may be further modified by intrinsic factors (Griffin 

et al., 2006). It is quite probable that increased shoe-surface traction is a direct risk factor 

for ACL injury, but it should also be noted that athletes modify their movement patterns to 

adapt to variations in shoe and surface factors and thereby may alter neuromuscular and 

biomechanical factors that influence ACL injury risk (Milburn and Barry, 1998).  

 

Sitler et al., (1990) found that prophylactic knee brace use was associated with a reduced 

rate of knee injury. This large epidemiologic study focused on football but did not examine 

ACL injury specifically (Albright et al., 1994). The biomechanical confirmation of the 

effect of prophylactic knee braces on the ACL injury risk remains equivocal (Najibi and 

Albright, 2005). A controlled laboratory study on a latest functional knee brace with a 

constraint to knee extension established that the new knee brace significantly increased 

knee flexion angle in a stop-jump task (Yu et al., 2004). 

 

In summary, the evidence base regarding environmental factors is confusing and mixed. 

The few methodologically rigorous studies that have been achieved are limited by small 

numbers of ACL injuries . It appears plausible that harder surfaces and shoes with longer 

studs increase shoe-surface traction and the risk of ACL injury, but specific evidence of 

this as a causal factor has not been obtained to date. The biomechanical and epidemiologic 

literature on brace employment (prophylactic and functional) is equivocal and inconsistent. 
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In general, there is a need for studies addressing environmental risk factors that better 

integrate biomechanical and epidemiologic knowledge. Such studies would as well ideally 

consider the interaction of extrinsic and intrinsic factors (Griffin et al., 2006). 

 

2.1.4.2 Anatomical risk factors 

Several studies of ACL injury risk factors have focused on anatomical or anthropometric 

measures such as tibia length and thigh length (Uhorchak et al., 2003). The magnitude of 

the quadriceps femoris angle, the degree of static and dynamic knee valgus, foot pronation, 

body mass index (BMI), the width of the femoral notch, and ACL geometry are anatomical 

factors that have been associated with an increased risk for non-contact ACL injury 

(Griffin et al., 2006). Lower extremity bone lengths may underlie increased risk of ACL 

injuries ; however, anatomical measures often do not correlate with potential dynamic 

injury mechanisms (Myer et al., 2005a). Anatomical measures are difficult to modify by 

nature; therefore, the potential impact of research into these mechanisms is relatively small 

(Hewett et al., 2006). 

 

The Q angle has been suggested as a contributing factor to the development of knee 

injuries by altering lower extremity kinematics (Heiderscheit et al., 2000, Mizuno et al., 

2001). The Q-angle is formed between the vectors for the combined pull of the quadriceps 

femoris muscle and the patellar tendon (Hungerford and Barry, 1979). There is no strict 

conformity regarding standardised reference values, but Q-angles exceeding 15° in males 

and 20° in females are considered abnormal (Horton and Hall, 1989). There is a 

documented relationship between high Q-angle, patellar maltracking and anterior knee 

pain, and several authors have speculated that this sex-related anatomical difference may 

also lead to increased risk of ACL injury (Hutchinson and Ireland, 1995, Moeller and 
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Lamb, 1997). However, numerous studies have found no relationship between Q-angle and 

predisposition to ACL injury (Gray et al., 1985, Loudon et al., 1996). Not only is there no 

demonstrated link between ACL injury risk and Q-angle, but there is no consensus in the 

literature as regards Q-angle measurement approach (Lewis, 2000).  

 

Women have a comparatively wider or differently shaped pelvis that could lead to an 

increased Q angle, and this increased angle could relate to increased injury risk (Zelisko et 

al., 1982, Agre and Baxter, 1987a). In contrast, Gray et al., (1985) have reported that 

injury rate differences were not related to anatomical differences such as Q angle. 

Statically determined Q angles do not appear to be predictive of either knee valgus or ACL 

injury risk during dynamic movement, thus supporting further exploration of other 

dynamic muscular and neuromuscular factors and their role in limb alignment during 

landing and cutting (Myer et al., 2005a, Gray et al., 1985). 

 

The ACL is positioned in the femoral (intercondylar) notch, and a narrow notch could 

cause increased elongation of the ACL under high tension. Uhorchak et al., (2003) 

reported that women with a narrow intercondylar notch had a 16.8 times greater injury risk 

ratio than did those with a larger notch width. Shelbourne et al., (1998) stated that a small 

notch is associated with a small ACL and that sex is not the factor - it is just that more 

women than men have small notches. Other reports demonstrate no difference in notch 

width normalized to bone width in female and male athletes or an association between 

notch width and injury (Arendt and Dick, 1995, Hewett et al., 2005, Hutchinson and 

Ireland, 1995, LaPrade and Burnett, 1994). Several studies in the literature have reported 

no correlation between notch width and the incidence of non-contact ACL injuries  but do 

not have sufficient power to make definitive conclusions (Griffin et al., 2006). 
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General joint laxity and hyperextension were found to significantly increase the risk for 

injury in female soccer players (Solomonow et al., 1987). Uhorchak et al., (2003) reported 

that women with generalised joint laxity had a 2.7 times larger risk of ACL injury than did 

those without laxity. Joint laxity influences not only sagittal knee motion (hyperextension) 

but also coronal knee motion (valgus), which can strain the ACL and be related to 

increased risk in female athletes (Boden et al., 2000, Hewett et al., 2005, Markolf et al., 

1995, Markolf et al., 1978, Uhorchak et al., 2003). Increased hamstrings flexibility might 

be partially responsible for the decreased dynamic control of the knee in female athletes 

(Hewett et al., 1996, Huston and Wojtys, 1996). It shows that developmental differences in 

flexibility, especially hamstrings flexibility, might contribute to the post pubertal sex gap 

in knee injury rate; however, further research in this area is needed (Hewett et al., 2006).  

 

Anatomical risk factors for ACL injury remain an intriguing and promising area of 

research. However, so far, conflicting data have resulted across a variety of study designs 

regarding the magnitude of the Q angle, the degree of static and dynamic knee valgus, the 

width of the femoral notch. Although discovering anatomical risk factors improves our 

understanding of the ACL injury risk, one must appreciate that if anatomical factors are 

found to be definitely associated with an increased risk of injury, they may be less 

modifiable than environmental, hormonal, muscular or neuromuscular factors (Griffin et 

al., 2006). 

 

2.1.4.3 Hormonal risk factors   

Estrogen levels are claimed to be associated with female ACL injury rates (Gray et al., 

1985, Zelisko et al., 1982). Decreased ligament strength, as a result of cyclic changes in 
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female hormones, might be a possible contributor to the higher incidence of female ACL 

injuries  (Hewett et al., 2006). Increased attention to sex hormones as a risk factor for non-

contact ACL injury followed Liu et al., (1996) of receptors for these hormones in ACL 

tissue obtained from male and female subjects. Because hormones are identified to affect 

ligament loading responses, and because of the higher incidence of ACL tears in women, a 

number of studies have been conducted to evaluate the role of sex hormones in ACL injury 

(Slauterbeck et al., 1999). Serum estrogen concentrations increase several-fold during the 

menstrual cycle (Samuel et al., 1996). Both estrogen and relaxin are known to affect the 

tensile properties of ligaments, and estrogen receptors are present in human ACL 

fibroblasts.  Estradiol has been shown to decrease procollagen synthesis in cultured 

fibroblasts from a female ACL (Booth and Tipton, 1970, Liu et al., 1996, Samuel et al., 

1996). 

 

The association between the phase of the menstrual cycle and the incidence of non-contact 

ACL injury remains unclear (Griffin et al., 2006). Numerous studies have investigated the 

time of occurrence of non-contact ACL injury in females in relation to the phase of the 

menstrual cycle (Myklebust et al., 1997, Wojtys et al., 1998, Wojtys et al., 2002, 

Slauterbeck et al., 2002a); however, the findings are not in agreement. Some studies 

reported significantly higher incidence of ACL injury between days 10-14 (Wojtys et al., 

1998, Wojtys et al., 2002) whereas others reported significantly higher incidence during 

days 1-2 of the menstrual cycle (Slauterbeck et al., 2002b). Also, days of significantly 

lower incidence of ACL injury have been reported between days l-9 (Wojtys et al., 2002) 

days 8-14 (Myklebust et al., 1997) and days 15-28 of the menstrual cycle (Wojtys et al., 

2002). These results are consistent with previous studies that did not find alterations in 
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torque produced about the knee joint at different points in the menstrual cycle (DiBrezzo et 

al., 1991, Friden et al., 2003, Janse de Jonge et al., 2001). 

 

The isokinetic findings of Janse de Jonge et al., (2001) study agree well with studies by 

Gur (1997) and Lebrun et al., (1995), who also did not determine any changes over the 

menstrual cycle for maximal isokinetic knee flexion and extension strength. Both these 

studies proposed that menstrual cycle phase does not affect isokinetic knee flexion and 

extension strength, which is confirmed by the Janse de Jonge et al., (2001) study. In 

addition, the quadriceps strength properties, the electrically stimulated quadriceps fatigue 

and the isokinetic knee flexor and extensor fatigue did not change throughout the 

menstrual cycle (Janse de Jonge et al., 2001). At present, the influence of changes in 

hormone concentrations on the incidence of ACL injuries  in females is not clear (Hughes 

and Watkins, 2006). Furthermore, general agreement has not been reached concerning the 

time in the menstrual cycle associated with increased injury incidence. Although the 

evidence is not definitive, the balance of evidence would indicate more injuries occur in 

early and late follicular phases. Future research should consider the inherent individual 

variability in cycle characteristics between women and accurately document each woman’s 

hormone milieu by determining actual hormone concentrations (Griffin et al., 2006).  

 

2.1.4.4 Neuromuscular risk factors 

Research exploring neuromuscular risk factors continues to develop, and the risk factor 

elucidation is intertwined with a greater understanding of the mechanics of injury. Many 

controlled laboratory-based experimental studies have addressed neuromuscular risk 

factors. Although these studies give strong theoretical support to clinical observations, 

further studies are still needed to establish the association between the injury and proposed 
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neuromuscular risk factors (Griffin et al., 2006). The proposed neuromuscular risk factors 

might be grouped as those related to altered movement patterns, altered activation patterns, 

and inadequate muscle stiffness. 

 

Three neuromuscular deficits related to biomechanical or neuromuscular coordination 

include ligament dominance, quadriceps dominance, and leg dominance (Hewett et al., 

2001). Andrews and Axe (1985) first introduced the concept of ligament dominance 

whereby the lower extremity musculature does not adequately absorb the forces during a 

sports manoeuvre resulting in excessive loading of the knee ligaments, especially the ACL, 

which resists anterior tibial translation and knee valgus. Ligament dominance frequently 

results in high ground reaction forces, valgus knee moments, and excessive knee valgus 

motion. Quadriceps dominance is an imbalance between the recruitment model of the knee 

flexors and extensors. Females have a tendency to rely on their quadriceps over their 

hamstrings to produce dynamic knee stability during jumping and landing activities 

(Huston and Wojtys, 1996). Leg dominance is an imbalance between muscular strength 

and recruitment patterns on opposite limbs, with one side often exhibiting greater dynamic 

control (Hewett et al., 1996, Knapik et al., 1991). Over-reliance on one limb places greater 

stress on that knee, where the weaker side might not effectively absorb the high forces 

associated with sporting activities. 

 

Augmented ACL injury risk in female athletes is associated with the relatively low knee 

flexor to extensor ratio or hamstrings to quadriceps PT ratio (Hewett et al., 2006). 

Quadriceps contraction increases ACL strain in the first 30° to 45° of knee flexion, and 

isolated quadriceps contraction can create forces beyond those required for ACL tensile 

failure (Fleming et al., 2003, Lloyd, 2001, McNair et al., 1990, Myklebust et al., 1998). 
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Arms et al., (1984) confirmed that ACL strain increased to 45° of flexion and decreased at 

knee flexion angles greater than 60°. Beynnon et al., (1992) reported that the ACL was 

strained by quadriceps contraction at 30° but not at 90° using in vivo techniques. They also 

reported that quadriceps contraction significantly increased at 15° and 30° but decreased at 

60° (Beynnon et al., 1995). Hewett et al., (2006) believed that co-activation of the 

hamstrings and quadriceps muscles may protect the knee joint not only against excessive 

anterior drawer, but also against knee abduction and dynamic lower extremity valgus. If 

the hamstrings are weak, quadriceps activation would have to be reduced to provide a net 

flexor moment required to perform the movement (Hewett et al., 2005, Hewett et al., 

1996). Shortage in strength and activation of the hamstrings directly limit the potential for 

muscular co-contraction to protect ligaments (Solomonow et al., 1987). Co-contraction of 

the knee flexors is essential to balance active contraction of the quadriceps in order to 

compress the joint and assist in the control of high knee abduction torques and anterior 

tibial translation (Solomonow et al., 1987). 

 

The augmented balance in strength and recruitment of the hamstring and gastrocnemius 

musculature relative to quadriceps may be a mechanism that protects the knee ligaments in 

male athletes. Sufficient co-contraction of the knee flexors may help balance active 

contraction of the quadriceps in order to compress the joint and assist in the control of high 

knee abduction torques or valgus collapse (Hewett et al., 2006). Suitable neuromuscular 

control may prevent the critical loading necessary to rupture the ACL during manoeuvers 

that place the athlete at risk for an injury. Female athletes, with reduced ability to 

adequately balance muscular recruitment through positions of high joint loading, may 

increase their risk of subsequent ligament failure (Hewett et al., 2005). During flexion 

exercises, female athletes display increased activation of their quadriceps relative to their 
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hamstrings and increased anterior tibial loads during dynamic exercises (Markolf et al., 

1995, Sell et al., 2004). Disproportional recruitment of the quadriceps musculature might 

lead to anterior shear force in female athletes. Thus, the available literature shows several 

potential altered hamstring activation strategies and suggests its potential to be related to 

increased risk of ACL injury. 

 

In summary, environmental, anatomical, and hormonal, as well as a neuromuscular factors, 

have all been explored as possible risk factors for non-contact ACL injury. After reviewing 

the data on these risk factors, this literature here concurred with Meeuwisse’s theory 

(1994), recently expanded by Krosshaug et al., (2005a) that non-contact ACL injuries  

arise from a complex interaction of multiple risk factors. Understanding the underlying 

causes or risk factors for one of the more severe sports-related knee injuries an ACL 

disruption is important for the development of intervention strategies and for identifying 

those at increased risk of injury. This provides a target group for intervention. The risk 

factors for ACL injury have been considered as either internal or external to an individual. 

However, the evidence regarding an athlete’s complete external and internal risk factor 

profile for ACL injury is unclear because most of the investigations have studied isolated 

variables.  

 

Although no definitive aetiology for the discrepancy in the occurrence of ACL injuries  

between the sexes has been established, structural, hormonal and neuromuscular factors 

have all been proposed (Hewett et al., 2007). Dynamic muscular control of knee joint 

alignment, specifically differences in muscle recruitment, firing patterns and strength may 

be partly responsible for the sex differences in the incidence of ACL injury.  The proposed 

neuromuscular risk factors might be grouped as those related to altered movement patterns, 
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altered activation patterns, and inadequate muscle stiffness. In the fatigued state, males and 

females use antagonist inhibition strategies by reducing hamstring activation (Pollard et 

al., 2006). The work of Padua et al., (2006) demonstrated greater co-activation ratios in 

females compared to males in a fatigued state and also suggest that adults move to an 

ankle dominant strategy (compared to knee strategy) to protect the knee on landing. 

Although these studies present some empirical support for clinical observations, further 

research is still needed to find the association between the injury and proposed 

neuromuscular risk factors in males and females, particularly with fatigue.  

 

Most of the evidence suggesting a relationship between potential risk factors and injury 

incidence is based on indirect/retrospective evidence. This is especially relevant for the 

intrinsic risk factors and those that are both modifiable and non- modifiable. Importantly, 

the evidence of a relationship between neuromuscular performance capability, fatigue and 

injury incidence remains to be directly established. Potential muscular and neuromuscular 

imbalances may be related to components of the ACL injury mechanism in males and 

females. Hamstring recruitment has been shown to be significantly higher in men than in 

women. The hamstring to quadriceps peak torque ratio tends to be greater in men than in 

women which lead us to propose what any direct evidence that muscular and 

neuromuscular are important factors.  

 

 

2.2 THE FUNCTIONAL DYNAMIC KNEE STABILITY 

The ability of the knee joint to remain stable when subjected to the rapidly changing loads 

it withstands during activity is referred to as dynamic knee stability (Williams et al., 2001). 

Dynamic stability depends on the integration of articular geometry, soft tissue restraints, 
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and the loads applied to the joint through weight bearing and muscle activation (Williams 

et al., 2001). Generally, several ligaments work synergistically to provide joint stability 

(Baratta et al., 1988). The anterior cruciate ligament (ACL) is an important stabilizer of the 

knee joint. This is due not only to the mechanical properties of the ligament but also to the 

afferent information provided to the central nervous system by the mechanoreceptors that 

exist in the ACL (Sjolander et al., 2002, Solomonow and Krogsgaard, 2001, Johansson et 

al., 1991a).  

 

Dynamic knee stability is an important component required to reduce relative risk of 

injury, especially to the knee joint. There are numerous methods employed within the 

literature to try and measure/determine knee stability, include 3D kinematics using 

sophisticated camera systems, knee ligament arthrometers to directly determine joint 

laxity, restarted movement in some causes. Manual methods, knee joint position. The 

estimation of 3D human motion from a monocular sequence of 2D images is challenging 

for a variety of reasons. These include the non-linear dynamics of the limbs, ambiguities in 

the mapping from the 2D image to the 3D model, the similarity of the appearance of 

dierent limbs, self occlusions, kinematic singularities, and image noise. It is difficult to 

directly measure knee stability; however the eccentric ability of the hamstrings to co-

contract to counter the torque produced by concentric quadriceps actions during knee 

extension is important in stabilising the knee (determined as the functional H/Q ratio 

[FH/Q]).In context of this thesis, term of dynamic knee stability refers to muscular and 

neuromuscular system that contributes to stability of the knee (see section 2.2.1) 

 

The ACL is challenged by both intra-limb torques, generated by the muscles crossing the 

joint, internal torques, like a leg swing, and various external torques which are influenced 
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by the velocity or direction of displacement, such as the translation of the centre of gravity 

of the body. Functional stability involves central processes and peripheral structures to 

maintain the integrity of the knee structures and limit the ACL strain during different 

phases of movement and physical activity (Moore et al., 2002). Athletic success depends 

on the ability to jump, run, and change direction at high speed in a rapidly changing 

environment. The knee joint is subjected to extremely high forces and moments during 

these activities because it lies between the two longest lever arms in the body and is 

surrounded by its most powerful muscles (Williams et al., 2001).  

 

Muscle force-generating ability has been shown to be significantly higher in males than 

females (Kanehisa et al., 1996, Pincivero et al., 2000). However, there are few data 

comparing FH/Q ratio in males and females. The dynamic strength control ratio should 

give a appropriate measure relating to knee function. So, for minimising the injury risk, it 

has been proposed that attention should be paid to keeping the hamstring to quadriceps 

ratio close to unity (Agre and Baxter, 1987b). The hamstrings to quadricrps muscle 

strength ratio has been used as an indicator of normal balance between the knee flexors 

and extensors and it is a parameter commonly used to explain the muscle strength 

properties about the knee joint (Kannus, 1994, Baltzopoulos and Brodie, 1989).  

 

The hamstring to quadriceps ratio has conventionally been expressed as concentric 

hamstrings to concentric quadriceps strength (Lund-Hanssen et al., 1996) which does not 

reflect the functional capacity of the knee during dynamic movement. Eccentric actions 

develop greater tension than concentric muscle actions performed at the same velocity, and 

are therefore considered more effective in providing muscle strength (Albert, 1995) and 

several studies have confirmed this claim (Cometti et al., 2001, Kannus, 1994, Ghena et 
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al., 1991). Westing and Seger (1989) investigated the eccentric and concentric torque 

velocity characteristics of the quadriceps and hamstring muscle groups. They reported that 

mean concentric PT was significantly lower than the corresponding eccentric PT at all 

assessment velocities. Furtheremore, it was observed that mean eccentric torque did not 

change significantly with increasing eccentric velocity for either the quadriceps or 

hamstring muscles.  

 

A FH/Q ratio of about 1.00 has been reported for fast isokinetic knee extension movement, 

indicating a significant capacity of the hamstring muscles to provide dynamic joint 

stabilisation during active knee extension (Aagaard et al., 1998). Knee joint stability is 

known to be important in risk of injury (Blackburn et al., 2009). The FH/Q ratio, outside 

the 0.7-1 range, when calculated near full knee extension (0º) suggests a potential increase 

in the relative risk of injury. A number of studies have now started to report the functional 

ratio but are mainly limited as they use peak torque (PT) which tends to occur in the mid-

range of the movement rather than near full knee extension where injury is likely to occur. 

Studies also tend to use PT obtained from CON and ECC actions that do not occur at the 

same joint angle and therefore tells us little about co-contraction and is thus not 

functionally relevant. The FH/Q ratio is velocity and joint angle dependent (Aagard et al, 

1998), and the functional ratio should be calculated at specified angles to avoid differences 

in PT between quadriceps and hamstrings due to varying joint angles. If it is to be accepted 

that injury occurrence is due to a specific hamstring weakness the FH/Q ratio should 

decrease when approaching full knee extension and with increasing angular velocity or in 

the presence of action-specific fatigue. Sex differences in functional ratio, taking into 

account joint angle and velocity, remain to be investigated, particularly in a fatigued state, 
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which is surprising given the likely association of functional ratio with predisposition to 

injury (Croce et al., 1996). 

 

2.2.1 The role of the hamstring and quadriceps muscles 

The hamstrings are commonly referred to as ACL agonists and co-contract with the 

quadriceps during knee extension to counteract anterior tibial translation (Baratta et al., 

1988, Aagaard et al., 2000). The hamstring muscles during leg extension assist the anterior 

cruciate ligament (ACL) in preventing anterior tibial drawer forces (More et al., 1993, 

Yasuda and Sasaki, 1987) by increasing joint stiffness, increasing the posterior pull and 

reducing anterior laxity force during quadriceps loading.  This opposing force helps to 

decelerates the leg prior to full extension, preventing overextension and stabilises the knee 

joint throughout the range of motion (Baratta et al., 1988). The hamstrings therefore play 

an important part in maintaining knee joint stability (Coombs and Garbutt, 2002). Tensile 

strain on the ACL is significantly reduced when the hamstrings and the quadriceps co-

activate during extension, compared to quadriceps activation alone (Yasuda and Sasaki, 

1987, More et al., 1993, Draganich and Vahey, 1990). This reduction in ACL strain when 

the hamstrings sufficiently co-contract with the quadriceps is the basis for suggesting that a 

higher FH/Q ratio may reduce the relative risk of injury. Although there is no clear 

evidence of a link between FH/Q ratio and injury incidence, the data on ACL loading and 

co-contraction is compelling and propose a causal link between FH/Q ratio and injury 

incidence. further investigation is required to this causal link. 

 

In the literature, it is well documented that the quadriceps muscle group possesses higher 

concentric mean torque values (20-40 % greater) than the hamstrings at all angular 

velocities (Goslin and Charteris, 1979, Wyatt and Edwards, 1981). Stafford and Grana, 
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(1984) tested the quadriceps and hamstring muscles of 60 intercollegiate soccer players 

across a range of angular velocities. They reported that the quadriceps possesses greater 

concentric torque than the hamstring muscles at all angular velocities, and the level of 

differences varied for different angular velocities (33% at 1.62, 28% at 3.24, and 20% at 

300˚·s–1
). In addition, Agre and Baxter (1987) investigated the musculoskeletal profile of 

25 male collegiate soccer players at 30˚·s–1 
and found a greater value (40%)

 
in the 

quadriceps than in the hamstring in their participants. If the quadriceps torque greatly 

exceeds that of the hamstring, the ability to resist knee extension is reduced which may 

result in a forced stretch of the hamstrings and consequent muscle damage (Yasuda and 

Sasaki, 1987). 

 

2.2.2 Proprioception and neuromuscular control in knee stability 

Proprioception plays a main role in muscular control, the precision of motion and the 

stability in joints. The skin, muscles, tendons, menisci, capsule and ligaments, in and about 

the knee joint contain several receptors, which contribute to perception of movement and 

position (Boerboom et al., 2008). This control mechanism is essential as it helps to adjust 

muscle tension and therefore improve joint stability (Barrack et al., 1989, Hewett et al., 

2002, Johansson et al., 1991b).  Proprioception and neuromuscular control are two distinct 

mechanisms that complement each other in the processes of postural and joint stability. 

The sensorimotor system represents complex neurosensory and neuromuscular processes 

(Lephart et al., 2000). Proprioception is the afferent information arising from peripheral 

areas of the body that contribute to postural control, joint stability, and several sensations 

(Riemann and Lephart, 2002a). The perception and execution of musculoskeletal control 

and movement are mediated primarily by the central nervous system (CNS). The CNS 
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receives input from 3 main subsystems: the somatosensory system; the vestibular system; 

and the visual system. 

 

Neuromuscular control as explained by Riemann and Lephart (2002b) is the unconscious 

activation of dynamic stabilizers in preparation for and in response to joint loading and 

motion for the purpose of maintaining and restoring functional joint stability. 

Neuromuscular control is dependent on the accuracy of the afferent information received 

by the central nervous system. Therefore, it would be impossible to describe 

neuromuscular control of the knee without including the sensory aspect of the system. 

 

Riemann and Lephart (2002a) consider two categories in which proprioceptive information 

in neuromuscular control can be separated. The first category involves the ability of the 

proprioceptors to alter motor programmes to adjust to unexpected perturbations in the 

external environment.  The ability of the joint proprioceptors to take action to alterations in 

the external environment protects joints from injury. The second category is the role 

proprioception plays in the planning and modification of internally generated motor 

commands. Proprioception provides the information needed for neuromuscular control to 

keep the joints stable.  

 

Alterations in the afferent input to the alpha motor neurons can potentially affect reactive 

muscular function and decrease the protection of the joints (Rizzu et al., 2000). Skinner et 

al., (1986) reported that during fatigue conditions subjects had significantly decreased 

proprioceptive abilities. They hypothesized that this was due to either altered afferent 

impulses from the muscles themselves or from abnormal stresses in the joint capsule as a 

result of the muscle fatigue (Skinner et al., 1986). Altered joint proprioception due to 
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fatigue may impact on neuromuscular control (Rizzu et al., 2000). Because of the 

increased latency periods during the fatigued state, muscles may not be able to respond 

quickly enough to protect a joint from injury. Considering this time lapse and the need to 

develop sufficient muscle tension rapidly enough to provide dynamic knee stability, 

electromechanical delay (EMD) that described as the latency between the onset of 

electrical activity in a muscle and the onset of force generation by that muscle’s 

contraction (Yavuz et al., 2010) should be considered when evaluating muscular responses 

to an imposed perturbation or injurious stress. 

 

 

2.2.3 The role of co-activation and eccentric activity in knee joint function 

The contribution of antagonists during particular phases of the movement is very important 

in many activities because the antagonists control and stabilize the joint when large forces 

are developed (Baratta et al., 1988, Patton and Mortensen, 1971, Kellis and Baltzopoulos, 

1995). Co-activation of the hamstrings during active knee extension assists the ACL in 

maintaining knee joint stability by exerting an opposing force to anterior tibial translation 

(Baratta et al., 1988, Osternig et al., 1995). As a result, determination of the strength of the 

antagonists and its relationship to agonists has been extensively investigated (Kellis and 

Baltzopoulos, 1995). Electromyography (EMG) provides a direct and non-invasive 

indication of motor unit activity of the involved muscles during joint actions. The EMG 

technique has been used for the determination of the antagonistic activity during different 

joint movements (Hagood et al., 1990, Baratta et al., 1988, Solomonow et al., 1987). 

 

Eccentric contractions occur when the load torque (i.e., resistance moment) forced on the 

muscle or a group of muscles is greater than the muscle torque produced by all activated 
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motor units (Enoka, 1996). During an eccentric muscle action, the external mechanical 

load exerted on the solicited muscle triggers storage of elastic ‘recoil’ energy within the 

muscle-tendon system. During subsequent contraction, this stored energy is released to 

supplement the force produced by the solicited muscle fibres. As a result, the contraction 

requires a reduced metabolic energy cost for the same force production compared to 

standard concentric contractions (Abbott et al., 1952). Eccentric actions develop greater 

tension than concentric muscle actions performed at the same angle, and are considered to 

be more effective in improving muscle strength (Albert, 1995) as confirmed by several 

studies (Kannus, 1994, Ghena et al., 1991, Cometti et al., 2001). Westing and Seger (1989) 

investigated the eccentric and concentric torque-velocity characteristics. Quadriceps and 

hamstring strength of twenty participants were tested at angular velocities ranging from 

1.08 to 6.48 rad.s
-1

. They reported that mean concentric torque was significantly lower 

than the corresponding eccentric torque. They observed that mean eccentric torque did not 

change significantly with increasing eccentric velocity for either the quadriceps or 

hamstring muscles. At each test velocity, the concentric H/Q ratio was significantly lower 

than corresponding eccentric H/Q ratio. 

 

It has been suggested that poor eccentric strength of the hamstring muscle group may 

cause hamstring strains (Stanton and Purdam, 1989). Worrell et al., (1991) did not find any 

differences in concentric or eccentric lower limb muscle torque between injured and 

uninjured athletes. Eccentric actions produce greater loading of the elastic component of 

skeletal muscle, which may help to impove sprinting and jumping performance, and may 

be useful in rehabilitation (Kellis and Baltzopoulos, 1995). If the risk of strains and tears is 

to be reduced, the ability of the muscle to resist forces should be improved (Bennett and 

Stauber, 1986). There are a number of factors to consider when examining the relationship 
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between torque and movement velocity during eccentric actions. Most available studies 

have reported that maximal eccentric torque is not velocity-dependent (Kellis and 

Baltzopoulos, 1995). However, the nature of torque-velocity relationship seems to be 

associated with sex, age and even level of strength (Colliander and Tesch, 1989).  

 

An insufficiency of hamstrings co-activation may lead to a lack of knee-joint stability, 

which can result in quadriceps muscle contractions creating unwanted stresses on internal 

joint structures, episodes of joint instability, and atrophy of the surrounding muscles 

(Solomonow et al., 1989). Although co-activation of the hamstring muscle during knee 

extension may seem counterproductive, it is thought that it provides joint stability and acts 

as a natural safety mechanism (Chan et al., 1996). The increase in antagonist activation 

acts as a braking mechanism which also reduces excessive tension on the anterior cruciate 

ligament (Tourny-Chollet and Leroy, 2002). The quadriceps is capable of generating much 

higher force than the hamstrings whilst both muscles are contracting concentrically 

suggesting that the hamstrings ability to stabilise the knee is limited. However, during 

functional movements the quadriceps are contracting concentrically whilst the hamstrings 

are contracting eccentrically (Chan et al., 1996). This would therefore indicate that the 

hamstrings are capable of providing sufficient joint stability during dynamic knee 

extension (Aagaard et al., 2000) in most situations.   

 

The impact of the muscle action mode on the level of co-activation varies according to the 

different studies. The impact could be greater in plantar flexor muscles (Pinniger et al., 

2000) compared with knee extensor muscles (Kellis and Baltzopoulos, 1998), whereas 

other studies show similar co-activation values regardless of neuromuscular solicitation 

type (Pousson et al., 1999, Amiridis et al., 1996).   
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During knee flexion exercises, females display increased co-activation of their quadriceps 

relative to their hamstrings which could increase anterior tibial loads during dynamic 

exercises. Other research groups have also suggested that disproportional recruitment of 

the vastus lateralis knee musculature results in increased anterior shear force in female 

athletes compared to their male counterparts (Markolf et al., 1995, Sell et al., 2004). Sell et 

al., (2004) reported that female athlete’s exhibit a disproportionate (four times greater) 

firing of their lateral hamstrings, as assessed by EMG measurements, compared to males 

during the deceleration of a jump landing. Thus an unequal or low ratio of medial to lateral 

quadriceps recruitment may come together with increased lateral hamstring firing to 

compress the lateral joint, open the medial joint and increase anterior shear force.  

 

2.3 THE HAMSTRING TO QUADRICEPS FUNCTIONAL RATIO 

The torque ratio that has obtained the most attention in the literature is the hamstring to 

quadriceps (H:Q) torque ratio (Holcomb et al., 2007). If the torque of the quadriceps 

considerably exceed the torque of the hamstrings, subsequently both the hamstrings and 

anterior cruciate ligament (ACL) may become more susceptible to injury (Holcomb et al., 

2007). However, with assistance from the hamstrings, the ACL stabilizes the knee by 

preventing anterior translation of the tibia on the femur (More et al., 1993, Kannus, 1988).  

 

The hamstring-quadriceps ratio has until recently been based on the concentric torque of 

these two muscle groups (Coombs and Garbutt, 2002). However, co-activation of these 

muscle groups is identified to occur and takes place through opposing muscle action 

modes. Through leg extension the quadriceps produce a concentric action (Qcon) and the 

hamstrings produce an eccentric action (Hecc). On the other hand, the hamstrings contract 
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concentrically (Hcon) and the quadriceps eccentrically (Qecc) during leg flexion. 

Consequently, in order to accurately assess the balancing nature of the hamstrings about 

the knee joint, the hamstring-quadriceps ratio should be explained either as a Hecc/Qcon 

ratio representing knee extension, or a Hcon/Qecc ratio representing knee flexion (Coombs 

and Garbutt, 2002). A recent study on adults clearly links the relative risk of injury to 

muscle imbalance of the FH/Q ratio (Yeung et al., 2009). 

 

The H/Q ratio has conventionally been determined as maximal knee flexion torque divided 

by maximal knee extension torque obtained at a given knee angular velocity and 

contraction mode (isometric, concentric, eccentric). For example, the conventional 

concentric H/Q torque ratio is estimated by dividing maximal concentric knee flexor 

(hamstring) moment by the maximal concentric knee extensor (quadriceps) moment 

obtained at a given angular velocity. However, since opposing muscles are not capable of 

simultaneous concentric muscle actions, the value of the conventional ratio has been 

questioned (Croisier et al., 2002). The conventional ratio which lack functional relevance 

has been examined by numerous authors. In fact, during knee extension, antagonistic 

eccentric, not concentric, hamstrings co-activation decreases the anterior shear forces 

induced by the concentric quadriceps muscle group action (Senter and Hame, 2006). 

 

The functional ratio, which compares concentric muscle actions to eccentric muscle 

actions of the opposing muscles, evaluates actions that do occur simultaneously and are 

more functional (Aagaard et al., 1998, Aagaard et al., 1995, Hole et al., 2000). Therefore, 

it has recently been proposed that the agonist-antagonist torque relationship for knee 

extension may be better described by a FH/Q ratio of eccentric hamstring to concentric 

quadriceps muscle torque. Therefore, accurate determinations of concentric and eccentric 
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torque production are required to assess the FH/Q ratio. A high level of quadriceps torque 

compared to hamstring torque will reduce the H/Q ratio and a ratio of less than 55% may 

represent a quadriceps dominant athlete. Subsequently this may mean that hamstring 

recruitment patterns are less than optimal during dynamic tasks.  

 

2.3.1 Assessment of isokinetic torque 

The most useful measure of muscles performance is the moment of rotational force or 

torque, since most of human movement occurs by rotation of a series of bodily segments 

and even in complicated joints there is always an axis about which the moment is 

occurring (Aagaard et al., 1996). The main advantage of isokinetic dynamometry is that it 

accounts for the differences in mechanical advantage across joint angles and angular 

velocities and offers maximal loading throughout the range of movement unlike isometric 

or isotonic assessment (Warren et al., 1999). If isokinetic measures are to be used as a 

valid indicator of dynamic muscle characteristics they need to be valid and reliable 

(Warren et al., 1999). Isokinetic dynamometry is a tool commonly used to measure torque 

at various joints. Contemporary isokinetic devices allow the quantification of a number of 

specific functional variables including peak torque, work and power. Peak torque, referring 

to the single highest torque output produced by a muscle action as the limb moves through 

a range of motion is the most commonly used isokinetic variable (Kannus, 1994).  

 

The primary advantage of isokinetic resistance is that a muscle group may be exercised to 

its maximum potential throughout the knee joint's entire range of available motion. 

Isokinetic exercise may be used to quantify the quadriceps and hamstring muscle groups' 

abilities to generate torque or force and is also useful as an exercise modality in the 

restoration of either muscle group's pre-injury level of strength. A muscle has only the 
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capacity to generate tension or to relax. If the force produced by a muscle is measured 

about a joint's axis of rotation, the moment of force is known as torque. Torque may be 

measured as a peak value from the highest point of a given torque curve or at specific 

angle, or it may be expressed as an average value from each point along the entire curve. If 

the force and distance of a given muscle contraction are known, the tension produced by a 

muscle is expressed as work. If the quantity of time required to produce work is known, 

the ability of the muscle to generate power may be determined. Some clinicians believe 

that assessment of torque at slow isokinetic test velocities reflects "strength," while the 

torque produced at high test velocities represents "power." However, torque, power, and 

work may be assessed at slow, intermediate, or fast isokinetic test velocities.  

 

Modern isokinetic dynamometers such as the Biodex System 3 offer an ECC/ECC mode 

that may facilitate easier performance across a range of low to high knee angular 

velocities. This mode requires participants only to concentrate on resisting the lever 

instead of thinking about two different types of muscle action which have different control 

mechanisms by the nervous system (Enoka, 1996). During concentric assessments 

participants are required to attempt to accelerate the limb, applying maximum force against 

the lever arm. For assessment of eccentric torque, participants are required to resist the 

external force applied by the dynamometer as it moves the limb through the range of 

motion. It has been suggested (Kellis and Baltzopoulos, 1998) that the activities in which 

the individual participates should be examined, rather than isolated CON or ECC 

conditions, reflecting the natural movement patterns of dynamic alternating sequences of 

ECC and CON work.  
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Muscle fibres contain fibrils which in turn comprise of actin and myosin. These filaments 

are interlaced with one another and are joined by cross bridges where tension is created 

and the muscle is caused to shorten or lengthen. The muscle  and cross bridge interactions 

are considered to be the contractile element, as they cause shortening and lengthening of 

the muscle (Winter, 1991). One important consideration when measuring torque 

production is hip joint position as this will influence the length tension relationship. In 

addition, the importance of the eccentric action of the hamstrings includes the promotion 

of hip stabilisation to stabalise the hip flexor moment, which in turn neutralizes the 

tendency of the quadriceps to cause anterior translation of the tibia on the femur. A 

number of previous studies have examined the influence of hip position on knee torque 

(Black et al., 1993, Worrell et al., 1990). Isokinetic assessments of the knee joint muscles 

can be performed in a prone, supine or sitting position. Torque values appear to be 

significantly greater for knee flexion in a sitting position when compared to supine (Black 

et al., 1993). Assessments in the prone and supine position provide closer approximation 

of the length tension relationship of the hamstring and quadriceps muscles during many 

functional and sporting activities (Worrell et al., 1990).  

 

Isokinetic dynamometry is currently advocated as the best method for testing muscular 

strength as it provides an objective assessment and an accurate quantification of torque 

(Urquhart et al., 1995). The major advantage of isokinetic assessment is that the maximal 

muscular force that can be applied over a range of movement can be measured under 

dynamic conditions, provided that the pre-set velocity has been attained by the moving 

limb (Baltzopoulos and Brodie, 1989). The angular velocity refers to the velocity of the 

lever arm and limb segment and not to the linear shortening or lengthening velocity of the 

muscles involved. The torque-velocity relationship illustrates the ability of muscle to 
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produce torque depending on the angular velocity (Yeadon et al., 2006). The torque 

produced by a muscle shortening at a high velocity will always be less than at a slow 

velocity except in eccentric action where torque increases or plateaus with velocity 

(Elftman, 1966). 

 

There are very different characteristics and control mechanisms of these two actions, 

therefore the assessment of both types of action (Con/Ecc) are essential for a complete 

understanding of torque potential.  The low functional Hcon/Qecc ratio values for fast 

isokinetic knee flexion observed (0.3 to 0.4)  in the study of Aagaard et al., (1998) 

correspond well to findings of previous studies (Aagaard et al., 1995, Aagaard et al., 

1996). These findings perhaps suggest that the hamstring muscles may have a reduced 

capacity for dynamic knee joint stabilisation in active knee flexion movements that involve 

eccentric quadriceps muscle action. In regulating limb velocity, the dynamometer exerts an 

opposing torque against the accelerating limb, often resulting in a transient peak in the 

torque curve, (Sapega et al., 1982).  

 

Isokinetic dynamometers offer automated procedures for the correction of the effects of 

gravity. The gravitational torque of the limb-lever arm is automatically added to torque 

measurement of the muscles opposed by gravity and subtracted from the torque of the 

muscle facilitated by the force of gravity. Regardless of the muscle group, acceleration of 

the limb and resistance to acceleration, due to gravity, will inflate hamstring to quadriceps 

ratio, confounding the determination of these ratios. Early work by Winter et al., (1981) 

found that when gravitational torque are not taken into account knee extension may be 

underestimated by 26 to 43% and knee flexion by as much as 55 to 510%. In turn the 

percentage error is large for less forceful actions and decreases as the force of the muscle 
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action increases. This is due to the fact that because gravitational torque remains constant 

for the same testing condition the size of the error is dependent on the magnitude of the 

muscular force (Baltzopoulos and Brodie, 1989).  

 

2.3.2 Reliability studies of isokinetic torque 

Fundamental to valid interpretation of isokinetic test data is the reliability of measurement. 

Reproducibility indicates the extent to which the instrument yields the same measurements 

on repeated episodes by either the same tester or different testers (Kaminski et al., 1995). 

Factors that might positively or negatively affect the reliability of isokinetic torque 

measurements include participant motivation, positioning, stabilisation, biological 

variation and consistency of adherence to the test protocol and pre-test instructions 

(Sapega, 1990, Rothstein, 1985). It is essential that the clinician or researcher understand 

that published reliability reports are typically specific to the procedures used and described 

in each study. Rothstein (1985) reinforces that reliability is specific to the procedure used 

and should not be generalised to other machines, joints, muscle actions, velocities, or 

protocols.  

 

To improve reliability, in repeated measurements, it is central to record the dynamometer 

adjustments and apply them consistently from one session to the next (Burdett and 

Vanswearingen, 1987). The reliability of the measurements equally depends on the 

reproducibility of the machinery which is assessed by the tester. The dynamometer head 

has to be adequately calibrated and the tester able to thoroughly align the centre of rotation 

of the knee joint and the centre of the dynamometer head. Ideally repeated torque 

measurements should be made at constant joint angles and with well defined angular 

velocity parameters (Warren et al., 1999). Raw data analysis is an important to consider in 
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relation to reliability since it has been demonstrated that isokinetic dynamometers are not 

truly isokinetic and that the lever goes through three phases: acceleration, constant velocity 

and deceleration. 

 

Isokinetic tests to determine torque in adults display high reliability, depending on the 

protocol and joint used (Kellis and Baltzopoulos, 1995) but in general reliability appears 

higher in CON actions.  Coefficients for flexion PT ranged from 0.92 at 2.08 rads
-1 

to 0.95 

at 4.2 rads
-1 

(Brown et al., 1993).  Pincevero et al., (1997) also utilised the Biodex System-

2 to determine the reliability on 2 occasions separated by 7 days of CON PT measurements 

in adults. Intraclass correlation co-efficients (ICCs) of 0.96 to 0.97 were obtained for PT at 

1.04 and 3.14 rads
-1 

demonstrating, in agreement with Brown et al., (1993) that the Biodex 

System 2 dynamometer measures highly reliable CON PT in adults. Kaminski and Dover 

(2001) have also determined that concentric inversion and reversion peak- and average-

torque values derived from the Biodex System 3 isokinetic dynamometer on 2 occasions, 

with a minimum of 7 days between sessions in a group of healthy young men and women, 

Right-reversion PT ICC measures were 0,54 and 0,68 for 30°·s
-1

 and 120°·s
-1

, respectively 

Left-reversion PT ICC values were 0,76 and 0,77 for 30°·s
-1

 and 120°·s
-1

, respectively. 

The PT ICC value calculated for right inversion at 30°·s
-1

 was 0,87, and at 120°·s
-1

 the 

ICC was 0,92.  

 

The reliability of eccentric PT has been investigated by a number of authors (Steiner et al., 

1993, Tredinnick and Duncan, 1988, Wilhite et al., 1992).  Steiner et al., (1993) reported 

that knee flexion average torque measurements were more reliable than extension PT at 

both 1.04 and 3.14 rads
-1

. ICCs of 0.88 at 1.04 rads
-1

 and 0.88 at 3.14 rads
-1 

were 

obtained for knee extension average torque, and for knee flexion average torque the ICCs 
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were 0.91 and 0.96 at the two velocities respectively.  This reflects good reliability of 

isokinetic ECC knee flexion average torque as measured on the Lido Linea closed kinetic 

chain isokinetic dynamometer. A factor that appears to influence the reliability of ECC 

measurements more so than CON is the familiarity of the participants with ECC actions.  

Steiner et al. (1993) reported considerable variation in participant’s ability to maintain 

ECC moment through the total range of motion (ROM), especially at high angular 

velocities.  This could be partly attributed to the fact that they included a same-session 

familiarisation instead of a familiarisation on a day prior to the first test.  This inability of 

adult participants to maintain ECC torque throughout the range of motion could have 

resulted in the low reliability (ICC=0.47) of average ECC torque measurement at 1.04 

rads
-1

 as demonstrated by Tredinnick and Duncan (1988). Most commercially available 

dynamometers require the participant to produce a preset torque load during isokinetic 

ECC testing throughout the range of the movement. If the participant fails to produce this 

preload throughout the movement the lever arm will stall producing discomfort for the 

participant. Newer dynamometers, such as the one used in the present thesis is Biodex 

System 3 which have a passive eccentric mode where the lever can move throughout the 

range of motion irrespective of ECC torque produced by the participant. This mode is 

particularly useful when testing ECC torque during faster velocity movements, as the 

constant velocity period is usually short and any stalling of the lever arm by not meeting 

the ECC preload will reduce the constant velocity period.  

 

When comparing reliability of ECC and CON torque determination, previous studies have 

shown that peak CON torque testing in 9/10 year old boys is more reliable than ECC 

torque testing (Deighan et al., 2003). Deighan et al., (2003) found that, at 0.51 rad
.
s

-1
, 

hamstrings ECC PT assessment (ICC = 0.63) was less reliable than quadriceps CON 
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assessment (ICC = 0.76).  The findings of excellent reliability (ICC   0.90) for the force 

output with maximal voluntary isometric activations (MVIA) is consistent with the 

literature for prone extension postures (Plamondon et al., 1999), as well as for standing 

(Rytokoski, 1994) and seated dynamometry (Robinson et al., 1991, Smidt et al., 1983). 

Interestingly, there are no other studies making this comparison between the reliability of 

ECC and CON torque determination. 

 

Making generalisations about reliability for adult groups, tested on different 

dynamometers, with various protocols, is to be approached with caution (Perrin, 1993). 

This is reiterated by Ellenbecker and Roetert, (1995) who stated that caution must be 

exhibited when comparing data between isokinetic dynamometers related to significant 

differences in both relative and absolute torque quantification. In addition Gleeson and 

Mercer, (1996) and Kellis, (1996) stated that measurment of flexion is more varible and 

less reliable than measures of extension. Additionally, the observed significant time-of-day 

effect suggests that appropriate comparison of maximal isokinetic leg strength can only be 

achieved based on data obtained within 30 min of the same time of day (Wyse et al., 

1994). Brown et al., (1993) found a decrease in reliability with increasing velocity, and 

Johnson and Siegel, (1978) demonstrated less measurement error at slower limb movement 

velocity. This is further supported by Kellis, (1996) who indicated, by testing over five 

velocities (0.52 rad.s
-1 

to 3.14 rad.s
-1

), that moments recorded at slower angular velocities 

are more reliable. Kellis (1996) concluded that eccentric and concentric knee extension 

and flexion reliability is high but are infuenced by the angular velocity used.  

 

An habituation period is critical for strength testing as this essential period of learning 

facilitates a phase in which the specific movements, neuromuscular patterns and demands 
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of the test become familiar to the individual. Previous study (Deighan et al., 2003) have 

reported good reliability in repeated isokinetic actions of the knee (extension r = 0.95; 

flexion r = 0.85); isokinetic actions of the elbow (extension r = 0. 97; flexion r = 0.87) and 

isometric hand grip data (r = 0.92) this study also have reported limits of agreement 

showing no systematic difference in knee and elbow peak torque measured on two separate 

occasions. Gleeson and Mercer, (1996) suggested that intra-day reliability is very good 

(coefficient of variation: 4.0 – 8.8%) but this may mask the reality, by underestimating the 

true biological variability inherent in isokinetic leg torque test performance. A recent study 

on prepubertal soccer players has reported systematic bias in concentric and eccentric knee 

torque, although these improvements, 3 to 7 %, were relatively small (Iga et al., 2006). It 

would appear that strength testing, irrespective of muscle action or muscle joint assessed, 

has a test-retest variation of around 4-9 %. Therefore, they suggested that all reliability 

studies should test - retest over a range of days and not only within the same day. It is 

imperative that both clinicians and researchers be cognizant of the potential sources of 

error that might influence the reliability of the isokinetic measurements and use 

standardized protocols and recommended techniques for performing isokinetic 

assessments to minimize the errors.  

 

Interclass correlation coefficients for trial reliability and day-to-day reliability were 

reported in the study of Drouin et al., (2004) and observations demonstrated that the 

Biodex System 3 isokinetic dynamometer was a mechanically reliable instrument (ICC 

0.99-1.00) for the valid measurement of angular position, isometric concentric at slow to 

moderately high velocities (<300°·s
-1

). Within the limitations of Drouin et al., (2004) 

study, the Biodex System 3 isokinetic dynamometer provided mechanically reliable 

measures of torque, position and velocity on repeated trials performed on the same day as 
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well as on different days. Concentric measures were reliable up to approximately 4.2 rads
-

1
, with a systematic decrease in reliability occurring at higher test velocities (Drouin et al., 

2004). Isokinetic testing has shown acceptable average torque reliability for knee 

extensions between trials and days for both concentric and eccentric actions (Drouin et al., 

2004), and for elbow extensors, trunk extensors and trunk flexors at different isokinetic 

velocities (Madsen, 1996). Gleeson and Mercer, (1996) work has surmised that there is 

good agreement in outcomes of day to day testing of adults using isokinetic dynamometry. 
 

 

To decrease intra-participant variation and improve the reliability of isokinetic testing, 

practical guidelines should be followed (Sorensen et al., 1998). The dynamometer is novel 

to most participants so several practice trials may be required in order to achieve reliable 

torque reading. It is recommended that participants perform as many repetitions as needed 

to understand what is required during the testing or training protocol. In active young 

individuals, a single session has been reported as enough habituation to sufficiently 

increase reliability (Sorensen et al., 1998). Instructions should be concise, parsimonious 

and consistent between tests, and verbal commands should be explicit as to every facet of 

the procedure. Those include where to grasp, how to breathe, what to do with the contra 

lateral limb, how to push or pull in both directions, how to give a maximal effort, what 

constitutes one full repetition and how many repetitions to perform (Brown and Weir, 

2001).  

 

2.3.3 The force-velocity relationship 

The effect of velocity of muscle shortening or lengthening on force output has been 

examined extensively since the pioneering work of Hill (1938). The ability of a muscle to 
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generate concentric force is greatest at slow isokinetic velocities and decreases non-

linearly as the test velocity increases. These effects are described by the classical force-

velocity relationship described by Hill (1938) and others. The early study of Barnes (1980) 

indicated that both torque and motor-unit electrical activity decreased as contractile 

velocity increased and the relationship between torque and integrated electromyographic 

activity was linear and highly significant. Therefore, the decline in torque output due to 

increasing angular velocity is a result of different activation of motor units at different 

velocities.  

  

Force-velocity relationship has been confirmed in isokinetic assessments of soccer players. 

Costain and Williams, (1984) measured the quadricep and hamstring torque levels of 16 

high school soccer players using a Cybex II dynamometer at a slow (0.54 rad.s
-1

) and fast 

(3.24 rad.s
-1

) velocity. They reported a significant decrease in CON PT in both muscle 

groups from the slow to the fast velocity. In addition, Stafford and Grana, (1984) assessed 

knee extensors and flexors of 60 intercollegiate soccer players at functional angular 

velocities of 1.62, 3.24 and 5.4 rad.s
-1

 on the Cybex II and found the same results.  

 

According to Westing et al., (1990) the theory that a tension reducing mechanism can 

become active during maximum ECC efforts ‘appears to be theoretically sound because of 

the risk of damage during extremely forceful contractions’ (p. 22).  Westing et al., (1991) 

have measured EMG amplitude and average torque of the knee extensors in 14 highly 

trained adult males.  They found that EMG activity was significantly lower under ECC 

loading than velocity matched CON loading, suggesting that even in highly trained adult 

males under high tension conditions (ECC actions), the neural drive was reduced despite 

maximal voluntary effort. They also concluded that this may protect the musculoskeletal 
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system from an injury that could result from full muscle activation. A reduced neural drive 

during maximal CON and well as ECC actions has recently been demonstrated using the 

interpolated twitch technique (ITT) (Babault et al., 2001).  Also, the studies by Westing et 

al., (1990) used participants that were ‘highly trained’ and could perhaps activate the knee 

extensors fully during CON actions because of this. Most studies have assessed isokinetic 

torque with CON muscle actions but it cannot be assumed that the results of these studies 

can be applied to ECC actions which have unique muscle mechanics and neural control 

mechanisms. 

 

As dictated by the force-velocity relationship the FH/Q ratio has been shown to increase as 

angular velocity increases in pubertal children, teenagers and adults for both sexes (De Ste 

Croix et al., 2007, Kellis and Katis, 2007). The flattening of the ECC force-velocity curve 

has been demonstrated by other authors in knee extensors and flexors of adult men and 

women (Westing and Seger, 1989; Westing et al., 1990), but others have reported that 

ECC force increases with increasing velocity (Colliander and Tesch, 1989). However, as 

dictated by the force-velocity relationship, the ratio of ECC to CON force or torque 

(ECC/CON ratio) should increase as angular velocity increases (Colliander and Tesch, 

1989; Griffin et al., 1993). The fact that studies have employed various movement 

velocities, often without providing any explanation for the choice, limits the ability to 

compare results across studies.  Future research should include the identification of 

optimal test velocities for populations 

 

2.3.4 The effect of angular velocity and joint angle on H/Q ratio  

There are few studies that have examined the sex differences in factors that may be 

associated with dynamic knee stability and relative risk of injury. This is somewhat 
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surprising given the epidemiological data indicating that females appear to be the most ‘at-

risk’ group for non-contact ACL injury (Hewett et al., 2005). Coplin, (1971) stated that an 

imbalance in torque between the knee extensors and knee flexors muscle groups is a factor 

which leads to an increase in the susceptibility to joint as well as muscle injury. Fowler 

and Reilly, (1993) reported that the ratio between the torque of the knee extensors and 

knee flexors is of particular interest, with a low ratio being associated with an increased 

risk of injury. The muscle groups on both sides of a joint act reciprocally to produce 

smooth and coordinated motion. When a muscle group generates a desired joint action it is 

the agonist creating the observed motion. The muscle group producing the opposite joint 

action is the antagonist (Perrin, 1993). The reciprocal muscle group ratio has been thought 

to be an indicator of muscular balance or imbalance around the joint (Baltzopoulos and 

Brodie, 1989).  

 

Research findings highlight the importance of joint angle, angular velocity and action-

specificity when calculating the FH/Q ratio. It has been found that ACL rupture is most 

likely to occur near full knee extension during high velocity movement (Renstrom et al., 

2008). If it is to be accepted that a low FH/Q ratio may increase the relative risk of injury 

then it is essential to determine whether the ratio is reduced when: a) approaching full knee 

extension b) with increasing angular velocity c) in the presence of action-specific fatigue. 

The inability of the hamstrings to absorb the anterior tibial forces induced by the 

concentric quadriceps action under such conditions is clearly of great interest. However, 

Aagaard et al., (1995) calculated the FH/Q ratio based on isokinetic PTand torque at 

varying degrees of knee flexion at angular velocities 30, 120 and 240°/s
-1 

and they
 
found 

that the FH/Q ratio increased with decreased joint angle and increasing angular velocity. 

The antagonist muscle group function is angle specific since it has to provide adequate 
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anti-shear stabilising torque at the same joint angle as the concentric action of the agonist 

muscle group.  

 

The joint angle specific FH/Q ratio has been briefly considered (Aagaard et al., 1998) but 

has remained largely ignored in the literature, despite being a potentially confounding 

variable when describing functional deficiencies. The calculation of the FH/Q ratio should 

be joint angle and angular velocity specific since hamstrings eccentric PT and quadriceps 

concentric PT do not occur at the same joint angle, and the angular specificities of the 

FH/Q ratio remain to be elucidated especially near full knee extension and after fatigue. 

Near full knee extension, static stability is reduced and functional stability relies mainly on 

dynamic stability to protect the knee structures (Griffin et al., 2006). However, this 

remains to be investigated, especially in females, and using appropriate fatiguing 

protocols.   

 

Few studies appear to have examined angle specific FH/Q ratios across a range of 

velocities and in both sexes. Aagaard et al., (1998) have used female and male track 

athletes to investigate joint angle-specific FH/Q ratio and reported an increase in the FH/Q 

ratio with decreased joint angle at 50 degrees of extension. However, they ignored joint 

angles lower than 30 degrees, where dynamic stability is often challenged. Coombs and 

Garbutt, (2002) used a small sample of 9 female and 6 male recreational athletes to 

calculate joint angle-specific FH/Q ratio values throughout 90 degrees range of movement 

and found increasing FH/Q ratio as the joint moves closer to full extension, with the 

greatest FH/Q ratio found at 0.17 rad. Kellis and Katis, (2007) reported that the Hecc/Qcon 

ratio of males significantly increased as the knee extended at increased angular velocity 

reaching a value of 3.14 ± 1.95 at near full extension. This would appear to suggest that 
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adults for both sexes compensate for known reduced stability of the joint which may 

reduce injury risk near full knee extension.  

 

The recent work of Forbes et al., (2009) highlights this issue further where angles of PT 

for concentric quadriceps ranged from 72 - 78º in 12 to 18 year-olds compared with 

eccentric hamstring angles of PT which ranged from 31-38º. Therefore within current 

literature torques achieved at different angles are being used to represent a ratio which 

should be describing the ability of opposing torques to counteract each other (e.g., at the 

same joint angle). This ambiguity clearly does not help in elucidating the functional role 

that these muscles play in stabilizing the knee. Furthermore, the joint angle where non-

contact ACL injury is mostly likely to occur is not at the point where PT is generated. Peak 

concentric and eccentric torque production is likely to occur in the mid-late range of the 

movement (around 30-80º of knee flexion), whereas it is well recognised that injury is 

likely to occur when the knee is closer to full extension (0-30º of knee flexion). Based on 

this knowledge it would seem more appropriate to calculate the FH/Q ratio using angle 

specific torque values close to full extension. It is clear that more data are required on the 

FH/Q ratio, especially using angle specific data and in females. Whether this will change 

our understanding of, and sex associated changes in, dynamic knee stability and the 

susceptibility to knee injury remains to be established.  

 

A recent study by De Ste Croix et al., (2007) reported a significant velocity effect on FH/Q 

ratio in prepubertal children, teenagers and adults for both sexes. The FH/Q ratio was 

significantly higher at 3.14 rad.s
-1

 (1.12) compared to 0.52 rad.s
-1

 (0.8). This increase in 

the ratio at higher velocities provides some protection against the significant anterior tibial 

translation or shear at high quadriceps forces, and increase in internal rotation of the tibia 
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in relation to the femur (Gerodimos et al., 2003). Irrespective of age or sex, the increase in 

co-activation of the hamstrings during high velocity movements significantly contributes 

to counterbalance this tibial shear or rotation. This data reinforces that the FH/Q ratio is a 

more relevant estimate of the capacity for muscular knee joint stabilisation than 

conventional ratios. It is important therefore that when making age and sex associated 

comparisons of the FH/Q ratio movement velocity are taken into account.   

 

Maximum voluntary joint torque changes substantially with joint angle and angular 

velocity, due in part to the muscle force–length (Sale et al., 1982) and force–velocity 

(Westing et al., 1990) relationship. Accounting for strength variations with joint angle and 

angular velocity could lead to a better understanding of the role of agonist and antagonist 

muscle groups in human movements. Irrespective of sex the increase in co-activation of 

the hamstrings during high velocity movements significantly contributes to counterbalance 

the tibial shear or rotation. These findings suggest that the FH/Q ratio is a more relevant 

estimate of the capacity for muscular knee joint stabilisation than conventional ratios, 

particularly when joint angle and angular velocity are specified. It is important therefore, 

that when making sex associated comparisons of the FH/Q ratio, movement velocity and 

joint angle are taken into account.  

 

2.3.5 Sex differences in FH/Q ratio 

Consistent with data from the National Collegiate Athletic Association Injury Surveillance 

System, knee injuries have increased among female basketball and soccer players 

compared with their male counterparts (Powell and Barber-Foss, 2000, Arendt and Dick, 

1995). The proposed greater prevalence of muscle imbalances among female than male 

athletes suggests that the hamstring-to-quadriceps (H/Q) ratio may be a mitigating factor 
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for anterior cruciate ligament tears (Moeller and Lamb, 1997, Hewett et al., 1999, Huston 

and Wojtys, 1996). Also, Devan et al., (2004) have found that H/Q ratio below normal 

range at 300°·s
-1

 was associated with an increased prevalence of overuse knee injuries 

among female collegiate athletes.
 

 

Some authors have suggested that the sex difference in the FH/Q ratio is due to a lower 

capacity for CON rather than a higher capacity for ECC force production in females (Seger 

and Thorstensson, 2000). There is contrary evidence, however, in the form of a superior 

ability of females compared to males in utilising stored elastic energy in the muscle-tendon 

unit (Komi and Bosco, 1978). A high level of quadriceps strength compared to hamstring 

strength will reduce the FH/Q ratio and a ratio of less than 55% may represent a 

quadriceps dominant athlete. It has been suggested that the predisposition to greater 

relative risk in females is due to the fact that they may be predominantly quadriceps 

dominant, especially in athletic populations. Data to suggest this is conflicting as some 

studies have found no significant differences between males and females in the FH/Q ratio, 

whereas (Kong and Burns, 2010, Bojsen-Moller et al., 2007) others have reported a higher 

FH/Q ratio in males compared with females (Calmels et al., 1997, Yoon et al., 1991). 

These conflicting findings regarding the effect of sex on FH/Q ratio may be related to the 

different age ranges and training background of participants. Moreover, it has been 

suggested that sex differences in isokinetic FH:Q ratios are generally observed only at high 

knee angular velocities that approach those during sports activities (Hewett et al., 2008). 

Thus the range of velocities employed in the above studies may have influenced whether 

sex differences were identified or not. In an applied sense, these data suggest that 

stabilisation of the knee joint during high movements velocity, with high eccentric knee 

extension torque, is less optimal in females compared to males.  
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More data are required to reinforce whether or not there are sex differences in the FH/Q 

ratio. However, based on very limited data concerning sex differences in FH/Q ratio we 

might speculate that sex differences in the relative risk of non-contact ACL injury may 

additionally be attributed to factors other than those that are purely muscular in nature. For 

example, neuromuscular recruitment may play a crucial role in the sex difference related to 

relative risk of injury. It has been suggested that sex differences in adults in the FH/Q ratio 

of the knee joint are due to differences in percentage motor unit activation (%MUA) 

during maximal voluntary actions, with women having a lower %MUA than men during 

CON actions (Westing and Seger, 1989), but not ECC actions, possibly related to the 

separate neural control mechanisms for the respective muscle actions (Enoka, 1996). 

  

Fatigue may affect men and women differently. Pincivero et al., (2003) reported that men 

exhibited higher knee flexion and extension torques, as well as, greater work and power 

production when compared to women. However, it was reported that the men fatigued 

quicker during maximal effort muscle contractions and during sub-maximal contractions 

men and women fatigue at the same rates but men still exhibited greater torque 

productions during knee extension (Pincivero et al., 2003). The higher rate of muscle 

fatigue demonstrated by males during voluntary, maximal effort quadriceps femoris 

contractions may also be affected by the method of quantification. Specifically, males 

were observed to produce significantly greater knee extensor and flexor peak torque, work, 

and power than females when corrected for body mass; not surprisingly, the males 

exhibited a greater rate of muscle fatigue than the females. However, it is clear that 

numerous factors may play a significant role in the sex-specific muscle fatigue. To date, 

evidence demonstrates that males possess an inherent ability to generate higher levels of 
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torque than females, and that females appear to experience muscle fatigue at a slower rate. 

This will be discussed in greater detail in fatigue section (2.5). 

 

 

2.4 ELECTROMYOGRAPHY (EMG) 

Electromyography (EMG) refers to the study of the electrical signals originating from the 

muscle (Basmajian and De Luca, 1985). Muscles produce electrical activity during the 

course of each muscle action. The major aim of using EMG is to analyse the function and 

co-ordination of muscle under different movements (Jonsson, 1978). Surface 

electromyography (sEMG) is a tool that measures the electrical activity of a muscle or 

muscle group as it lengthens or shortens and does work (Cram et al., 1998). It is not a 

measure of muscle force but it can measure muscle timing (onset and offset) and amplitude 

which can provide information about the neuromuscular control mechanisms of the body 

(Cram et al., 1998). 

 

The voltage output detected from the muscle by EMG systems is the result of the 

depolarisation and repolarisation of the surface membrane of the muscle fibre causing 

action potentials. The number of muscle fibres in a motor unit varies depending on the 

level of control required by that muscle. Muscles that produce fine movements (i.e., 

fingers, eyes) have a small number of muscle fibres per motor unit (~300 fibres per unit), 

whereas large muscles in the leg (that are used primarily for gross movements) comprise a 

large number of muscle fibres per motor unit (~2000 fibres per unit) (Jones et al., 2004).  

 

Considering the role of the musculature in maintaining joint equilibrium and stability at the 

knee, there has been considerable interest in investigating neuromuscular response 
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characteristics and their association with ACL injury. A number of research models have 

employed sEMG to evaluate activation patterns at the knee after joint loading or 

perturbation (Baratta et al., 1988, Gauffin and Tropp, 1992, Huston and Wojtys, 1996, 

McNair and Marshall, 1994, Smith et al., 1993). However, most of these models have 

evaluated this relationship from a post injury, rehabilitative reference point rather than a 

pre injury, predictive one. 

 

Time to PT has been used as a surrogate for neuromuscular activation. However, time to 

PT is not a true measure of EMD; rather, true EMD can be measured if EMG data are 

collected simultaneously with an isokinetic dynamometer or other force transducer and if 

the precise time at which force is initiated (rather than peaked) is determined (Shultz and 

Perrin, 1999). 

 

2.4.1 EMG assessment of muscle function  

Scientists working in the sports or occupational environment prefer to use surface 

electrodes instead of indwelling electrodes (Clarys, 2000), as indwelling electrodes are 

considered to be invasive (Clarys and Cabri, 1993), and have limited application in 

kinesiological EMG as they are primarily designed to measure single muscle fibre activity 

(Soderberg and Knutson, 2000). Surface electromyography (sEMG) has been employed 

extensively in biomechanical applications to describe and quantify a muscle or muscle 

group's activity or performance about the knee (Huston and Wojtys, 1996, Baratta et al., 

1988, McNair and Marshall, 1994, Kalund et al., 1990, Gauffin and Tropp, 1992).  

 

Surface electromyography is capable of measuring reflex times. Reflex time can be 

separated into reflex latencies and motor time components (Cram et al., 1998). Latency of 
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a reflex provides information on the ability of a muscle or muscle group to protect a joint 

(Cram et al., 1998). Myers et al., (2003) demonstrated that muscle reflex latency is small 

enough to stimulate a protective muscle contraction during active movements. This 

mechanism is facilitated by the motor neuron which increases the sensitivity of the muscle 

spindle. Dhaher et al., (2003) investigated reflex activity around the knee to determine if 

the timing of the reflexes could protect the knee from a valgus perturbation. Their findings 

showed an asymmetrical pattern with preferential activation of medial versus lateral 

muscles of the knee. 

 

Timings of muscle activation are the simplest application of EMG and are calculated from 

the onset and offset of muscle activity, which is based on threshold and baseline levels of 

muscle activity (Allison, 2003). The EMG amplitude analysis is more complicated during 

dynamic muscle action due to amplitude calculation, pattern of motor unit activation and 

geometric factors of the electrode position (Farina, 2006). However, this is still a 

component of the muscle action and has a bearing on the neuromuscular contribution, 

particularly within explosive power based muscle actions. Whilst recognising the 

limitations of dynamic EMG assessment, the importance of EMG evaluation during high 

intensity explosive actions is well recognised. 

 

 

2.4.1.1 Skin preparation  

Surface electrodes are subject to movement which in turn disturbs the electrode and skin 

equilibrium (Gleeson, 2001). Electrode gels or pre-gelled electrodes are required to 

minimise this change by moving the electrode away from the skin so that movement of the 

skin does not affect the metal- electrode junction and the potential is unaltered (Gleeson, 
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2001). In addition, it is important to prepare the skin before electrode placement. This is 

required to reduce the impedance at the electrode-skin barrier (Gleeson, 2001). It is 

generally accepted that when using surface EMG the minimum skin preparation should be 

to clean the skin with acetone or alcohol wipes (Gleeson, 2001).  

 

 

2.4.1.2 Electrode placement  

Location of the bipolar sensor is defined as the position of the geometrical centre of the 

sensor, unless specified otherwise. Orientation is described as the direction of the bipolar 

sensor with respect to the direction of the muscle fibres (Hermens et al., 2000). 

 

De Luca, (1997) stated that the factors which control the EMG signal can be classified into 

causative factors. The causative factors have a main effect on the signal. These are 

separated into two groups: extrinsic and intrinsic. Intrinsic factors are personal, physical 

and psychological characteristics that distinguish individuals from each other and extrinsic 

factors concern environmental conditions and the manner in which activities are 

administered (Hughes and Watkins, 2006). However, the extrinsic factors are those related 

to the structure of the electrode and its placement on the muscle. They include: the area 

and shape of the electrode detection surfaces; the distance between the electrode detection 

surfaces; the location of the electrode with respect to the motor points in the muscle; the 

orientation of the detection surfaces with respect to the muscle fibres which affects the 

value of the of the measured conduction velocity of the action potentials and, 

consequently, the amplitude and frequency content of the signal.  
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Skeletal muscles do not remain in a fixed position during complex dynamic (sometimes 

ballistic) movements and the entire muscle belly may not be completely under the skin, but 

covered by parts of other bellies or tendons and subcutaneous adipose tissue (this is very 

variable depending on composition and volume). This emphasizes that the selection of 

muscles for EMG measurement requires careful consideration. In determining the site of 

placement of the electrode on the skin, a variety of approaches have been applied: (1) over 

the motor point; (2) equidistant from the motor point; (3) near the motor point; (4) on the 

mid-point of the muscle belly; (5) on the visual part of the muscle belly; (6) at standard 

distances of osteological reference points (anthropometric landmarks); and (7) with no 

precision at all with respect to its placement . 

 

Bipolar surface electrodes have two detection surfaces (Clarys, 2000). For best possible 

results, the two detection surfaces should be oriented so that the line between them is 

parallel to the muscle fibres. To accomplish this arrangement, it is assumed that the muscle 

fibres act along a line and that the muscles have a single arrangement of unipennate fibres. 

In some muscles, neither of these conditions is satisfied; in such cases it is advisable to 

place the electrode so that the line between the detection surfaces points to the origin and 

the insertion of the muscle. This orientation gives for consistent landmarks, so that the 

future placement of the electrode will have near-similar orientations and reduce the 

variation in EMG signal among the myoelectric measurements obtained from different 

muscle actions (De Luca, 1997). Consequently, four main methods are presented that 

conform to these requirements:  

- The electrode should be placed over the visual midpoint of the contracted muscle 

(Clarys, 1985).  
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- The electrode should be placed in relation to standard distances from reference 

point i.e. anthropometric landmarks (Clarys, 2000). 

- The electrode should be placed over the midline of the muscle belly between the 

nearest innervations zone and the myotendonous junction (Clarys and Cabri, 1993, 

Basmajian and De Luca, 1985, Gleeson, 2001) 

- A combination of these approaches (Clarys, 2000). 

The consequences of electrode location on determination of muscle fibre conduction 

velocity and median frequency estimates have been discussed in the Clarys (2000) study; 

the most stable and most reliable EMG values are to be obtained from the muscle belly 

area between the motor point and the most distal tendon (Clarys, 2000). It follows that the 

position of the detection electrode must be chosen very carefully to minimize errors 

(Clarys, 2000). The electrode should not be placed near or over the myotendonous junction 

and near the lateral border of the muscle as this electrode placement could possibly be 

effected by cross-talk (De Luca, 1997).   

 

 

2.4.2 The reliability of the EMG  

Current reviews have confirmed the usefulness of sEMG investigation in various clinical 

studies which have analyzed muscle function (Soderberg and Knutson, 2000) and 

evaluated movement disorders (Pullman et al., 2000). Clinical examination of muscle 

activation and function is often performed at sub-maximal and (if possible) at maximal 

levels. For this reason, the EMG behaviour at different force levels is of particular 

importance. Research findings on the reliability of surface amplitude (Kollmitzer et al., 

1999, Mathur et al., 2005, Yang and Winter, 1983, Rainoldi et al., 2001) and frequency 

values (Kollmitzer et al., 1999, Rainoldi et al., 2001, Mathur et al., 2005) are conflicting 
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depending on the experimental set-up and the type of muscle examined (Knutson et al., 

1994). Previous studies have shown that reliability may differ not only between muscle 

groups but also between various components of the same muscle group (Kollmitzer et al., 

1999).  

 

The selection of ambient conditions in which the EMG data are gathered must be given 

careful consideration. For example the area should be quiet, private, and free of drafts in 

order to avoid spurious muscle tension due to a startle reaction to loud noise or what may 

be perceived as a loss of personal privacy and modesty (Iacono, 2004). In addition, surface 

EMG is influenced by physiological properties such as motor unit discharge rates and 

muscle fibre membrane characteristics, as well as non-physiological properties such as 

electrode size, shape and placement  (Farina et al., 2004). Day to day variation in EMG 

recording might be associated with differences in electrode reapplication such as minor 

changes in the position of the recording electrodes over the muscle and differences in skin 

preparation (Kankaanpaa et al., 1998). Therefore it is important to determine the reliability 

of measures derived from the EMG signal for both clinical and research settings, 

especially when used to determine differences in performance over time in the same 

individual and differences between individuals (Mathur et al., 2005). 

 

The findings of Claiborne et al., (2009) also illustrated that the EMG measures retained 

high levels of reliability for most of the observed muscles. Although the studies addressing 

EMG signal reliability present outcomes from varied methodology and different muscles, 

there appears to be moderate to high reliability values for the majority of the sampled 

muscles. Good EMG outcome reliability has been shown between trials for isokinetic 

exercises for the knee extensors and flexors during concentric and eccentric actions 
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(Finucane et al., 1998, Larsson et al., 2003). The faster velocities of 1.31 rads
-1

 and 1.83 

rad.s
-1

 produced acceptable reliability for the isokinetic conditions (<16% of coefficient of 

variation) and good reliability (<12%), respectively, for the medial gastrocnemius, 

therefore it was concluded that the squat jump provides a standardised and reproducible 

reference EMG value for the triceps surae for use as a normalisation method (Ball and 

Scurr, 2010). A recent study of Lacourpaille et al., (2012) has suggested that inter-day 

reliability of EMD, was good (coefficient of variation ranged from 6.8% to 12.5%, i.e. 

SEM lower than 0.79 ms). These results indicate that the stimulus intensity needs to be 

standardized to perform longitudinal evaluation and/or to make between-subject 

comparisons. 

 

In study of Mathur et al., (2005), moderate to high reliability (ICC=0.59-0.88 for MDF; 

ICC=0.58-0.99 for amplitude) was found for initial and final median frequency (MDF) at 

80% and 20% MVC for all three muscle groups (rectus femoris RF., vastus lateralis VL. 

and vastus medialis VM.) which is in agreement with previous findings of reliability of the 

quadriceps muscle (Roy et al., 1989), elbow extensors (Bigland-Ritchie and Woods, 1984) 

and trunk extensors (Elfving et al., 1999). It has previously been shown that the variability 

associated with repeated contractions differs among the superficial muscles of the 

quadriceps (MacIntyre et al., 1998, Polgar et al., 1973, Roy et al., 1989).  The position of 

the thigh may account for the greater variability of the EMG recording in VL and VM 

during knee extension. A slight internal or external rotation at the hip can change the 

extent to which each of these muscles is recruited thereby increasing between-day 

variability (MacIntyre et al., 1998, Mannion and Dolan, 1996). 
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The findings reported by Kellis and Katis, (2008) indicated a moderate to high reliability 

(The ICCs ranged from 0.44 to 0.98) of median frequency (MF) of hamstring muscles 

during ramp isometric contractions. It also appears that reliability was higher at lower 

MVC levels whereas BF EMG outcomes were generally more reliable compared with 

those from ST (Kellis and Katis, 2008). Monitoring of surface EMG activity provides an 

easy and direct evaluation of hamstring activation as opposed to torque tests which provide 

only the resultant moment exerted around the joint (Kellis, 1998). Interpretation of these 

findings should take into consideration: first, the known variability of the surface EMG 

signal; second, the electrodes removal between the two testing sessions and third, that 

ramp contractions are characterised by force changes during contraction which may cause 

increased EMG signal variability, compared with steady contractions (Kellis and Katis, 

2008). It can be concluded that when clinical and quick evaluation of hamstring muscle 

activation is necessary, surface EMG can be used with acceptable reliability.  

 

 

Although a number of factors can affect the reliability of EMG outcomes, such as 

electrode placement, skin preparation, position of the limb and subject performance, the 

finding of Mathur et al. (2005) study show that outcomes of median frequency (MDF) and 

amplitude of surface EMG can be reliably measured across days. Furthermore, there was 

good reliability for mean frequency (MNF), median frequency (MDF) and root mean 

square (RMS) for the active muscles during static contractions (Aaras et al., 1996, 

Dedering et al., 2000, Ng and Richardson, 1996, Larsson et al., 2003).  

The reliability of the EMD measurement in maximal isometric 

Unfortunately, the manner in which EMG has been used to assess neuromuscular response 

characteristics in terms of instrumentation, signal processing, and data acquisition has 

varied and at times becomes quite confusing making interpretation challenging; no 
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standardized procedures currently exist in this regard (Shultz and Perrin, 1999). The most 

important factor when assessing neuromuscular response characteristics with EMG is not 

necessarily which methods are used, but whether the methods are reliable.  It is important 

to recognise that reliability very depending upon joint movement, velocity, muscle 

exhilaration and type of action.  

 

2.4.3 EMD measurement  

EMD is described as the latency between the onset of electrical activity in a muscle and 

the onset of force generation by that muscle’s contraction (Yavuz et al., 2010). In addition, 

EMD is termed as a motor time or motor execution time and is a sub-component of 

reaction time (Cavanagh and Komi, 1979, van Ingen Schenau et al., 1992). It has been 

proposed that EMD is relatively constant irrespective of the change of movement 

complexity (Cavanagh and Komi, 1979) and movement duration (van Ingen Schenau et al., 

1992) although it might be lengthened after fatigue (Marsh and Martin, 1995, Vos et al., 

1991). 

 

EMD measurements may be performed by voluntary or electrically evoked muscle 

activation (Hopkins et al., 2007). Measured voluntary strength depends highly on the 

degree of % motor unit activation (Belanger and McComas, 1981).  Both the level of 

voluntary neural drive or motor unit recruitment and the level of activation or frequency of 

stimulation govern % motor unit activation. According to Backman and Henriksson, 

(1988) the ideal way to measure the contractile capacity of a muscle is to record the force 

developed during supramaximal electrical stimulation of the nerve innervating the muscle. 

When an electrical stimulus is applied to a motor nerve near the muscle, the resultant 

muscle force is free of any inhibitory influence from above the point of stimulation. On the 
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other hand, force or torque measured during a voluntary action is the result of 

neuromuscular influences from the brain and inhibitory reflex influences from the spinal 

cord in addition to the maximum force producing capacity of the muscle. However, only 

small muscles that are supplied by a single nerve can be relatively innocuously stimulated 

transcutaneously (Backman and Henriksson, 1988).  

 

The major finding of Zhou et al., (1995) was that EMD of involuntary actions is 

significantly shorter than that of voluntary actions. As suggested by Cavanagh and Komi, 

(1979), the major portion of EMD is the time required for the contractile component to 

stretch the series elastic components of the muscle. It is understandable that the muscle 

which possesses a higher rate of force development will require less time to increase 

tension to the threshold level of only a few newtons. If EMD depends primarily upon the 

contractile properties of the motor units recruited at the beginning of an action, according 

to the size principle (Somjen et al., 1965), the longer EMD found at lower stimulation 

level could be explained as the recruitment of smaller (possibly slow twitch) motor units, 

and the larger (possibly fast twitch) motor units with higher excitation threshold would be 

responsible for the shorter EMD found at higher stimulation level. However, during 

maximal voluntary actions in most studies, the participants were asked to exert the 

required force as quickly as they could. As has been indicated in the literature, the low 

threshold units may not participate in the rapid actions which recruit the high threshold 

units (Grimby and Einarsson, 1987). If this is the case, the motor units recruited in the fast 

voluntary actions could be mainly the fast twitch units.  

 

The timing and phasing of muscular activity has been employed to determine muscular 

response characteristics such as reaction time (Huston and Wojtys, 1996, Lofvenberg et 
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al., 1995, Eccles, 1981) and electromechanical delay (EMD) (Bell and Jacobs, 1986, 

Winter and Brookes, 1991). Latency or muscle reaction time refers to the time it takes 

from the onset of the stimulus for the action potential to reach the intended target muscle, 

as indicated by electrical activity recorded in the EMG signal (LaLoda et al., 1974). In the 

EMD studies, a mechanical device or contact switch can be interfaced with the EMG to 

accurately mark when the stimulus occurs and thus provide reliable measures.  It is 

possible that providing more practice in this specific direction during the pre-testing 

procedures could improve reliability of outcomes (Almosnino et al., 2009).  

 

The study of Hopkins et al. (2007) compared gastrocnemius EMD during voluntary and 

involuntary contractions and assessed the intra-session reliability of each set of 

measurements. EMD was greater in the voluntary condition compared to the involuntary 

condition. Intra-session reliability for each condition was high (involuntary ICC (2,1) = 

0.977; voluntary ICC (2,1) = 0.972), therefore reliability within a measurement session 

was good for each of the conditions (Hopkins et al., 2007). Inter-session reliability of 

EMD and torque of the dominant and non-dominant elbow flexors has also been 

demonstrated to be good with no discernable difference between the dominant and non-

dominant arms during isometric and isokinetic muscle actions repeated over five 

consecutive days (Howatson et al., 2009). Almosnino et al., (2009) has also reported that 

no significant differences in EMD values were observed between two testing sessions in 

the neck muscles. The findings of excellent inter-session reliability of the EMD 

measurement in maximal isometric knee extension has previously been determined in the 

study of Zhou et al., (1996) who performed two tests separated by one week and the 

reliability coefficients for EMDmax EMDVL and EMDRF were 0.98, 0.97 and 0.98, and 

for PT, and rate torque development were 0.85 and 0.90, respectively.  
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There has been some suggestion in the literature that stretching prior to testing may 

influence torque and EMD after fatigue. Esposito et al. (2009) have recently demonstrated 

that after stretching EMG parameters return to their pre-fatigue values quicker than if 

stretching does not occur. These findings suggest that there are stretching-induced changes 

in visco-elastic and contracting properties of the fatigued muscle (Esposito et al., 2009).  

 

It is important to understand that the EMG signal reflects only the electrical activity of the 

muscle, which is not synonymous with the production of tension. In fact, a natural EMD 

exists between neural activation of the muscle as recorded electrically by EMG and the 

actual generation of force (De Luca, 1997, Winter et al., 1980). EMD can be measured 

using an isokinetic dynamometer interfaced with the EMG to detect and quantify when 

muscular tension is developed after neural activation. However, to use signal averaging, 

data must be acquired at the same precise time and duration across all trials. This can be 

accomplished through a trigger-sweep data-collection mode using a mechanically reliable 

triggering device to clearly define when a trial begins or ends (Shultz and Perrin, 1999).  

 

Variability in EMD may be associated with factors such as fibre-type composition and 

firing rate dynamics of the muscle, velocity of movement, viscoelastic properties and 

length of the muscle and tendon tissues, activity state, and coactivity of other muscles (De 

Luca, 1997, Soderberg and Cook, 1984). EMDs reportedly vary anywhere from 30 to 50 

milliseconds (Winter et al., 1980) to as much as a few hundred milliseconds (De Luca, 

1997). This time lapse, and the need to increase sufficient muscular tension rapidly enough 

to provide dynamic joint stability, makes EMD a key consideration when investigating 

factors associated with injury risk. 
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When processing methods are used to determine muscle activity onset, it is important to 

realize that any time the raw signal is processed or filtered, a loss of EMG information 

results and the actual rise time of the signal may be significantly altered.  Such processing 

outcomes affect the researcher's ability to determine the exact time of muscle activity onset 

(Winter et al., 1980, Soderberg and Cook, 1984). Many techniques have been used to 

detect the end point of EMD whereas the identification of the onset of EMD is also of 

considerable interest. To accurately determine the onset of muscle activity, the clinician or 

researcher must be able to confidently and consistently identify when EMG activity begins 

or significantly deviates from static or baseline activity. To do so, the EMG signal must 

exceed a threshold that can be defined in some way, either visually (subjective) or by a 

statistically predetermined level (objective) (Shultz and Perrin, 1999). As is true in most 

EMG methodology, while there is no universally accepted method for determining 

precisely when muscle activity onset occurs, a number of methods have been used to aid in 

this determination (Winter et al., 1980). 

 

One subjective method is to use the raw signal along with visual recognition, using 

subjective criteria to determine when muscle activation occurs or to mark the point at 

which EMG activity begins or changes abruptly from baseline activity (Winter et al., 

1980). The subjectivity of this assessment poses serious threats to measurement reliability, 

particularly between investigators (Shultz and Perrin, 1999). Furthermore, under 

conditions where the muscle is already contracting and considerable baseline activity is 

present, the exact moment muscle activity deviates from baseline is often obscured and 

difficult to determine visually (LaLoda et al., 1974).  An alternative, more objectively 

defined method is to use a computer-assisted analysis program to identify a muscular event 
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based on statistical criteria (Shultz and Perrin, 1999). An example of a computer assisted 

analysis is to take a representative sample of the baseline activity, statistically determine 

the mean value and standard deviation of the signal, and then use standard deviations from 

average baseline activity as the threshold for detection (De Luca, 1997). Using a standard 

deviation threshold allows the researcher to be 95% confident that a significant change has 

occurred in muscle activity that is not a result of random occurrence. Onset is traditionally 

determined by calculating the mean baseline level of the EMG signal and then using a ±15 

µV deviation from the baseline (Zhou et al., 1995).  The classification of the end point of 

EMD (defined as the initiation of either movement or force development) is more difficult 

to define and Zhou et al., (1995) defined the end point of EMD as the onset of torque 

development as defined as 9.6-N·m. 

I 

The effect of training on neuromuscular performance has previously been studied.  Grosset 

et al., (2011) have showed that endurance training leads to a significant decrease in EMD. 

In addition, Kubo et al. (2001) reported a decrease in EMD after isometric training, but 

Zhou et al. (1996) found no changes in EMD following sprint training. Similarly Hakkinen 

and Komi, (1983) reported no significant differences in EMD values calculated under 

reflex contraction before and after 16 weeks of strength training. Those authors who 

reported changes in the EMD with training mainly attributed this change to alterations in 

tendon structures; the stiffness of the tendon always increased with any form of physical 

activity. Tendon stiffness has been reported to increase after 12 weeks of treadmill 

endurance training (Buchanan and Marsh, 2001) and after 12 weeks of isometric strength 

training of knee extensors (Kubo et al., 2001).  

 



Chapter 2                                                                                                                                  Literature Review                              

_______________________________________________________________________________________ 

77 

 

In summary, the absolute measurement of muscle response times via sEMG can be 

influenced by a number of factors. Each of these factors alone can result in significant 

variations in latency measures that may obscure or confound clinically significant 

variations (Shultz and Perrin, 1999). Unfortunately, the manner in which sEMG has been 

used to assess neuromuscular response characteristics in terms of instrumentation, signal 

processing, and data acquisition is varied and at times quite confusing and challenging for 

comparison; no standardized procedures currently exist in this regard. Additionally, many 

research papers fail to adequately report their procedures, which prevents others from 

being able to replicate or validate their findings (Redfern, 1992). From the limited research 

available, it appears that a sex difference may exist in some aspects of neuromuscular 

responses. However, further research is needed to explore these differences at the knee and 

their potential role as predisposing factors to the higher incidence of anterior cruciate 

ligament injuries in females. The evaluation of neuromuscular response characteristics 

around a particular joint can assist the clinician or researcher in understanding muscular 

activation and recruitment patterns both during and after a loading stress to the joint. In 

fact, a natural EMD exists between neural activation of the muscle as recorded electrically 

by EMG and the actual generation of force (De Luca, 1997, Winter et al., 1980). EMD can 

be measured using a force transducer (or similar device) interfaced with the EMG to detect 

and quantify when muscular tension is developed after neural activation. This delay can be 

quite variable due to factors such as fibre-type composition and firing rate dynamics of the 

muscle, velocity of movement, viscoelastic properties and length of the muscle and tendon 

tissues, activity state, and coactivity of other muscles (De Luca, 1997, Soderberg and 

Cook, 1984, Winter et al., 1980). EMDs reportedly vary anywhere from 30 to 50 

milliseconds (Winter et al., 1980) to as much as a few hundred milliseconds (De Luca, 

1997). Considering this additional time lapse and the need to develop sufficient muscular 
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tension rapidly enough to provide dynamic joint stability, EMD should be considered 

when evaluating muscular responses to an imposed perturbation or injurious stress. 

 

2.4.4 Age and sex differences in EMD 

EMD in the study of Falk et al., (2009) was consistently longer in boys than in men during 

flexion and extension as was the time to maximal rate of torque development. An age-

related decrease in EMD has previously been reported in maximal elbow flexion and in 

plantar-flexion twitch contraction (Asai and Aoki, 1996, Grosset et al., 2005). Using 

different types of muscle actions, Cavanagh and Komi, (1979) demonstrated that, in adults, 

it is mainly the series-elastic component (muscle–tendon stiffness), and not the excitation– 

contraction coupling, that determines EMD. Indeed, lower musculo-tendinous stiffness has 

been reported in 7- to 10-year-old boys compared with adults during plantar flexion 

(Lambertz et al., 2003). However, Cornu and Goubel, (2001) could not show these 

differences during elbow flexion. Moreover, in a recent study (Grosset et al., 2009), 

musculo-tendinous stiffness changes could account only for <20% of the variance in EMD 

changes. Thus, it is unlikely that boys’ longer EMD in the study of Falk et al., (2009) is 

solely due to their more compliant muscle–tendon complex. More likely is the proposition 

that factors such as lower muscle activation and lower muscle-fibre conduction velocity in 

boys (Halin et al., 2003) are also significant determinants of EMD. Further research is 

needed to elucidate this issue. 

 

Dynamic muscular control of knee joint alignment, specifically differences in muscle 

recruitment, firing patterns and strength, may be partly responsible for the sex differences 

in the incidence of ACL injury. Results from Myer et al., (2010) suggest that increased 

relative quadriceps recruitment, decreased knee flexion ROM, concomitant with increased 
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tibia length and mass normalized to stature are all related to increased ACL injury risk in 

both children and adults. To what extent any of these factors are related to sex associated 

risk of injury remains to be identified. 

 

Very few studies so far have specifically addressed sex differences in neuromuscular 

response characteristics. Electromyographical studies have confirmed that females may 

have sex-related neuromuscular imbalances in muscle contraction patterns proposed to be 

related to increased risk of ACL injury (Sell et al., 2004, White et al., 2003). White et al., 

(2003) examined the differences for muscle force and evaluated EMG power spectra of the 

quadriceps and hamstring muscles between men and women. They determined that the 

root mean square (RMS) for quadriceps coactivation in women was higher during knee 

flexion movements which indicate that women are more “quadriceps” dominant making 

them more susceptible to ACL injury. Winter and Brookes, (1991) have reported that the 

EMD of the soleus muscle during plantar flexion and elastic charge time were shorter in 

the men than in the women whereas for total reaction time, pre-motor time and force time 

no sex significant differences were observed. Values of total reaction time, pre-motor time 

and EMD for both men and women were similar to those reported for men by Viitasalo 

and Komi, (1980). Zhou et al. (1995) found significantly longer EMD values in 8-12 year-

old (61ms for boys; 58ms for girls) 13-16 year-old (44ms for boys; 47ms for girls) and 

adult (40ms for males; 46ms for females) females compared to males. Longer EMD in 

females may be as a result of differences in muscle composition; however, current limited 

evidence suggests that differences in muscle composition are not sufficient to account for 

the sex differences. Therefore differences in muscle activation, such as excitation-

contraction coupling and muscle fibre conduction velocity have been implicated in the 

longer EMD for females.  
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Moore et al., (2002) examined the effects of fatigue on patellar tendon reflex responses in 

males and females and found that there was an increase in EMD in women after fatiguing 

protocol, while no change was observed in men. These results suggest males and females 

may respond differently to fatigue, with males having a greater capacity to compensate for 

neuromuscular failure when responding to mechanical perturbations.  In addition, in a 

study of Minshull et al., (2007) it was indicated that EMD of biceps femoris muscle 

increased post-fatigue in women and did not change in men when participants voluntarily 

contracted their muscles, but it decreased at post-fatigue for both women and men when 

muscles were stimulated magnetically. Moreover, the findings of Yavuz et al., (2010) 

indicated that EMD increased at post-fatigue but no difference was observed between men 

and women. Although direct comparisons are difficult, due to the differences in study 

designs and protocols, muscle group examined and movement velocity, findings appear 

similar across studies. The findings of Yavuz et al., (2010) have reported an increase in 

EMD of the triceps surae muscle group with escalating muscle contraction level and 

significant increases with fatigue.  

 

A number of adult studies have suggested that males demonstrate a shorter EMD 

compared to females and have attributed this to greater musculotendinous stiffness in 

males (Blackburn et al., 2009, Zhou et al., 1995, Grosset et al., 2009). Only one study 

appears to have explored sex differences in EMD of the knee extensors during eccentric 

muscle actions (Blackburn et al., 2009) and reported no significant sex difference.  

However, musculotendinous stiffness and rate of force production (RFP) were greater in 

males; time to produce 50% peak force (time 50%) was shorter in males, and time 50% 

was negatively correlated with musculotendinous stiffness. These results suggest that 
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neuromechanical hamstring function in females may limit dynamic knee joint stability, 

potentially contributing to the greater female ACL injury risk. Whether EMD contributes 

to the greater relative risk of non-contact ACL injury in females is unclear as further 

research is needed to explore the sex related changes in EMD, especially during eccentric 

actions of the hamstrings at a range of velocities. 

 

2.5. FATIGUE 

2.5.1 Definition of fatigue 

Fatigue occurs in everyday and sporting activities and, in the scientific context, it is 

accepted that fatigue is the loss of maximal power output when maximal effort is applied 

(Vøllestad, 1997). Fatigue is commonly understood as a decrease in function and is a class 

of acute effects that impair performance (Rozzi et al., 1999a). In common parlance, 

‘fatigue’ is a term used to describe the decrease in physical performance associated with an 

increase in the real or perceived difficulty of a task or exercise (MacInstosh et al., 2005). 

During exercise, muscle fatigue is described as the inability to maintain the required level 

of torque (Edwards, 1981). This definition may be interpreted as a ‘break point’ with the 

sudden appearance of fatigue and inability to sustain the exercise. However, many 

neurophysiological mechanisms are ‘troubled’ before the effect of fatigue becomes evident 

and these changes sometimes constitute advance warning of fatigue. Furthermore, the 

initial state of the neuromuscular system is altered as soon as exercise starts. Fatigue then 

increases progressively until the muscle is no longer able to perform the required task. 

Fatigue may, therefore, correspond to any exercise- induced reduction in force or power 

regardless of whether the task can be sustained or not (Bigland-Ritchie and Woods, 1984). 

Fatigue is a composite, multifactorial phenomenon whose mechanisms are influenced by 
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the characteristics of the task being performed, including type and duration of the exercise, 

and speed, force and duration of the muscle contraction (Enoka and Stuart, 1992).  

 

During many sporting activities athletes repeatedly perform cutting and landing 

manoeuvres, without injury to the ACL, due to the adequacy of functional stability at the 

knee. However, alterations in functional stability may produce a joint that is unable to 

sense and respond adequately to apply joint forces. Muscular fatigue is considered an 

important factor in impaired neuromuscular mechanisms, as research has demonstrated its 

deleterious effects on knee joint laxity as well as both the afferent and efferent 

neuromuscular pathways (Ribeiro et al., 2007). In response to various exercise protocols 

designed to induce muscular fatigue, an increase in knee joint laxity has been documented 

(Weisman et al., 1980).  

 

Although it might be almost impossible to identify the single most important factor 

contributing to fatigue, this should not deter scientists and clinicians from attempting to 

resolve many of the issues which surround this concept. Fatigue is commonly defined as 

any reduction in the maximal capacity to generate force. Although most definitions of 

fatigue focus on force production, fatigue not only impedes a fibre’s capacity for maximal 

force generation but, importantly, the maximum speed of shortening or lengthening, 

consequently reducing power output. 

 

2.5.2 Mechanism involved in fatigue 

Fatigue is classified as central or peripheral fatigue according to whether it is associated 

with the central nervous system (CNS) or the peripheral neuromuscular system (Chang et 

al., 2011). Central fatigue is described as a reduction in neural drive or motor command to 
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the muscle resulting in a decline in force or tension development (Enoka and Stuart, 1992). 

Peripheral fatigue is defined as a decrease in the force generating capacity of the skeletal 

muscle due to action potential failure, excitation contraction coupling failure, or 

impairment of cross-bridge cycling in the presence of unchanged or increased neural drive 

(Taylor et al., 1997a, Viitasalo and Komi, 1977). 

 

 

2.5.2.1 Central factors in fatigue 

Chaudhuri and Behan, (2000) define central fatigue as the failure to initiate and/or sustain 

attentional tasks and physical activity. Central fatigue is typically associated with impaired 

ability to activate motor units. Central fatigue leads to a reduced ability to voluntarily 

activate the motor units, and thus a decrease in voluntary force generation potential. 

Therefore, central fatigue can be defined as a progressive, exercise- induced degradation of 

the ability to voluntarily activate the motor units (Gandevia, 2001).  

 

The presence of central fatigue can be estimated by using percutaneous electrical 

stimulation  (Shield and Zhou, 2004). The examination of a force peak following an 

electrical stimulation superimposed on the motor nerve innervating the muscle indicates 

that the voluntary activation was not in fact maximal. Therefore, some motor units are 

either not recruited or do not fire often enough for the muscle fibres to generate maximal 

force (Taylor et al., 2006). An increase in the difference between the superimposed peak 

force and the voluntary peak force over the course of fatiguing exercise may be associated 

with progressive impairment of voluntary activation and thus with the presence of central 

fatigue (Taylor et al., 1999). Hence, using electrical stimulation, Schillings et al., (2003) 

and Kent-Braun, (1999) have shown that 20 and 12% of the loss of torque during a 
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maximal isometric contraction of the ankle dorsiflexors and of the arm flexors are due to 

central fatigue, respectively. Furthermore, numerous transcranial magnetic stimulation 

(TMS) studies by Gandevia’s group have shown that central fatigue can account for over 

25% of the drop in force seen during sustained, maximal contractions (Gandevia, 1998, 

McNeil et al., 2009, Taylor and Gandevia, 2008). However, central fatigue appears to 

contribute more significantly to the decrease in force generation during sustained low-

intensity exercise (Millet and Lepers, 2004). In fact, Smith et al., (2007) have showed that 

two thirds of fatigue can be attributed to central (supraspinal) mechanisms during 

isometric flexion of the forearm at 5% MVC.  

 

The brain has little glycogen reserves and the latter are rapidly exhausted. Although these 

reserves can be quickly renewed, depletion could influence brain function and, notably, 

may have an effect on the activity of serotonin (Bequet et al., 2002). The influence of the 

brain’s glycogen levels, neurotransmitter and ammonium on central fatigue and 

performance has been evidenced in prolonged exercise (over 30 minutes). Nybo and 

Secher, (2004) indicated that there was a net balance of ammonia across the brain at rest 

and at 30 min of exercise, whereas 3 h of exercise elicited an uptake in the placebo trial 

and the glucose trial. Similarly, hyperthermia (a phenomenon sometimes associated with 

sport and exercise) may reduce the activity of central nervous command (Nielsen and 

Nybo, 2003).  

  

In a series of studies of fatigue in the ankle dorsiflexor muscles, one laboratory 

demonstrated that fatigue resistance was similar between men and women in submaximal, 

intermittent, isometric exercise of progressively increasing intensity (Kent-Braun et al., 

2002) in brief (60s) sustained MVCs (Russ et al., 2005), and in intermittent MVCs with a 
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70% duty cycle (Russ et al., 2008). Deficits in central activation observed with fatigue 

were similar for men and women in each of these studies. In contrast, this same group 

found that men fatigued more than women during intermittent MVCs with a 50%  duty 

cycle, and that this difference was associated with greater failure of central activation in 

men (Russ and Kent-Braun, 2003). When the same participants performed the fatigue 

protocol under ischemic conditions, the sex-related differences in fatigue and central 

activation were abolished. Together, these findings highlight the task-specific nature (50% 

vs 70% duty cycle) markedly altered the difference in fatigue between men and women. 

These data further suggest a role for central activation failure in sex-related differences in 

fatigue, when they occur. Because of the sensitivity of the central activation impairment to 

ischemia, it has been suggested that differences in the exercise-induced decline in the 

power of hydrogen (pH; acidity) could account for the sex-related differences in central 

activation. 

 

2.5.2.2 Peripheral factors in fatigue 

Studies exploring peripheral fatigue typically examine the integrity of transmission across 

the neuromuscular junction and whether electrical, mechanical and metabolic fail within 

the muscle. Effective transmission of signals across the neuromuscular junction and 

electrical excitation of the muscle membrane is shown by maintenance of compound 

muscle action potential (M wave) area as force decline. A decline in M wave amplitude 

does not necessarily indicate signal failure. With higher frequency stimulation, action 

potentials overlap and M wave amplitude decline from signal cancellation (Fuglevand, 

1995). The conduction velocity of muscle fibres also slows with fatigue, resulting in 

dispersion of motor unit potentials, amplitude changes in the compound response, and 

increase in M wave duration (Fuglevand, 1995). 
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 In humans it is difficult to examine sites of fatigue beyond excitation of the muscle 

membrane. Muscle metabolism and biochemical changes have been examined by assessing 

changes in oxidative and glcolytic enzymes, lactate, phosphocreatine (PCr) and adenosine 

triphosphate (ATP) from muscle biopsies taken throughout a fatigue protocol (Vollestad et 

al., 1988), use of nuclear magnetic resonance spectroscopy (Cady et al., 1989) or from 

estimates of potassium levels (Sjogaard and McComas, 1995). Alterations in calcium 

handling are usually inferred by comparing changes in twitch and tetanic forces, and rates 

of contraction and relaxation, whereas failure of excitation-contraction has largely been 

inferred by exclusion of the other possible sites that can be assessed. The importance of 

muscle membrane excitability, extracellular potassium accumulation, metabolic changes, 

reactive oxygen species and calcium handling in the failure of muscle processes (sites that 

underlie much of the force decline seen during seen during exercise of a healthy nervous 

system) have largely been understood from studies in reduced preparations and single or 

skinned muscle fibres, as reviewed by Allen et al., (2008). 

 

The factors involved in peripheral fatigue include alterations in neuromuscular 

transmission, muscle action potential propagation, excitation-contraction coupling and 

related contractile mechanisms. During continued contraction, fatigue may decrease the 

excitability of small-diameter axons. A small decrease in excitation may then lead to 

inactivation of these axons and a decrease in the amount of neurotransmitter released in the 

synaptic gap (Krnjevic and Miledi, 1959). These authors have reported an in vitro study in 

which certain nerve endings of the motorneurons innerving the rat diaphragm were no 

longer activated after several minutes of electrical muscle stimulation. The authors 

concluded that the intramuscular oxygen concentration had an influence on propagation of 
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the action potential (AP). The amplitude of motor end-plate potential reduces during 

fatiguing exercise, as a result of a decrease in the quantity of neurotransmitter 

(acetylcholine) released by each nerve ending (Reid et al., 1999). This is possibly related 

to a reduction in the number of exocytotic vesicles and/or a decrease in the quantity of 

acetylcholine released per vesicle (Reid et al., 1999, Wu and Betz, 1998). 

 

Increases in anterior tibial translation are commonly associated with higher risks of injury 

for athletes. Muscle fatigue induces a decrease in knee joint stability (Wojtys et al., 1996b) 

and in knee proprioception (Hiemstra et al., 2001, Lattanzio et al., 1997). Previous studies 

suggest that the increase in tibial translation is associated with a decrease in motor activity 

and a resulting reduction in muscle force; it is likely that hamstring reflex activity plays a 

potential role in knee joint stability. Previous studies demonstrated that muscle fatigue 

adversely affects the excitability of short latency the increase in tibial translation was due 

to the delay in muscle reaction time. Likewise, Nyland et al., (1997) demonstrated that 

muscle activation tended to be delayed after a fatigue protocol consisting of eccentric 

muscle contractions of the quadriceps muscles. 

 

2.5.2.3 Dynamic stability and the importance of fatigue 

Physical activity requires the production of high forces with recruitment levels that 

maximise the function of each moving part (Green, 1997). The presence of fatigue has 

been theorised to cause dysfunctions in dynamic stability and therefore increase the risk of 

injury by affecting afferent and efferent systems as well as muscle function. The 

manifestations of functional changes occurring with fatigue are multiple and depend on the 

joint angle, angular velocity, action type (Green, 1997) and on the training status of 

participant (Hickner et al., 2001).  
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It is well acknowledged that fatigue negatively affects the ability of muscle to protect 

joints. Alterations in the afferent input to the motor neurons can potentially affect reactive 

muscular function and decrease their protective capabilities of the joints (Rizzu et al., 

2000). Skinner et al., (1986) described that during fatigue conditions participants had 

significant decreased proprioceptive abilities. They proposed that this was due to either 

altered afferent impulses from the muscles themselves or from abnormal stresses in the 

joint capsule as a result of the muscle fatigue (Skinner et al., 1986). 

 

Although the approaches to studying central and peripheral fatigue produce a different set 

of challenges both mechanistically and methodologically, whatever approach is taken, the 

manifestations of fatigue are the same. There is a decline in efficiency of force production, 

resulting in an increase of the amount of effort to continue or in the continuation being 

unachievable because the necessary force cannot be sustained. The aetiology of fatigue has 

been advanced using a variety of clinical populations, sports performers and normal 

healthy adults. Whether it will ever be possible to identify the limiting cause of fatigue 

during a task is debatable. What is clear is that fatigue comprises a spectrum of events for 

which there is no single causative factor, with many factors occupying potential roles in its 

aetiology. These facts make fatigue such a complex, controversial and interesting issue. 

 

 

2.5.3 Inducing and assessing fatigue 

The fatigue produced by any activity can be assessed by comparing the force of maximal 

voluntary contraction pre-exercise and post-exercise. In the literature a wide variety of 

protocols have been used to induce fatigue and a range of methods have been used to 
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monitor the effects. Reported fatigue protocols are either task specific such as running 

(Rahnama et al., 2003) or muscle action-specific such as those using isokinetic 

dynamometry (Spendiff et al., 2002). Experiments have therefore used a variety of 

protocols to induce and test muscle fatigue (Warren et al., 1999). Specificity has been 

suggested to be of major importance when studying fatigue, so the task should be specific 

to the exercise in question when used to induce and monitor fatigue. 

 

The hamstrings are especially sensitive to eccentrically induced muscle damage due to 

their dual innervations and bi articulate arrangement (Croisier et al., 2002). The findings 

following eccentric fatigue vary as a function of intensity and duration but usually include 

several effects on performance, such as a drop in torque, a shift to the right of the torque-

angle relationship. Findings of Eston et al., (1996) are of interest that post-downhill run 

changes in muscle tenderness and PT in the knee extensors are reduced by a prior bout of 

isokinetic eccentric training. Additionally, there was a notable difference in the time 

course for the recovery of PT and reduction in plasma creatine kinase (CK) activity 

between the treatment who had a prior bout of eccentric isokinetic training and control 

participants (Eston et al., 1996) therefore, the effect of fatigue can be reduced with prior 

exposure to eccentric exercise. Eccentric fatigue alters neuromuscular function and after a 

decrease of 20% in eccentric hamstrings MVC Nyland et al., (1999) found changes in 

kinematics of crossover cutting performance. First, a decrease in knee flexion angle was 

observed at landing; second, an increase in knee internal rolation velocity was found in the 

impact absorption phase; and finally, the PT angle decreased during propulsion. 

 

The issue of the change in the torque- velocity relationship after repeated eccentric actions 

has been observed in the literature (Warren et al., 2000, Brockett et al., 2001). Eccentric 
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torque is more fatigue resistant than concentric torque because after an initial decrease in 

EMG and torque corresponding to the de-recruitment and increased rigidity of the fast 

twitch fibre, the slow fibres are mainly recruited during prolonged activity. Extensive 

literature has documented the effects of varying degrees of eccentric exercise and its role 

in inducing muscle fatigue. Primarily, these investigations have focused on eccentric 

actions of the elbow flexors (Nosaka and Clarkson, 1997) as well as everyday activities 

such as downhill stepping (Newham et al., 1986) and running (McHugh et al., 1999). 

Consistent throughout the literature is that the exercise stimulus must be of sufficient 

intensity and duration (Tiidus and Ianuzzo, 1983) in order to detect significant skeletal 

muscle fatigue. Additionally, it has been observed that greater eccentric volumes in 

concert with high eccentric loads elicit the greatest fatigue response (Warren et al., 1993), 

but even submaximal workloads are adequate in producing detectable markers of muscle 

fatigue (Lambert et al., 2001). 

 

Eccentric muscle actions possess several unique features which may explain why they are 

associated with muscle damage (Eston et al., 2003). During concentric actions, work is 

done by the muscle, but during eccentric action, work is done on the muscle by the 

external lengthening forces (Eston et al., 2003). The extensor muscles of the lower limbs 

eccentrically contract during each stride to decelerate the centre of mass after the foot 

touches the ground (Walmsley et al., 1978). Eccentric muscle contraction through 

downhill running has been associated with increased mechanical stress (Iversen and 

McMahon, 1992). The vertical impact peak force was reported to be higher during short-

term downhill running than during level running (Hamill et al., 1984, Dick and Cavanagh, 

1987).  
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The damaging nature of unaccustomed eccentric muscle contractions is well documented 

(Friden et al., 1983, Newham et al., 1987), and possible mechanisms have been reviewed 

(Armstrong, 1984). Active isokinetic dynamometers elicit eccentric activations by 

applying force in the opposite direction to the concentric action of the muscle. Isokinetic 

flexion and extension exercises do not simulate the joint forces occurring during activities 

of sport participation. Therefore, this method of inducing muscular fatigue may effectively 

create fatigued musculature without replicating the joint forces associated with sport 

activities such as running, cutting, and jumping, which appear to be necessary to induce 

alterations in ligament laxity. The length of the activated muscles and the forces exerted 

during eccentric dynamometry are different compared with other modes of eccentric 

exercise. In addition, submaximal hamstring fatigue is effectively associated with a 

mechanical loss of knee stability. This decrease in joint stability may explain at least in 

part a higher risk of ACL injury, especially in fatigued muscles. Therefore, this potential 

injury risk is primarily might be caused by a decrease in reflex force generation rather than 

by a moderate increase in latency. Although studies have already found that thigh muscle 

fatigue leads to larger knee moments (Wikstrom et al., 2004), loss of knee stability 

(Skinner et al., 1986, Wojtys et al., 1996b) or adverse effects on knee kinematics (Nyland 

et al., 1994), there is no study with a clear focus on the relationship between 

neuromuscular control of the hamstrings in terms of reflex components and functional 

knee stability in fatigued muscles. 

 

A series of eccentric actions lead to a shift in the length-tension relationship to longer 

muscle lengths with little loss in tension, so that tension at long lengths could actually rise 

because of the eccentric exercise (Katz, 1939). This has also been found after an isolated 

hamstring eccentric exercise, inducing a decreased PT joint angle, from 0.91 to 1.04 rad in 
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this case, inducing an average shift of 0.13 ± 0.04 rad (Brockett et al., 2001). A rightward 

shift of the torque-angle relationship was possibly found as a result of the increased 

compliance provided by the exercised muscle fibres (Katz, 1939, Talbot and Morgan, 

1998, Jones et al., 1997). 

 

2.5.4 The effects of fatigue on the FH/Q ratio  

The dynamic control ratio, calculated as the ratio of peak or average torque of the 

eccentrically contracting hamstring and the concentrically contracting quadriceps during 

extension of the knee (Hecc/Qcon) should be used (Aagaard et al., 1998, Dvir et al., 1989, 

Coombs and Garbutt, 2002). This ratio is thought to be an indicator of lower limb 

capability where the bilateral muscles work against each other in an explosive movement, 

(Aagaard et al., 1995, Aagaard et al., 1996). In the study of Rahnama et al., (2003), the 

dynamic torque control ratio was 0.77 and decreased progressively as the duration of 90 

min soccer-specific intermittent exercise continued. Furthermore, the magnitude of decline 

exceeded that observed in the conventional hamstrings: quadriceps ratio. The deficit in 

hamstrings torque with fatigue is of concern in that it may correspond with a compromised 

capability for joint stabilisation and, potentially, an increased risk of injury (Rahnama et 

al., 2003).  

 

Mechanical and metabolic fatigue have been presented as two independent processes but 

during physical activity they occur concomitantly around the joint and their effects depend 

on the function of the muscle, the intensity of performance of the activity, and the joint 

angle and angular velocity specificities due to the arrangements of static and dynamic 

stabilisers. It has been reported that downhill running was associated with an increased 

mechanical stress (Iversen and McMahon, 1992). It is also well known that one of the 
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major functions of lower limb muscle tissues is the dissipation of shock loadings during 

human locomotion (Paul et al., 1978, Radin, 1986). Interestingly downhill running, which 

involves eccentric contraction, was found to be associated with increased shock 

propagation from the tibial tuberosity level to the sacrum levels without the development 

of metabolic fatigue. Downhill running uses a combination of muscles that work 

eccentrically (e.g. hip extensors, ankle extensors and flexors), which were not previously 

trained by the isokinetic protocol and may induce fatigue ‘mechanically’, rather than 

‘metabolically’. Thus it is likely that damage would naturally be induced in these 

unprotected muscles, resulting in enzyme release. 

 

During eccentric actions in males, approximately 10% greater reduction in torque was 

observed in the hamstrings than quadriceps (Rahnama et al., 2003). This difference may be 

due to the greater efforts of the hamstrings in the control of running activities and for 

stabilizing the knee joint during foot contact with the ground. If so, then this decline 

perhaps leads to less control and lower stability of the knee towards the end of the game 

and thus lead to a greater risk of injury. The incidence of soccer match injuries have shown 

an increasing tendency as time elapses in both the first and second halves (Ekstrand et al., 

2011). One might hypothesize that fatigue might be an explanation for these findings. 

Studies of physical demands in soccer have shown that fatigue is evident towards the end 

of a game, and the amount of high-intensity running and technical performance is lowered 

as a result (Bangsbo et al., 2007, Mohr et al., 2003, Rampinini et al., 2009).  

 

Fatigue in associated musculature has been shown to increase strain magnitudes of bone 

leading to stress fractures (Arndt et al., 2002, Sharkey et al., 1995). These increased strain 

magnitudes are likely due to inability of the fatigued muscle to attenuate the forces 
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properly, leading to increased leg shock acceleration and plantar pressures (Radin, 1986, 

Arndt et al., 2002). McLean et al., (2007) have found a sex difference in knee axial 

rotation biomechanics during jump landing tasks. The main findings of this study showed 

that females demonstrated significant increases in initial-contact ankle plantar flexion and 

in peak knee abduction, peak knee internal rotation, and peak ankle supination angles 

compared with males and the main effect of fatigue also produced significant increases in 

peak knee abduction and peak knee internal rotation measures. Gleeson et al., (1995) 

investigated the effect of a fatigue task (30 reciprocal maximal voluntary actions of the 

knee flexors and extensors) on isokinetic leg torque in eleven female collegiate soccer 

players using an isokinetic dynamometer at angular velocity of 3.14 rad.s 
-1

. They reported 

that this fatigue protocol reduced the ability of knee flexors and extensors to generate force 

by 20% to 60% respectively during concentric muscle actions at 3.14 rad.s 
-1 

angular 

velocity. 

 

The effect of fatigue on two muscle strength ratios: the conventional ratio Hcon/Qcon and 

dynamic control ratio Hecc/Qcon and the coactivation of hamstrings and quadriceps during 

isokinetic knee flexion/extension were assessed by Wright et al., (2009). They found that 

there was a significant increase in both the conventional ratio (0.75 vs. 1.02) and the 

dynamic control ratio (0.88 vs. 1.08) following fatigue. A significant increase in hamstring 

coactivation during concentric quadriceps muscle actions following fatigue was also 

observed (18.6 vs. 21.3%). These data contribute to the literature aiding the future 

development of the dynamic control ratio and its use in injury prevention and rehabilitation 

strategies (Wright et al., 2009). Delextrat et al., (2010) investigated the effects of fatigue in 

males induced by a field test representative of soccer specific movements on different 

hamstrings/quadriceps ratios in the dominant and non-dominant legs at two different 
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velocities (1.05 and 3.14 rad.s
-1

). The main findings of this study demonstrated significant 

decreases in the Hcon/Qcon ratio in the dominant leg at 3.14 rad.s
-1 

and in the functional 

ratio Hecc/Qcon in the dominant leg at 1.05 and 3.14 rad.s
-1

. Additionally, significant 

correlations were observed between physiological parameters measured during the soccer-

specific exercise and Hecc/Qcon only. Oliveira et al., (2009) have verified the effects of 

heavy-intensity continuous running exercise on the functional and conventional 

hamstrings/quadriceps ratios in males and they found no differences for the conventional 

torque ratios, however, the functional torque ratios at 3.14 rad.s
-1

 decreased significantly 

after running. These results suggested that the FH/Q ratio is more representative of fatigue 

induced by soccer than the conventional Hcon/Qcon ratio (Oliveira et al., 2009, Delextrat 

et al., 2010). Heavy-intensity continuous running exercise decreased knee flexor and 

extensor eccentric torque and functional torque ratios under fast velocities, probably as 

result of peripheral fatigue (Oliveira et al., 2009).  

 

Small et al., (2010) have investigated the effect of multidirectional soccer-specific fatigue 

on hamstring muscle strength and angle of peak torque. They found that eccentric 

hamstring PT decreased significantly during each half time of exercise and the functional 

hamstring/quadriceps ratio also decreased significantly during each half. In addition, the 

findings also revealed significant changes for angle of PT for eccentric hamstrings which 

was significantly higher at the end of each half than the pre-exercise value and there was a 

time dependent decrease in peak eccentric hamstring torque and in the functional strength 

ratio which may have implications for the increased predisposition to hamstring strain 

injury during the latter stages of match-play.  
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One recent study has indicated that 6 weeks of neuromuscular training significantly 

increased balance and proprioceptive capabilities of 15-16 year old female basketball 

players (McLeod et al., 2009). Myer et al., (2008) examined the effectiveness of a trunk 

and hip focused neuromuscular training programme on knee and hip isokinetic strength in 

15 year old girls. After a 10 week training programme the training group improved their 

hip strength by 16%, whereas the control group reported no significant increases in 

strength. The authors however, do acknowledge the limitations of their findings as the 

strength measure was determined from concentric rather than eccentric actions and during 

open rather than closed chain actions. Further work by this group have also explored 

differences in the effects of plyometric versus dynamic stabilisation and balance training 

on lower extremity biomechanics, power and balance (Myer et al., 2005b). 

 

2.5.5 The role of fatigue on neuromuscular performance  

In response to muscular fatigue, one study has found an overall decrease in the ability to 

detect joint motion when extending the joint, and an increase in the onset time of 

contraction for the medial hamstring and lateral gastrocnemius muscles in response to 

landing from a jump (Rozzi et al., 1999a). Muscular fatigue is considered an important 

factor in impaired neuromuscular mechanisms, and research has demonstrated the 

deleterious effects of fatigue on knee joint laxity as well as both the afferent and efferent 

neuromuscular pathways (Ribeiro et al., 2007). The importance of altered joint 

proprioception due to fatigue is a decrease in neuromuscular control (Rizzu et al., 2000). 

As a consequence of the increased latency periods during the fatigued state, muscles may 

not be able to respond quickly enough to protect a joint from injury. 
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There is accumulating evidence that electromechanical delay (EMD) during maximal 

voluntary muscle actions in the knee extensors and flexors is increased by fatiguing 

exercise (Gleeson et al., 1998a, Mercer et al., 1998, Zhou et al., 1996). Clinically, 

alterations in the EMD of the hamstring’s muscle-tendon unit could compromise knee 

integrity or impair performance by modifying the transfer time of muscle tension to the 

tibia. Previous studies highlighted the importance of the EMD during physical activities. 

Vos et al., (1991) observed that changes of the EMD might play an important role in the 

organization of the movement and probably result in impairment of neuromuscular control, 

through its relationship with the reflex time. Certainly, sports performance is 

multifactorial, but EMD, which is a component of the reflex time, is important as it affects 

muscle response to sudden movements during athletic activities. According to our 

knowledge, the only published study to explore the possible effects of eccentric exercise-

induced muscle damage, following sub-maximal stretch-shortening exercise in males 

observed no impairment to electrically evoked EMD, despite considerable decrements to 

volitional peak force and rate of force development capability (Strojnik and Komi, 1998). 

 

There are few adult studies that have examined changes in EMD after fatiguing exercise. 

Fatiguing exercise lengthens the electromechanical delay (Zhou 1996). Power-trained 

athletes and other individuals who have a high percentage of fast-twitch muscle fibres 

exhibit a short EMD under fatiguing exercise conditions (Taylor et al., 1997b, Kamen et 

al., 1981). The effect of repeated maximal effort isotonic contractions on 

electromechanical delay was studied by Gabriel and Boucher, (1998) who have defined the 

period from the onset of the EMG until the beginning of movement as the 

electromechanical delay and the period from the beginning of movement until the end of 

the EMG as the second component of the contraction. They reported that over the four day 
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period of 400 rapid elbow flexion trials, there was an increase in the speed of limb 

movement and the faster contractions were a result of changes in motor unit recruitment 

during the second component of the contraction, rather than in the electromechanical 

delay. Yeung et al., (1999) have showed a significant increase in EMD of the vastus 

medialis following 30 bursts of isometric maximal voluntary contractions. Those authors 

have attributed the slowing of the speed to the altered crossbridge function during muscle 

fatigue; the time taken to stretch the series elastic component may have also contributed to 

the lengthening of EMD. Edman and Lou, (1992) have shown a 9% reduction in fibre 

stiffness with a 25% depression of the maximal tetanic force during fatiguing stimulation 

in frog single muscle fibres. Such decrease in muscle stiffness would also potentially 

lengthen EMD. 

Howatson (2010) examined the chronic effects of eccentric fatigue and muscle damage on 

the biceps brachii in male adults and reported significantly greater EMD up to 96 h 

following the exercise bout. This finding was despite the apparent return of muscle 

function and suggests that caution should be taken if a task requiring a fast reaction time or 

fast generation of high forces is needed following this type of exercise. Zhou et al (1996) 

also demonstrated a significant increase in EMD following four bouts of 30 s all out 

cycling exercise in adult males. All of the available adult studies seem to show a 

significant increase in EMD after fatiguing trials which could predispose the knee to 

greater injury risk. The mechanisms involved in the increase in EMD after fatigue could be 

due to the deterioration in muscle conductive, contractile or elastic properties and requires 

further study. Unfortunately there are no current data available that permit exploration of 

the sex associated changes in EMD after fatiguing exercise. This data is urgently needed to 

elucidate the factors associated with the relative risk of non-contact knee injury when the 

adult is in a fatigued state. 
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2.6 SUMMARY 

ACL injury is serious, involving high costs for the individual which, despite noticeable 

progress in surgical and rehabilitation procedures, is still characterised by difficulty in 

returning the athlete to pre injury levels of performance. In relation to developing an injury 

prevention programme, the first step is to identify and control the risks of injury. The 

alterations induced by risk factors have been investigated with the conventional ratio. The 

“conventional” ratio is the most widely reported ratio in the literature and is calculated by 

dividing the concentric hamstrings PT by the concentric quadriceps peak torque, but it 

does not appear adequate to highlight changes in dynamic stability due to a lack of 

functional significance. The FH/Q ratio has been used to investigate the changes in 

dynamic stability. To calculate the FH/Q ratio the peak eccentric hamstrings torque is 

divided by the peak concentric quadriceps torque to evaluate the relative ability of the 

hamstrings to act eccentrically and stabilise the knee. In fact, during knee extension 

antagonistic eccentric, not concentric, hamstrings co-activation decreases the anterior shear 

forces induced by the concentric quadriceps muscle group action. Therefore, the FH/Q 

ratio has been suggested as more relevant.  

 

Neuromuscular and biomechanical factors such as decreased joint angle, increased angular 

velocity and fatigue play an important role in the aetiology of ACL injury due to their 

influence on dynamic stability. Based on the small empirical research base, demonstrating 

an indirect link between muscular and neuromuscular ability and injury incidence a 

schematic framework for this thesis s demonstrated in figure 2. ACL rupture is most likely 

to occur near full knee extension during high velocity movement. If it is to be accepted that 

a low FH/Q ratio may increase the relative risk of injury then it is essential to determine 
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whether the ratio is reduced when: a) approaching full knee extension b) with increasing 

angular velocity c) in the presence of action-specific fatigue. 

 

Figure (2) adapted from figure 1 (p. 2) as the conceptual framework for the research 

programme of this thesis.                                                                     

 

The EMD, which is defined as the time interval between the onset of detectable electrical 

activity at the muscle and the associated force production (Cavanagh and Komi, 1979), has 

been implicated as a risk factor for knee injury in adults (Blackburn et al., 2009). 

Electromyographical studies have confirmed that females may have sex-related 

neuromuscular imbalances in muscle contraction patterns proposed to be related to 

increased risk of ACL injury (Sell et al., 2004, White et al., 2003). Whether EMD accounts 

for the greater relative risk in females remains to be identified as there are no studies that 

have examined sex differences in EMD particularly for the knee flexors pre and post 

fatigue and particularly following eccentric actions. Further study is needed to explore the 

changes in EMD pre and post fatigue in males and females, especially following eccentric 

exercise. 
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Following physical activity the effects of mechanical and metabolic fatigue depend on the 

function of the muscle, the intensity of the activity, and the joint angle and angular 

velocity. The presence of fatigue has been theorised to cause dysfunctions in dynamic 

stability and therefore increase the risk of injury by influencing afferent and efferent 

pathways as well as muscle function itself. Although the present thesis is not explicitly 

exploring the mechanistic basis for fatigue, it may be possible to develop an enhanced 

understanding from the findings. 
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2-7 Hypotheses of thesis 

Based on the previous literature, it was hypothesised for this thesis that: 

1. The FH/Q ratio will be significantly lower in females compared to males. 

2. The FH/Q ratio will significantly increase as velocity of movement increases.   

3. The FH/Q ratio will significantly decrease with decreasing knee joint angle (closer 

to full knee extension). 

4. The EMD will be significantly longer in females compared to males. 

5. The EMD will be significantly longer as velocity of movement increases.   

6. The EMD will be significantly different between hamstrings muscle groups.   

7. The FH/Q ratio will significantly decrease post-fatigue compared to pre-fatigue 

task with greater decrease in FH/Q ratio in females compared to males. 

8. The EMD will significantly increase post-fatigue compared to pre-fatigue task with 

a greater increase in EMD in females compared to males. 

9. The effects of fatigue on FH/Q ratio will be significantly greater increases with 

decreasing joint angle (closer to full knee extension). 

10. The effects of fatigue on FH/Q ratio will be significantly greater increases with 

decreasing angular velocity. 

11. Irrespective of sex or time, the EMD will be significantly different between 

hamstrings muscle groups. 

12. Irrespective of sex or time, the EMD will be significantly longer as velocity 

movement increase. 



Chapter 3                                                                                                                                    General methods 

_______________________________________________________________________________________ 

103 

 

Chapter 3: 

General Methods 

 

3-1 Participants and recruitment   

One hundred and ten healthy males (n=55) and females (n=55) were recruited from the 

university population (see physical characteristics in Table 3 chapter 4). All participants in 

the study were aged between 18-35 years, without previous injury to their dominant leg 

and regularly involved in moderate intensity exercise (at least three times per week). The 

number of participants was calculated based on statistical power calculations (Vincent, 

1995) of the FH/Q ratio and EMD production at each test movement velocity (60, 120 and 

240°·s
-1

) in the DOM limb, a range of sample sizes for each group (males and females) 

were indicated (see appendix 1) and informed the study design.  The University’s Research 

Ethics sub-Committee (RESC) approved all procedures as documented in the laboratory 

procedures manual (Gloucestershire, 2008). Participants were provided with an 

information sheet (Appendix 2) to explain the procedures involved in the studies and 

potential questions were answered by the researcher. They then gave written consent 

(Appendix 3) in accordance with the University of Gloucestershire sports and exercise 

laboratory procedures and completed a health questionnaire (Appendix 4). Acceptance to 

the study was approved if the participants satisfied the acceptance criterion as described in 

the health questionnaire flow chart (Appendix 5). On each testing occasion the participants 

were asked to review their answers to the questionnaire and date and sign it again if 

circumstances had not changed since the health questionnaire was initially completed 

however, if circumstances had changed the participants were obliged to complete another 

health questionnaire. Participants visited the laboratory one week prior to testing to 

familiarise themselves with the laboratory and the experimental procedures. All raw data 
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were stored confidentially in electronic form using ID codes and all participants’ results 

were reported anonymously.  

 

For female participants, menstrual cycle has predominantly been shown not to affect 

isokinetic strength (Lebrun et al., 1995, Gur, 1997, Janse de Jonge et al., 2001), however 

changes in knee laxity between different menstrual phases (follicular versus ovulation, 

ovulation versus luteal) correlated with changes in knee joint loads (Park et al., 2008). 

Therefore, all testing was conducted during the luteal phase of the menstrual cycle (post 

ovulation phase, average start and end days 15 to 26) which was self-reported by the 

participant. During this phase it has been reported that women have reduced knee laxity 

which may reduce knee joint loads (Park et al., 2008).  

The participants were requested not to: 

- Participate in strenuous physical activities in the 48 h prior to testing. 

- Eat or drink anything other than water in the final 3 h before each visit. 

- Drink alcohol in the final 24 h before each visit or take caffeine or medication within 

the final 12 h before the test. 

 

3-2 Pilot preliminary work  

Sixteen healthy males (n=8) and females (n=8) were recruited from the university 

population for the pilot preliminary work to explore and development the appropriate 

procedures for the determination the following: a) electromechanical delay protocol, b) 

fatigue protocol, c) angular velocities to be used, d) integration of the EMG system 

interface signal via a trigger box. The outcome of this pilot preliminary work was that we 

selected three movement velocities with which the participants were comfortable for 
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measuring EMD and FH/Q ratio. The pilot work also enabled us to ensure that the trigger 

was simultaneously determining EMG and torque measurement.    

3-3 Familiarisation session   

 

Stature and body mass were measured on the first visit to the laboratory and leg dominance 

was determined by asking the participants which leg they would use to kick a ball 

(Rizzardo et al., 1988). All participants were familiarised with the calibrated Biodex 

System-3 Isokinetic Dynamometer and the test protocol one week prior to the testing of 

the main studies. Specifically, as part of the familiarisation procedures, the participants 

were provided with a careful explanation of all procedures and allowed several sub-

maximal warm-ups, plus maximal practices in each test condition.  

 

3-4 Procedures 

3-4-1 Anthropometry 

Age was computed from date of birth and date of testing. Stature and body mass were 

measured on the first visit to the laboratory and stored for further reference and use.  

Stature was measured using a Stadiometer (Holtain Harpenden, Crymych, UK) and 

determined to the nearest millimetre. The participant stood with toes and heels together, 

without shoes on, and with their back to the stand. The researcher then applied gentle 

pressure to the mastoid processes while encouraged to stand tall and look straight ahead. 

Body mass was assessed using calibrated balance beam scales (Weylux Birmingham, UK) 

and calculation was made to the nearest 100g with T-shirt, shorts and without shoes. These 

procedures were in accordance to the International Association for the Advancement of 

Kinanthropometry guidelines (Eston and Reilly, 2001). 
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3-4-2 Peak torque assessments 

Isokinetic concentric and eccentric assessments of the knee extension and flexion were 

performed on Biodex Isokinetic dynamometer (System-3, Biodex Corp., and Shirley, New 

York, USA) Figure (3).  

  

 
Figure (3) A Biodex System-3 Dynamometer and participant in a supine position during 

concentric quadriceps test. 

 

Formal assessments were commenced with a standardised warm up consisting of 5 

minutes of cycling at 60 W on a Monark cycle ergometer 814E (Varberg, Sweden). The 

dynamometer set-up for knee extension and flexion was as follows: the dynamometer 

seatback was tilted to 0° hip flexion. The participant sat on the chair and the seat length 

was adjusted so that the participant`s legs were hanging freely with the back of the knee at 

approximately 2 cm away from the edge of the seat. The axis of rotation of the knee was 

carefully aligned with that of the dynamometer using the lateral epicondyle as an 

anatomical landmark. Stabilisation  straps were applied to the waist and distal femur of the 

leg being tested (Figure 3) to provide constant conditions and to mitigate any movement 

which may have confounded the test results. Knee attachments varied according to the 
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participants. The lever arm length was adjusted so that the shin cuff rested comfortably on 

the tibia, approximately 2 or 3 cm above the malleolus, to allow full dorsi and plantar 

flexion (Figure  4). The set up of the dynamometer and positioning of the participants were 

kept consistent between all trials and studies, including seat height settings, seat length, 

dynamometer height, chair forward slide adjustments and lever arm length settings. 

 
 

Figure  (4) A participant in a prone position during eccentric hamstring test. 

 

PT assessments were made on the dominant leg. Motion ranged from 90° to 0° of knee 

flexion (0° = full extension) was determined for each participant individually by placing 

mechanical stops at the beginning and end of their full active range of motion. The range 

stop control was set as soft (2) so as to reduce the possibility of sudden resistance at the 

end of each range of motion. Gravity corrections for limb mass were performed before 

each isokinetic assessment in accordance with the manufacturer’s instructions (Biodex Pro 

Manual, Applications/ Operations, Biodex Medical Systems, Inc., Shirley, NY).  

Therefore, at the start of each test session the participant was asked to relax their leg so 

that passive determination of the effects of gravity on the limb and lever arm could be 

accounted for; the tested leg was held by the examiner at the full extension position. 
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All assessments were performed in a supine position for determination of concentric 

quadriceps torque (Figure 3) which were undertaken first and then in a prone position for 

determination of eccentric hamstring torque (Figure 4). Testing occurred at slow (60°·s-1
), 

intermediate (120°·s-1
) and fast angular velocities (240°·s-1

) for both concentric and 

eccentric actions with extension always undertaken first. Testing began with the slowest 

angular velocity (60°·s-1
) and continued with increasing velocity (120°·s-1  

following by 

240°·s-1
) to reduce the risk of injury (Gaul, 1996). PT was determined during dual phase 

concentric-concentric actions and single phase eccentric actions using the passive eccentric 

mode. In the concentric quadriceps measurement participants were instructed to push the 

lever arm up, and pull it down. However, in the eccentric hamstring measurement 

participants were instructed to resist the lever arm as hard and as fast as possible, when it 

moved passively down and then relax when it moved up. Thus the participants` limb was 

passively returned to the starting position by the dynamometers` lever-arm. 

 

Participants performed three maximal efforts at each angular velocity and 30 s of rest were 

allowed between movements at different angular velocity to attempt to reduce any 

potentiation effects. Participants were instructed to push, pull or resist the lever arm as 

hard and as fast as possible throughout the entire range of motion until they were told to 

stop. Standardised verbal encouragement was given before each maximal effort and visual 

feedback of the recorded torque was provided.  

 

3-4-3 Electromyography   

The electromyography was quantified with an 8-channel DelSys EMG telemetry system 

(DelSys Myomonitor III, DelSys Inc., Boston, MA, USA) (Figure 5). Electromyography 
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was used to investigate the activity of the hamstrings during the eccentric hamstrings PT to 

determine the electromechanical delay. For maximum signal detection each bipolar surface 

electrode (DE- 2.3 MA; DelSys Inc., Boston, MA, USA) was positioned in the mid-line of 

the belly of the muscle perpendicular to the muscle fibres because in this location the 

electromyographic signal with the greatest amplitude is detected (Gleeson, 2001).  

 

Figure (5) A Myomonitor Wireless EMG System. 

 

The biodex square wave synchronization pulse was configurable via the biodex ASA 

software (Figure 6), thus allowing the triggering of the EMG software. The EMG system 

interfaced the signal via a trigger box. The EMG works software offers full triggering 

capabilities to control the start and stop of all data acquisition systems in a given 

experimental setup. The biodex ASA software was used to activate the biodex square wave 

signal output to get the right start signal. The Trigger Module only accepted signals that 

were between 0 to 5 volts, and could be configured for either positive-edge signals (Figure 

7.a) or negative-edge signals (Figure 7.b). 
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Figure (6) Analog signal access configuration via the biodex ASA program. 

 

                       

Figure (7.a) Positive-edge or “rising” signal.   Figure (7.b) Negative-edge or “falling” signal. 

 

Positive-edge or “rising” was defined to start from 0V and rise to 5V. The transition points 

of these voltages were defined as the event. Once the 5V level is reached, the duration of 

the trigger pulse was kept in the high state for a minimum amount of time before returning 

back to the low state. The trigger box (Figure 8) looked for a change in the biodex output 

square wave signal, so when the appropriate voltage change had taken place, the trigger 

box triggered the EMG PC (laptop) software to start recording the EMG data. When the 

hold button (Biodex) is pressed by the researcher the biodex signal (trigger) is switched on 
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and a light appears on the trigger port. Therefore, the EMG and biodex were completely 

time aligned. 

 

Figure (8) A Trigger Port on Myomonitor System. 

Three electrodes were placed on the dominant limb on the medial and lateral hamstring 

muscles represented by semitendinosus (ST), semimembranosus (SM) and biceps femoris 

(BF) as recommended by Finni and Sulin, (2009) (Figure 9).  

 
 

Figure (9) Positioning of the electrodes 

 

 

Following the application of surface electrodes participants were instructed to perform 

eccentric PT assessments of the hamstring muscles from prone position on the dominant 

leg (using the same isokinetic procedures highlighted in methods section 3-4-2). Raw 
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EMG data was collected at a sampling frequency of 1024 Hz and sent directly to the 

DelSys Acquisition software package set up on a Toshiba Laptop (L20, Toshiba Corp. 

Tokyo, Japan). EMG data is typically collected at 1000 Hz (Dermaux and Sandra, 1999). 

The EMG unit included a common mode rejection ratio of <80 dB and an amplifier gain of 

1000. Raw EMG data was band pass filtered at 20 – 450 Hz using the DelSys Acquisition 

software. The standard for the skin preparation was an electrical resistance between the 

three electrodes of less than 5kΩ. The skin was cleaned and shaved if necessary, so any 

visible hair was removed. This preparation was completed to improve application of the 

electrodes and reduce the acceptable impedance to below 5kΩ. An electrolyte electrode gel 

was applied to maximise conductivity mention using a prevent pen to mark position of 

electrodes for future testing (Figure  9).  

 

3-4-3 Electromechanical delay (EMD) 

The EMD was determined as the time interval between the onset of EMG and force 

development. EMD was determined using measurements performed in a  prone position 

with a hip angle of 0° on the dominant leg using the isokinetic dynamometer and the 

surface EMG unit, according to the protocol developed by Zhou et al (1995). Based on this 

protocol the onset of EMD was determent from the time of the EMG measuerments (ms) 

which against to the mean of baseline level and +15 µV deviation for the EMG signal and 

the offset of EMD was determened from the time of eccentric hamstring measurements 

(ms) which against to the torque development is defined as a 9.6-N·m as described in 

Figure (10). 
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Figure (10) The process used to determine the EMD (taken from Zhou et al. 1995). 

The participants were asked to exert maximal voluntary torque as quickly as possible when 

the light on the trigger box came on which was generated by the trigger system. The 

contraction force was displayed on an analogue device. The participants were allowed a 

maximum three rehearsals at three angular velocities (60, 120 and 240°·s-1
).  

 

3-5 Key outcome variables  

3-5-1 Functional hamstring to quadriceps ratio 

PT values were recorded during concentric quadriceps and eccentric hamstrings action and 

later used to calculate the functional hamstring to quadriceps ratio by expressing peak 

eccentric hamstrings torque to concentric quadriceps (as a ratio) at three angular velocities 

(60, 120 and 240°·s-1
) and at three knee angles (15°, 30° and 45°). PT was defined as the 

highest value obtained during three maximal isokinetic actions. 
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3-5-2 Electromechanical Delay 

The EMG data for each section of the movement during eccentric PT at three angular 

velocities (60, 120 and 240°·s
-1

) was normalised against the maximum EMG RMS 

amplitude recorded in the activity of the hamstrings muscles (semitendinosus, ST; 

semimembranosus muscles, SM; and biceps femoris, BF) to determine the 

electromechanical delay in a pre-fatigue state and then again in a fatigued state. To 

investigate the true EMD in a contraction, the maximal electromechanical delay (EMD 

max) value was determined as the longer EMD during a maximum of three measurements 

for three angular velocities. 

 

3-6 Data analysis  

 

Statistical analysis was performed using SPSS (version 17) software package (SPSS Inc., 

Chicago, USA). The level of significance was set at P ≤ 0.05 for all tests (See chapters 4-

6). 
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Chapter 4: Study One   

Sex Differences in the Functional Hamstring to Quadriceps Ratio 

 

4-1 INTRODUCTION 

Non-contact injuries to the anterior cruciate ligament (ACL) in physically active females 

are increasing annually and proportionately to the number of hours exposed to physical 

activity and sport. Each year, it is approximated that 80 000 to 250 000 ACL injuries  

occur in young athletes as increasing numbers of individuals participate in sports (Griffin 

et al., 2006). ACL injury rates differ by sex in several sports, with women experiencing 

two to eight times higher injury rates than men in the same sports (Good et al., 1991). A 

limited number of studies have investigated the possible mechanisms relating to the 

incidence of ACL injury based on exposure time and have compared male and female 

athletes competing in similar activities at the same level of competition (Renstrom et al., 

2008). 

 

Decreased hamstrings strength relative to the quadriceps (H/Q ratio) is implicated as a 

mechanism for increased lower extremity injuries (Myer et al., 2004, Knapik et al., 1991). 

It has been demonstrated that imbalances in hamstrings to quadriceps strength (e.g, H/Q 

ratio < 0.75) are associated with greater incidence of lower extremity injury in female 

collegiate athletes (Knapik et al., 1991). Isokinetic testing allows the assessment or the 

ability of the agonist-antagonist musculature to co-contract during reciprocal extension-

flexion motions. This testing assists the researcher in investigating the ability of the 

antagonists (hamstrings) to ‘‘brake’’ the movement of the agonist (quadriceps) (Wilk et 

al., 1994).  
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The hamstring to quadriceps ratio has conventionally been expressed as concentric 

hamstrings to concentric quadriceps strength (Lund-Hanssen et al., 1996) which does not 

reflect the functional capacity of the knee during dynamic movement and recent 

investigations have demonstrated that the conventional torque ratio calculated using 

concentric actions is not relevant for evaluation of joint balance. A FH/Q ratio of about 

1.00 has been reported for fast isokinetic knee extension movement, indicating a 

significant capacity of the hamstring muscles to provide dynamic joint stabilisation   

during active knee extension (Aagaard et al., 1995). Thus, the use of eccentric torque could 

provide a more functional index (Aagaard et al., 1998, Coombs and Garbutt, 2002, 

Rahnama et al., 2003). The ratio of eccentric hamstring torque-to-concentric quadriceps 

torque (FH/Q ratio) may be the most appropriate means of describing the balance of 

strength about the knee (Aagaard et al., 1998, Aagaard et al., 1995). 

 

It has been recognised that the FH/Q is influenced by numerous factors, such as 

maturation, sex and the method of calculation (Ahmad et al., 2006, De Ste Croix et al., 

2007, Hewett et al., 2007). There are also a number of methodological issues that may 

influence the FH/Q ratio, in-particular the hip joint angle and the movement velocity. 

Many researchers have stated that women tend to land or decelerate with more knee 

extension than their male counterparts (Fillyaw et al., 1986, Wilk et al., 1994). This is 

believed to be a contributing factor to the increased incidence of ACL injuries  in women. 

When landing with the knee closer to extension it is thought to decrease the ability of the 

hamstring muscles to prevent the quadriceps from pulling the tibia in an anterior direction, 

and thereby increasing the load on the ACL (Knapik et al., 1991).  
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Isokinetic dynamometers allow the objective assessment of muscle strength in both 

concentric and eccentric exercise modes, across a range of angular velocities. PT data from 

isokinetic assessments can be used to calculate ratios to evaluate the reciprocal and 

bilateral balance of strength at the knee joint. In addition, the velocity of isokinetic actions 

may influence the interpretation of the results, considering the differences between slow 

and fast velocities (Gerodimos et al., 2003, Hewett et al., 2007). Few studies have 

examined sex differences in dynamic knee joint stability; evaluation of isokinetic eccentric 

antagonistic strength relative to concentric agonist strength may be of value in describing 

the maximal potential of the antagonistic muscle group (Coombs et al., 2002).  

 

A FH/Q ratio of about 1.00 has been reported for fast isokinetic knee extension movement, 

indicating a significant capacity of the hamstring muscles to provide dynamic joint 

stabilisation during active knee extension (Aagaard et al., 1998). The quadriceps, through 

the anterior pull of the patellar tendon on the tibia, contributes to ACL loading when knee 

flexion is less than 30° to 45° (Markolf et al., 1978). The FH/Q ratio is velocity and joint 

angle dependent (Aagard et al., 1998), and the current study builds on the work of Sauret, 

(2009), who suggested that the functional ratio should be calculated at specified angles to 

avoid differences in PT between quadriceps and hamstring due to varying joint angle. 

However, sex differences in functional ratio, taking into account angle and velocity, 

remain to be investigated, and may reflect predisposition to injury (Croce et al., 1996).  

 

Few studies appear to have examined angle specific FH/Q ratios across a range of 

velocities and in both sexes. Aagaard et al., (1998) have used female and male track 

athletes to investigate joint angle-specific FH/Q ratio and reported an increase in the FH/Q 

ratio with decreased joint angle at 50 degrees of extension. However, the previous 
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literature is limited in sample size (especially as we have 110 participants in current study) 

and also they ignored joint angles lower than 30 degrees, where dynamic stability is often 

challenged. Coombs and Garbutt, (2002) used a small sample of 9 female and 6 male 

recreational athletes to calculate joint angle-specific FH/Q ratio values throughout 90 

degrees range of movement and found increasing FH/Q ratios as the joint moves closer to 

full extension. Kellis and Katis, (2007) reported that the FH/Q ratio of males significantly 

increased as the knee extended at increased angular velocities reaching a value of 3.14 ± 

1.95 at near full extension. This would suggest a compensatory mechanism in both males 

and females with an increased FH/Q ratio when the joint is near full knee extension and 

the movement velocity increases. However, this hypothesis requires further investigation 

with the hip in a functionally relevant joint position (e.g., flexed at about 10º), and 

employing much larger sample sizes over a range of movement velocities. 

 

Within current literature torques (i.e., PT) achieved at different angles are being used to 

represent a ratio which should be describing the ability of opposing torques to counteract 

each other (i.e., at the same joint angle). This ambiguity clearly does not help in 

elucidating the functional role that these muscles play in stabilizing the knee. Furthermore, 

the joint angle where non-contact ACL injury is mostly likely to occur is not at the point 

where PT is generated. Peak concentric and eccentric torque production is likely to occur 

in the mid-late range of the movement (around 30-80º of knee flexion), whereas it is well 

recognised that injury is likely to occur when the knee is closer to full extension (0-30º of 

knee flexion). Based on this knowledge it would seem more appropriate to calculate the 

FH/Q ratio using angle specific torque values close to full extension. It is clear that more 

data are required on the FH/Q ratio, especially using angle specific data and in females. 
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Whether this will change our understanding of associated differences in dynamic knee 

stability, and the susceptibility to knee injury, remains to be established. 

 

The present study examines the sex differences in the FH/Q ratio that appear to be 

associated with reduced knee stability and an increased risk of ACL injury. Comparisons 

also take account of potential counfounding factors of joint angle and angular velocity. 

 

4-2 METHODS  

4-2-1 Participants  

One hundred and ten healthy males (n=55) and females (n=55) were recruited from the 

university population (see physical characteristics in Table 3).   

4-2-2 Study design 

This study was designed to investigate the FH/Q ratio in a non-fatigued state between 

males and females groups across a range of three knee joint angles (15°, 30° and 45°) and 

three angular velocities (60°, 120° and 240°·s-1
). Data were collected as described in 

Figure (11).  

40 minutes 

6-8 min 17 min 15 min 

   
 

                                     

Warm-up 

 
 Concentric Quadriceps testing. 

 

  3 Reps @ 60°·s
-1

  then          30s rest
 

  3 Reps @ 120°·s
-1

 then         30s rest
 

  3 Reps @ 240°·s
-1

 then        2min rest    
 

To change this position 

 
Eccentric Hamstring testing.   

 

  3 Reps @ 60°·s
-1

     then          30s rest
 

  3 Reps @ 120°·s
-1

   then          30s rest
 

  3 Reps @ 240°·s
-1  

 then           2min rest 
 

cool down 

(Finish all testing)     

Cycling From supine position From prone position 

 

Figure 11: Timeline for data-collection. 
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4-2-3 Familiarisation  

The participants` first visit to the laboratory was designed to familiarise them with the 

testing procedures, equipment and environment. The concentric and eccentric tasks were 

explained and demonstrated and the participants were invited to experience both 

concentric and eccentric actions. All participants were familiarised with test protocol one 

week prior to the testing of the main tests. They were asked to perform several sub-

maximal eccentric and concentric actions until torque could be achieved consistently. 

Finally they were asked to perform three maximum efforts. All participants were 

encouraged to give a maximal effort for each action by using both visual feedback and 

strong verbal encouragement to improve consistency during the subsequent testing 

sessions (see section 3-3 in chapter 3). 

 

4-2-4 Test session 

4-2-4-1 Warm-up 

The test session was 7 days after the familiarisation session. The participants warmed up 

for 5 minutes by cycling at 60 W on a Monark cycle ergometer 814E (Varberg, Sweden). 

To complete the warm up and to familiarise them with the equipment and all testing 

procedures, they were asked to perform 3 sub maximal action specific repetitions and 2 

maximal repetitions at 120°·s
-1 

prior to the concentric and eccentric tests.    

 

4-2-4-2 Concentric and eccentric torque measurements 

Concentric quadriceps and eccentric hamstring torque data were collected as presented in 

section 3-4. Participants performed 3 maximal efforts from supine position for concentric 

quadriceps and prone position for eccentric hamstring at slow (60°·s
-1

), intermediate 

(120°·s
-1

) and fast angular velocities (240°·s
-1

) and 30 seconds of rest were allowed 



Chapter 4                                                                                                                                                   Study 1 

_______________________________________________________________________________________ 

121 

 

between movements at different angular velocity. Participants were instructed to push, pull 

or resist the lever arm as hard and as fast as possible throughout the entire range of motion 

until they were told to stop. Standardised verbal encouragement was given before each 

maximal effort and visual feedback of the recorded torque was provided (all isokinetic 

procedures highlighted in general methods section 3-4-2).
 

 

4-2-4-3 Cool down 

Immediately after the testing, participants were invited to complete 2 min cool down on 

the cycle ergometer at low intensities and stretch the quadriceps and hamstrings muscle 

groups. 

 

4-2-5 Data analysis 

 

For this study, analysis was performed for the independent variables of knee angle, knee 

angular velocity and sex (3 x 3 x 2) using a mixed-factorial analysis of variance (ANOVA) 

to determine the main and interaction effect on the dependent variable of the concentric 

quadriceps and eccentric hamstrings ratio based on angle specific PT values. The three 

independent variables include two within-subjects factors: knee angle (15º, 30º and 45º) 

and velocity (60°, 180°, and 240°·s
-1

) and a between-subjects factor of sex (male and 

female).
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4.3 RESULTS OF STUDY 1:  

 FH/Q ratio and influence of sex, angular velocity and knee joint angle 

 

4.3.1 Physical characteristics 

The physical characteristics (age, stature, and body mass) of 110 healthy males (n=55) and 

females (n=55) are presented for each group in Table 3. There were no significant 

differences between males and females in age but males were significantly (p<0.05) taller 

and had greater body mass. 

Table 3 Participant physical characteristics for study 1 and 2 

 

Variables  

 

Group 

  

Mean 

 

SD 

 

 

Minimum 

 

Maximum 

Age: 

(y) 

Males  29 5 18 35 

Females 27 6 18 35 

Stature: 

(m) 

Males 1.81* 0.07 1.64 1.95 

Females 1.61 0.08 1.45 1.79 

Body 

mass: 

(kg) 

Males 82* 7 65 93 

Females 68 9 50 89 

                       Note: * Males significantly different from females (p<0.05) 

 

4.3.2 Quadriceps and Hamstring torques at three angular velocities 

Maximal concentric Quadriceps and eccentric Hamstring muscle strength (mean ± SD) at 

three angular velocities (60, 120 and 240°·s
-1

) obtained during isokinetic knee extension 

and flexion as PT and knee joint angles (15°, 30° and 45°) are shown for males and 

females in Table 4.  
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Table 4 Angle specific torque values (N·m) of concentric quadriceps and eccentric hamstring 

muscle groups (mean ± SD) at three angular velocities. 

 

Variables 

Angle specific 

torque values 

at 60°·s
-1 

Angle specific 

torque values 

at 120°·s
-1 

Angle specific 

torque values 

at 240°·s
-1 

Male Female Male Female Male Female 

Con Q at 15° 74 ± 12 43 ± 10 52 ± 8 42 ± 6 44 ± 9 38 ± 5 

Con Q at 30° 123 ± 19 87 ± 15 76 ± 12 57 ± 8 57 ± 8 49 ± 4 

Con Q at 45° 211 ± 24 164 ± 19 144 ± 23 117 ± 21 94 ± 15 62 ± 11 

Con Q at PT 240 ± 16 200 ± 17 213 ± 19 172 ± 19 154 ± 16 115 ± 11 

Ecc H at 15° 58 ± 8 24 ± 5 47 ± 5 29 ± 5 46 ± 4 30 ± 4 

Ecc H at 30° 102 ± 12 56 ± 12 71 ± 11 45  ± 4 65 ± 11 47 ± 4 

Ecc H at 45° 149 ± 15 91 ± 13 112 ± 15 74 ± 11 95 ± 17 49 ± 11 

Ecc H at PT 160 ± 14 106 ± 16 155 ± 19 105 ± 12 139 ± 17 78 ± 10 

       Note: Con, concentric; Q, quadriceps; Ecc, eccentric; H, hamstring and PT, peak torque. 

 

 

4.3.3 FH/Q ratio values at three angular velocities 

FH/Q ratio values (mean ± SD) at three angular velocities (60, 120 and 240°·s-1
) obtained 

during isokinetic knee extension and flexion as PT and knee joint angles (15°, 30° and 

45°) are shown for males and females in Table 5.  

 

Table 5 FH/Q ratio values (mean ± SD) at 60, 120 and 240°·s-1 obtained as PT and knee joint 

angles (15°, 30° and 45°) for males and females. 

 

Variables  

FH/Q ratio values at 

60°·s
-1

 

FH/Q ratio values at 

120°·s
-1

 

FH/Q ratio values at 

240°·s-1
 

 Male Female Male Female Males Females  

FH/Q ratio at 15° 75 ± 11.7 62 ± 13.5 88 ± 8.8 75 ± 13 104 ± 17.7 85 ± 15.1 

FH/Q ratio at 30° 80 ± 11.7 72 ± 14.1 94 ± 12.2 85 ± 11.3 109 ± 9.9 98 ± 12.1 

FH/Q ratio at 45° 70 ± 7.8 62 ± 10.2 79 ± 13.5 73 ± 12.4 97 ± 4.5 79 ± 5.2 

FH/Q ratio PT 66 ± 7.2 59 ± 8.5 73 ± 10.2 65 ± 10.3 87 ± 8.2 68 ± 9.4 

 



Chapter 4                                                                                                                                                   Study 1 

_______________________________________________________________________________________ 

124 

 

 

4.3.4 Sex differences in the FH/Q ratio 

As defined in the methods (section 3.5.1), the FH/Q ratio was calculated by dividing 

eccentric hamstring by concentric quadriceps torque for both angle at PT and three knee 

joint angles representative of knee extension. 

 

4.3.4.1 Influence of joint angle on the FH/Q ratio 

A significant two-factor joint angle (15º, 30º, 45º and PT) by sex (males; females) 

interaction associated with the repeated measures ANOVA showed that whereby, across 

joint angles (F(3, 108) = 4.310, P < 0.01), FH/Q ratio was higher for males than females 

(Figure 12). Irrespective of sex, significant main effects for joint angle were observed (F(3, 

108) = 191.195, P < 0.01), whereby, FH/Q ratio decreased with increasing joint angle. Also 

significant main effects for sex were observed, whereby, across joint angles, FH/Q ratio 

was higher in males compared with females. 
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Figure 12 (A, B and C) FH/Q ratios at 60, 120 and 240°·s
-1 

 (mean ± SD) across angle (15º, 30º 

and 45º and PT) for males and females.  

Note: There was a significant interaction (p<0.01) between joint angle (15º, 30º, 45º and PT) and 

sex at 60, 120 and 240°·s
-1

.  Male FH/Q ratio values were significantly (p<0.01) higher than for 

females and the ratio decreased significantly with increasing angle for males and females. 

 

4.3.4.2 Influence of angular velocity on the FH/Q ratio 

 

A significant two-factor angular velocity (60, 120 and 240°·s
-1

) by sex (males; females) 

interaction (F(2, 108) = 13.702, P < 0.01), and angular velocity by knee joint angle interaction 

(F(6, 108) = 6.244, P < 0.01), associated with the repeated measures ANOVA showed that 

whereby, across angular velocity, FH/Q ratio was higher for males than females (Figure 

13) this interaction also indicated that the FH/Q ratio increases closer to full knee 
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extension with increasing angular velocity. However, there were no significant three-factor 

interactions (F(2, 108) = 1.265, P = 0.261), for angular velocity, joint angle and sex. 

Significant main effects for angular velocity were observed (F(2, 108) = 398.711, P < 0.01), 

for both males and females, whereby, FH/Q ratio increased with angular velocity. Also 

significant main effects for sex were observed, whereby, across angular velocity, FH/Q 

ratio was higher in males than females. 

 

 

Figure 13 (A, B, C and D) FH/Q ratios of different joint angles (15º, 30º and 45º and PT) at 60, 

120 and 240°·s
-1

 (mean ± SD) for males and females.  

Note: A significant interaction (p<0.01) between angular velocity and sex.  FH/Q ratios at fast 

angular velocities were significantly (p<0.01) higher than intermediate and slow angular velocities 

for each knee joint angle. 
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4.3.5 Summary of results 

- Importantly the effect of joint angle was not similar in males and females as 

statistically significant two-factor interactions between joint angle and sex for the 

FH/Q ratio were found. The interactions showed a significantly lower FH/Q ratio in 

females compared to males especially when decreasing joint angle (closer to full 

knee extension). 

- A significant two-factor angular velocity by sex interaction, and angular velocity by 

knee joint angle interaction, associated with the repeated measures ANOVA 

showed that the FH/Q ratio was higher in males compared to females with 

increasing angular velocity and increases closer to full knee extension. 

- There was a significantly greater difference between males and females in the 

FH/Q ratio at the faster angular velocity (240°·s
-1

) than the difference in the FH/Q 

ratio at intermediate and low angular velocities (60 and 120°·s
-1

). 
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Chapter 5: Study Two 

Sex Differences in the Neuromuscular Performance of the Knee Flexor 

Muscles 

 

5.1 INTRODUCTION 

High levels of neuromuscular control are necessary to create dynamic knee stability 

(Besier et al., 2001). Neuromuscular pre-planning allows feed forward recruitment of the 

musculature that controls knee joint positioning during landing and pivoting manoeuvres 

(Besier et al., 2001). Imbalanced or ineffectively timed neuromuscular firing may lead to 

limb positioning during athletic manoeuvres that puts the ACL under increased strain and 

risk of injury (Myer et al., 2005b). Co-activation of the hamstrings and quadriceps muscles 

may protect the knee joint not only against excessive anterior drawer but also against knee 

abduction and dynamic lower extremity values (Hewett et al., 2008). If the hamstrings are 

under recruited or weak, quadriceps activation would have to be reduced to provide a net 

flexor moment required to perform the movement (Hewett et al., 1996, Hewett et al., 

2005). Therefore although the ability to generate either maximal torque or angle specific 

torque is important for dynamic muscular knee stability, the speed at which this torque can 

be generated is also important. This neuromuscular stability is often overlooked when 

exploring the dynamic stability of the muscle. 

 

Dynamic muscular control of knee joint alignment, specifically differences in muscle 

recruitment, firing patterns and strength, may be partly responsible for the sex differences 

in the incidence of ACL injury. Lower extremity muscle activation during cutting is 

significantly different between pre-planned and unanticipated conditions; the unanticipated 

sidestep condition was reported to increase muscle activation in males 10% to 25%, with 

the greatest increase before initial contact (Besier et al., 2001). Zazulak et al., (2005) 
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reported greater peak rectus femoris activity in female athletes during the pre-contact 

phase of landing. Increased activation of the rectus femoris in female athletes could be an 

important neuromuscular contributor to increased ACL strain in women. Increased 

quadriceps activity combined with low hamstring activation contributes to lowered energy 

absorption in landing and increased ground reaction forces associated with ACL injury. 

 

Surface EMG enables to examine the signal amplitude and the frequency content 

associated with skeletal muscle activity. Additionally, when EMG and isokinetic 

dynamometry are synchronised it is possible to determine electromechanical delay (EMD), 

which refers to the time lag between the onset of electrical activity and force production  

(Li and Baum, 2004). EMD has been used in a number of investigations to examine 

muscle characteristics during shortening and lengthening contractions (Cavanagh and 

Komi, 1979). Skeletal muscle contraction is associated with a series of neuromechanical 

events which define the transmission of contractile force to the bony insertion (Blackburn 

et al., 2009). Electromechanical delay (EMD) has been used classically as a 

characterization of neuromechanical function (Blackburn et al., 2009). Electromyographic 

studies demonstrate sex-related differences in the timing of muscle activation during 

athletic maneuvers (Wojtys et al., 1996a, Rozzi et al., 1999b, Myer et al., 2005a). It has 

been suggested that females display a longer latency period than males between 

preparatory and reactive muscle activation (Winter and Brookes, 1991). 

 

Very few studies so far have specifically addressed sex differences in neuromuscular 

response characteristics. Electromyographical studies have confirmed that females may 

have sex-related neuromuscular imbalances in muscle contraction patterns proposed to be 

related to increased risk of ACL injury (Sell et al., 2004, White et al., 2003). White et al., 
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(2003) examined sex differences of muscle force and evaluated EMG power spectra of the 

quadriceps and hamstring muscles between men and women. They determined that the 

root mean square (RMS) for quadriceps coactivation in women was higher during knee 

flexion movements which indicate that women are more “quadriceps” dominant making 

them more susceptible to ACL injury. Winter and Brookes, (1991) have reported that the 

EMD of the soleus muscle during plantar flexion and elastic charge time were shorter in 

men than in the women whereas for total reaction time, pre-motor time and force time no 

sex significant differences were observed. Values of total reaction time, pre-motor time 

and EMD for women were similar to those reported for men by Viitasalo, and Komi, 

(1980). Zhou et al. (1995) found significantly longer EMD values in 8-12 year-old (61ms 

for boys; 58ms for girls) 13-16 year-old (44ms for boys; 47ms for girls) and adult (40ms 

for males; 46ms for females) females compared to males. Longer EMD in females may be 

as a result of differences in muscle composition; however, current limited evidence 

suggests that differences in muscle composition are not sufficient to account for the sex 

differences (Zhou et al., 1995). Therefore differences in muscle activation, such as 

excitation-contraction coupling and muscle fibre conduction velocity have been implicated 

in the longer EMD for females. 

 

Huston and Wojtys (1996) reported that female athletes have a slower response of 

hamstring activation to anterior stress on the ACL. A number of adult studies have 

suggested that males demonstrate a shorter EMD compared to females and have attributed 

this to greater musculotendinous stiffness in males (Blackburn et al., 2009, Zhou et al., 

1995, Grosset et al., 2009). Only one study appears to have explored sex differences in 

EMD of the knee extensors during eccentric muscle actions (Blackburn et al., 2009) and 

reported no significant sex difference.  However, musculotendinous stiffness and rate of 
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force production were greater in males; time to produce 50% peak force (time 50%) was 

shorter in males, and time 50% was negatively correlated with musculotendinous stiffness. 

These results suggest that neuromechanical hamstring function in females may limit 

dynamic knee joint stability, potentially contributing to the greater female ACL injury risk. 

Whether EMD contributes to the greater relative risk of non-contact ACL injury in females 

is unclear as further research is needed to explore the sex related changes in EMD, 

especially during eccentric actions of the hamstrings at a range of velocities. 

 

There are a range of issues with the limited data that have explored sex difference in EMD, 

that include, but are not limited to: a) very small sample sizes; b) differing methods for 

calculating EMD; c) mainly isometric actions which do not reflect functional performance; 

d) a limited range of movement velocities have been explored; e) only one study has 

explored EMD from eccentric actions; and f) there is a lack of data exploring any 

differences in EMD between the different muscles that comprise the hamstring muscles. 

Therefore, this study proposes to examine sex differences in the EMD of the hamstrings 

muscle, conducted at 90° of knee flexion, during eccentric actions, from a range of 

movement velocities, in a large sample of participants to explore the role that 

neuromuscular functioning has on knee stability and associated risk of ACL injury. 

 

 

5-2 METHODS  

5-2-1 Participants  

The participants of study one were also used in study two (see physical characteristics in 

Table 3 in chapter 4). 
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5-2-2 Study design 

This study was designed to investigate the neuromuscular functioning of the hamstring 

muscles during an eccentric action in a non-fatigued state. The eccentric testing of this 

study started 7 days after familiarisation session and after the concentric quadriceps testing 

for study one as described in Figure (14). 

Baseline 

measurement 
40 minutes 

                                    
Baseline value of 

the dominant leg 

 

3 Times for  

10s each 

 

during the 

 

Familiarisation 
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6-8 min 17 min 15 min 
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-1 

  then    30s rest 
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 then   30s rest 
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position 

Cycling From supine position From prone position 

 

Figure 14: Timeline for data-collection. 
 

 

 

5-2-3 Baseline measurement 

Prior to any exercise and before warmed up, an active surface EMG electrode 

configuration was placed over the hamstrings muscles long head parallel to the direction of 

action potential propagation. Electrode locations were determined via identification of the 

area of greatest muscle bulk within the muscle belly. Proper electrode placement was 

verified via manual muscle testing (Hislop and Montgomery, 2002). Baseline values of the 

dominant leg was taken 3 times (10s each) in the familiarisation session from prone 

position with hip angle of 0° and fully relaxed. The foot was positioned off the end of the 

bed (See Figure 15).              
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Figure (15) A participant in a prone position, fully relaxed for baseline measurement. 

 

5-2-4 EMG measurement 

7 days after the familiarisation session participants returned to the laboratory. Testing were 

performed during eccentric PT assessments of the hamstring muscles following the 

application of surface electrodes from prone position on the dominant leg (using the same 

isokinetic procedures highlighted in general methods section 3-4-2) to obtain EMG data 

representative of the muscle activity in a pre-fatigue state. The participants were asked to 

exert maximal voluntary contractions (MVC) as quickly as possible when hearing a 

specific sound generated by Isokinetic machine. The contraction force was displayed on an 

analogue device (all EMG measurement procedures highlighted in general methods section 

3-4-3). Feedback and encouragements were given to improve consistency during the 

subsequent testing session. 

 

5-2-5 Data analysis 

 

For this study, analysis was performed for the independent variables of knee angular 

velocity (60, 120, and 240°·s
-1

), hamstring muscle (BF, SM, ST), and sex (male and 
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female) using a mixed-factorial (3 x 3 x 2) analysis of variance (ANOVA) to determine the 

influence on the dependent variable of electromechanical delay (EMD). The three 

independent variables include two within-subjects factors: knee angular velocity, 

hamstring muscle, and a between-subjects factor of sex. 

 

Raw EMG data was converted to Root Mean Square (RMS) data within the DelSys Data 

Analysis Software Package. When processing the raw signal of the amplitude of electrical 

activity with a root mean square, all data points are converted to a singular polarity 

(rectified) by squaring them then averaging over a user-defined time interval (Dermaux 

and Sandra, 1999). The EMG data for each section of the movement was normalised 

against the maximum EMG RMS amplitude recorded in the same muscle. To investigate 

the true EMD in a contraction, the maximal electromechanical delay (EMD max) value 

was determined as the longer EMD of the three muscles. In this case, the signal recorded 

from the electrodes placed closer to the motor point was used in the comparison (Zhou et 

al., 1995).  
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5.3 RESULTS OF STUDY 2 

5.3.1 EMD values at three angular velocities 

EMD values (mean ± SD of hamstring muscles (BF, SM and ST and Max) at three angular 

velocities (60, 120 and 240°·s
-1

) obtained during eccentric actions are shown for males and 

females in Table 6.  

 

Table 6 Pre-post fatigue EMD values (mean ± SD) of hamstring muscles at 60, 120 and 

240°·s-1 obtained for males and females. 

 

Variables  

EMD values at 60°·s
-1 

EMD values at 120°·s-1
 EMD values at 240°·s-1

 

 Male Female Male Female Males Females  

EMD of BF  24 ± 3.2 27 ± 4.1 40 ± 12 42 ± 13.1 52 ± 8.5 57 ± 9.5 

EMD of SM 25 ± 3.6 27 ± 3.9 40 ± 11.9 42 ± 12.6 53 ± 10.8 58 ± 9.5 

EMD of ST 25 ± 4 26 ± 4.5 40 ± 14.4 43 ± 12 53 ± 9.6 57 ± 8.6 

Max of EMD 27 ± 3.1 29 ± 3.5 47 ± 11.2 51 ± 10.8 59 ± 7.2 63 ± 7.7 

 

 

5.3.2 Influence of sex and angular velocity on the EMD of hamstring muscles 

For the EMD of hamstring muscles, no statistically significant interaction (F(2, 108) = 0.671, 

P = 0.512), between angular velocities and sex was observed (Figure 16). However, a 

significant main effects for angular velocity (60, 120 and 240°·s
-1

) was demonstrated (F(2, 

108) = 443.177, P < 0.01), indicating an increase in the EMD with increasing angular 

velocity. For sex differences, the ANOVA analysis indicated that no significant differences 

were observed in the EMD of the hamstring muscles at three angular velocities. 
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Figure 16 (A, B, C and D) EMD of the hamstring muscles (BF, SM and ST and Max) at 60, 120 

and 240°·s
-1

 (mean ± SD) for males and females. 

Note: No significant interaction between angular velocities and sex was observed. EMD at fast 

angular velocities were significantly (p<0.01) slower than intermediate and slow angular velocities 

for each hamstring muscles. 

 

 

5.3.3 Influence of hamstring muscles on the EMD across three angular velocities  

Repeated measures ANOVA demonstrated that no statistically significant interactions (F(6, 

108) = 0.088, P = 0.986), for angular velocity and hamstring muscles (BF, SM and ST and 

Max) were found in males and females (Figure 17). However a significant main effect for 

the angular velocity (60, 120 and 240°·s
-1

) was observed (F(2, 108) = 443.177, P < 0.01) for 

each hamstring muscle, whereby, EMD increased with increasing angular velocity. No 

significant main effects for hamstring muscles were observed (F(3, 108) = 0.104, P = 0.901) 

for both males and females at all three angular velocities. 
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Figure 17 EMD at 60, 120 and 240°·s
-1 

 (mean ± SD) across hamstring muscles (BF, SM and ST 

and Max) for males and females. 

Note: No significant interaction for angular velocity and hamstring muscle was observed.  EMD at 

fast angular velocities were significantly (p<0.01) higher than intermediate and slow angular 

velocities for each hamstring muscles. 

 

5.3.4 Summary of results 

- Importantly the effect of angular velocity in the EMD was similar in males and 

females as no statistically significant two-factor interactions between angular 

velocity and sex for the EMD of Hamstring muscles (BF, SM and ST) were found.  

- Also there were no statistically significant interactions, for angular velocity and 

hamstring muscles (BF, SM and ST and Max) in males and females. 

- A significant main effects for angular velocity (60, 120 and 240°·s
-1

) was 

demonstrated, indicating an increase in the EMD with increasing angular velocity. 

- Irrespective of movement velocity no differences between the EMD of Hamstring 

muscles groups were found. 
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Chapter 6: Study three 

The Influence of Fatigue on Functional Hamstring to Quadriceps Ratio 

and Neuromuscular Performance in Males and Females 

 

6-1 INTRODUCTION 

With the increased participation of females in sports activities over the past decade, a 

dramatic increase in the rate of knee injuries involving the anterior cruciate ligament 

(ACL) has been documented (Marsden et al., 1983, Arendt and Dick, 1995, Oliphant and 

Drawbert, 1996). The anterior cruciate ligament (ACL) is often injured when athletes 

execute running and crosscutting
 
manoeuvres during sport activities such as soccer, 

basketball,
 
and rugby (Zillmer et al., 1992, Arendt and Dick, 1995). Numerous risk factors 

for non-contact ACL injuries 
 
have been identified in the literature (Hughes and Watkins, 

2006) and literature focuses
 

on potentially modifiable risk factors related to body 

positioning,
 
joint loading, and neuromuscular coordination in preventing and reducing the 

incidence of this injury.
  

 

Approximately 70% to 80% of all ACL injuries  are
 
non-contact in nature (Moul, 1998, 

Griffin et al., 2000, Hertel et al., 2004) and, compared with male athletes, female athletes 

are reportedly 4 to 6 times more likely to sustain a sports-related non-contact ACL injury 

(Arendt and Dick, 1995). This sex difference in ACL injury rate has led to many studies 

attempting to elicit physiological, hormonal, and anatomical variances that may predispose 

females to ACL injury (Loudon et al., 1996, Shelbourne et al., 1998, Wojtys et al., 1998, 

McLean et al., 1999). Sex differences in neuromuscular control and biomechanical 

function are thought to be primary factors that may account for this sex bias (Griffin et al., 

2000). Irrespective of sex, most injuries occur in the second half of an athletes event when 

fatigue is commonly present (Hertel et al., 2004). Identifying fatigue as a potential risk 
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factor for an ACL injury may allow for the development of improved prevention 

strategies.  

 

The presence of fatigue has been theorised to cause dysfunctions in dynamic stability and 

therefore increase the risk of injury by affecting afferent and efferent systems as well as 

muscle function itself. The manifestations of functional changes occurring with fatigue are 

multiple and depend on the joint angle, angular velocity, action type (Green, 1997) and on 

the training status of participant (Hickner et al., 2001). Eccentric muscle actions possess 

several unique features which may explain why they are associated with muscle damage 

and subsequent injury risk (Eston et al., 2003). During concentric actions, work is done by 

the muscle, but during eccentric action, work is done on the muscle by the external 

lengthening forces (Eston et al., 2003). During running the extensor muscles of the lower 

limbs eccentrically contract during each stride to decelerate the centre of mass after the 

foot touches the ground (Walmsley et al., 1978). Eccentric muscle contraction through 

downhill running has been associated with increased mechanical stress (Iversen and 

McMahon, 1992). The vertical impact peak force was reported to be higher during short-

term downhill running than during level running (Hamill et al., 1984, Dick and Cavanagh, 

1987).  

 

The fatigue produced by any activity can be assessed by comparing the force of maximal 

voluntary contraction before and after exercise (Rahnama et al., 2003). In the FH/Q ratio if 

the hamstrings eccentric peak torque is equal to the peak concentric quadriceps torque then 

the ratio is 1:1 and the joint is supposedly not at risk whereas if the quadriceps are 

stronger, then the ratio is less than 1, and the joint is considered at risk (Hughes and 

Watkins, 2006). Consequently, in the fatigued state, the functional hamstring to quadriceps 
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ratio should be less than in the non-fatigued state if it is to be considered that the functional 

hamstring to quadriceps ratio is a good indicator of the injury risk at the knee. Although 

fatigue has also been proposed to increase the risk of ACL injury (Hertel et al., 2004), 

there is currently no evidence to suggest that fatigue has a greater effect on the incidence 

of ACL injury in females compared with males (Hughes and Watkins, 2006). In addition, 

most of the literature to date evaluating the effect of fatigue on neuromuscular reflex 

behaviour has been conducted almost exclusively on males. While few studies have 

examined the effects of sex on EMD (Bell and Jacobs, 1986, Winter and Brookes, 1991) 

and found EMD to be longer in females than males, no studies could be found specific to 

neuromuscular reflex behaviour at the knee as a function of both sex and fatigue. 

 

Previous studies have used active isokinetic dynamometers to elicit eccentric activations 

by applying force in the opposite direction to the attempted concentric action of the muscle 

(De Ste Croix et al., 1999). Isokinetic flexion and extension exercises do not simulate the 

joint forces occurring during activities of sport participation. Therefore, this method of 

inducing muscular fatigue may effectively create fatigued musculature without replicating 

the joint forces associated with sport activities such as running, cutting, and jumping, 

which appear to be necessary to induce alterations in ligament laxity. The length of the 

activated muscles and the forces exerted during eccentric dynamometry are different 

compared with other modes of eccentric exercise. In addition, submaximal hamstring 

fatigue is effectively associated with a mechanical loss of knee stability. This decrease in 

joint stability may explain at least in part a higher risk of ACL injury, especially in 

fatigued muscles. Therefore, this potential injury risk might be caused by a decrease in 

reflex force generation rather than by a moderate increase in latency. Although studies 

have already found that thigh muscle fatigue leads to larger knee moments (Wikstrom et 
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al., 2004), loss of knee stability (Skinner et al., 1986, Wojtys et al., 1996b) or adverse 

effects on knee kinematics (Nyland et al., 1994), there is no study with a clear focus on the 

relationship between neuromuscular control of the hamstrings in terms of reflex 

components and functional knee stability in fatigued muscles. 

 

Therefore, this study is designed to examine the influence of fatigue on sex differences in 

FH/Q ratio and the neuromuscular performance of the hamstrings muscle that appear to be 

associated with reduced knee stability and an increased risk of ACL injury. Where 

relevant, these interactions will take account of the potential confounding influence of joint 

angle and angular velocity. 

 

 

6-2 METHODS  

6-2-1 Participants  

One hundred healthy males (n=50) and females (n=50) were recruited from the university 

population (see physical characteristics in Table 7).  

 

6-2-2 Study design 

A pilot study was undertaken to examine the proposed fatigue protocol with the 

participants of the research. This study comprised a partially repeated measures design 

investigating the FH/Q ratio and neuromuscular functioning of the hamstrings muscles in 

both a fatigued and non-fatigued state in males and females. The testing for this study 

started 7 days after familiarisation session as described in Figure (18). 
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90 minutes 

6-7 min 51 min 17 min 15 min 

   
Warm-up 

 

3min      cycling 

 

then 

 

3min    downhill 

  

running 

 
Downhill running  

 

5 Reps × 8min with           

2min rest      

 

  between each bout 

after that  3min rest 

 

 

To start testing 

 
 Concentric Quadriceps testing. 

 

3 Reps @ 60°·s
-1 

   then   30s rest 

 

3 Reps @ 120°·s
-1 

 then   30s rest 

 

3 Reps @240°·s
-1 

 then 2min rest     

 

To change this position 

 
Eccentric Hamstring testing.   

 

3 Reps @ 60°·s
-1 

 then 30s  rest 

 

3 Reps @ 120°·s
-1 

then 30s  rest 

 

3 Reps @240°·s
-1 

then 2min rest  

cool down 

 (Finish all testing)     

Cycling/running  Protocol of fatigue     From supine position From prone position 

 

Figure 18: Timeline for data-collection. 

 

 

6-2-3 Test session 

6-2-3-1 Warm up 

The participants warmed up for 3 minutes by cycling at 60 W on a Monark cycle 

ergometer 814E (Varberg, Sweden). 

 

6-2-3-2 Familiarisation to downhill running  

After warming up, the participants were asked to perform 3 minutes downhill running on a 

motorised treadmill before starting the fatigue protocol to familiarise them with the 

equipment and with the downhill aspect of running and the speed they would run at. After  

completing the fatigue protocol, they were asked to perform 3 sub maximal action specific 

repetitions and 2 maximal repetitions at 120°·s
-1 

 prior to the concentric and eccentric tests 

to familiarise them to the equipment and all testing procedures.   
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6-2-3-3 Downhill running fatigue protocol 

Each participant performed an intermittent downhill run protocol (Figure 19), as used in 

previous studies (Eston et al., 1995, Eston et al., 1996). This consisted of a 40 min of 

intermittent bouts of 5 × 8 min on a -10% decline on a Motorised treadmill (ELG. 

Woodway, Weil am Rhein, Grman), with 2 min standing rest between each bout. The 

speed of the treadmill was set to elicit 80% of the age-predicted maximum heart rate (220 - 

age; ACSM, 1991) by using a heart rate monitor (Models Fs3c, Polar, Electro Ov. 

Kempele, Finland) (Lippincott, 2010). At the end of each 8 min bout, heart rate and 

treadmill speed were recorded and stored. 

 

Figure 19: A participant completing the downhill running fatigue protocol. 

 

6-2-3-4 Isokinetic and EMG measurements 

Isokinetic and EMG measurements were undertaken as detailed in study 1 and study 2 (all 

isokinetic and EMG procedures highlighted in general methods section 3-4-2 and 3-4-3). 
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6-2-3-5 Cool down 

Immediately after the testing, participants were invited to complete 2 min cool down on 

the cycle ergometer at low intensity. 

 

6.2.4 Data analysis 

The independent variables of time (pre and post), joint angle (15º, 30º and 45º), angular 

velocity (60, 180, and 240°·s
-1

) and sex (male and female) were explored using a mixed-

factorial (2 x 3 x 3 x 2) analysis of variance (ANOVA) to determine the influence on 

dependent variable of the functional ratio. The four independent variables include three 

within-subjects factors: time, knee joint angle, angular velocity and a between-subjects 

factor of sex (male and female). 

The independent variables of time (pre and post), hamstring muscles (BF, SM, ST), 

angular velocity (60, 180, and 240°·s
-1

) and sex (male and female) using a mixed-factorial 

(2 x 3 x 3 x 2) analysis of variance (ANOVA) to determine the influence on dependent 

variable of the electromechanical delay. The four independent variables include three 

within-subjects factors: time, hamstring muscles, angular velocity and a between-subjects 

factor of sex (male and female). 
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6.3 RESULTS OF STUDY 3 

 Influence of fatigue on sex differences in FH/Q ratio and EMD of hamstring 

muscles  

 

6.3.1 Physical characteristics 

The physical characteristics (age, stature, and body mass) of 100 healthy males (n=50) and 

females (n=50) are presented for each group in Table 7. There were no significant 

differences between males and females in age but males were significantly (p<0.05) taller 

and had greater body mass. 

Table 7 Description of participant physical characteristics of study 3 

 

Variables 

 

Group 

 

 

Mean 

 

 

SD 

 

 

Minimum 

 

 

Maximum 

 

Age: 

(y) 

Males  29 5 18 35 

Females 27 6 18 35 

Stature: 

(m) 

Males 1.82* 0.07 1.67 1.95 

Females 1.61 0.08 1.46 1.79 

Body 

mass: 

(kg) 

Males 82* 7 65 93 

Females 
69 9 50 89 

                            Note: * Males significantly different from females (p<0.05) 

 

 

6.3.2 Quadriceps and Hamstring torque pre-post fatigue  

6.3.2.1 Quadriceps and Hamstring torque at 60°·s
-1

 

Pre-post fatigue maximal PT concentric Quadriceps and eccentric Hamstring muscle torque 

(mean ± SD) at slow angular velocity (60°·s
-1

) obtained during isokinetic knee extension 

and flexion as PT and at knee joint angles (15°, 30° and 45°) are shown for males and 

females in Table 8.  



Chapter 6                                                                                                                                                   Study 3 

_______________________________________________________________________________________ 

146 

 

Table 8 Pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and 

eeccentric hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 60°·s-1. 

 

Variables  

pre-fatigue angle specific  

torque values 

at 60°·s
-1

 

post-fatigue angle specific  

torque values 

at 60°·s
-1

 

 Male Female Male Female 

Con Q at 15° 74 ± 12 43 ± 10 56 ± 10 38 ± 4 

Con Q at 30° 123 ± 19 88 ± 15 87 ± 9 63 ± 9 

Con Q at 45° 211 ± 24 164 ± 19 141 ± 30 111 ± 26 

Con Q at PT 240 ± 16 200 ± 17 190 ± 19 166 ± 16 

Ecc H at 15° 54 ± 8 26 ± 5 36 ± 5  18 ± 4 

Ecc H at 30° 97 ± 12 62 ± 12 63 ± 9 35 ± 4 

Ecc H at 45° 146 ± 15 100 ± 13 80 ± 13 44 ± 10 

Ecc H at PT 158 ± 14 116 ± 15 97 ± 10 60 ± 11 

 

6.3.2.2 Quadriceps and Hamstring torque at 120°·s
-1

 

Pre-post fatigue maximal PT concentric Quadriceps and eccentric Hamstring muscle torque 

(mean ± SD) at intermediate angular velocity (120°·s
-1

) obtained during isokinetic knee 

extension and flexion as PT and at knee joint angles (15°, 30° and 45°) are shown for 

males and females in Table 9.  

Table 9 Pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and 

eeccentric hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 120°·s-1. 

 

Variables  

pre-fatigue angle specific  

torque values 

at 120°·s
-1

 

post-fatigue angle specific  

torque values 

at 120°·s
-1

 

 Male Female Male Female 

Con Q at 15° 52 ± 8 42 ± 6 53 ± 8 32 ± 5 

Con Q at 30° 76 ± 12 58 ± 8 61± 8 30 ± 9 

Con Q at 45° 144 ± 23 117 ± 21 150 ± 27 120 ± 23 

Con Q at PT 213 ± 19 172 ± 19 185 ± 19 162 ± 16 

Ecc H at 15° 46 ± 5 31 ± 5 43 ± 6 22 ± 5 

Ecc H at 30° 71 ± 11 48 ± 4 54 ± 10 24 ± 5 

Ecc H at 45° 112 ± 15 84 ± 11 102 ± 13 61 ± 12 

Ecc H at PT 155 ± 19 111 ± 12 114 ± 17 75 ± 16 
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6.3.2.3 Quadriceps and Hamstring torque at 240°·s
-1

 

Pre-post fatigue maximal PT concentric Quadriceps and eccentric Hamstring muscle torque 

(mean ± SD) at fast angular velocity (240°·s
-1

) obtained during isokinetic knee extension 

and flexion as PT and at knee joint angles (15°, 30° and 45°) are shown for males and 

females in Table 10.  

Table 10 Pre-post fatigue angle specific PT values (N·m) of concentric quadriceps and 

eeccentric hamstring muscle groups (mean ± SD) throughout a 90 º ROM at 240°·s-1. 

 

Variables  

pre-fatigue angle specific  

torque values 

at 240°·s
-1

 

post-fatigue angle specific  

torque values 

at 240°·s
-1

 

 Male Female Male Female 

Con Q at 15° 44 ± 9 38 ± 5 38 ± 5 30 ± 5 

Con Q at 30° 57 ± 8 49 ± 4 60 ± 8 45 ± 5 

Con Q at 45° 94 ± 15 63 ± 11 123 ± 17 97 ± 17 

Con Q at PT 154 ± 16 115 ± 11 156 ± 16 133 ± 23 

Ecc H at 15° 44 ± 4 32 ± 4 35 ± 4 24 ± 4 

Ecc H at 30° 62 ± 11 48 ± 4 60 ± 8 42 ± 5 

Ecc H at 45° 91 ± 17 50 ± 11 101 ± 12 62 ± 10 

Ecc H at PT 134 ± 17 78 ± 10 118 ± 14 74 ± 10 

  

 

6.3.3 Per-post fatigue FH/Q ratio values and percentage of changes 

6.3.3.1 FH/Q ratio values and percentage of changes at 60°·s
-1

 

Pre-post fatigue FH/Q ratio values and percentage of changes (mean ± SD) at slow angular 

velocity (60°·s-1
)  obtained during isokinetic knee extension and flexion as PT and knee 

joint angles (15°, 30° and 45°) are shown for males and females in Table 11.  
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Table 11 Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 60°·s-1 

obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. 

 

Variables  

Pre-fatigue FH/Q ratio 

values at 60°·s
-1

 

Post-fatigue FH/Q ratio 

values at 60°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

FH/Q ratio at 15° 75 ± 12 62 ± 14 65 ± 11 46 ± 9 10 ± 17 16 ± 14 

FH/Q ratio at 30° 80 ± 12 72 ± 14 74 ± 11 57 ± 10 6 ± 16 15 ± 18 

FH/Q ratio at 45° 70 ± 7.8 62 ± 10 59 ± 13 41 ± 9 11 ± 15 21 ± 14 

FH/Q ratio PT 66 ± 7.2 59 ± 9 51 ± 6 36 ± 7 15 ± 10 23 ± 9 

 

 

6.3.3.2 FH/Q ratio values and percentage of changes at 120°·s
-1

 

Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at slow angular 

velocity (120°·s-1
)  obtained during isokinetic knee extension and flexion as PT and knee 

joint angles (15°, 30° and 45°) are shown for males and females in Table 12.  

 

Table 12 Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 120°·s-

1 obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. 

 

Variables  

Pre-fatigue FH/Q ratio 

values at 120°·s
-1

 

Post-fatigue FH/Q ratio 

values at 120°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

FH/Q ratio at 15° 88 ± 9 75 ± 13 82 ± 14 67 ± 10 6 ± 16 8 ± 16 

FH/Q ratio at 30° 94 ± 12 86 ± 11 88 ± 10 81 ± 16 6 ± 17 5 ± 20 

FH/Q ratio at 45° 79 ± 14 73 ± 12 70 ± 14 52 ± 13 9 ± 20 24 ± 20 

FH/Q ratio PT 73 ± 10 65 ± 10 62 ± 11 47 ± 12 11 ± 16 18 ± 15 
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6.3.3.3 FH/Q ratio values and percentage of changes at 240°·s
-1

 

Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at slow angular 

velocity (240°·s-1)  obtained during isokinetic knee extension and flexion as PT and knee 

joint angles (15°, 30° and 45°) are shown for males and females in Table 13.  

 

Table 13 Pre-post fatigue FH/Q ratio values and percentage (mean ± SD) of changes at 240°·s-

1 obtained as PT and knee joint angles (15°, 30° and 45°) for males and females. 

 

Variables  

Pre-fatigue FH/Q ratio 

values at 240°·s
-1

 

Post-fatigue FH/Q ratio 

values at 240°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

FH/Q ratio at 15° 104 ± 18 86 ± 15 94 ± 12 82 ± 17 9 ± 23 4 ± 25 

FH/Q ratio at 30° 109 ± 10 98 ± 12 100 ± 13 94 ± 11 9 ± 18 4 ± 17 

FH/Q ratio at 45° 97 ± 5 79 ± 5 83 ± 12 66 ± 13 14 ± 13 13 ± 14 

FH/Q ratio PT 87 ± 8 68 ± 9 76 ± 11 58 ± 11 11 ± 13 10 ± 13 

 

 

6.3.4 Influence of fatigue on sex differences in the FH/Q ratio  

As defined in the methods (section 3.5.1), the FH/Q ratio was calculated by dividing 

eccentric hamstring by concentric quadriceps muscle strength for both PT and knee joint 

angles representative of knee extension. 

 

6.3.4.1 Influence of fatigue on sex differences in the FH/Q ratio at 60°·s
-1 

  

The results in Figure 18 indicate that a significant three-factor interaction between sex, 

joint angle and time (F(3, 98) = 3.590, P < 0.05) for the FH/Q ratio were found. The 

interactions showed a significantly lower FH/Q ratio in females compared to males when 

fatigue is present and higher when decreasing joint angle (closer to full knee extension). 

Additionally, significant main effects for time (F(1, 98) = 672.431, P < 0.01) were 

demonstrated, indicating the FH/Q ratio at 60°·s
-1 

 was lower post-fatigue compared to pre-
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fatigue and there was greater difference between males and females in the FH/Q ratio post-

fatigue than there was in pre-fatigue. For sex differences, the ANOVA analysis indicated a 

significant main effect demonstrating a higher FH/Q ratio in males compared to females. 

 

 

Figure 18 (A, B, C and D) FH/Q ratio (pre-post fatigue) at different joint angle and PT at 60°·s
-1 

 

(mean ± SD) for males and females.  

Note: A significant (p<0.05)  interaction (sex × joint angle × time ‹pre-post›) for the FH/Q ratio 

was observed. Significant (p<0.01) main effects for the time was observed. Significant main effect 

for sex was also observed. 

 

6.3.4.2 Influence of fatigue on sex differences in the FH/Q ratio at 120°·s
-1 

  

A significant three-factor interaction between sex, joint angle and time (F(3, 98) = 3.590, P < 

0.05) for the FH/Q ratio were found (Figure 19). The interactions showed a significantly 

lower FH/Q ratio in females compared to males when fatigue is present and higher when 

decreasing joint angle (closer to full knee extension). Additionally, significant main effects 
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for time (F(1, 98) = 672.431, P < 0.01) were demonstrated, indicating the FH/Q ratio at 

120°·s-1  was lower post-fatigue compared to pre-fatigue and there was greater difference 

between males and females in the FH/Q ratio post-fatigue than there was in pre-fatigue. 

For sex differences, the ANOVA analysis indicated a significant main effect 

demonstrating a higher FH/Q ratio in males compared to females. 

 

 

Figure 19 (A, B, C and D) FH/Q ratio (pre-post fatigue) at different joint angle and PT at 120°·s
-1

 

(mean ± SD) for males and females.  

Note: A significant interaction (sex × joint angle × time ‹pre-post›) for the FH/Q ratio was 

observed. Significant (p<0.01) main effects for the time was observed. Significant main effects for 

sex was also observed. 

 

 

 

6.3.4.3 Influence of fatigue on sex differences in the FH/Q ratio at 240°·s
-1 

  

A significant three-factor interaction between sex, joint angle and time (F(3, 98) = 3.590, P < 

0.05) for the FH/Q ratio were found (Figure 20). The interactions showed a significantly 
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lower FH/Q ratio in females compared to males when fatigue is present and higher when 

decreasing joint angle (closer to full knee extension). Additionally, significant main effects 

for time (F(1, 98) = 672.431, P < 0.01) were demonstrated, indicating the FH/Q ratio at 

240°·s-1 was lower post-fatigue compared to pre-fatigue and there was greater difference 

between males and females in the FH/Q ratio post-fatigue than there was in pre-fatigue. 

For sex differences, the ANOVA analysis indicated a significant main effect 

demonstrating a higher FH/Q ratio in males compared to females. 

 

Figure 20 (A, B, C and D) FH/Q ratio (pre-post fatigue) at different joint angle and PT at 240°·s
-1

 

(mean ± SD) for males and females.  

Note: a significant interaction (sex × joint angle × time ‹pre-post›) for the FH/Q ratio was 

observed. Significant (p<0.01) main effects for the time was observed. Significant main effects for 

sex was also observed. 
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6.3.4.4 Influence of fatigue on the FH/Q ratio of males at three angular velocities  

A statistically significant two-factor interaction between angular velocities and time (F(2, 98) 

= 10.260, P < 0.01) for the FH/Q ratio of males was observed (Figure 21). The interaction 

showed an increase in the FH/Q ratio with increasing angular velocity especially when 

fatigue is present. Also a significant main effect for time was demonstrated (F(1, 98) = 

672.431, P < 0.01), indicating the FH/Q ratio of males was higher pre-fatigue compared to 

post-fatigue. Additionally, significant main effects for angular velocity was demonstrated 

(F(2, 98) = 974.729, P < 0.01), indicating an increase in the FH/Q ratio of males with 

increasing angular velocity (60, 120 and 240°·s
-1

).  

 

 

Figure 21  (A, B, C and D) FH/Q ratios at different joint angle (15º, 30º, 45º and PT) at 60, 120 

and 240°·s
-1 

 (mean ± SD) for males pre-post fatigue. 

Note: A significant interaction (angular velocity × time ‹pre-post›) for the FH/Q ratio of males was 

observed. A significant main effects for the time and angular velocities was observed with higher 

FH/Q ratio of males in pre-fatigue compared to post-fatigue. 
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6.3.4.5 Influence of fatigue on the FH/Q of female at three angular velocities  

A statistically significant two-factor interaction between angular velocities and time (F(2, 98) 

= 10.260, P < 0.01) for the FH/Q ratio of females was observed (Figure 22). The 

interaction showed an increase in the FH/Q ratio with increasing angular velocity 

especially when fatigue is present. Also a significant main effect for time was 

demonstrated (F(1, 98) = 672.431, P < 0.01), indicating the FH/Q ratio of females was higher 

pre-fatigue compared to post-fatigue. Additionally, significant main effects for angular 

velocity was demonstrated (F(2, 98) = 974.729, P < 0.01), indicating an increase in the FH/Q 

ratio of females with increasing angular velocity (60, 120 and 240°·s
-1

).  

 

 

Figure 22  (A, B, C and D) FH/Q ratios at different joint angle (15º, 30º, 45º and PT) at 60, 120 

and 240°·s
-1 

 (mean ± SD) for females pre-post fatigue. 

Note: A significant interaction (angular velocity × time ‹pre-post›) for the FH/Q ratio of males was 

observed. A significant main effects for the time and angular velocities was observed with higher 

FH/Q ratio of males in pre-fatigue compared to post-fatigue. 
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6.3.4.6 FH/Q ratio of male and influence of fatigue on joint angle and PT 

A statistically significant two-factor interaction between joint angle and time (F(3, 98) = 

5.592, P < 0.01) for the functional H/Q ratio of males was observed (Figure 23). The 

interactions showed a significantly lower FH/Q ratio in males when fatigue is present and 

decreasing joint angle (closer to full knee extension). Also a significant main effect for 

joint angle was demonstrated (F(3, 98) = 468.466, P < 0.01), indicating the functional H/Q 

ratio of males was higher pre-fatigue compared to post-fatigue and the functional H/Q ratio 

was decreased with increasing joint angle.  

 

 

Figure 23  (A, B and D) FH/Q ratios 60, 120 and 240°·s
-1 

 (mean ± SD) across joint angle (15º, 

30º, 45º and PT) for males pre-post fatigue. 

Note: Significant interaction (time ‹pre-post› × joint angle) for the FH/Q ratio of males was 

observed. Significant main effects for joint angle was observed, indicating the FH/Q ratio of males 
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was higher in pre-fatigue compared to post-fatigue and the FH/Q ratio was decreased with 

increasing joint angle.  

 

 

6.3.4.7 FH/Q ratio of female and influence of fatigue on joint angle and PT 

A statistically significant two-factor interaction between joint angle and time (F(3, 98) = 

5.592, P < 0.01) for the functional H/Q ratio of females was observed (Figure 24). The 

interactions showed a significantly lower FH/Q ratio in females when fatigue is present 

and decreasing joint angle (closer to full knee extension). Also a significant main effect for 

joint angle was demonstrated (F(3, 98) = 468.466, P < 0.01), indicating the functional H/Q 

ratio of males was higher pre-fatigue compared to post-fatigue and the functional H/Q ratio 

was decreased with increasing joint angle.   
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Figure 24  (A, B and D) FH/Q ratios 60, 120 and 240°·s
-1 

 (mean ± SD) across joint angle (15º, 

30º, 45º and PT) for females pre-post fatigue. 

Note: Significant interaction (time ‹pre-post› × joint angle) for the FH/Q ratio of females was 

observed. Significant main effects for joint angle was observed, indicating the FH/Q ratio of 

females was higher in pre-fatigue compared to post-fatigue and the FH/Q ratio was decreased with 

increasing joint angle. 

 

 

6.3.5 Per-post fatigue EMD values and percentage of changes 

6.3.5.1 EMD values and percentage of changes at 60°·s
-1

 

Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring muscles (BF, 

SM and ST and Max) at slow angular velocity (60°·s
-1

) obtained during eccentric actions are 

shown for males and females in Table 14.  
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Table 14 Pre-post fatigue EMD values and percentage (mean ± SD) of changes of hamstring 

muscles at 60°·s-1 obtained for males and females. 

 

Variables  

Pre-fatigue EMD values at 

60°·s
-1

 

Post-fatigue EMD values at 

60°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

EMD of BF  24 ± 3 27 ± 4 33 ± 10 44 ± 13 9 ± 12 17 ± 10 

EMD of SM 25 ± 4 27 ± 4 33 ± 10 44 ± 13 8 ± 12 17 ± 10 

EMD of ST 25 ± 4 26 ± 5 34 ± 13 44 ± 12 9 ± 13 18 ± 10 

Max of EMD 27 ± 3 29 ± 4 39 ± 11 52 ± 11 12 ± 7 23 ± 8 

 

6.3.5.1 EMD values and percentage of changes at 120°·s
-1

 

Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles (BF, SM and ST and Max) at slow angular velocity (120°·s
-1

) obtained during 

eccentric actions are shown for males and females in Table 15.  

Table 15 Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles at 120°·s-1 obtained for males and females. 

 

Variables  

Pre-fatigue EMD values at 

120°·s
-1

 

Post-fatigue EMD values at 

120°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

EMD of BF  40 ± 12 42 ± 13 52 ± 13 61 ± 13 12 ± 19 19 ± 18 

EMD of SM 40 ± 12 42 ± 13 52 ± 12 63 ± 15 12 ± 15 21 ± 18 

EMD of ST 40 ± 14 43 ± 12 52 ± 13 63 ± 12 12 ± 21 20 ± 19 

Max of EMD 47 ± 11 51 ± 11 59 ± 12 69 ± 13 12 ± 18 18 ± 17 

 

 

6.3.5.1 EMD values and percentage of changes at 240°·s
-1

 

Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles (BF, SM and ST and Max) at slow angular velocity (240°·s
-1

) obtained during 

eccentric actions are shown for males and females in Table 16.  
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Table 16 Pre-post fatigue EMD values and percentage of changes (mean ± SD) of hamstring 

muscles at 240°·s-1 obtained for males and females. 

 

Variables  

Pre-fatigue EMD values at 

240°·s
-1

 

Post-fatigue EMD values at 

240°·s-1
 

Percentage of changes 

post fatigue (%) 

 Male Female Male Female Males Females  

EMD of BF  52 ± 9 57 ± 10 74 ± 11 85 ± 10 22 ± 14 28 ± 18 

EMD of SM 53 ± 11 58 ± 10 74 ± 12 84 ± 9 21 ± 18 26 ± 14 

EMD of ST 53 ± 10 57 ± 9 74 ± 11 85 ± 9 21 ± 16 28 ± 14 

Max of EMD 59 ± 7 63 ± 8 81 ± 9 90 ± 7 22 ± 13 27 ± 12 

 

 

6.3.6 Influence of fatigue on Sex differences in the EMD  

6.3.6.1 Sex differences in the EMD of hamstring muscles (pre-post) at 60°·s
-1

 

The ANOVA analysis indicated no significant three-factor interaction between sex, 

hamstring muscle group and time (F(3, 98) = 0.299, P = 0.742) for EMD (Figure 25). 

However, statistically significant two-factor interaction between sex and time (F(3, 98) = 

28.738, P < 0.01) for EMD were observed. The interactions showed a significantly longer 

EMD in females compared to males when fatigue is present. Additionally, significant main 

effects for time were demonstrated (F(1, 98) = 709.406, P < 0.01), indicating the EMD of 

hamstring muscles at 60°·s
-1

 was longer post-fatigue compared to pre-fatigue. For sex 

differences, the ANOVA analysis indicated that a statistically significant longer EMD 

post- fatigue at 60°·s
-1 

were observed in females compared to males. 
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Figure 25 (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60°·s
-1 

 (mean 

± SD) for males and females (pre-post fatigue).  

Note: No significant interactions (sex × hamstring muscle groups × time) for the EMD were 

observed. Statistically significant interactions (sex × time) for the EMD were observed. Significant 

main effects for the time were observed. Statistically significant longer EMD post- fatigue were 

observed in females compared to males. 

 

 

 

6.3.6.2 Sex differences in the EMD of hamstring muscles (pre-post) at 120°·s
-1

 

The ANOVA analysis indicated no significant three-factor interaction between sex, 

hamstring muscle group and time (F(3, 98) = 0.299, P = 0.742) for EMD (Figure 26). 

However, statistically significant two-factor interaction between sex and time (F(1, 98) = 

28.738, P < 0.01) for EMD were observed. The interactions showed a significantly longer 

EMD in females compared to males when fatigue is present. Additionally, significant main 

effects for time were demonstrated (F(1, 98) = 709.406, P < 0.01), indicating the EMD of 
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hamstring muscles at 120°·s
-1

 was longer post-fatigue compared to pre-fatigue. For sex 

differences, the ANOVA analysis indicated that a statistically significant longer EMD 

post- fatigue at 120°·s
-1 

were observed in females compared to males. 

 

 

Figure 26 (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 120°·s
-1 

 

(mean ± SD) for males and females (pre-post fatigue).  

Note: No significant interactions (sex × Hamstring muscle groups × time) for the EMD were 

observed. Statistically significant interactions (sex × time) for the EMD were observed. Significant 

main effects for the time were observed. Statistically significant longer EMD post- fatigue were 

observed in females compared to males. 
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The ANOVA analysis indicated no significant three-factor interaction between sex, 

hamstring muscle group and time (F(3, 98) = 0.299, P = 0.742) for EMD (Figure 27). 
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However, statistically significant two-factor interaction between sex and time (F(1, 98) = 

28.738, P < 0.01) for EMD were observed. The interactions showed a significantly longer 

EMD in females compared to males when fatigue is present. Additionally, significant main 

effects for time were demonstrated (F(1, 98) = 709.406, P < 0.01), indicating the EMD of 

hamstring muscles at 240°·s
-1

 was longer post-fatigue compared to pre-fatigue. For sex 

differences, the ANOVA analysis indicated that a statistically significant longer EMD 

post- fatigue at 240°·s
-1 

were observed in females compared to males. 

 

 

Figure 27 (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 240°·s
-1 

 

(mean ± SD) for males and females (pre-post fatigue).  

Note: No significant interactions (sex × Hamstring muscle groups × time) for the EMD were 

observed. Statistically significant interactions (sex × time) for the EMD were observed. Significant 

main effects for the time were observed. Statistically significant longer EMD post- fatigue were 

observed in females compared to males. 
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6.3.6.4 Influence of fatigue on the EMD of males at all three angular velocities  

A statistically significant two-factor interaction between angular velocities and time (F(2, 98) 

= 20.459, P < 0.01) for the EMD of hamstring muscles of males was observed (Figure 28). 

The interaction showed longer EMD in males as angular velocities increased when fatigue 

is present. Also a significant main effect for time was demonstrated (F(1, 98) = 709.406, P < 

0.01), indicating the EMD of males was longer post-fatigue compared to pre-fatigue. 

Additionally, significant main effects for angular velocity was demonstrated (F(2, 98) = 

1028.34, P < 0.01), indicating an increase in the EMD of males with increasing angular 

velocity (60, 120 and 240°·s
-1

). There was was a greater effect of fatigue in the EMD of 

males at the fast angular velocity (240°·s
-1

) compared with the slow (60°·s
-1

). The fatigue 

effects were greater as the angular velocity increased. 

 

 

Figure 28 (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60, 120 and 

240°·s
-1 

 (mean ± SD) for males (pre-post fatigue).  

A 

0 

20 

40 

60 

80 

100 

0 60 120 180 240 300 

E
M

D
 (

m
s)

 

Angular velocity (°·s-1 ) 

BF muscle 

Pre-fatigue 

Post-fatigue 

B 

0 

20 

40 

60 

80 

100 

0 60 120 180 240 300 

E
M

D
 (

m
s)

 

Angular velocity (°·s-1 ) 

SM muscle 

Pre-fatigue 

Post-fatigue 

C 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 60 120 180 240 300 

E
M

D
 (

m
s)

 

Angular velocity (°·s-1 )  

ST muscle 

Pre-fatigue 

Post-fatigue 

D 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 60 120 180 240 300 

E
M

D
 (

m
s)

 

Angular velocity (°·s-1 ) 

Max of EMD 

Pre-fatigue 

Post-fatigue 



Chapter 6                                                                                                                                                   Study 3 

_______________________________________________________________________________________ 

164 

 

Note: A significant interactions (angular velocities × time) for the EMD were observed. Significant 

main effects for the time were demonstrated, indicating the EMD of males at all three angular 

velocities (60, 120 and 240°·s
-1

) was longer in post-fatigue compared to pre-fatigue. Significant 

main effects for the angular velocity was demonstrated. 

 

 

 

 

6.3.6.5 Influence of fatigue on the EMD of female at all three angular velocities  

A statistically significant two-factor interaction between angular velocities and time (F(2, 98) 

= 20.459, P < 0.01) for the EMD of hamstring muscles of females was observed (Figure 

29). The interaction showed longer EMD in females as angular velocities increased when 

fatigue is present. Also a significant main effect for time was demonstrated (F(1, 98) = 

709.406, P < 0.01), indicating the EMD of females was longer post-fatigue compared to 

pre-fatigue. Additionally, significant main effects for angular velocity was demonstrated 

(F(2, 98) = 1028.34, P < 0.01), indicating an increase in the EMD of females with increasing 

angular velocity (60, 120 and 240°·s
-1

). There was was a greater effect of fatigue in the 

EMD of females at the fast angular velocity (240°·s
-1

) compared with the slow (60°·s
-1

). 

The fatigue effects were greater as the angular velocity increased. 
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Figure 29 (A, B, C and D) EMD of hamstring muscles (BF, SM and ST and Max) at 60, 120 and 

240°·s
-1 

 (mean ± SD) for females (pre-post fatigue).  

Note: A significant interactions (angular velocities × time) for the EMD were observed. Significant 

main effects for the time were demonstrated, indicating the EMD of females at all three angular 

velocities (60, 120 and 240°·s
-1

) was longer in post-fatigue compared to pre-fatigue. Significant 

main effects for the angular velocity was demonstrated. 

 

 

 

 

6.3.7 Summary of results 

6.3.7.1 Influence of fatigue on sex differences in the FH/Q ratio 

- A significant three-factor interaction between sex, joint angle and time for the 

FH/Q ratio were found. The interactions showed a significantly lower FH/Q ratio in 
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-1

) compared to males when 

fatigue is present and higher when decreasing joint angle (closer to full knee 

extension). 
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- A statistically significant two-factor interaction between angular velocities and 

time for the FH/Q ratio of males was observed. The interaction showed an increase 

in the FH/Q ratio with increasing angular velocity especially when fatigue is 

present. 

- Significant main effects for time, indicating that for all individuals (irrespective of 

sex, joint angle or angular velocity) the FH/Q ratio was lower post-fatigue 

compared to pre-fatigue.  

 

6.3.7.2 Influence of fatigue on sex differences in the EMD 

- No significant three-factor interactions between sex, hamstring muscle group and 

time for EMD were observed. However, statistically significant two-factor 

interactions between sex and time for EMD were observed. The interactions 

showed a significantly longer EMD in females at three angular velocities (60, 120 

and 240°·s
-1

) compared to males when fatigue is present. 

- A statistically significant two-factor interaction between angular velocities and 

time for the EMD of hamstring muscles of males was observed. The interaction 

showed longer EMD in males as angular velocities increased when fatigue is 

present. 

- Significant main effects for time, indicating that for all individuals (irrespective of 

sex or angular velocity) the EMD of hamstrings muscle was longer post-fatigue 

compared to pre-fatigue. Importantly the effect of fatigue was not similar in males 

and females as statistically significant interactions between sex and time for the 

EMD of hamstring muscles at all three angular velocities (60, 120 and 240°·s
-1

) 

were found. 
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Chapter 7: 

General Discussion  

 

7.1. Overview of the main findings 

The experimental studies included within this thesis (chapter 4-6) have generated original 

and significant findings on sex differences in the FH/Q ratio and neuromuscular 

performance prior to and following a downhill running fatigue task. The main findings 

demonstrated significant main effects for time, indicating that for all individuals 

(irrespective of sex, joint angle or angular velocity) the FH/Q ratio was lower and EMD of 

hamstrings muscle was longer post-fatigue compared to pre-fatigue. Importantly the effect 

of fatigue was not similar in males and females as statistically significant interactions 

between sex and time for the FH/Q ratio and EMD of hamstring muscles at all three 

angular velocities (60, 120 and 240°·s
-1

) were found. The FH/Q ratio post-fatigue was 

lower in females compared to males, and EMD post-fatigue was longer in females 

compared to males. Additionally, irrespective of time, significant main effects for sex 

were demonstrated, indicating that the FH/Q ratio pre fatigue, as shown in study one 

(chapter 4), was lower in females compared to males and the differences increased post 

fatigue. However, as shown in study two (chapter 5), there were no sex differences in the 

EMD of the hamstrings muscle at all three angular velocities pre fatigue.  

 

For angular velocity, significant main effects were found indicating that irrespective of sex 

or time, there was an increase in the FH/Q ratio with increasing angular velocity. 

Interestingly, the effect of angular velocity on FH/Q ratio was not similar in males and 

females, as statistically significant three-factor interactions for angular velocity, time and 

sex were found. The interactions showed a significantly higher FH/Q ratio in males 
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compared to females especially when fatigue is present and with increasing angular 

velocity. There were also statistically significant interactions between angular velocity and 

time for the EMD of hamstring muscles with longer EMD as angular velocities increased 

post fatigue. However, irrespective of time, sex or angular velocity no significant main 

effects for the hamstring muscles were observed in the EMD. Additionally, irrespective of 

time or sex, significant main effects for the angular velocity were demonstrated, indicating 

a longer EMD of hamstring muscles with increasing angular velocity. 

 

For joint angle, the main findings demonstrate significant main effects, indicating that 

irrespective of sex, or time there were increases in the FH/Q ratio with decreasing joint 

angle (closer to full knee extension). Importantly the effect of joint angle was not similar 

in males and females as statistically significant three-factor interactions between joint 

angle, time and sex for the FH/Q ratio were found. The interactions showed a significantly 

lower FH/Q ratio in females compared to males especially when fatigue is present and 

decreasing joint angle (closer to full knee extension). In study one (chapter 4), a significant 

two-factor interaction also was observed between knee joint angle, and sex for the FH/Q 

ratio pre fatigue. This interaction indicated that the FH/Q ratio increases closer to full knee 

extension and was higher in males compared to females especially with increasing angular 

velocity. 

 

7.2. Influence of fatigue on the FH/Q ratio 

One of the aims of the present investigation was to examine the effects of downhill 

running fatigue on the FH/Q ratio at different joint angles and angular velocities. 

Irrespective of sex, there was a significant main effects for time, joint angle and angular 

velocity, indicating that the FH/Q ratio at all three angular velocities was lower post-
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fatigue compared to pre-fatigue and the FH/Q ratio was higher at more extended positions. 

That which makes us accepts the hypothesis 9 which states that the effects of fatigue on 

FH/Q ratio will be significantly greater increases with decreasing joint angle (closer to full 

knee extension). In addition, percentage decline in the FH/Q ratio of males and females 

ranged between 4 to 24% which confirms the main effect of fatigue as Iga et al., (2006) 

has reported systematic bias in concentric and eccentric knee torque, although these 

improvements, 3 to 7 %, were relatively small. This effects is attributed to lower eccentric 

torque production of hamstring muscles compared with concentric torque production of 

quadriceps muscles when fatigue is present. However, the recreated FH/Q ratio following 

a fatigue task is difficult to compare to the literature since no investigation has explored 

the effects of downhill running fatigue on the FH/Q ratio at action-specific angles. There 

was also an increase in the FH/Q ratio (irrespective of time) with increasing angular 

velocity. That which makes us accepts the hypothesis 10 which states that the effects of 

fatigue on FH/Q ratio will be significantly greater increases with decreasing angular 

velocity. These findings have important implications for dynamic knee stability when 

fatigue is present. Epidemiological data suggests that injury is more frequent in the 

fatigued stage after numerous repetitons of the same movement (Hawkins et al., 2001, 

Olsen et al., 2004). The data from the present study suggest that the FH/Q ratio is reduced 

when fatigue is present which might be a cause of the increased relative risk of injury. 

 

The manifestations of functional changes occurring with fatigue are multiple and depend 

on the joint angle, angular velocity, action type (Green, 1997). Near full knee extension, 

static stability is reduced and functional stability relies mainly on dynamic stability to 

protect the knee structures (Griffin et al., 2006). In the current study, at decreased joint 

angles (closer to full knee extension) and in the fatigue state, the FH/Q ratio at all three 
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angular velocities increases due to a larger decrease in the quadriceps concentric torque 

than in eccentric hamstrings torque. The stability systems are affected by changes in the 

joint angle, therefore observing the change in the angle-specific torque values following 

downhill running fatigue may be relevant to knee stability as it describes the joint angle at 

which specific muscle action is most effective. The current findings that the FH/Q ratio 

increases with decreased joint angle have been reported by several investigators (Coombs 

et al., 2002). However, the decreased FH/Q ratios following a fatigue task found in the 

current study are difficult to compare to the literature (Aagaard et al., 1998) since no 

investigation has investigated the effects of downhill running fatigue on the FH/Q ratio. 

This limitations should be taken into account when considering these findings regarding 

the nature of the fatigue protocol and interpretation of the results found. The issue with 

downhill running fatigue protocols also is that the high intensity muscle loading 

components specific to match play are not reproduced; cutting and braking manoeuvres 

and high intensity landings from jumps are not performed. Also, other studies have 

determined torque in a seated position with the hip flexed at 90° which is not functionally 

relevant, but despite this our findings are consistent with the extant literature. Aagaard et 

al., (1998) used females and male track athletes to investigate joint angle-specific FH/Q 

ratio and found that maximal eccentric strength was greater than maximal concentric 

strength for both the quadriceps and hamstring muscles. In addition, maximal quadriceps 

muscle strength was elevated when obtained at gradually more flexed joint angle positions 

(i.e., 50°,40°,30°). Conversely, maximal hamstring muscle strength was greater when 

obtained at gradually more extended positions (i.e., 30°,40°,50°). Furthermore, the FH/Q 

ratios for fast knee extension (4.19 rad.s
-1

) were 1.0, 1.1, and 1.4 based on 50°, 40°, and 

30° moments, respectively, and the corresponding values for slow knee extension (0.52 

rad.s
-1

) were 0.6, 0.8, and 1.0. Therefore, the FH/Q ratio was increased, as we found in the 
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present study, with extended joint angle positions and with decreased joint angle at 0.52 

rad.s
-1

 compared with 4.19 rad.s
-1

. However, they ignored joint angles lower than 30°, 

where dynamic stability is often challenged. Coombs and Garbutt, (2002) used 9 females 

and 6 males recreational athletes to calculate joint angle-specific FH/Q ratio values 

throughout a 90° range of movement and found increasing FH/Q ratio values especially at 

10°. Eccentric or concentric angle specific torque prior to and following fatigue may partly 

explain the increased FH/Q ratio. Therefore, to protect the knee joint, the FH/Q ratio 

should be higher at more extended knee positions especially when fatigue is present. Our 

findings demonstrated that, irrespective of sex, there was a significant main effect for joint 

angle, indicating that the FH/Q ratio at all three angular velocities was higher at more 

extended positions with lower post-fatigue compared to pre-fatigue. These data support 

and extend findings from previous literature indicating that functional stability is enhanced 

near full knee extension, even when fatigue is present. 

 

Although direct comparisons are difficult, due to the differences in study designs and 

protocols, in agreement with many previous studies the exercise protocol that was 

designed to induce fatigue reduced the capacity of the knee extensor and flexor muscles to 

develop torque. Irrespective of joint angle or movement velocity, the reduction in strength 

was evidenced in the current study by a decline in eccentric and concentric peak torque. 

These observations agree with the results of Gleeson et al. (1995), who investigated the 

effect of a fatigue task (30 reciprocal maximal voluntary actions of the knee flexors and 

extensors) on isokinetic leg torque in eleven female collegiate soccer players using an 

isokinetic dynamometer at an angular velocity of 3.14 rad.s 
-1

. They reported that their 

fatigue protocol reduced the ability of knee flexors and extensors to generate torque during 

only concentric muscle actions at 3.14 rad.s
-1 

angular velocity. Kawakami et al. (1993) also 
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found a decrease (45%) in PT of elbow muscles at three angular velocities (0.21, 0.52, and 

1.05 rad.s 
-1

) during concentric and eccentric torque after 50 consecutive trials of maximal 

concentric and eccentric muscle actions. Following the same downhill running protocol as 

used in the present study, Eston et al., (1996) examined the effects of a prior bout of 

maximal isokinetic eccentric exercise on delayed onset muscle soreness in ten healthy 

male sports science students who were randomly allocated to either a treatment group (n = 

5) or a control group (n = 5). Pre and post the fatigue trial, both concentric and eccentric 

isokinetic maximal knee extensors  torque measurements were determined from a sitting 

position at angular velocities of 0.52 and 2.83 rad s
-1

. The finding of their study reported 

an immediate post-fatigue loss in PT for both concentric and eccentric actions at the slow 

and fast angular velocities (0.52 and 2.83 rad.s
-1

) The concentric PT values were reduced 

about 19% of the PT value at 0.58 rad s
-1

, and decreased about 15% in the PT value at 2.83 

rad s
-1

. In the current study the findings also showed a decrease of about 19% of the 

concentric PT value at 1.05 rad s
-1

 and decrease about 9% of the concentric PT value at 

2.09 rad s
-1

,
 
but there was an increase of about 9% of the concentric PT value at 4.19 rad s

-

1
 which may be due to using different position, participants as well as angular velocity.  

 

Despite the fact that Eston et al., (1996) only had 10 male participants, and that they 

measured torque in a seated position, we have found similar findings of a reduction in 

concentric and eccentric torque after an identical downhill running protocol. In comparison 

to the findings of the present study, the study of Eston et al., (1996) is limited by the fact 

that they: i) only investigated PT rather than exploring angle specific torques, and ii) only 

investigated knee extensors not eccentric flexors. In addition, the sample size of related 

previous studies is small and the assessments were also only at PT rather than angle-

specific torques, and used a sitting position which not relevant to sporting activities. This 
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is particularly important as we know that torque appears to be significantly greater for 

knee flexion in a sitting position when compared to the more ecologically valid supine 

position (Black et al., 1993). Therefore, direct comparison of torque obtained from seated 

versus supine or prone positions should be avoided. An advantage of the assessment of 

torque in the prone and supine position, as used in the present study, provide a closer 

approximation of the length tension relationship of the hamstring and quadriceps muscles 

during many functional and sporting activities, and is therefore functionally relevant 

(Worrell et al., 1990).  

 

The ‘conventional’ ratio is the most widely reported ratio in the literature and is calculated 

by dividing the concentric hamstrings PT by the concentric quadriceps PT (H/Q ratio). 

After bout of eccentric exercise (4 sets of 10 repetitions for the leg press, leg extension, 

and leg curl exercises at 120% of the concentric one repetition maximum) Thompson et 

al., (2011) found a significant decrease at 1.05 rad s
-1

 in isokinetic leg flexion and 

extension PT at 24, 48, and 72 h post exercise. The percent change values were not 

different for both isokinetic leg flexion and extension at 24, 48, and 72 h post exercise and 

also the eccentric exercise protocol did not influence the conventional H/Q ratio. These 

findings are similar to those reported by Byrne and Eston, (2002) who demonstrated that 

an intense eccentric bout of exercise reduced concentric isokinetic strength by 12–22 % for 

the leg extensors at 24–72 h post-exercise. However, the studies looking at the FH/Q ratio 

which compares eccentric muscle actions to concentric muscle actions of the opposing 

muscles are more relevant to the present study (Aagaard et al., 1995, Hole et al., 2000). 

The findings of the present study demonstrated that the FH/Q ratio was decreased 

significantly post fatigue. This is attributed to relatively lower eccentric torque production 

of hamstring muscles compared with concentric torque production of quadriceps muscles 
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when fatigue is present. The current findings are in agreement with previous investigations 

related to the FH/Q ratio in the fatigued state (Rahnama et al., 2003, Small et al., 2010) 

however, there are also some conflicting findings in the literature. Wright et al., (2009) 

assessed the effect of fatigue on two muscle strength ratios, the conventional ratio and the 

FH/Q ratio, and the co-activation of hamstrings and quadriceps during isokinetic knee 

flexion/extension. They found a significant increase in both the conventional ratio (0.75 vs. 

1.02) and the FH/Q ratio (0.88 vs. 1.08) following a fatiguing protocol consisting of 50 

maximal concentric knee flexion/extension repetitions. It was also found that the co-

activation of the hamstrings during concentric quadriceps muscle actions significantly 

increased; however, during concentric hamstring muscle actions the co-activation of the 

quadriceps did not significantly change. It has been proposed that during knee extension 

antagonistic eccentric, not concentric, hamstrings co-activation decreases the anterior shear 

forces induced by the concentric quadriceps muscle group action (Senter and Hame, 2006). 

The results of the 40 min intermittent downhill run protocol in the present study indicate 

that both muscle groups fatigued in accordance to previous literature (> 50% drop off from 

PT output). It can therefore be concluded with confidence that the protocol used in the 

present study was sufficient in fatiguing both muscle groups, but a greater reduction was 

found in eccentric hamstrings torque compared to concentric quadriceps torque inducing a 

decreased FH/Q ratio post-fatigue which was in agreement with Rahnama et al., (2003) 

and Small et al., (2010). On the other hand, other investigations have shown a greater 

decrease in peak concentric quadriceps torque following concentric fatigue tasks 

(Garrandes et al., 2007, Grabiner and Owings, 1999) and a limited reduction in peak 

hamstrings eccentric torque following fatiguing eccentric actions (Warren et al., 2000). 

The contradictory findings may be attributed to the nature of the fatiguing protocol 

(including the mode and intensity of exercise, the nature of loading during muscle 
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activation and the environment) and proportion of concentric vs. eccentric work 

performed, which would influence the mechanisms of fatigue (Maluf and Enoka, 2005). 

The physiological changes which result from eccentric exercise that reduce the 

aforementioned effects are as yet unknown. 

 

The diferences in the direction of the fatigue induced change in FH/Q ratio may be 

explained by the nature of the protocols used, and protocols based on CON/ECC or 

ECC/ECC reciprocal actions should be developed and validated against sport-specific 

protocols when testing is constrained to the use of an isokinetic dynamometer. Since the 

eccentric action relies mainly on mechanical factors generating force, repeated actions 

result in an increased compliance of muscle fibre that may explain the small decrease in 

torque observed in study of Wright et al. (2009). Interestingly though, studies that also 

found a reduction in the FH/Q ratio post fatigue have differences within their protocols. 

Rahnama et al. (2003) and Small et al. (2010) used a football-specific intermittent 

treadmill protocol with professional players to replicate fatigue during match play, while in 

the current study fatigue was defined as a torque decline after 40 min of intermittent bouts 

(i.e., 5 × 8 min) at a -10% decline on a motorised treadmill. Although these fatiguing 

protocols would increase the demand of the hamstrings to work eccentrically, the samples 

size in Rahnama et al., (2003) and Small et al., (2010) studies were small and the duration 

of the fatiguing protocols were long (90 min). Therefore, the study of fatigue using 

downhill running, as used in the present study, will increase eccentric loading more than 

fatigue protocols used in previous studies, and will more appropriately highlight the typical 

mechanisms of hamstring and knee injury.  
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Although limited, research has been carried out on the effect of fatigue on FH/Q ratios. 

Following a downhill running fatigue protocol, the findings of the present study show a 

greater decrease in eccentric hamstrings compared to a decrease in concentric quadriceps 

torque. These data contribute to the literature aiding the future development of the FH/Q 

ratio and its use in injury prevention and rehabilitation strategies. Delextrat et al., (2010) 

investigated the effects of fatigue induced by a field test representative of soccer specific 

movements on both conventional H/Q (calculated as the maximal concentric hamstrings 

strength divided by the maximal concentric quadriceps strength) and FH/Q ratios 

(calculated as the maximal eccentric hamstrings strength divided by the maximal 

concentric quadriceps strength) in the dominant and non-dominant legs at two different 

velocities (l.05 rad s
-1

 and 3.14 rad s
-1

). They found significant decreases in the 

conventional H/Q ratio in the dominant leg at 3.14 rad s
-1

 and in the FH/Q in the dominant 

leg at l.05 rad s
-1

 and 3.14 rad s
-1

. Oliveira et al., (2009) have verified the effects of heavy-

intensity continuous running exercise on theconventional H/Q and FH/Q ratios, where no 

differences were found for the conventional torque ratios, however, the functional torque 

ratios at 180°/s decreased significantly after running. The deficit in eccentric hamstrings 

torque with fatigue is of concern in that it may correspond with a compromised capability 

for joint stabilisation and, potentially, an increased risk of injury (Rahnama et al., 2003). 

Small et al. (2010) recently investigated the effect of multidirectional soccer-specific 

fatigue on hamstring muscle strength. They found that eccentric hamstring PT decreased 

significantly during each period of exercise and the functional hamstring/quadriceps ratio 

also decreased significantly during each period which may have implications for the 

increased predisposition to hamstring strain and knee joint injury. With the exception of 

only one prior study, our findings are in agreement with all other previous studies. 

According to our knowledge, all previous studies measured only PT to determine the FH/Q 
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ratio, which is not functionally relevant as eccentric and concentric PT does not occur at 

the same joint angle. Therefore, the present study is the first study to show a decrease in 

FH/Q ratio at PT and at functionally relevant angles.  

 

The ability of knee stabilising systems are affected by changes in the joint angle, therefore 

observing the change in FH/Q ratio at specific angles following downhill running fatigue 

may be more relevant. The present findings that the FH/Q ratio increases post fatigue when 

calculated at three angular velocities, and that increases are greater closer to full knee 

extension have been reported by several investigators (Aagaard et al., 1998, Coombs and 

Garbutt, 2002). The fatigue effects are therefore more important at extended joint 

positions. However, no study has previously shown a significant main effect for joint angle 

and the greater increase in the ratio at PT or mid range movement. However, if looked at 

positions closer to full knee extension, according to the finding of current study, fatigue 

effects are less.  

 

In downhill running, the extensor muscles of the lower limbs eccentrically contract during 

each stride to decelerate the center of mass after the foot touches the ground (Walmsley et 

al., 1978). Eccentric muscle action through downhill running has been associated with 

increased mechanical stress (Iversen and McMahon, 1992). In the present study a 

significant main effect for time was observed, indicating that the FH/Q ratio at all three 

angular velocities was lower post-fatigue compared to pre-fatigue and the FH/Q ratio was 

greater at more extended positions. Differences in protocols have a marked influence on 

the change in FH/Q ratio following fatigue mainly due to the differences in eccentric 

hamstrings and concentric quadriceps loading. The reduction in muscle torque due to 

fatigue is likely to be due to a decrease in the number of fibres that can be recruited to 
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generate force as fibres already recruited begin to fail (Bangsbo, 1994). The decrease in 

hamstring co-activation following fatigue in the present study may decrease the stability of 

the joint and not act as a natural safety mechanism during knee extension. Eccentric 

muscle actions possess several unique features which may explain why they are associated 

with muscle damage. They are characterized by lengthening of the muscle whilst the 

muscle attempts to contract. During shortening actions, work is done by the muscle, but 

during eccentric action, work is done on the muscle by the external lengthening forces 

(Eston et al., 2003). Eccentric forms of exercise are interesting, because usually greater 

strength and tension values are attained than in concentric or isometric form. It is unclear 

whether this is accompanied by elevated metabolic stress to the exercised musculature. 

Horstmann et al., (2001) suggest that usually eccentric exercise leads to less acute fatigue 

and lower lactate and ammonia reaction than concentric exercise in comparable work 

levels. However, the protocol used in the present study may have elicited a higher 

eccentric compared to concentric load. Evidence of lower neuromuscular activity in spite 

of greater strength development in the eccentric action than in concentric action forms of 

exercise (Verdonck et al., 1994) which supports the emphasis on mechanical stress. It 

remains uncertain whether the lower metabolic stress might be useful during the training 

process. A greater scope of training and increased number of training stimuli might be 

applied in primarily eccentric forms of exercise. The mechanism of force generation 

during an eccentric action also differs, whereby the cross-bridges are detached 

mechanically and with greater force rather than undergoing a detachment that involves 

adenosine triphosphate (ATP) splitting, as with concentric actions. The compliant portion 

of individual cross-bridges is also stretched further during an eccentric versus an isometric 

action (Enoka, 1996). In addition, eccentric actions performed at long muscle length result 

in greater damage than those performed at short muscle length (Newham et al., 1988).  
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The observations of the present study further support suggestions that FH/Q ratio is more 

suitable to recognise the ability of the knee flexors in stabilising the joint than the 

conventional ratio. This is attributed to lower eccentric torque production of hamstring 

muscles compared with concentric torque production of quadriceps muscles. This is due to 

the lower maximal capacity of the hamstrings compared to the quadriceps. In addition, 

fatigue is not a single event that leads to a decline torque but a multitude of effects that act 

together causing this decline potential relative risk of injury (Enoka and Stuart, 1992). The 

findings of the present study showed a significant decrease in the FH/Q ratio when fatigue 

is present. This decline is due to the relatively greater reduction in eccentric vs. concentric 

torque production. These findings are in agreement with previous studies that have used 

varying fatigue protocols. However, this is the first study to have explored these effects in 

a functionally relevant position (e.g. prone) and exploring angle specific torque as well as 

a range of movement velocities.  

 

7.3 Influence of sex differences on the response to fatigue for the FH/Q ratio  

The current study appears to be the first to have examined the influence of sex differences 

on the response to fatigue associated changes in the FH/Q ratio at different joint angles and 

angular velocities. Irrespective of time, joint angle or angular velocity, significant main 

effects for sex were demonstrated, indicating that the FH/Q ratio was lower in females 

compared to males and the differences between males and females in FH/Q ratio was 

significantly smaller in pre fatigue compared to post fatigue. Percentage decline in the 

FH/Q ratio of males ranged between 6 to 15% and 4 to 24% for females which confirms 

that the effect of fatigue on males and females is different as the FH/Q ratio was lower in 

females compared to males. This difference may be due to the bigger efforts of the 
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hamstrings of females than males in the control of running activities and for stabilizing the 

joint angle during foot contact with the ground (Rahnama et al., 2003). This greater decline 

with fatigue in females may lead to lower stability of the knee and thus lead to a greater 

relative risk of injury. Additionally, the main findings demonstrate statistically significant 

three-factor interactions between sex, joint angle and time for the FH/Q ratio for all three 

angular velocities. The interactions showed that irrespective of time, a significantly lower 

FH/Q ratio in females compared to males was observed, especially when fatigue is present 

and with decreasing joint angle (closer to full knee extension). The main findings also 

demonstrate statistically significant three-factor interactions between sex, angular velocity 

and time for the FH/Q ratio. The interactions showed that irrespective of time, a 

significantly lower FH/Q ratio was observed in females compared to males and there were 

increases in the FH/Q ratio with increasing angular velocity. Importantly the effect of 

fatigue was not similar in males and females as statistically significant interactions 

between sex and time for the FH/Q ratio at all three angular velocities were found. The 

interactions showed a significantly lower FH/Q ratio post fatigue in females compared to 

males. In the fatigue state the FH/Q ratio of males and females increases with angular 

velocity due to a larger decrease in the quadriceps concentric torque than in eccentric 

hamstrings torque. The stability systems of males and females are affected by changes in 

the joint angle and angular velocity. The change in the angle-specific torque values 

following downhill running fatigue may be relevant to knee stability. As velocity of 

motion increases, the forward momentum of the tibia increases to a point where increased 

hamstrings recruitment is required to limit both extension rotation and anterior translation 

of the joint (Hewett et al., 2008). Therefore, the findings of the present study confirm that 

as angular velocity increases males and females increase their hamstrings to quadriceps PT 

output in order to stabilise the joint and protect the ACL. That which makes us accepts the 
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hypothesis 7 which states that the FH/Q ratio will significantly decrease post-fatigue 

compared to pre-fatigue task with greater decrease in FH/Q ratio in females compared to 

males 

 

Irrespective of time or angular velocity, the present study findings demonstrated 

significant main effects for joint angle, indicating that the FH/Q ratio was significantly 

higher in males compared to females and the differences between males and females were 

greater at more flexed knee positions. The current findings that the FH/Q ratio increases 

with decreased joint angle have been reported by several investigators (Aagaard et al., 

1998, Coombs et al., 2002). However, the increased FH/Q ratios following a fatigue task 

found in the present study are difficult to compare to the literature since the effects of 

downhill running fatigue on sex differences in the angle-specific torque values have not 

been previously investigated. Aagaard et al. (1998) used female and male track athletes to 

investigate joint angle-specific FH/Q ratio and found an increase in the FH/Q ratio with 

decreased joint angle at 0.52 rad s
-1

 and 4.19 rad s
-1

. However, they ignored joint  angles 

lower than 30°, where dynamic stability is often challenged. Also other studies have 

determined torque in a seated position with the hip flexed at 90° which is not functionally 

relevant, but despite this our findings are consistent with the extant literature. Coombs and 

Garbutt, (2002) used 9 females and 6 males recreational athletes to calculate joint angle-

specific FH/R ratio values throughout a 90° range of movement and found increasing 

FH/R ratio values especially at 10°. To protect the knee joint, the FH/Q ratio should be 

higher at more extended knee positions especially in females and when fatigue is present. 

Our findings show that irrespective of sex, there was a significant main effect for joint 

angle, indicating that the FH/Q ratio at all three angular velocities was higher at more 

extended positions with lower values post-fatigue. These data support current literature 



Chapter 7                                                                                                                                General Discussion                                                                                                           

_______________________________________________________________________________________ 

182 

 

indicating that functional stability is enhanced near full knee extension, even when fatigue 

is present. 

 

Females, with decreased PT of the hamstrings relative to the quadriceps may be at 

increased risk of ACL injury, particularly at high joint velocity (Hewett et al., 2008, 

Knapik et al., 1991). The present findings demonstrated that irrespective of time, sex or 

joint angle, significant main effects for angular velocity were found, indicating that the 

FH/Q ratio was significantly lower in females compared to males and the FH/Q ratios were 

increased with increasing angular velocity. The current findings that the FH/Q ratio 

increases with increasing angular velocity have been reported by several investigators 

(Hewett et al., 2008, Hewett et al., 2005). However, the FH/Q ratios in males and females 

following a fatigue task at specific angular velocities found in the current study are 

difficult to compare due to a lack of previous studies. Hewett et al., (2008) also 

demonstrated that with increased knee angular velocities, approaching those that occur 

during sports activities, significantly greater FH/Q ratios were observed in male than 

female athletes. The observed sex difference in the relationship between increasing FH/Q 

ratio and velocity would be consistent with females’ decreased ability to dynamically 

control the joint angle during sports activities (Hewett et al., 2004, Hewett et al., 2005). 

Aagaard et al., (1995) asserted that eccentric hamstrings torque during deceleration 

minimises anterior shear forces at the proximal tibia and improves dynamic functionality 

of the joint. The hamstrings muscles work synergistically with the ACL to resist 

quadriceps contraction during knee extension. The relative activity of the hamstrings is 

increased as the ligament is loaded by quadriceps contraction at knee flexion angles below 

45° via the spinal level reflex arc between the ACL and the hamstrings (Solomonow et al., 

1987). The absence of increased hamstrings muscle torque relative to quadriceps muscle 
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torque may decrease the ability to control coronal and sagittal plane knee motion in female 

athletes, and may increase strain on the knee and may predispose females to a higher rate 

of injury than males (Hewett et al., 2005, Markolf et al., 1995).  

 

The increased sex differences in FH/Q ratio following a downhill running fatigue task is 

difficult to compare with the literature since no investigation has specifically investigated 

that. Pincivero et al., (2003) reported that men exhibited higher knee flexion and extension 

torques as well as greater work and power production when compared to women, however 

it was reported that the men fatigued quicker during maximal effort muscle concentric 

actions and during sub-maximal contractions men and women fatigue at the same rates but 

men still exhibited greater torque productions during knee extension. Specifically, males 

were observed to produce significantly greater knee extensor and flexor peak torque, work, 

and power than females when corrected for body mass; as a result, the males exhibited a 

greater rate of muscle fatigue than the females (Pincivero et al., 2003). This suggests that 

greater initial torque production might be a reason for greater degree of fatigue. The 

findings of the present study also show a greater decrease in eccentric hamstrings torque 

compared to a decrease in concentric quadriceps torque in females and males when fatigue 

is present and the significant sex differences were increased when fatigue was present. 

This is due to females maintaining eccentric torque when fatigue is present more than the 

males irrespective of joint angle or movement velocity.  

 

It is well recognized in the available literature that injury to the ACL appears to be more 

prevalent in the latter stages of sporting performance and most likely when muscle fatigue 

is present (Small et al., 2010). A recent study of Small et al. (2010) has indicated that the 

FH/Q ratio significantly decreases at the end of each half of a soccer match using a 
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simulated soccer specific fatiguing task. There appear to be no comparable data available 

but if fatigue has a similar effect on males and females then the ability to resist fatigue and 

maintain joint stability should form a major part of prevention programmes. Work by 

Kawakami et al., (1993) suggested that at least for the elbow flexors, concentric and 

eccentric torque production decreases at a similar rate with advancing muscular fatigue . 

These limited data would suggest that the FH/Q ratio would remain similar in the fatigued 

and non-fatigued state in males and females. However, although limited, research has been 

carried out on the effect of fatigue on FH/Q ratios in males and females. Following the 

downhill running fatigue protocol, the findings of the present study show a greater 

decrease in eccentric hamstrings torque compared to a decrease in concentric quadriceps 

torque in females and males with greater decrease in females compared with males. These 

data contribute to the literature aiding the future development of the FH/Q ratio and its use 

in injury prevention and rehabilitation strategies.  

 

In the current study, greater decline in FH/Q ratio was observed with fatigue in females 

compared with males. It is not easy to ascribe physiological reasons for the differences in 

fatigue between the quadriceps and hamstrings in females and males, but this highlights 

the degree to which muscular fatigue is probably specific to both muscle group and muscle 

action (De Ste Croix et al., 2009a). Therefore, it is possible that females had more 

hamstrings fatigue than males. To date, evidence demonstrates that males possess an 

inherent ability to generate (irrespective of muscle action) higher absolute levels of torque 

than females, and that females appear to experience muscle fatigue at a slower rate. 

Another aspect of the supply side of this function is metabolic substrate utilisation. A few 

studies have suggested that muscles of men may contain a slightly greater amount of fast, 

type II myosin, as indicated by differences in the type II: type I fibre area ratio 
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(Jaworowski et al., 2002, Holmback et al., 2003). As the type II fibres have greater 

ATPase rates (Sieck et al., 1998), this might be expected to elevate the rate of ATP 

consumption in men versus women, to some degree. Numerous studies show that ATP is 

well maintained during even high-intensity muscular activity (Kent-Braun et al., 2002, 

Lanza et al., 2005), so the pathways of ATP re-synthesis are sufficient to compensate for 

any potential differences in metabolic demand between sexes.  

 

Reduced eccentric hamstrings torque strength relative to concentric quadriceps torque is 

implicated as a potential mechanism for increased lower extremity injuries (Myer et al., 

2004, Knapik et al., 1991) especially in females and when fatigue is present. Imbalances in 

hamstrings to quadriceps torque (i.e., hamstrings to quadriceps PT ratios, H/Q < 0.75) and 

bilateral hamstrings strength correlate to greater incidence of lower extremity injury in 

female collegiate athletes (Knapik et al., 1991). The findings of present study 

demonstrated that females FH/Q ratio is reduced with fatigue more than males, and is 

lower initially prior to fatigue. Therefore, this finding would suggest that the FH/Q ratio is 

a mitigating factor for ACL tears especially when fatigue is present because the FH/Q ratio 

is reduced in females with fatigue more than males which might be cause for increased 

relative risk of injury. 

 

 

7.4 Influence of fatigue on the EMD   

One of the aims of the current investigation (chapter 6) was to examine the effects of 

downhill running and associated fatigue on the EMD of the hamstring muscles during 

eccentric muscle actions. For all individuals (irrespective of sex or angular velocity), there 

was a significant main effect for time indicating that the EMD for all hamstring muscles 
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was longer post-fatigue compared to pre-fatigue. That which makes us accepts the 

hypothesis 8 which states that the EMD will significantly increase post-fatigue compared 

to pre-fatigue task with a greater increase in EMD in females compared to males. In 

addition, percentage decline in the EMD of males and females ranged between 8 to 28% 

which confirms the main effect of fatigue as a recent study of Lacourpaille et al., (2012) 

has suggested that inter-day reliability of EMD, was good (coefficient of variation ranged 

from 6.8% to 12.5%, i.e. SEM lower than 0.79 ms). This observation could be attributable 

to a number of mechanisms such as metabolic inhibition of the contractile process; 

excitation-contraction coupling failure as well as structural changes that have been 

suggested to explain peripheral fatigue (Pasquet et al., 2000, Gibala et al., 1995, Baker et 

al., 1993). In addition, for all individuals (irrespective of sex or time) findings of the 

present study demonstrated a statistically significant main effect for angular velocity, 

indicating a longer EMD for all hamstring muscles with increasing angular velocity. That 

which makes us accepts the hypothesis 12 which states that irrespective of sex or time, the 

EMD will be significantly longer as velocity movement increase. There were also 

statistically significant interactions between angular velocity and time for the EMD for all 

hamstring muscles with longer EMD as angular velocity increased post fatigue. These 

results suggest that neuromuscular hamstring function is impaired following downhill 

running fatigue and may limit dynamic knee joint stability, potentially contributing to the 

greater ACL injury risk. 

 

The EMD has been found to be influenced by the type of muscle contraction (Cavanagh 

and Komi, 1979), joint angle (Grabiner, 1986), the level of effort (Grabiner, 1986; Vos et 

al., 1991), fatigue (Nilsson et al., 1977, Kroll, 1974) and the age and sex of the participants 

(Clarkson and Kroll, 1978, Bell and Jacobs, 1986). However, most studies of 
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neuromuscular activity and fatigue have evaluated isometric muscle actions in male 

participants. Isometric actions may not be representative of muscle activity and fatigue 

development during human locomotion (Green, 1995). Therefore, it is difficult to compare 

the data from the present study to the extant literature as this is the first study to have 

examined the effects on fatigue on sex differences of the hamstring muscles during 

functionally relevant eccentric muscle actions. In the present study, the changes with 

fatigue were accompanied by a marked lengthening in EMD in all of the hamstring 

muscles (24 vs 44 ms at 60°·s
-1

, 40 vs 62 ms at 120°·s
-1 

 and 52 vs 90 ms at 240°·s
-1

). 

Irrespective of time, this finding is in line with previous studies that have described 

increased EMD with increasing movement velocity but those studies determined EMD 

during concentric muscle actions before and after fatiguing dynamic exercise (Horita and 

Ishiko, 1987, Nilsson et al., 1977). Nilsson et al. (1977) have also reported an increase in 

EMD of the vastus lateralis muscle (VL) during concentric muscle actions from 95 ms at 

rest to 121 ms after 100 maximal isokinetic knee extensions, in which the peak torque, 

work and power all decreased by approximately 50%. Horita and Ishiko (1987) have 

reported that the median frequency of the surface EMG recorded from vastus lateralis 

during concentric muscle actions was decreased while the time lag of torque production 

after the onset of EMG was increased during exercise. These changes (median frequency 

and EMD) corresponded well to muscle lactate accumulation in the same muscle. 

However, Vos et al. (1991) reported in only seven males participants no significant change 

in EMD of the quadriceps femoris muscle following 150 sub-maximal (50% MVC) 

isometric knee extensions. Zhou et al., (1996) have also found that EMD of knee extensors 

were similarly elongated after only 25 maximal isometric knee extensions in six previously 

untrained healthy men. The conflicting finding with Vos et al. (1991) study may be 

attributed to the influence of the type of muscle contraction (Cavanagh and Komi, 1979), 



Chapter 7                                                                                                                                General Discussion                                                                                                           

_______________________________________________________________________________________ 

188 

 

joint angle (Grabiner, 1986), the level of effort (Grabiner, 1986; Vos et al., 1991), fatigue 

(Nilsson et al., 1977, Kroll, 1974) and the age and sex of the participants (Clarkson and 

Kroll, 1978, Bell and Jacobs, 1986). A shorter EMD would be expected in a muscle which 

has a higher percentage of fast twitch (FT) fibres, greater contraction force and rate of 

force development (RFD). A shorter EMD would therefore be expected in the motor 

responses that recruit mainly FT motor units. The EMD, which is a component of the 

reflex time, is important for sports performance as it affects muscle response to sudden 

movements. Zhou et al., (1996) have also found that EMD of knee extensors were 

elongated after only 25 maximal isometric knee extensions in six previously untrained 

healthy men. Thus, EMD lengthening accompanies muscle fatigue induced by either 

isometric or dynamic exercise with maximal effort. However, no previous studies have 

directly examined the effects of fatigue on the EMD in hamstring muscles during eccentric 

actions, which is more functionally relevant to co-contraction of the knee during extension 

movements.  

 

Clinically, alterations in the EMD of the hamstring muscle-tendon unit could compromise 

knee integrity and/or impair performance by modifying the transfer time of muscle tension 

to the tibia. Previous studies highlighted the importance of changes in EMD during 

physical activities. Vos et al., (1991) observed that changes in EMD might play an 

important role in the organization of the movement and probably result in impairment of 

neuromuscular control, through its relationship with the reflex time. To our knowledge, 

only two published studies have explored the effects of eccentric fatigue on EMD, 

following sub-maximal stretch-shortening exercise in males. The results of Strojnik and 

Komi, (1998) observed no impairment to electrically evoked EMD after maximal stretch-

shortening cycle exercise, despite considerable decrements to volitional peak force and 
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rate of force development capability, whereas Howatson, (2010) reported that a bout of 

maximal lengthening actions was responsible for a significant increase in EMD during 

both isometric and concentric actions (for isometric the EMD values were 62ms pre 

exercise, 81ms 48 h post exercise,82ms 96 h post exercise and for concentric the EMD 

values were pre exercise 63ms, 48 h post exercise 79ms and 96 h post exercise 90ms). 

However, the main findings of the present study confirmed that muscular fatigue elongated 

EMD during eccentric actions with an influence of angular velocity. The conflicting 

findings of Strojnik and Komi (1998) compared with the results of the present study may 

be due to the different muscle groups examined, the muscle actions, or that they explored 

electrically evoked EMD and/or different methods for calculating EMD. However, the 

present findings, together with corroborating findings from other studies (e.g., Gleeson et 

al. 1998b; Zhou et al. 1996), may suggest a reduced capability of the dynamic stabilisers to 

provide forceful corrective responses to mechanical loading of the knee from a 

neuromuscular perspective when fatigue is present. Such fatigue-related changes in 

neuromuscular performance may be interpreted to represent an increased risk of injury 

(Chan et al., 2001, Gleeson et al., 1998b, Mercer et al., 1998), which may be amplified 

particularly at knee angles where key ligamentous structures are already under greatest 

mechanical strain (e.g., near full knee extension) (Beynnon and Johnson, 1996). 

 

The main proposed mechanism for the lengthening of EMD with fatigue is from the 

excitation-contraction coupling contractile mechanisms and the stretching of the series 

elastic components (SEC), resulting in prolonged EMD (Shi, 1996). After stimulation, the 

rate of calcium ions (Ca
2+

) release from the sarcoplasmic reticulum (SR) has been shown 

to require 2-3 ms to reach its peak level (Zhou et al., 1996), which would account for 

approximately 5%-7.5% of an EMD time of 40ms. Impaired membrane conductivity with 
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fatigue could reduce the sarcoplasmic reticulum (SR) Ca
2+

 release and therefore, 

contribute to the reduced rate of force generation and prolonged EMD during fatigue 

(Westerblad et al., 1991).  Thus, it has been suggested that intense muscle actions may 

reduce SR Ca
2+

 release (consequently increasing the time to reach its peak), Ca
2+

 

sensitivity and force production, and prolong EMD (Westerblad et al., 1991, Horita and 

Ishiko, 1987, Maclaren et al., 1989). It would appear therefore that the prolongation of the 

EMD during fatigue may be largely attributed to the failure of the muscle contractile 

process. If the major influencing factor of EMD is the time for the contractile components 

to stretch the series elastic component (SEC), increases in the percentage of type II fibres, 

contractile force and rate of force development may alter the EMD time. As has been 

demonstrated in the previous studies, there are significant correlations between EMD and 

isometric contractile properties (Viitasalo and Komi, 1981; Zhou et al., 1995).  

Furthermore, Cavanagh and Komi, (1979) have suggested that the duration of EMD is 

affected by the time necessary to stretch SEC of the muscle to a point where muscle force 

can be detected. The current study clearly demonstrated an elongation of EMD with 

fatigue. In response to this findings, a large mechanical component due to eccentric 

actions, therefore it is suggested that, eccentric training should be conducted to improve 

the neuromuscular performance and to hopefully reduce the relative risk of injury. 

 

The initial muscle length affects the EMD monitored at 90° of knee extension may not be 

comparable to other knee joint positions. The experimental variations in EMD 

performance are likely to reflect the influence of joint angle on the degree of myofilament 

overlap (McComas, 1996), the discharge properties of the motoneurons and the capability 

for neural activation (Komi et al., 2000) and also the compliance characteristics of the 

musculo-tendinous complex (Muraoka et al., 2004). Whereas it is not possible to quantify 
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the relative effects of each of these processes in the current study, under most 

circumstances the majority of the EMD is determined by the time required to stretch the 

series elastic component (SEC) (Granata et al., 2000, Kubo et al., 2000, Muraoka et al., 

2004, Zhou et al., 1998). In a recent study, Minshull et al., (2011) have shown that 

volitional and magnetically-evoked peak force and EMD of the quadriceps femoris at joint 

angles proximal to full knee extension were enhanced by increased knee flexion. These 

findings suggested that EMD is worse at extended knee positions where injury is more 

likely to occur. However, bigger relative improvements in volitional compared to evoked 

indices of neuromuscular performance were observed with increasing flexion from 25° to 

45°. These findings suggest that the extent of the relative differential between volitional 

and evoked neuromuscular performance capabilities is joint angle-specific and not 

correlated with performance capabilities at adjacent angles, but tends to be smaller with 

increased flexion. The existing literature has examined EMD at a range of joint angles 

making comparisons difficult. Those greater angles of knee flexion elicited superior (i.e. 

shorter) EMD is consistent with previous findings (e.g. Chan et al., 2001). The observed 

variations in EMD performance are likely to reflect the influence of joint angle on the 

degree of myofilament overlap (McComas, 1996), the discharge properties of the 

motoneurons and the capability for neural activation (Komi et al., 2000) and the 

compliance characteristics of the musculo-tendinous complex (Muraoka et al., 2004). 

While it is not possible to quantify the relative effects of each of these processes in the 

current study, under most circumstances the majority of the EMD is currently understood 

to be determined by the time required to stretch the series elastic component (SEC) (Zhou 

et al., 1998; Granata et al., 2000; Kubo et al., 2000; Muraoka et al., 2004).   
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Also, the fatigue pattern may not be replicated in other knee joint positions as Arendt-

Nielsen et al., (1992) and Weir et al., (1996) have both shown. All of the available adult 

studies seem to show a significant increase in EMD after fatiguing trials, irrespective of 

muscle group, or muscle action examined, which would predispose the knee to greater 

injury risk. The current study clearly demonstrated an elongation of EMD after downhill 

running fatigue which may be attributed to the failure of the muscle contractile process. It 

is likely that this reflected impaired contractile mechanisms, increased compliance of the 

series elastic components (SEC), with a reduction in muscle fibre conduction velocity. But 

how the elastic properties of the muscle affect EMD during fatigue is not clear. The 

mechanisms involved in the increase in EMD after fatigue could be due to the 

deterioration in muscle conductive, contractile or elastic properties and requires further 

study. Irrespective of sex or angular velocity, the finding of current study is the first to 

demonstrate the influence of fatigue on the EMD of the hamstrings during eccentric 

actions, and therefore muscular fatigue should be considered an important factor in 

impaired neuromuscular mechanisms for eccentric functioning. This limitations should be 

taken into account when considering these findings regarding the condition of the 

participants may also not be guaranteed as there is no control to the daily life of them, they 

may not in the best condition when having the test, which affect the validity of the results 

 

The passive component refers to the tendon which is responsible for the major portion of 

the series elasticity. The active component resides in the contractile proteins which bear 

tension when the muscle contracts. Since both muscle force and the active component of 

SEC depend upon the number of crossbridges attached, it has been reported that the 

stiffness of the active part of SEC increases with increases of muscle tension (Shorten, 

1987). Aura and Komi, (1987) have suggested that the crossbridges of slow twitch (ST) 
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fibres have a longer duration which favours muscle stiffness. If the ST fibres play a greater 

role to maintain the required tension level, as the fast twitch fibres become fatigued, the 

stiffness of the muscle would be further increased. The increased stiffness might partly 

offset the influence of the decreased rate of force development on EMD during fatigue. 

However, controversial evidence has been reported in the literature. Vigreux et al., (1980) 

have found that the compliance of elbow flexors increased under fatigue conditions, i.e. 

the muscle would be stretched to a greater degree and a longer time would be required to 

achieve a certain force level. Increased muscle temperature would also decrease muscle 

stiffness and therefore elongate EMD (Zhou et al., 1996). The effects of fatigue on EMD, 

due to the elasticity changes in either tendons or contractile proteins, needs further study. 

The current study clearly demonstrated an elongation of EMD with fatigue. It is likely that 

this reflected impaired contractile mechanisms, increased compliance of the SEC, with a 

reduction in muscle fibre conduction velocity.  

 

In response to muscular fatigue, Rozzi et al., (1999) indicated that there was an overall 

decrease in the ability to detect joint motion moving into the direction of extension, and an 

increase in the onset time of contraction for the medial hamstring and lateral 

gastrocnemius muscles in response to a landing task. Muscular fatigue is considered an 

important factor in impaired neuromuscular mechanisms, as research  has demonstrated its 

deleterious effects on knee joint laxity as well as both the afferent and efferent 

neuromuscular pathways (Ribeiro et al., 2007). A importance aspect of altered joint 

proprioception due to fatigue is a decrease in neuromuscular control (Rizzu et al., 2000). 

As a consequence of the increased latency periods during the fatigued state, muscles are 

not able to respond quickly enough to protect a joint from injury, especially in females. 

Alterations in the afferent input to the alpha motor neurons can potentially affect reactive 
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muscular function and decrease the protection of the joints (Rizzu et al., 2000). Skinner et 

al., (1986) reported that during fatigue conditions participants had significantly decreased 

proprioceptive abilities. They hypothesized that this was due to either altered afferent 

impulses from the muscles themselves or from abnormal stresses in the joint capsule as a 

result of the muscle fatigue (Skinner et al., 1986). Altered joint proprioception due to 

fatigue may impact on neuromuscular control (Rizzu et al., 2000).  Our findings support 

the view that the influence of fatigue on the EMD in hamstring muscles in females and 

males at all three angular velocities potentially influences dynamic muscular control of 

knee joint alignment, and that specifically differences in muscle recruitment and EMD 

may be partly responsible for the risk of ACL injury. Our findings of increased EMD with 

fatigue tentatively suggest that proprioception and joint control are altered when fatigue is 

present, due to decreased neuromuscular control. However, more studies are needed to 

explore the influence of fatigue on proprioception and knee joint position sense, which 

may alter landing mechanics, when individuals are fatigued. 

 

A slowing of muscle fibre conduction velocity with fatigue has been calculated to 

contribute up to 15% of the prolongation of EMD (Zhou et al., 1996). Yeung et al., (1999) 

have shown a significant increase in EMD of the vastus medialis following 30 isometric 

maximal voluntary actions and Horita and Ishiko, (1987) have also found that the median 

frequency (MF) of the surface electromyogram (EMG) recorded from vastus lateralis was 

decreased while the time lag of torque production after the onset of electrical activity 

(EMD) was increased. However, it has to be noted that the results of the present study 

should be cautiously compared to the findings of other studies using different fatigue 

protocols, muscle groups, angular velocities, participants and positions of measurement. 
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Adult studies have also reported that sub-maximal fatigue not only increases anterior tibial 

translation but that this is accompanied by significantly longer latency of the hamstring 

muscles, subsequently decreasing joint stability (Melnyk and Gollhofer, 2007). Because of 

the increased latency periods during the fatigued state, muscles may not be able to respond 

quickly enough to protect a joint from injury. Considering this time lapse and the need to 

develop sufficient muscle tension rapidly enough to provide dynamic knee stability, and 

according to our findings, the EMD should be considered when evaluating muscular 

responses to an imposed perturbation or injurious stress. 

 

7.5 Sex differences in response to fatigue on EMD 

The findings of the present study (chapter 6) demonstrated statistically significant 

interactions between sex and time (pre-post) for EMD. In addition, a statistically 

significant interaction between sex and angular velocities was demonstrated. These 

findings indicate that the EMD in hamstring muscles of females at all angular velocities 

was longer post-fatigue compared to males and the sex difference in EMD post fatigue 

increased with increasing angular velocities. Percentage decline in the EMD of males 

ranged between 8 to 22% and 17 to 28% for females which confirms that the effect of 

fatigue on males and females is different as the EMD was lobger in females compared to 

males. However, as shown in study two (chapter 5), there were no sex differences in the 

EMD in hamstring muscles, irrespective of angular velocity when fatigue is not present. 

That which makes us refuses the hypothesis 11 which states that irrespective of sex or 

time, the EMD will be significantly different between hamstrings muscle groups. It would 

appear that latency periods in women are not different from men under normal conditions 

and therefore we would suggest that reduced neuromuscular functioning is not a 

contributing factor in the elevated relative risk of injury in females, when the muscles are 
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not fatigued. The findings of current study are in agreement with previous literature 

(Houston et al., 1988, Blackburn et al., 2009, Winter and Brookes, 1991) that found no 

significantly different EMD values between females and males, albeit from different 

muscle groups and different muscle actions. It is well established that EMD can be 

relatively variable due to factors such as fibre-type composition and firing rate dynamics 

of the muscle, velocity of movement, viscoelastic properties and length of the muscle and 

tendon tissues, activity state, and coactivity of other muscles (De Luca, 1997, Soderberg 

and Cook, 1984). Our data suggest that these factors do not seem to be a contributing 

factor in terms of the relative risk of reduced dynamic knee stability from a neuromuscular 

perspective in females when fatigue is absent. However, the time required for the 

contractile component to stretch the series elastic component (SEC) probably accounts for 

the major portion of EMD, but how the elastic property affects EMD of males and females 

when fatigue is present is not clear. 

 

The percentage changes in EMD with fatigue were accompanied by a marked lengthening 

in EMD in all hamstring muscles and were 25, 19, 30% in males and 41, 36, 37% in 

females at 60, 120 and 240°·s
-1

 respectively. Importantly the effect of fatigue was not 

similar in males and females at all three angular velocities. The finding in present study 

showed a significantly longer EMD post fatigue in females compared to males. This 

finding confirmed previous reports that have shown that the influence of fatigue on EMD 

differs between sexes (Moore et al., 2002, Minshull et al., 2007). These results suggest 

males and females may respond differently to fatigue, with males having a greater capacity 

to compensate for neuromuscular failure when responding to mechanical perturbations. 

However, it is difficult to compare our data to the extant literature as no previous studies 

have examined the effects of fatigue on the EMD in hamstring muscles in males and 



Chapter 7                                                                                                                                General Discussion                                                                                                           

_______________________________________________________________________________________ 

197 

 

females during eccentric actions. The observed sex difference in the present study could be 

attributable to a number of mechanisms. It could represent differences in fibre type 

distribution (Viitasalo and Komi, 1981, Woledge et al., 1985), with type II fibres having 

shorter force-developing times than type I fibres. However, this may be unlikely as it has 

been proposed that systematic differences in fibre type attributable to sex do not occur 

(Nygaard, 1981). The work of Padua et al., (2006) demonstrated greater co-activation 

ratios in females compared to males in a fatigued state. It has also been reported that, there 

was an increase in EMD in women after fatiguing protocol, while no difference was 

observed in men (Moore et al., 2002). Moreover, in a study of Minshull et al., (2007) it 

was indicated that EMD increased post-fatigue in women and did not change in men when 

subjects voluntarily contracted their muscles, but it decreased at post-fatigue for both 

women and men when muscles were stimulated magnetically. Comparing our data with 

previous studies should be conducted with a degree of caution, as we measured EMD in 

the hamstring muscles during eccentric actions and in a prone position which is 

functionally relevant. Other studies have used a range of different protocols, muscle 

actions, muscle groups, angular velocities, participants and positions of measurement to 

determine EMD. 

 

Very few studies have specifically addressed potential sex differences in neuromuscular 

response characteristics, especially when fatigue is present (Huston and Wojtys, 1996, Bell 

and Jacobs, 1986, Winter and Brookes, 1991). These studies have been interested 

primarily on muscle firing patterns during various functional manoeuvres. A study by 

Besier et al., (2003) determined that during running and cutting manoeuvres male 

participants exhibited significantly lower muscle activation during unanticipated 

conditions. This resulted in less stiffness in varus/valgus at the knee and internal/external 
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rotation of the tibia, which could lead to less neuromuscular control of the knee joint 

(Besier et al., 2003). Moore et al., (2002) recorded vastus lateralis activity and knee 

extension force production at the distal tibia. They also found that, there was an increase in 

EMD during concentric muscle actions in women after (immediate, 2, 4, and 6 min) a 

concentric isokinetic fatigue protocol to 50% MVC (90°·s
-1

), while no difference was 

observed in men. In addition, Minshull et al., (2007) indicated that EMD of the biceps 

femoris muscle increased post- acute maximal intensity fatiguing exercise in women and 

did not change in men during voluntarily isometric actions. Conflicting data are available 

and the findings of Yavuz et al., (2010) indicated that EMD of triceps surae muscle 

increased post-fatigue but no difference was observed between men and women. However, 

the EMD values in those studies were determined using different methods that may not 

have included the activation of all motor units in those muscles and hence precise duration 

of the EMD may have been over estimated. Although direct comparisons are difficult, due 

to the differences in study designs and protocols, muscle group examined and movement 

velocity. Notwithstanding these comparison challenges, our findings are similar to the 

limited extant literature. However the current study is the first to demonstrate these sex 

differences when fatigue is present across a range of movement velocities, during eccentric 

actions, in a functionally relevant position, and with a large sample size (n=100).  

 

7.6 FH/Q ratio and influence of sex, angular velocity and joint angle 

Females with decreased hamstrings relative to the quadriceps PT may be at increased risk 

of injury (Knapik et al., 1991). Therefore, the aim of the present study was to review the 

effects of sex, angular velocity and joint angle on the FH/Q ratio. The findings of study 

one (chapter 4) demonstrated that, a significant two-factor angular velocity (60, 120 and 

240°·s-1) by sex (males; females) interaction, and angular velocity by knee joint angle 
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interaction, associated with the repeated measures ANOVA showed that whereby, across 

angular velocity, FH/Q ratio was higher for males than females (Figure 11) this interaction 

also indicated that the FH/Q ratio increases closer to full knee extension with increasing 

angular velocity. However, there were no significant three-factor interactions, for angular 

velocity, joint angle and sex. Significant main effects for angular velocity were observed, 

for both males and females, whereby, FH/Q ratio increased with angular velocity. Those 

interaction indicated that the FH/Q ratio of males and females increases closer to full knee 

extension and was lower in females compared to males with increasing angular velocity. In 

addition, significant main effects for angular velocity and joint angle were observed. 

Whereby, for males and females the FH/Q ratio increases closer to full knee extension and 

also increases with increasing angular velocity. This is attributed to lower eccentric torque 

production of hamstring muscles compared with concentric torque production of 

quadriceps muscles. The FH/Q ratio, outside the 0.7-1 range, when calculated near full 

knee extension (0º) suggests an increase in the injury risk (Croix and Korff, 2011). The 

functional ratios below 1.0 in the current study may also be attributed to the inability of 

females to recruit their entire motor unit pool during eccentric actions. According to the 

current findings, injury occurrence in females is may be due to a specific hamstring 

weakness the FH/Q ratio and should decrease when approaching full knee extension and 

with increasing angular velocity. This would represent the inability of the hamstrings to 

absorb the anterior tibial forces induced by the concentric quadriceps action. This has 

implications for dynamic knee stability near full knee extension and reinforces the need to 

examine the ratio closer to full knee extension at increased angular velocity spatially in 

females. Therefore, that which makes us accepts the hypotheses 1,2 and 3 which states that 

the FH/Q ratio will be significantly lower in females compared to males and will 
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significantly increase as velocity of movement increases and also ill significantly decrease 

with decreasing knee joint angle (closer to full knee extension). 

 

The reduction in strength that was evidenced in the current study (chapter 4) by a decline 

in eccentric compared to concentric PT with increasing angular velocity is in agreements 

with the results of Costain and Williams, (1984) who measured the quadricep and 

hamstring torque levels of 16 high school soccer players using a Cybex II dynamometer at 

slow (0.54 rad.s
-1

) and fast (3.24 rad.s
-1

) velocities. They reported a significant decrease in 

PT in both muscle qroups from the slow to the fast velocity. In addition, Stafford and 

Grana, (1984) assessed the knee extensors and knee flexors of 60 intercollegiate soccer 

players at functional angular velocities of 1.62, 3.24 and 5.4 rad.s
-1

 on the Cybex II and 

found the same results. In the previous observations also, it is well documented that the 

quadriceps muscle group possesses higher mean torque values (20-40 % greater) than the 

hamstrings irrespective of muscle actions (Goslin and Charteris, 1979, Wyatt and 

Edwards, 1981). Westing and Seger (1989) investigated the eccentric and concentric 

torque velocity characteristics of the quadriceps and hamstring muscle groups. They 

reported that mean concentric PT was significantly lower than the corresponding eccentric 

PT at all assessment velocities. However, they observed that mean eccentric torque did not 

change significantly with increasing angular velocity for either the quadriceps or hamstring 

muscles. Our results support those observations which have reported that the quadriceps 

posses’ greater concentric torque than the eccentric hamstring muscles at all angular 

velocities. Hewett et al., (2008) showed a significant increase in the CH/Q ratio with 

increasing angular velocity, from the lowest (0.52rad.s
-1

) compared to the highest velocity 

(6.28rad.s
-1

). At slower testing velocities, no sex differences in isokinetic CH/Q ratio were 

observed in study of Hewett et al., (2008), however with increased knee flexion/extension 
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angular velocities, approaching those that occur during sports activities, significantly 

greater CH/Q ratios were observed in male than female athletes. The findings of current 

study confirmed that significant main effects for angular velocity were observed for both 

males and females, whereby, FH/Q ratio increased with angular velocity irrespective of 

joint angle position with lower FH/Q ratio in females compared with males’ at all three 

angular velocities. As velocity of motion increases during supine and prone position 

isokinetic activity, the forward momentum of the tibia increases to a point where increased 

hamstrings recruitment is required to limit both extension rotation and anterior translation 

of the joint. Consequently, as angular velocity increases, males and females increase their 

hamstrings to quadriceps PT output in order to stabilise the joint and protect the ACL 

(Hewett et al., 2008).  

 

The manifestations of functional changes occurring are multiple and depend on the joint 

angle, angular velocity, action type (Green, 1997). Limited, research has been carried out 

to determine whether or not females and males respond to increased angular velocity and 

change in the angle-specific torque values with increased hamstrings torque relative to 

their quadriceps torque. In the current study, at deceased joint angles (closer to full knee 

extension) the FH/Q ratio at all three angular velocities was increased due to a larger 

decrease in the quadriceps concentric torque than in eccentric hamstrings torque. The 

stability systems are affected by changes in the joint angle, therefore observing the change 

in the angle-specific torque values may be relevant to knee stability as it describes the joint 

angle at which specific muscle action is most effective, however there are a limitation of 

using FH/Q ratio at angle-specific torque. The current findings that the FH/Q ratio 

increases with decreased joint angle have been reported by several investigators (Coombs 

et al., 2002, Aagaard et al., 1998, Kellis and Katis, 2007). These studies have determined 
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torque in a seated position with the hip flexed at 90° which is not functionally relevant, but 

despite this our findings are consistent with the extant literature. Aagaard et al., (1998) 

used females and male track athletes to investigate joint angle-specific FH/Q ratio and 

found that maximal eccentric strength was greater than maximal concentric strength for 

both the quadriceps and hamstring muscles. In addition, maximal quadriceps muscle 

strength was elevated when obtained at gradually more flexed knee joint positions (i.e., 

50°.40°.30°). Conversely, maximal hamstring muscle strength was greater when obtained 

at gradually more extended positions (i.e., 30°.40°.50°). Furthermore, the FH/Q ratios for 

fast knee extension (4.19 rad.s
-1

) were 1.0, 1.1, and 1.4 based on 50°, 40°, and 30° 

moments, respectively and the corresponding values for slow knee extension (0.52 rad.s
-1

) 

were 0.6, 0.8, and 1.0. Therefore, the FH/Q ratio was increased as we found in the current 

study with extended knee joint positions and with decreased joint angle at 0.52 rad.s
-1

 

compared with 4.19rad.s
-1

. However, they ignored joint  angles lower than 30°, where 

dynamic stability is often challenged. Coombs and Garbutt, (2002) used 9 females and 6 

males recreational athletes to calculate joint angle-specific FH/R ratio values throughout  a 

90° range of movement and found increasing FH/R ratio values especially at 10°. 

Eccentric or concentric angle specific torque prior to and following fatigue may partly 

explain the increased FH/Q ratio. The findings of the current study demonstrated that 

statistically significant three-factor interactions were observed between sex, angular 

velocity, joint angle (15º, 30º, 45º and PT) respectively for the FH/Q ratio and also 

significant main effects for joint angle were observed with greater FH/Q ratio closer to full 

knee extension. This is in agreements with study of Kellis and Katis, (2007) who found 

that FH/Q ratio significantly increased at 1.05 and 3.14rad.s
-1 

as the knee extended at 

increased angular velocity. As a result, landing that occurs with the knee angle greater than 

30° of flexion places less load on the ACL compared to landing in more extended knee 
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positions (Myers and Hawkins, 2010). For fast knee extension, the FH/Q ratio yielded a 

1:1 relationship, which increased with extended joint angle position, indicating a 

significant capacity of the hamstring muscles to provide dynamic joint angle stability in 

these conditions. The data of current study support the literature indicating that functional 

stability is enhanced near full knee extension. Therefore, the evaluation of joint angle 

function by exercise of isokinetic dynamometry should comprise data on FH/Q ratios and 

to protect the knee joint, the FH/Q ratio should be higher at more extended knee positions. 

 

For sex differences, analysis and review of isokinetic data published in the literature 

demonstrated significantly differences in FH/Q ratio between males and females (Calmels 

et al., 1997, Yoon et al., 1991, Hewett et al., 2008). The findings of current study support 

previous observations which have reported a higher FH/Q ratio in males compared with 

females. This may be due to the more powerful quadriceps muscles as compared to the 

hamstrings muscles in females or may be due to the greater efforts of the hamstrings of 

females than males in the control of running activities and for stabilizing the joint angle 

during foot contact with the ground or due to females maintaining lower eccentric torque 

compared with males. Other investigators, however, have reported a similar FH/Q ratio 

between sexs (Bojsen-Moller et al., 2007). Hewett et al., (2008) demonstrated no sex 

differences in isokinetic conventional H/Q ratio were observed at slower (0.52 rad.s
-1

) 

testing velocities but, with increased knee flexion/extension angular velocities, 

approaching those that occur during sports activities, significantly greater conventional 

H/Q ratios were observed in male than female athletes. The disagreement concerning the 

effect of sex on FH/Q ratio may be related to use the different age ranges, different angular 

velocities and positions of measurement, small sample size and training background of 

participants.   
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The contribution of antagonists during particular phases of the movement is very important 

in many activities because the antagonists control and stabilize the joint when large forces 

are developed (Baratta et al., 1988, Patton and Mortensen, 1971, Kellis and Baltzopoulos, 

1995). Co-activation of the hamstrings during active knee extension assists the ACL in 

maintaining joint angle stability by exerting an opposing force to anterior tibial translation 

(Baratta et al., 1988, Osternig et al., 1995). As a result, determination of the strength of the 

antagonists and its relationship to agonists has been extensively investigated (Kellis and 

Baltzopoulos, 1995). The issue of the change in the torque-velocity relationship after 

repeated eccentric actions has been observed by Brockett et al., (2001). Perrin, (1993) later 

stated that the force -velocity curve produced during eccentric exercise is quite different 

from the curve resulting from concentric muscular contraction. For instance, while 

concentric force decrease with increase in contraction velocity, eccentric force remains the 

same and sometimes even increases in force production are observed. This difference may 

be due to differences in the binding and interaction of actin and myosin within the muscle 

sarcomere. 

 

ACL injury risk in female athletes is associated with the relatively low knee flexor to 

extensor ratio or hamstrings to quadriceps PT ratio (Hewett et al., 2006). Quadriceps 

contraction increases ACL strain in the first 30° to 45° of knee flexion, and isolated 

quadriceps contraction can create forces beyond those required for ACL tensile failure 

(Fleming et al., 2003, Lloyd, 2001, McNair et al., 1990, Myklebust et al., 1998). Arms et 

al., (1984) confirmed that ACL strain increased to 45° of flexion and decreased at knee 

flexion angles greater than 60°. Beynnon et al., (1992) reported that the ACL was strained 

by quadriceps contraction at 30° but not at 90° using in vivo techniques. They also 

reported that quadriceps contraction significantly increased at 15° and 30° but decreased at 
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60° (Beynnon et al., 1995). Hewett et al., (2006) believed that co-activation of the 

hamstrings and quadriceps muscles may protect the knee joint not only against excessive 

anterior drawer, but also against knee abduction and dynamic lower extremity valgus. If 

the hamstrings are weak, quadriceps activation would have to be reduced to provide a net 

flexor moment required to perform the movement (Hewett et al., 2005, Hewett et al., 

1996). Shortage in strength and activation of the hamstrings directly limit the potential for 

muscular co-contraction to protect ligaments (Solomonow et al., 1987). Co-contraction of 

the knee flexors is essential to balance active contraction of the quadriceps in order to 

compress the joint and assist in the control of high knee abduction torques and anterior 

tibial translation (Solomonow et al., 1987). The observations of our study further support 

suggestions that FH/Q ratio is more suitable to recognise the ability of the knee flexors in 

stabilising the joint than angle the conventional ratio. This is attributed to lower eccentric 

torque production of hamstring muscles compared with concentric torque production of 

quadriceps muscles. This is due to the lower maximal capacity of the hamstrings compared 

to the quadriceps. The findings of the current study showed a significant increase in the 

FH/Q ratio closer to full knee extension and with increased angular velocity. This is due to 

the relatively greater reduction in eccentric vs. concentric torque production. These 

findings are in agreement with previous studies. However, this is the first study to have 

explored these effects in a functionally relevant position (e.g. prone) and exploring angle 

specific torque as well as a range of movement velocities.  

 

7.7 EMD and influence of sex, angular velocity and hamstrings muscle group 

The main findings of present study demonstrated significant main effects for angular 

velocity, indicating an increase in the EMD in all hamstring muscles with increasing 

angular velocity, irrespective of sex or time. That which makes us accepts the hypothesis 5 
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which states that the EMD will be significantly longer as velocity of movement increases. 

However, no significant main effects for hamstring muscles or sex were observed at all 

three angular velocities. That which makes us refuses the hypotheses 4 and 6 which states 

that the EMD will be significantly longer in females compared to males and the EMD will 

be significantly different between hamstrings muscle groups. These results suggest that 

neuromuscular functioning of the hamstring muscles, with increasing angular velocity, is 

reduced and may limit dynamic knee joint stability, potentially contributing to the greater 

ACL injury risk. It has previously been suggested that EMD will vary substantially due to 

the characteristics of the muscles being tested (e.g. architectural arrangement and fibre 

type distribution) (Viitasalo and Komi, 1981); muscle action (e.g. eccentric, concentric, 

voluntary, reflexive) (Norman and Komi, 1979, Zhou et al., 1995); and data processing 

techniques (Corcos et al., 1992). However, a limited number of studies have investigated 

the influence of movement velocity on EMD, and only one during eccentric actions. This 

is surprising given the range of movement velocities produced during sporting 

performance and that non-contact ACL injury may be velocity dependent.  

 

Understanding the influence of fatigue on the EMD during different velocity movements is 

important as EMD is a component of the reflex time, which is important as it affects 

muscle response to sudden movements during athletic activities. The effect of movement 

velocity on motor unit recruitment strategies during isokinetic testing was studied by 

Ronald et al., (1998) between 1.05, 3.14 and 4.19 rad.s
-1 

and elucidated that there is no 

change in the motor units recruited for the quadriceps, however there is a general upward 

shift for the hamstrings as velocity increases indicating an increased recruitment of the fast 

twitch motor units. Additionally, as the quadriceps and hamstrings fatigue during 

isokinetic movements, there is a general shifting of the median frequency of the 
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electromyographic activity toward the lower frequency demonstrating a change in 

recruitment from the fast twitch to slow twitch motor units. The current study showed a 

significant main effect for angular velocity, indicating an increase in the EMD in 

hamstring muscles with increasing angular velocity. The study of Barnes, (1980) suggested 

that the decline in torque output due to increasing angular velocity is a result of different 

neurological activation patterns of motor units at different velocities. 

 

When EMD measures are collected on more than one muscle group, activation patterns 

such as recruitment order and coactivity around a joint can also be evaluated. In the current 

study no differences were found between the EMD of all hamstring muscles, irrespective 

of sex or if fatigue was present, suggesting that the speed in which the hamstrings 

investigated activate during eccentric actions are similar, and thus all of the active muscles 

are equally contributing to the stabalisation of the joint from a neuromuscular perspective. 

These data agree with the previous findings of Georgoulis et al., (2005) who found no 

significant differences for the EMD for either the rectus femoris (RF) or the vastus 

medialis (VM) muscle during maximal isometric voluntary action.  

 

The changes of the EMD might play an important role in the organization of the movement 

and probably result in impairment of neuromuscular control, through its relationship with 

the reflex time. The current findings showed a significant main effect for time, indicating 

that the EMD in hamstring muscles was longer post-fatigue compared to pre-fatigue. In 

addition, significantly longer EMD in females compared to males was found post fatigue, 

but there were no sex differences in the EMD of hamstrings muscle at all three angular 

velocities pre fatigue. These results suggest that the EMD is slower in both males and 

females due to the change to an ankle dominant rather than knee dominant strategy to 
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protect the knee on landing. This might be why EMD around the knee muscles is reduced 

as they rely more on the muscles that support the ankle. The prolongation of the EMD 

during fatigue may be largely attributed to the failure of the muscle contractile process. 

These results suggest that neuromuscular hamstring function following downhill running 

fatigue may limit dynamic knee joint stability, potentially contributing to the greater ACL 

injury risk. This finding confirmed previous reports that have shown that the influence of 

fatigue on EMD differs between sex (Moore et al., 2002, Minshull et al., 2007). These 

findings are in agreement with previous studies and suggest that males and females 

respond differently to fatigue, with males having a greater capacity to compensate for 

neuromuscular failure when responding to mechanical perturbations. However, no 

previous studies have examined the effects of fatigue on the EMD throughout hamstring 

muscles in males and females during eccentric actions. Therefore, this is the first study to 

have explored these effects in a functionally relevant position (e.g. prone with the hip 

extended) as well as a range of movement velocities.  

 

The differential changes in EMDv performance between sexes in the current study could 

be partially explained by a generally greater compliance in biologic tissue in females 

(Wojtys et al., 1998), exacerbated by muscle temperature increases associated with the 

fatiguing exercise (Zhou et al., 1998). Given the many injury risk factors experienced by 

females, habituated exposure to scenarios where knee joint stability may be under threat 

might condition the neuromuscular system of the healthy female athlete at functional joint 

angles. The subsequent formation of pre-programmed responses that provide fast 

compensatory reactions to joint perturbations (Latash, 1998) may quickly harness  the SEC 

and account for the parity in EMDV performance observed between the sexes at baseline. 

Under conditions of muscle fatigue and sustained loading, however, this capability may be 
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diminished due to a reduction of the effectiveness of the fastest most powerful motor units, 

impairing the temporal capability of the muscle to ‘gather in’ a more compliant SEC. 

 

 

7.8 Implications for practice 

The focus of the present research is a result of the documented sex disparities in dynamic 

knee stability from a muscular and neuromuscular perspective and potential influence of 

fatigue. The findings of the present study demonstrated that FH/Q ratio was lower in 

females than males both pre and post fatigue.  This is attributed to lower eccentric torque 

production of hamstring muscles compared with concentric torque production of 

quadriceps muscles. However, the significant sex differences increased when fatigue was 

present. The existing evidence of greater prevalence of muscle imbalances among female 

than male athletes is now supplemented by the findings of the present series of studies 

suggesting that the FH/Q ratio may be a key factor for ACL tears and hamstrings muscle 

strains (Moeller and Lamb, 1997, Hewett et al., 1999, Huston and Wojtys, 1996). Males 

also demonstrated a significant decrease in FH/Q ratio with fatigue post exercise and 

fatigue is known to be related to incidence of ACL injury. Therefore, the present study’s 

findings lead to a recommendation that females, in particular, should do eccentric training 

of their hamstring muscles that may alter the rate of force production to hopefully increase 

dynamic knee stability.  

 

Narici et al., (1996) also reported a significant decrease in time to peak isometric torque of 

quadriceps muscle after strength training on knee extensors. They suggested that this 

observation could indicate an increase in the stiffness of the muscle-tendon complex after 

training. Furthermore, as suggested by Wilson et al., (1994) an increase in the stiffness of 
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the muscle-tendon complex should result in a higher force and rate of force development. 

Interestingly a recent study of De Ste Croix and Korff, (2011) on adults suggests that 

heavy intensity aerobic training reduces the FH/Q ratio.  

 

The deficits in strength and insufficient activation of the hamstrings limit the potential for 

muscular co-contraction to protect ligaments (Hewett et al., 2008). The findings of the 

present study revealed significant sex differences in EMD of hamstrings muscle; however 

this finding that demonstrated longer EMD in females compared with males was only 

evident post fatigue and no sex differences were found pre fatigue. EMD of males was also 

longer post fatigue than pre fatigue. Theoretically, any factors that influence muscle fibre 

conductivity, contractility, or elasticity may alter EMD. The effects of fatigue on EMD can 

be attributed to peripheral processes and not to central fatigue or neuromuscular 

transmission failure. The current study’s finding would suggest that neuromuscular 

hamstring function in females with fatigue may limit dynamic knee joint stability, 

potentially contributing to the greater female ACL injury risk. Indeed, the current results 

may provide a new insight into the complex phenomenon that describes a fivefold to 

sevenfold increase risk of ACL injury in the female athlete compared to male counterparts. 

Considering lapse time and the need to develop sufficient muscle tension rapidly enough to 

provide dynamic knee stability, EMD should be considered when evaluating muscular 

responses to an imposed perturbation or injurious stress. The effect of training on the 

neuromuscular performance has previously been studied. The majority of available data 

clearly indicates that training that has an effect on neuromuscular performance appears to 

reduce the relative risk of injury and enhance physical performance. 
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The effects of training on the neuromuscular performance have previously been studied 

and findings are conflicting. Increased muscle activation levels in the triceps surae after 12 

weeks of plyometric training were found by the twitch interpolation technique (Kubo et al., 

2007) and Grosset et al. (2011) have assessed maximal aerobic velocity during endurance 

training and have shown that endurance training leads to a significant decrease in EMD. In 

addition, Kubo et al., (2001) reported a decrease in EMD after isometric training, but Zhou 

et al. (1996) found no changes in EMD following sprint training. Similarly Hakkinen and 

Komi, (1983) reported no significant differences in EMD values calculated under reflex 

contraction before and after 16 weeks of strength training. For healthy adults, data reported 

in the literature indicate that, for the hamstrings muscle, the EMD value obtained from 

maximal electrical nerve stimulation are generally between 9.5 and 18.7 ms (Grosset et al., 

2011, Mora et al., 2003, Winter and Brookes, 1991). Those authors who reported changes 

in the EMD with training mainly attributed this change to alterations in tendon structures; 

the stiffness of the tendon is assumed to increase with any form of physical activity. 

Therefore, the present study’s findings lead to a recommendation that females, in 

particular, should do training to increase fatigue resistance for neuromuscular function. 

 

A direct association between the EMD and musculo-tendinous stiffness changes after a 

training period have been demonstrated by Grosset et al., (2011). Furthermore, the changes 

in elastic properties due to training have been well documented; Goubel and Marini, 

(1987) reported that endurance training resulted in an increase in the series elastic 

component stiffness in the soleus muscle, associated with an increase in type I fibres. Both 

jump and endurance training also appear to increase both collagen concentration 

(Ducomps et al., 2003, Kovanen et al., 1980) and muscle passive stiffness. The soleus 

muscles submitted to plyometric training had faster twitch fibres and lower series elastic 
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component stiffness than controls (Almeida-Silveira et al., 1994, Pousson et al., 1991, 

Watt et al., 1982). Malisoux et al. (2006) recently reported that human subjects given 8 

weeks of maximal effort stretch-shortening cycle exercise training tended to have an 

increase in the proportion of type II fibres in their vastus lateralis muscles. Therefore, in 

response to the findings of the present study it is recommended that, especially in females, 

eccentric training should be conducted to improve the neuromuscular performance and to 

hopefully reduce the relative risk of injury.  

 

Irrespective of sex or time, the current study demonstrated significant main effects for 

angular velocity were found, indicating an increase in the FH/Q ratio and longer EMD of 

hamstring muscles with increasing angular velocity. Therefore, the observations of the 

current study further support suggestions that joint velocity needs to be considered when 

training hamstrings muscles. The present study’s findings lead to recommendations that 

males and females should do eccentric training for their hamstring muscles to increase 

dynamic knee stability especially at higher angular velocity. Furthermore, the focus should 

be on neuromuscular functioning as EMD is longer at faster velocities. The results from 

Brockett et al., (2001) study reported muscle adaptation after a single bout of eccentric 

exercise incorporating the Nordic Hamstring Exercise (NHE) represented by a shift in PT 

production to longer muscle lengths. Therefore, a prior bout of eccentric training may 

provide protection against more severe damage in a subsequent activity which possesses 

different force-velocity characteristics. Further to this, training with the NHE appears not 

to result in velocity specific adaptations, which implies that training at a slow angular 

velocity (i.e., the NHE) could provide protection against injuries that occur during sporting 

activities like running where angular velocity can reach in excess of 300°·s
-1

 (Knapik et 

al., 1991). In addition, the study of De Ste Croix et al., (2009b) demonstrated significant 
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increases in eccentric hamstring strength after only four weeks of training incorporating 

the NHE and also demonstrated that training with the NHE at slower angular velocities 

does not result in velocity specific adaptation, as increases, in eccentric hamstrings 

strength were recorded at much faster angular velocities. This would suggest that the NHE 

could be included as part of pre season training modality to provide protection against 

hamstring strains.
 

 

Irrespective of sex or time, the main findings of the present study demonstrate significant 

main effects for joint angle indicating that there were increases in the FH/Q ratio with 

decreasing joint angle (closer to full knee extension). Importantly the effect of joint angle 

differed in magnitude in males and females where significantly lower FH/Q ratio in 

females was found compared to males especially when fatigue is present and at decreasing 

joint angle (closer to full knee extension). This suggests that the decrease in the ratio was 

greater at more extended knee positions. This has implications for dynamic knee stability 

near full knee extension and reinforces the need to examine the ratio closer to full knee 

extension, especially in the fatigue condition. Therefore, training programmes should 

develop strength through the full range of knee joint motion, especially when fatigue is 

present. However, recommendations supported by evidence are not possible, since no 

studies appear to have explored the influence of strength training on angle specific torque 

near full knee extension.  

 

Finally, the present findings highlight the importance of joint angle, angular velocity and 

action-specificity when calculating the FH/Q ratio. It has been found that ACL rupture is 

most likely to occur near full knee extension during a high velocity movement in both 

males and females. The FH/Q ratio, when calculated near full knee extension (0º), suggests 
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an increase in the injury risk. If it is to be accepted that injury occurrence is due to a 

specific hamstring weakness, the FH/Q ratio should decrease when approaching full knee 

extension and with increasing angular velocity or in the presence of action-specific fatigue. 

This would represent the inability of the hamstrings to absorb the anterior tibial forces 

induced by the concentric quadriceps action. In addition, all of the available adult studies 

seem to show a significant increase in EMD after fatiguing trials and with increased 

angular velocity which would predispose the knee to greater injury risk.  Therefore, in 

summary, any training which increases resistance to fatigue in terms of FH/Q or EMD 

should be advocated.  Such training should focus on high velocity near full extension 

exercises.  Such training is particularly important in females. 

 

 

7.9 Implications for further research  

The present research that forms the basis for this thesis has been designed to answer highly 

focused research questions. The answers to these questions, along with the absence of 

answers to many related questions, provides a basis for further research to develop a 

greater level of understanding in this important area. 

 

It is well recognised in adults that fatigue affects eccentric and concentric actions 

differently and that generally eccentric actions are more fatigue resistant than concentric 

actions. Therefore, in a fatigued state the FH/Q ratio should increase and the knee should 

be more stable.  The present findings have confirmed that this is not the case following a 

fatigue intervention that worked the lower limbs eccentrically so, given the practical 

importance of the present findings, future research should confirm whether the findings 

may be replicated following other fatiguing interventions.  The answers provided would be 
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equally as interesting from the perspective of the EMD outcome, since further information 

is required regarding the extent of the influence of the type of exercise (i.e., eccentric). 

 

The extensive literature has documented the effects of varying degrees of eccentric 

exercise and its role in inducing muscle fatigue. However, the issue observed in the 

literature is that the fatigue protocols used are not ecologically valid in that they only 

address one of the components of team games. Overall duration or maximum intensity 

efforts are considered but team games are characterised by the alternation of high and low 

intensity efforts during an extended period of time. Therefore, although interventions 

induced fatigue, it appears necessary to develop a downhill running protocol that has a 

similar effect to the games situation to be even more ecologically valid. 

 

The downhill running protocol that was used in the present study could be manipulated to 

vary gradient, interval length, and total duration.  Such manipulations could be used to 

determine the extent of the ‘mechanical’ (as opposed to the metabolic) influence of the 

eccentric exercise on the outcomes. 

 

It is recommended that further research should explore the validity and reliability of the 

most common techniques used to measure muscle function of the knee in different 

populations (asymptomatic athletes, injured athletes, elderly) using several testing sessions 

and positions (seated, standing, supine). Also, outcome measures in the current study 

should be confirmed with altered aspects of the procedures (e.g., supine posture versus 

sitting) to determine more completely how the present findings contrast with previous 

findings, and the potential methodological reasons for any differences. 
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A further methodological variable is the duration of the gap between the end of the 

fatiguing intervention and the start of post-testing, and future research in this area should 

determine how short-term or persistent the fatigue effect was.  Such research may have 

benefits in determining both the physiological basis for the fatigue (e.g., metabolic or 

mechanical origins) as well as the practical implications in terms of post-training session 

fatigue and necessary recovery before subsequent training. 

 

For a more detailed analysis of the effect of stretching on dynamic knee stability and its 

relationship with sport injuries, researchers should carrying out studies that investigate the 

mediating effect of stretching on fatigue and hamstring and quadriceps stiffness.  Once 

again, the mediating effect of stretching may shed further light on the physiological basis 

of the fatigue effect.  For example, a dominant mechanical (as opposed to metabolic) basis 

would be likely influenced to a greater degree by a stretching intervention during the 

course of a fatiguing trial. 

 

The functional ratio pre and post fatigue was assessed in the present research through the 

large muscle groups involved. However, assessment of FH/Q ratio (pre and post fatigue) of 

upper body muscle groups may provide us with confirmation of sex differences where 

factors such as muscle training status may be less influential.  

 

The change in FH/Q ratio and EMD of males and females should also be investigated pre-

post fatigue interventions where likely mediating factors are manipulated to provide 

further insight into the physiological basis for the findings.  The potential mediating 

influence of stretching has already been mentioned given the eccentric focus of the fatigue 

intervention in the present study, but other mediating factors could include: glycogen 
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depletion, dehydration, heat stress, and footwear.  All the aforementioned potential 

mediators might shed light on the physiological basis for fatigue effects on both FH/Q 

ratio and EMD.  

 

Female athletes are known to have a higher risk of injuring their ACL while participating 

in competitive sports (Good et al., 1991). Unfortunately, to date, understanding why 

women are more prone to ACL injury is unclear. Therefore, it would be beneficial to 

determine whether hormonal status in females mediates the responses (i.e., pre-post 

changes in key outcomes) to a fatigue protocol.  For example, a study could focus on 

fatigue in females (i.e., replicate the female arm of the present study). 

 

Studies should also address sex differences in intrinsic stiffening responses and delays in 

force production not accounted for in EMG measures alone. In order for the 

neuromuscular system to be effective in preventing ligament strain, muscular tension must 

be developed in a timely fashion to limit joint deformation.  

 

Intrinsic, mechanical properties within the muscle may differ between males and females, 

with males having the ability to initiate a more immediate stiffening response after 

muscular activation (Winter and Brookes, 1991). However, the relevance of these findings 

to the knee musculature is not known. Furthermore, these studies evaluated muscular 

response characteristics under voluntary conditions with the muscle at rest before the 

stimulus. These conditions are not representative of the dynamic and reflexive responses 

that may occur with joint perturbations or during sport activity, where the muscle may 

already be contracting. Research models assessing sex differences in reflexive stiffening 
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and EMD at the knee under dynamic conditions and after unexpected joint perturbations 

are needed. 

 

The time required for the contractile component of the knee extensor muscles to stretch the 

series elastic components probably amounts for the major portion of the EMD, but it is not 

well defined how the elastic properties affect the EMD. So, further research to confirm the 

physiological and anatomical basis for a lengthened EMD, and therefore allowing 

interpretion of the full implications of the EMD findings in the present study, is difficult. 

However, future research is necessary to establish the clinical/ physiological implications 

of heightened hamstring musculotendinous stiffness and the associated influences on 

neuromechanical function, as well as the ability to modify these neuromechanical 

properties via training. 

 

The potential confounding influence of training status needs consideration when exploring 

potential sex differences in neuromuscular response characteristics. The different skill and 

training backgrounds required for various sport activities could potentially confound 

results, making it difficult to determine whether differences were due to sex or training 

status. Future studies should attempt to assess sex differences while controlling for skill 

level and training status across subjects. 

 

Focus of studies should be on outcomes near full knee extension and the calculation of the 

FH/Q should be joint angle- and angular velocity-specific.  This is important, since the 

present research showed the interactions between sex and time (fatigue) to be mediated by 

joint angle and angular velocity. No studies appear to have explored the influence of 
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strength training on angle specific torque near full knee extension so more studies in this 

area are needed.  

 

This is still an exploratory research area, so further research is needed to enhance the 

injury risk evidence base. Much of that research should build on the original and 

significant findings of the present studies.  However, further research should also induce 

fatigue using different exercise modalities and with increased ecological validity. 
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Chapter 8: 

CONCLUSIONS 

 

The research questions presented in chapter 1 have been addressed through three 

experimental studies included within this thesis (chapter 4-6). The main aim of the thesis 

was to explore sex differences in the outcomes of FH/Q ratio and EMD prior to and 

following a downhill running fatigue task. The main findings of the present thesis showed 

a significant decrease in the FH/Q ratio and longer EMD of hamstrings muscle when 

fatigue is present, irrespective of sex. The decrease in FH/Q ratio is a result of reduced 

eccentric torque production of hamstring muscles compared with concentric torque 

production of quadriceps muscles when fatigue is present. These findings suggest that 

functional stability of the knee is compromised when fatigue is evident, in particular that 

neuromuscular hamstring function following downhill running fatigue may limit dynamic 

knee joint stability which might be cause for increased relative risk of injury.   

 

Based on the limited literature it appears that this is the first study to have explored the 

effects of fatigue on the FH/Q ratio in a functionally relevant position (e.g. prone/supine 

with the hip extended) and exploring angle specific torque as well as a range of movement 

velocities in males and females. Importantly, the current body of work demonstrated that 

the effects of fatigue were more pronounced in females compared with males. The findings 

showed a significantly lower FH/Q ratio and significantly longer EMD post fatigue in 

females compared to males. Additionally, irrespective of time, significant main effects for 

sex were demonstrated, indicating that the FH/Q ratio was lower in females compared to 

males at each time point, but the differences increased post fatigue. However, there were 

no sex differences in the EMD pre fatigue at all three angular velocities. These sex  

differences may be due to the greater effort required by the hamstrings of females than 
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males in the control of running activities and for stabilizing the joint during foot contact 

with the ground. If so, then this decline in females perhaps leads to less control and lower 

stability of the knee when fatigue is present and thus leads to a greater relative risk of 

injury. 

 

Irrespective of time or sex, these studies have shown that as angular velocity increases the 

FH/Q ratio increases, with longer EMD during eccentric actions. This is attributed to males 

and females increasing their eccentric hamstrings to concentric quadriceps torque output in 

order to stabilise the joint and protect the ACL during fast movements. Sex differences 

increase as movement velocity increases and thus the dynamic knee stability is more 

compromised in females during fast velocity movements. Additionally, irrespective of 

time or sex the FH/Q ratio was significantly greater at more extended knee positions (e.g., 

closer to voluntary full knee extension). To protect the knee, eccentric hamstring co-

contraction is greater at more extended knee positions to counteract the shear forces 

generated by the concentric quadriceps action. No studies have previously explored the 

change in the angle-specific FH/Q ratio following downhill running fatigue, but the 

findings of the current work reinforce its relevance to knee stability as it describes the joint 

angle at which injury is most likely to occur, and indicates that the applied muscle action is 

effective in limiting both extension rotation and anterior translation of the joint. This is 

especially important as velocity of motion increases, and the forward momentum of the 

tibia increases to a point where increased hamstrings recruitment is required. Therefore, as 

angular velocity increases, as shown in the present thesis, males and females increase their 

FH/Q ratio in order to stabilise the joint and protect the ACL. 
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It is well recognised in adults that fatigue affects eccentric and concentric actions 

differently, and that generally eccentric actions are more fatigue resistant than concentric 

actions. Therefore, in a fatigued state the FH/Q ratio should increase and the knee should 

be more stable.  The present findings have confirmed that this is not the case following a 

fatigue intervention that worked the lower limbs eccentrically so, given the practical 

importance of the present findings, future research should confirm whether the findings 

may be replicated following other fatiguing interventions.  The answers provided would be 

equally as interesting from the perspective of the EMD outcome, since further information 

is required regarding the extent of the influence of the type of exercise (i.e., eccentric). The 

change in FH/Q ratio and EMD of males and females should also be investigated pre-post 

fatigue interventions where likely mediating factors are manipulated to provide further 

insight into the physiological basis for the findings. For example, the potential mediating 

influence of stretching has already been mentioned given the eccentric focus of the fatigue 

intervention in the present study. Experimental manipulation of such potential mediators 

might shed light on the physiological basis for fatigue effects on both FH/Q ratio and 

EMD.  
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Appendix (1) 

Statistical power calculations for sample size 

Sample size estimation based on the FH/Q ratio production at 60, 120 and 240°·s-1
 to distinguish 

the minimum clinically important difference from the statistical null with an alpha level of 0.05. 

Power Variables: 

FH/Q ratios  

SD values at each 

angular velocities 

∆
2
 values at each angular 

velocities 

Sample size at each 

angular velocities 
60°·s-1 120°·s-1 240°·s-1 60°·s-1 120°·s-1 240°·s-1 60°·s-1 120°·s-1 240°·s-1 

 

0.8 

FH/Q ratio at 15° 14 13 19 13 14 19 157 58 200 
FH/Q ratio at 30° 13 13 12 8 9 11 101 270 94 
FH/Q ratio at 45° 10 13 10 8 6 17 60 221 206 

FH/Q ratio PT 9 11 13 8 8 18 90 158 203 
 

0.5 

FH/Q ratio at 15° 14 13 19 13 14 19 65 24 83 
FH/Q ratio at 30° 13 13 12 8 9 11 42 113 39 
FH/Q ratio at 45° 10 13 10 8 6 17 25 92 86 

FH/Q ratio PT 9 11 13 8 8 18 37 66 84 

 

Sample size estimation based on the EMD production at 60, 120 and 240°·s-1
 to distinguish the 

minimum clinically important difference from the statistical null with an alpha level of 0.05. 

Power Variables: EMD 

of hamstrings 

muscle 

SD values for each 

angular velocities 

∆
2
 values for each 

angular velocities 

Sample size at each 

angular velocities 
60°·s-1 120°·s-1 240°·s-1 60°·s-1 120°·s-1 240°·s-1 60°·s-1 120°·s-1 240°·s-1 

 

0.8 

EMD of BF 3.9 12.6 9.3 2 3 5 24 208 125 
EMD of SM 3.9 12.3 10.4 2 3 5 73 311 120 
EMD of ST 4.4 13.2 9.2 2 3 3 56 105 122 

Max of EMD 3.4 11.2 7.6 2 4 4 42 452 166 
 

0.5 

EMD of BF 3.9 12.6 9.3 2 3 5 10 87 52 
EMD of SM 3.9 12.3 10.4 2 3 5 30 130 50 
EMD of ST 4.4 13.2 9.2 2 3 3 23 44 51 

Max of EMD 3.4 11.2 7.6 2 4 4 17 188 69 

 

Note: sample size estimation formula:     
               

   

Z  = Alpha level (0.05). 

Zβ = Power. 

∆
2

 = The difference between the two mean values being compared. 

SD = The standard deviation of the two groups. 

N = Approximate sample size estimated. 
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Appendix (2) 

 

(Information sheet for participants) 

The functional hamstring to quadriceps ratio and neuromuscular performance 

Dear participant 

Thank you for showing interest in taking part in this study. This sheet will tell you a bit more about the study 

and what we would like to do. Please read this carefully. If you decided not to take part it will not change 

your relationship with the research team, or the University. 

What is the project about? 

We are interested in looking at sex differences in the FH/Q and neuromuscular functioning of the knee joint 

muscles that appear to be associated with an increased risk of non-contact ACL injury in females in both a 

fatigued and non-fatigued state. 

Who is taking part in the study? 

We need 100 subjects (50 males and 50 females, age: 18-40) or more to take part in the project. 

What will I be asked to do? 

If you volunteer for this study we will ask you to perform a repeated active kicking action on a type of 

strength machine called an isokinetic dynamometer. You should complete a familiarization protocol in order 

to prepare for all testing protocols (1 session) before start the study. In total you would need to come to the 

laboratory on 3 separate occasions for about 40min each time. During three laboratory trials, each subject 

will complete this sequence of activities: 

 Laboratory session 1: habituation (max 45 min) 

 

 Laboratory session 2: pre-fatigue trial: PT assessments during concentric quadriceps and eccentric 

hamstrings action at three angular velocities (using the isokinetic dynamometer and the surface 

EMG unit). (40min) 

 

 Laboratory session 3: fatigue protocol and repeat of session 2: This consists of a 40 min intermittent 

bout of 5 × 8 min downhill running exercise on a treadmill. (80min) 

 

 One week of separation will be between each laboratory trials.  

When will I do it? 

Whenever you are available and the laboratory is available we will arrange a time for you to come to the 

laboratory. If you wish to come as a group or with friends that may be possible (maximum of 2 people). All 

tests will take place at the University of Gloucestershire and will follow our laboratory procedures 

guidelines. 
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Can I change my mind? 

You can stop being in the study at any time. This will not affect your relationship with the research team or 

the university. 

What will you do with the information? 

All the information collected will be stored on a computer using ID codes and the results will only be seen 

by Research team. You name will never be used. 

What if I have any questions? 

If you have any questions then please feel free to ask either of the people below at any time. 

What do I do next? 

If you have read and understood everything that we want you to do and are happy to take part please sign the 

consent form that is attached to this sheet. 

 

Mr Youssif Omran Elnagar 

yonajjar2005@yahoo.com 

s0710606@glos.ac.uk 

Department of Sports and Exercise Sciences.  

PhD Research student 

University of Gloucestershire 

 

Dr Mark De Ste Croix 

Faculty Research Director 

mdestecroix@glos.ac.uk 

 

 

 

 

mailto:yonajjar2005@yahoo.com
mailto:s0710606@glos.ac.uk
mailto:mdestecroix@glos.ac.uk
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Appendix (3) 

 

SPORT & EXERCISE LABORATORIES 

Informed Consent Form 

 

I have had full details of the tests I am about to complete explained to me. I understand the risks and benefits 

involved, and that I am free to withdraw from the tests at any point. I confirm that I have completed a health 

questionnaire, and I am in a fit condition to undertake the required exercise 

 

Name: ………………………………………… 

 

 

Signed: ……………………………………….   Date: ……….................... 

 

 

 Tester: ……………………………………….. 
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Appendix (4) 

 

SPORT & EXERCISE LABORATORIES 

 

                                                                   Health Questionnaire 

 

About this questionnaire: 

The purpose of this questionnaire is to gather information about your health and lifestyle.  We will use this 

information to decide whether you are eligible to take part in the testing for which you have volunteered.  It 

is important that you answer the questions truthfully.  The information you give will be treated in 

confidence.  Your completed form will be stored securely for 5 years and then destroyed. 

 

Section 1, which has been completed by the tester, provides basic information about the testing for which 

you have volunteered.  Sections 2 to 7 are for you to complete:  please circle the appropriate response or 

write your answer in the space provided.  Please also complete section 8.  Sections 9 and 10 will be 

completed by the tester, after you have completed sections 2 to 8. 

 

Section 1:  The testing (completed by tester) 

 

To complete the testing for which you have volunteered you will be required to undertake: 

Moderate exercise (i.e., exercise that makes you breathe more heavily than you   

do at rest but not so heavily that you are unable to maintain a conversation)  

  
Vigorous exercise (i.e., exercise that makes you breath so heavily that you are   

unable to maintain a conversation)  
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The testing involves: 

Walking         Generating or absorbing high forces through your arms  

Running         Generating or absorbing high forces through your shoulders  

Cycling         Generating or absorbing high forces through your trunk  

Rowing         Generating or absorbing high forces through your hips  

Swimming         Generating or absorbing high forces through your legs  

Jumping    

 

Section 2:  General information 

 

Name: ........................................…..….....…………..     Sex:    M     F     Age: .................................... 

 

Height (approx.): ............………..……….. Weight (approx.): ..................................................... 

 

Section 3:  Initial considerations 

1. Do any of the following apply to you?                 No Yes 

 

a) I have HIV, Hepatitis A, Hepatitis B or Hepatitis C 

b) I am pregnant 

c) I have a muscle or joint problem that could be aggravated 

by the testing described in section 1 

d) I am feeling unwell today 

e) I have had a fever in the last 7 days 

f)  

(If you have answered “Yes” to question 1, go straight to section 8) 
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Section 4:  Habitual physical activity 

2a. Do you typically perform moderate exercise (as defined in section 1)  No Yes 

for 20 minutes or longer at least twice a week? 

2b. Have you performed this type of exercise within the last 10 days?              No Yes 

3a. Do you typically perform vigorous exercise (as defined in section 1)              No Yes 

at least once a week? 

3b. Have you performed this type of exercise within the last 10 days?              No Yes 

 

Section 5:  Known medical conditions 

4.  Do any of the following apply to you?      No Yes 

a) I have had insulin-dependent diabetes for more than 15 years 

b) I have insulin-dependent diabetes and am over 30 years old 

c) I have non-insulin-dependent diabetes and am over 35 years old   

5. Have you ever had a stroke?        No Yes 

6. Has your doctor ever said you have heart trouble?                   No Yes 

7. Do both of the following apply to you?      No Ye 

a) I take asthma medication 

b) I have experienced shortness of breath or difficulty 

with breathing in the last 4 weeks? 

8. Do you have any of the following:  cancer, COPD, cystic fibrosis,               No  Yes 

other lung disease, liver disease, kidney disease, mental illness, 

osteoporosis, severe arthritis, a thyroid problem? 

(If you have answered “Yes” to any questions in section 5, go straight to section 8.) 

 

Section 6:  Signs and symptoms 

9. Do you often have pains in your heart, chest, or the surrounding areas?              No Yes 
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10. Do you experience shortness of breath, either at rest or with mild exertion?                No       Yes 

11. Do you often feel faint or have spells of severe dizziness?                No Yes 

12. Have you, in the last 12 months, experienced difficulty with breathing             No Yes 

when lying down or been awakened at night by shortness of breath?   

13. Do you experience swelling or a build up of fluid in or around your ankles?              No Yes 

14. Do you often get the feeling that your heart is racing or skipping              No Yes 

beats, either at rest or during exercise?     

15. Do you regularly get pains in your calves and lower legs during exercise              No Yes 

that are not due to soreness or stiffness?       

16. Has your doctor ever told you that you have a heart murmur?   No Yes 

17. Do you experience unusual fatigue or shortness of breath during               No Yes 

everyday activities? 

(If you have answered “Yes” to any questions in section 6, go straight to section 8.) 

 

Section 7:  Risk factors 

18.  Does either of the following apply to you?                  No Yes 

a) I smoke cigarettes on a daily basis 

b) I stopped smoking cigarettes on a daily basis less than 6 months ago 

c)  

19. Has your doctor ever told you that you have high blood pressure?               No Yes 

20. Has your doctor ever told you that you have high cholesterol?    No Yes 

21. Has your father or any of your brothers had a heart attack,                 No Yes 

heart surgery, or a stroke before the age of 55?  

22. Has your mother or any of your sisters had a heart attack,                 No Yes 

heart surgery, or a stroke before the age of 65?  
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23. Do any of the following apply to you?      No Yes 

a) I have had insulin-dependent diabetes for less than 15 years 

b) I have insulin-dependent diabetes and am 30 or younger 

c) I have non-insulin-dependent diabetes and am 35 or younger   

 

Section 8:  Signatures 

Participant: …………………………………………………….. Date: ........…….……........ 

Guardian*: .......................................….………….…........ Date: ........……….…........ 

(*Required only if the participant is under 18 years of age.) 

 

 

Section 9:  Additional risk factors (to be completed by the tester if relevant) 

24. Is the participant’s body mass index  >30 kg/m
2
?                  No Yes 

25. Has the participant answered no to questions 2a and 3a?                 No Yes 

Section 10:  Eligibility (to be completed by the tester) 

26. Is the participant eligible for the testing?       No Yes 

 

Name (of tester): ..................………............………….. 

Signature: ………………………………………………… Date: .………....….…….…... 
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Appendix (5) 

Processing the completed questionnaire – a flow diagram 

 

“Yes” to question 1 (section 3)?

Moderate or vigorous box ticked in section 1?

No

Exclude the subject

No
Accept the subject

Yes

“Yes” to questions 3a and 3b?

Yes

Yes
Accept the subject

“Yes” to questions 2a and 2b?

No

No Vigorous box ticked in section 1?
No

Accept the subject

Yes

Any “Yes” responses in section 5 (known conditions)?
Yes

Exclude the subject

Any “Yes” responses in section 6 (signs & symptoms)?
Yes

Exclude the subject

Yes

No

No

Older than 44 and male, or older than 54 and female?

Vigorous box ticked in section 1?

No Accept the subject

Yes

No

Exclude the subjectYes

Two or more “Yes” responses for questions 18 to 25?

Vigorous box ticked in section 1?

No Accept the subject

Exclude the subjectYes

Yes

No
Accept the subject
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Appendix (6) 

 

FH/Q ratio and EMD values of male’s participants and females (pre-post fatigue): 

1- FH/Q Ratio Values of male’s participants (pre-fatigue) 

No. 

Slow angular velocity 

(60°·s
-1

) 

Intermediate angular 

velocity (120°·s
-1

) 

Fast angular velocity 

(240°·s
-1

) 

FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 

1 92 82 61 57 84 86 81 84 98 109 97 95 
2 

71 67 52 54 94 100 62 70 121 110 96 81 
3 81 98 75 77 83 89 60 82 118 110 97 80 
4 

96 79 74 73 83 98 76 68 114 109 97 95 
5 73 62 75 56 93 95 70 62 123 88 97 93 
6 

82 83 66 64 78 91 74 74 109 107 97 95 
7 63 91 75 73 86 105 87 83 73 108 97 85 
8 

81 97 81 71 84 104 67 54 82 108 97 93 
9 79 80 65 65 73 66 86 60 119 109 97 95 

10 
84 61 73 64 70 99 89 70 92 109 97 82 

11 77 69 78 80 93 75 70 67 123 108 98 101 
12 

89 83 54 59 98 96 82 85 125 110 96 75 
13 66 82 74 76 98 78 79 82 119 110 96 90 
14 

80 91 79 67 84 107 100 86 85 107 97 91 
15 84 66 75 67 92 103 96 84 84 111 97 92 
16 

86 70 72 57 93 112 75 61 118 107 114 93 
17 81 88 65 71 88 90 84 64 102 108 97 91 
18 

91 81 59 65 89 105 93 75 75 90 97 94 
19 60 97 74 73 83 105 78 79 113 110 97 96 
20 

68 91 65 65 100 69 59 54 102 110 97 84 
21 69 70 71 59 100 107 67 83 127 137 96 78 
22 

89 72 72 67 84 101 71 72 123 108 96 90 
23 71 84 82 75 80 108 94 48 91 107 98 89 
24 

73 76 76 58 96 86 65 82 76 108 97 73 
25 85 68 66 65 83 85 92 54 120 125 96 68 
26 

76 75 56 59 91 103 61 52 115 110 97 77 
27 62 60 66 74 100 77 75 77 84 110 97 88 
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28 
64 75 78 72 72 108 79 80 127 107 68 90 

29 88 95 71 67 84 112 96 67 84 110 97 96 
30 

75 93 76 73 79 86 76 85 100 109 96 81 
31 95 89 71 73 96 75 99 70 92 131 97 90 
32 

78 78 71 61 98 108 68 62 90 108 97 91 
33 77 99 83 79 72 83 99 81 124 109 97 92 
34 

77 98 76 63 98 89 63 65 93 108 96 93 
35 90 93 66 70 90 89 99 83 105 79 96 81 
36 

61 83 75 60 98 109 92 76 82 87 97 84 
37 64 83 70 71 86 82 77 81 126 110 97 92 
38 

80 66 46 51 98 94 53 76 84 111 97 94 
39 73 80 70 71 96 84 64 67 118 109 96 94 
40 

79 90 71 69 76 63 64 65 137 109 97 97 
41 80 55 74 67 98 87 79 87 124 109 96 97 
42 

62 62 75 57 93 105 70 85 77 110 97 75 
43 53 93 67 70 81 91 60 79 102 137 96 72 
44 

95 89 65 64 94 100 57 79 80 108 97 90 
45 

48 73 67 74 68 94 60 58 89 110 96 75 
46 64 83 76 69 92 109 80 69 107 108 97 79 
47 

66 81 58 58 93 102 92 77 89 110 96 74 
48 67 58 63 61 79 94 84 72 112 110 97 79 
49 

69 82 72 61 89 79 96 81 102 108 96 74 
50 84 87 61 55 83 92 98 88 71 108 98 85 
51 

67 73 59 58 100 89 94 74 110 111 97 82 
52 68 70 78 67 84 94 91 73 111 108 96 74 
53 

84 87 73 54 88 91 94 80 122 108 96 92 
54 54 83 74 73 100 111 92 75 119 109 97 93 
55 

51 61 76 76 81 106 87 81 100 81 97 93 
Mean: 

75 80 70 66 88 94 79 73 104 109 97 87 
SD: 

11.7 11.7 7.8 7.2 8.8 12.2 13.5 10.2 17.7 9.9 4.5 8.2 
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2- FH/Q Ratio Values of female’s participants (pre-fatigue) 

 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 

1 75 92 55 55 74 67 79 59 118 84 85 84 
2 

73 78 51 53 59 83 54 66 86 107 78 48 
3 51 93 55 59 71 78 75 49 66 102 78 57 
4 

74 74 54 44 64 82 56 73 69 107 79 52 
5 61 84 57 75 63 79 100 69 84 96 80 84 
6 

62 68 71 54 64 81 73 76 91 83 79 60 
7 45 90 66 58 67 83 71 56 108 86 81 66 
8 

51 95 60 57 70 78 58 53 88 98 76 60 
9 75 89 66 72 89 67 71 52 122 91 81 65 

10 
50 59 66 69 92 102 59 55 109 106 68 62 

11 79 78 49 51 94 102 64 54 113 92 92 80 
12 

39 82 51 50 76 77 83 62 76 82 75 59 
13 65 87 67 61 67 96 73 71 97 107 81 65 
14 

62 61 56 72 62 96 87 52 82 88 73 61 
15 57 94 55 65 92 98 42 54 86 94 81 59 
16 

49 46 66 54 84 78 55 55 87 94 84 77 
17 61 69 58 58 80 80 80 72 90 102 79 69 
18 

67 85 70 59 56 69 58 64 67 112 73 79 
19 66 60 50 53 78 95 72 68 115 80 71 47 
20 

75 97 47 51 80 79 94 85 78 96 73 57 
21 69 80 48 66 84 91 77 85 91 92 82 81 
22 

81 81 65 75 54 63 92 61 78 116 80 64 
23 62 68 66 66 70 91 66 74 80 90 82 70 
24 

80 74 73 64 88 88 82 53 90 114 81 79 
25 77 94 49 54 81 90 69 60 79 94 75 61 
26 

44 49 85 61 89 104 68 75 67 96 75 79 
27 87 71 58 58 79 85 82 67 76 124 79 72 
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28 
81 75 51 52 59 100 65 62 87 78 81 73 

29 76 56 69 52 46 71 81 75 83 92 82 75 
30 

76 81 52 53 67 96 73 81 110 79 85 78 
31 66 79 72 52 65 94 76 67 95 90 85 71 
32 

86 76 65 47 60 88 88 55 60 79 79 77 
33 60 72 68 48 94 74 89 65 86 96 75 50 
34 

45 59 59 59 82 79 64 65 106 84 84 70 
35 46 63 57 59 81 89 73 58 72 98 75 66 
36 

55 44 62 50 78 75 86 76 68 105 81 82 
37 61 62 49 52 97 100 74 81 85 96 76 57 
38 

56 70 70 70 88 84 94 87 92 92 70 69 
39 67 80 59 55 68 89 81 76 71 112 79 73 
40 

47 50 62 60 88 79 62 54 93 91 83 76 
41 46 71 57 59 89 68 87 80 90 104 79 75 
42 

69 67 52 47 81 78 62 59 75 98 82 58 
43 67 69 45 46 92 102 73 57 67 102 78 69 
44 

54 52 71 69 89 83 85 66 85 102 75 66 
45 

78 62 76 56 64 61 93 80 64 134 83 83 
46 38 54 76 72 68 100 83 53 88 94 84 73 
47 

73 71 71 64 62 76 75 58 63 120 80 69 
48 74 97 66 58 76 96 77 69 84 96 71 66 
49 

41 69 42 42 62 93 56 64 74 122 79 70 
50 71 54 71 57 48 90 73 49 64 98 83 68 
51 

73 72 71 53 78 94 52 70 75 94 91 60 
52 52 65 64 65 76 75 65 63 85 86 74 70 
53 

42 70 67 67 55 98 63 60 100 86 78 79 
54 38 82 94 77 91 70 76 81 70 96 70 72 
55 

55 47 69 66 67 78 61 64 95 114 91 76 
Mean: 

62 72 62 59 75 86 73 65 86 98 79 68 
SD: 

13.5 14.1 10.2 8.5 13.0 11.3 12.4 9.1 15.1 12.1 5.2 9.4 
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3- FH/Q Ratio Values of male’s participants (post-fatigue) 

 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of PT 

1 63 70 72 58 66 88 74 45 97 87 81 93 
2 

70 54 45 59 73 90 47 45 80 87 77 73 
3 80 62 33 46 88 107 64 58 103 95 63 57 
4 

58 56 75 58 63 91 86 70 93 107 86 78 
5 74 59 72 61 94 90 85 81 81 118 83 86 
6 

81 74 39 47 83 90 51 71 92 121 68 76 
7 45 94 64 58 54 86 88 76 117 97 72 89 
8 

75 73 48 38 104 89 82 65 88 101 66 66 
9 67 72 43 45 96 90 57 61 97 93 80 75 

10 
54 91 61 59 94 89 86 71 103 100 102 85 

11 54 81 71 43 98 87 89 47 93 121 69 82 
12 

50 73 44 40 74 89 44 52 103 102 78 67 
13 86 73 45 41 91 89 51 52 105 85 94 90 
14 

60 70 69 59 88 88 86 72 106 102 88 90 
15 67 84 48 56 83 88 76 67 111 91 85 83 
16 

44 85 68 60 63 88 47 60 107 125 104 76 
17 68 78 54 54 77 90 81 80 85 107 72 65 
18 

83 85 76 62 87 89 86 68 122 91 93 82 
19 85 66 45 58 103 86 68 76 87 96 90 73 
20 

67 91 61 61 69 88 68 73 100 90 63 53 
21 78 75 71 44 100 88 69 41 86 97 93 91 
22 

63 78 63 58 68 87 83 58 75 91 87 76 
23 61 68 63 57 64 91 59 78 69 87 96 64 
24 

76 79 59 52 90 87 76 72 100 80 89 77 
25 61 70 38 51 77 88 51 50 86 113 104 83 
26 

71 68 76 52 95 88 81 64 92 111 70 66 
27 67 68 76 55 108 87 85 58 88 92 86 82 
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28 
56 64 70 46 63 72 86 57 89 111 89 90 

29 48 81 64 53 86 101 50 78 103 96 100 70 
30 

61 90 73 52 70 89 83 68 83 100 84 88 
31 70 61 78 46 79 89 81 55 97 88 86 88 
32 

80 67 59 50 82 86 46 54 94 79 71 56 
33 58 65 49 51 76 89 60 56 67 107 102 88 
34 

55 61 49 44 87 89 66 67 106 97 65 73 
35 73 65 42 45 104 90 62 48 90 133 97 78 
36 

57 87 56 53 59 75 53 48 83 102 89 75 
37 65 88 68 52 77 100 87 66 115 88 76 61 
38 

69 69 55 44 88 76 63 74 85 103 66 69 
39 57 75 65 46 89 98 78 47 73 101 72 69 
40 

53 69 58 45 78 87 83 58 115 91 69 70 
41 54 74 46 50 80 110 78 70 100 127 83 87 
42 

63 96 47 52 96 89 66 75 83 134 97 89 
43 74 60 43 53 111 89 77 58 95 93 80 65 
44 

79 79 48 44 91 86 67 62 74 103 87 74 
45 

85 59 73 45 67 88 72 43 98 106 61 55 
46 46 71 79 47 58 88 78 66 92 89 86 79 
47 

49 89 73 55 55 52 76 74 85 85 79 83 
48 64 73 70 54 72 88 62 39 100 104 91 57 
49 

67 69 58 56 86 55 52 67 83 90 96 90 
50 68 88 56 54 89 103 69 71 100 85 90 87 

Mean: 
65 74 59 51 82 88 70 62 94 100 83 76 

SD: 
11.3 10.6 12.6 6.2 14.4 9.6 13.7 11.3 12.4 13.3 11.9 11.0 
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4- FH/Q Ratio Values of female’s participants (post-fatigue) 

 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 
FR-PT 

at15° 
FR-PT 

at30° 
FR-PT 

at45° 
FR-of 

PT 

1 43 47 47 36 82 91 28 40 74 100 85 53 
2 

37 53 44 40 68 89 42 31 83 93 43 48 
3 43 60 49 31 62 96 44 35 80 85 81 70 
4 

49 49 27 40 55 95 32 45 117 83 61 81 
5 58 46 31 41 68 78 42 72 107 97 65 63 
6 

41 54 50 35 54 66 51 43 67 96 87 56 
7 51 60 41 42 79 83 67 54 82 92 49 45 
8 

38 58 38 39 71 78 54 47 108 95 52 57 
9 59 47 33 44 74 91 47 41 83 100 74 55 

10 
58 45 43 37 78 62 64 58 66 105 55 40 

11 39 42 28 24 74 83 40 41 68 91 61 51 
12 

43 53 51 28 53 69 67 42 61 102 74 53 
13 42 50 49 28 67 59 73 65 90 100 67 72 
14 

42 52 41 39 72 84 64 62 62 81 47 48 
15 38 70 50 40 64 77 42 38 81 93 54 46 
16 

34 67 47 34 59 87 41 44 79 73 55 56 
17 32 59 52 40 55 100 59 37 91 90 70 65 
18 

59 55 37 44 74 100 73 37 96 98 66 53 
19 38 46 44 43 45 104 70 40 91 115 51 48 
20 

43 50 52 30 81 56 63 36 84 79 88 66 
21 51 49 32 36 52 81 30 40 108 112 87 61 
22 

46 54 38 46 56 46 74 69 82 85 90 57 
23 36 48 42 46 56 86 64 47 83 86 40 47 
24 

42 38 43 44 87 100 64 45 59 83 68 29 
25 44 63 51 31 80 69 48 57 85 118 56 42 
26 

56 55 54 22 84 109 67 33 104 85 56 62 
27 50 74 35 46 68 77 50 45 83 88 81 68 
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28 
47 51 33 52 68 95 41 43 88 96 48 65 

29 58 55 41 40 77 105 71 53 55 76 56 60 
30 

63 80 54 32 65 62 58 48 86 95 60 55 
31 43 51 45 37 67 63 54 45 111 80 69 57 
32 

45 64 50 34 61 89 65 42 72 100 50 49 
33 56 63 34 23 82 49 55 51 93 89 87 58 
34 

39 67 42 33 51 95 45 54 65 96 72 64 
35 63 59 27 37 66 75 12 34 74 98 61 46 
36 

53 52 28 40 64 95 57 28 74 80 78 78 
37 41 50 30 39 74 84 50 57 96 105 64 68 
38 

49 55 49 32 79 100 58 65 93 93 71 59 
39 55 64 49 34 67 83 59 72 109 89 74 53 
40 

43 70 26 36 50 54 42 32 88 100 68 72 
41 25 79 27 31 66 76 57 45 89 120 89 69 
42 

43 52 27 29 67 92 41 68 61 120 67 60 
43 50 52 35 33 68 71 43 40 77 88 78 47 
44 

38 64 34 22 73 69 51 42 68 85 74 66 
45 

54 77 48 40 61 100 50 43 117 88 74 52 
46 56 55 40 38 60 97 37 64 67 100 62 36 
47 

42 59 53 39 64 89 62 39 117 90 54 62 
48 58 75 38 33 67 58 44 38 71 95 66 68 
49 

43 61 58 42 75 76 48 40 76 77 63 69 
50 47 47 49 30 81 89 52 70 53 91 63 71 

Mean: 
46 57 41 36 67 81 52 47 82 94 66 58 

SD: 
8.5 9.8 8.9 6.6 10.0 15.8 13.1 11.7 16.8 11.0 13.0 10.7 
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Appendix (7) 

EMD values of male’s participants and females (pre-post fatigue) 

1- EMD Values of male’s participants (pre-fatigue) 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

1 27 20 27 27 36 32 18 36 60 55 66 66 
2 

25 29 24 29 28 32 43 43 51 55 54 55 
3 28 29 30 30 39 37 29 39 49 47 40 49 
4 

25 24 24 25 54 63 66 66 58 64 61 64 
5 21 25 21 25 34 37 27 37 47 55 52 55 
6 

19 18 18 19 56 40 53 56 53 64 47 64 
7 28 24 19 28 43 40 41 43 43 36 51 51 
8 

24 23 32 32 25 46 33 46 59 46 63 63 
9 22 22 25 25 39 43 20 43 60 46 56 60 

10 
25 22 18 25 22 32 22 32 58 62 55 62 

11 23 24 26 26 39 25 32 39 41 48 58 58 
12 

24 22 20 24 48 28 47 48 50 44 60 60 
13 20 26 23 26 37 25 44 44 43 59 66 66 
14 

31 21 25 31 27 21 26 27 45 44 64 64 
15 25 23 24 25 34 56 59 59 46 62 46 62 
16 

24 30 31 31 35 30 48 48 39 52 47 52 
17 21 25 21 25 33 28 42 42 48 33 31 48 
18 

21 20 19 21 61 42 56 61 52 65 48 65 
19 22 23 25 25 45 30 48 48 52 35 44 52 
20 

27 27 29 29 39 34 25 39 58 54 67 67 
21 25 20 25 25 63 64 35 64 67 64 55 67 
22 

27 25 28 28 41 38 37 41 53 60 50 60 
23 28 24 25 28 39 33 31 39 48 47 39 48 
24 

19 24 25 25 20 21 26 26 60 59 51 60 
25 22 24 27 27 52 55 68 68 57 56 39 57 
26 

20 19 25 25 27 32 17 32 70 64 66 70 
27 26 30 23 30 45 54 64 64 53 59 47 59 
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28 
27 22 27 27 35 21 19 35 67 71 67 71 

29 19 23 25 25 27 50 38 50 57 70 51 70 
30 

26 19 21 26 62 56 49 62 46 59 61 61 
31 27 30 21 30 21 33 20 33 48 46 50 50 
32 

28 27 26 28 40 34 45 45 54 61 62 62 
33 24 19 20 24 38 30 24 38 39 40 43 43 
34 

22 21 21 22 32 21 24 32 41 44 48 48 
35 24 30 27 30 57 57 58 58 42 43 49 49 
36 

26 30 21 30 58 57 38 58 41 45 57 57 
37 23 24 32 32 61 37 68 68 67 68 53 68 
38 

20 23 19 23 36 51 44 51 52 34 49 52 
39 21 30 24 30 57 50 58 58 57 42 59 59 
40 

25 19 18 25 24 39 45 45 52 44 37 52 
41 21 26 27 27 39 40 57 57 66 70 66 70 
42 

18 25 23 25 23 25 28 28 45 44 52 52 
43 22 25 24 25 40 48 46 48 46 42 62 62 
44 

27 21 22 27 48 32 40 48 52 62 64 64 
45 

24 31 31 31 43 47 29 47 49 35 38 49 
46 29 27 33 33 47 38 56 56 56 65 67 67 
47 

25 27 30 30 23 40 20 40 54 61 51 61 
48 25 29 30 30 37 55 57 57 57 41 36 57 
49 

27 28 27 28 25 36 36 36 31 34 45 45 
50 26 30 23 30 40 47 40 47 67 52 63 67 
51 24 22 27 27 59 60 63 63 57 62 66 66 
52 30 23 23 30 23 37 32 37 52 66 63 66 
53 25 28 23 28 37 27 29 37 61 48 49 61 
54 19 20 21 21 54 59 40 59 42 61 40 61 
55 30 27 33 33 36 29 44 44 64 49 55 64 

Mean: 
24 25 25 27 40 40 40 47 52 53 53 59 

SD: 
3.2 3.6 4.0 3.1 12.0 11.9 14.4 11.2 8.5 10.8 9.6 7.2 
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2- EMD Values of female’s participants (pre-fatigue) 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

1 31 26 26 31 64 64 53 64 47 68 58 68 
2 

27 27 16 27 53 34 30 53 54 66 57 66 
3 33 35 25 35 36 21 19 36 68 66 58 68 
4 

32 32 29 32 37 53 39 53 55 68 66 68 
5 22 24 18 24 44 25 29 44 42 46 55 55 
6 

29 21 27 29 41 34 37 41 52 53 54 54 
7 32 27 34 34 41 35 45 45 62 52 62 62 
8 

30 21 29 30 26 26 31 31 70 69 62 70 
9 28 22 23 28 62 66 40 66 57 70 63 70 

10 
22 26 24 26 47 40 26 47 50 64 47 64 

11 27 24 20 27 37 34 26 37 56 60 55 60 
12 

28 26 31 31 39 38 60 60 42 48 44 48 
13 27 24 25 27 45 42 47 47 66 71 48 71 
14 

27 26 26 27 65 67 69 69 64 48 52 64 
15 20 21 24 24 23 28 18 28 63 64 65 65 
16 

20 29 23 29 48 48 47 48 53 71 57 71 
17 31 29 34 34 55 59 59 59 63 60 61 63 
18 

22 20 22 22 28 54 37 54 48 34 43 48 
19 22 29 25 29 30 23 39 39 57 50 65 65 
20 

23 22 22 23 25 44 36 44 67 55 60 67 
21 30 29 32 32 43 58 33 58 73 67 66 73 
22 

23 24 18 24 25 49 44 49 65 58 61 65 
23 20 21 22 22 63 49 54 63 58 47 37 58 
24 

21 22 28 28 57 50 44 57 54 51 46 54 
25 30 26 27 30 69 41 47 69 74 60 55 74 
26 

19 28 24 28 47 35 38 47 39 54 42 54 
27 20 22 22 22 39 51 36 51 51 57 54 57 
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28 
28 29 23 29 59 46 38 59 46 64 64 64 

29 31 22 25 31 56 38 45 56 48 59 53 59 
30 

31 28 32 32 64 69 47 69 56 62 53 62 
31 28 23 33 33 25 47 34 47 70 55 51 70 
32 

28 25 26 28 36 42 37 42 59 56 42 59 
33 31 32 28 32 41 45 65 65 65 71 71 71 
34 

23 24 23 24 32 32 44 44 47 50 60 60 
35 24 21 19 24 30 22 35 35 56 56 47 56 
36 

32 34 27 34 33 22 27 33 70 50 61 70 
37 24 29 31 31 25 25 36 36 57 51 64 64 
38 

27 31 32 32 39 45 50 50 44 37 39 44 
39 27 25 22 27 34 40 50 50 56 46 54 56 
40 

29 24 29 29 48 58 67 67 69 70 64 70 
41 24 30 27 30 52 67 64 67 50 54 64 64 
42 

25 28 26 28 39 35 45 45 49 61 59 61 
43 30 28 34 34 50 41 60 60 52 58 60 60 
44 

31 30 30 31 53 39 58 58 60 42 62 62 
45 

22 24 21 24 22 36 29 36 41 60 62 62 
46 32 31 30 32 53 59 46 59 65 62 63 65 
47 

31 31 31 31 48 48 43 48 63 61 51 63 
48 27 31 32 32 45 38 56 56 58 66 64 66 
49 

28 33 34 34 48 47 37 48 55 47 68 68 
50 34 34 29 34 23 21 52 52 51 50 48 51 
51 27 22 23 27 45 50 40 50 64 67 59 67 
52 29 25 30 30 39 41 35 41 64 60 78 78 
53 23 31 27 31 26 35 55 55 73 69 64 73 
54 20 27 29 29 61 37 43 61 60 71 56 71 
55 25 28 28 28 20 33 26 33 32 37 41 41 

Mean: 
27 27 26 29 42 42 43 51 57 58 57 63 

SD: 
4.1 3.9 4.5 3.5 13.1 12.6 12.0 10.8 9.5 9.5 8.6 7.7 
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3- EMD Values of male’s participants (post-fatigue) 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

1 27 25 21 27 70 59 63 70 83 54 69 83 
2 

19 25 36 36 53 45 44 53 92 86 80 92 
3 30 30 22 30 65 64 76 76 65 72 74 74 
4 

45 56 59 59 45 38 41 45 89 77 82 89 
5 25 30 20 30 57 76 67 76 59 48 59 59 
6 

47 33 46 47 46 35 40 46 70 61 67 70 
7 34 33 34 34 53 63 54 63 86 88 81 88 
8 

27 39 26 39 59 54 77 77 81 78 71 81 
9 30 36 23 36 48 36 61 61 80 81 87 87 

10 
24 25 19 25 62 62 72 72 72 71 69 72 

11 30 22 25 30 37 37 39 39 62 77 58 77 
12 

39 21 40 40 48 52 42 52 73 74 92 92 
13 28 21 37 37 66 67 60 67 47 52 71 71 
14 

23 24 19 24 55 55 48 55 81 76 66 81 
15 25 49 52 52 48 50 50 50 64 72 73 73 
16 

26 23 41 41 35 50 41 50 84 76 94 94 
17 24 21 35 35 53 55 69 69 98 84 94 98 
18 

52 35 49 52 33 44 30 44 68 65 77 77 
19 36 23 41 41 40 47 32 47 62 53 70 70 
20 

30 27 18 30 69 58 58 69 87 93 82 93 
21 54 57 28 57 63 74 64 74 72 77 66 77 
22 

32 31 30 32 53 64 56 64 69 81 62 81 
23 30 26 24 30 27 27 36 36 69 70 51 70 
24 

23 24 19 24 35 48 37 48 72 70 79 79 
25 43 48 61 61 32 54 39 54 83 80 83 83 
26 

23 25 20 25 55 41 46 55 76 86 86 86 
27 36 47 57 57 53 64 53 64 65 74 62 74 
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28 
26 24 20 26 69 47 73 73 81 86 85 86 

29 21 43 31 43 75 70 64 75 69 93 88 93 
30 

53 49 42 53 49 56 66 66 92 71 86 92 
31 23 26 19 26 48 40 36 48 79 89 84 89 
32 

31 27 38 38 39 26 30 39 54 46 63 63 
33 29 23 17 29 53 46 38 53 84 68 82 84 
34 

23 23 17 23 29 32 44 44 55 55 74 74 
35 48 50 51 51 31 36 46 46 74 59 67 74 
36 

49 50 30 50 47 37 48 48 74 71 60 74 
37 52 30 60 60 55 57 61 61 58 71 55 71 
38 

27 44 36 44 45 40 59 59 63 70 68 70 
39 48 43 50 50 67 58 72 72 76 77 71 77 
40 

29 32 37 37 55 65 52 65 75 92 85 92 
41 30 33 49 49 47 64 46 64 75 71 56 75 
42 

25 21 20 25 62 53 51 62 78 79 71 79 
43 31 41 38 41 77 64 60 77 72 79 96 96 
44 

39 25 32 39 67 49 62 67 78 86 69 86 
45 

34 40 21 40 73 59 65 73 63 93 68 93 
46 38 31 48 48 42 48 32 48 75 65 75 75 
47 

26 33 23 33 55 60 49 60 84 84 74 84 
48 28 48 49 49 58 73 73 73 74 81 74 81 
49 

26 29 28 29 51 38 46 51 75 70 86 86 
50 31 40 32 40 43 55 43 55 65 85 60 85 

Mean: 
33 33 34 39 52 52 52 59 74 74 74 81 

SD: 
9.5 10.4 13.0 10.9 12.5 12.3 13.2 11.6 10.6 11.8 11.1 9.0 
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4- EMD Values of male’s participants (pre-fatigue) 

No. 

Slow angular velocity 

(60°·s
-1

)
 

Intermediate angular 

velocity (120°·s
-1

)
 

Fast angular velocity 

(240°·s
-1

)
 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

EMD 
BM 

EMD 
SM 

EMD 
ST 

EMD 
MAX 

1 60 61 65 65 73 77 82 82 64 90 74 90 
2 

24 38 34 38 68 65 78 78 91 99 97 99 
3 38 28 31 38 69 92 80 92 91 91 97 97 
4 

55 60 42 60 50 51 55 55 92 63 80 92 
5 37 30 46 46 78 78 62 78 81 81 78 81 
6 

65 65 55 65 49 50 52 52 80 79 83 83 
7 54 35 32 54 39 56 49 56 98 86 83 98 
8 

37 22 21 37 76 72 68 76 68 84 80 84 
9 38 54 41 54 52 53 56 56 86 78 90 90 

10 
45 26 31 45 70 63 63 70 92 90 79 92 

11 42 35 39 42 76 64 59 76 93 86 94 94 
12 

42 36 47 47 75 69 63 75 91 95 90 95 
13 27 27 33 33 55 54 53 55 92 68 90 92 
14 

63 67 42 67 63 79 67 79 87 82 96 96 
15 48 41 28 48 50 59 61 61 72 78 71 78 
16 

38 35 28 38 80 66 66 80 82 73 77 82 
17 40 39 62 62 52 58 50 58 83 84 93 93 
18 

46 43 49 49 49 52 44 52 86 90 94 94 
19 66 68 71 71 64 43 48 64 83 70 92 92 
20 

24 29 20 29 54 50 67 67 78 68 79 79 
21 49 49 49 49 75 63 86 86 83 72 96 96 
22 

56 60 61 61 65 50 74 74 73 76 70 76 
23 29 55 39 55 45 42 61 61 86 91 85 91 
24 

31 24 41 41 44 53 46 53 66 94 88 94 
25 26 45 38 45 84 76 67 84 79 89 64 89 
26 

44 59 35 59 62 69 75 75 64 82 78 82 
27 26 50 46 50 51 51 54 54 72 92 88 92 
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28 
64 50 56 64 85 79 66 85 97 89 87 97 

29 58 51 46 58 77 78 53 78 98 87 88 98 
30 

70 42 48 70 73 55 76 76 91 90 83 91 
31 48 36 39 48 52 38 48 52 89 97 96 97 
32 

40 52 37 52 71 62 59 71 91 81 93 93 
33 60 47 39 60 77 85 76 85 95 72 86 95 
34 

57 39 46 57 68 90 80 90 95 93 78 95 
35 65 70 48 70 46 68 68 68 97 97 98 98 
36 

26 48 35 48 55 56 74 74 81 93 98 98 
37 37 43 38 43 38 40 51 51 82 93 86 93 
38 

42 46 66 66 53 42 46 53 99 89 94 99 
39 33 33 45 45 44 60 65 65 95 89 88 95 
40 

31 23 36 36 62 89 88 89 84 93 96 96 
41 34 23 28 34 38 45 51 51 88 78 87 88 
42 

26 26 37 37 56 78 59 78 66 64 66 66 
43 40 46 51 51 48 37 51 51 65 72 71 72 
44 

35 41 51 51 67 64 56 67 88 68 84 88 
45 

49 59 68 68 85 90 82 90 84 85 86 86 
46 53 68 65 68 54 57 48 57 86 91 70 91 
47 

40 36 46 46 49 63 63 63 79 87 70 87 
48 51 42 61 61 53 64 50 64 92 80 77 92 
49 

54 40 59 59 79 81 73 81 89 83 77 89 
50 23 37 30 37 56 78 77 78 81 96 97 97 

Mean: 
44 44 44 52 61 63 63 69 85 84 85 90 

SD: 
13.1 13.3 12.4 11.4 13.4 14.7 12.0 12.7 9.7 9.4 9.3 7.3 
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Appendix (8) 

Examples of Statistical Analysis: 

1- Tests of Within-Subjects Effects for FH/Q ratio 

Measure:MEASURE_1 

Source  Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

time Sphericity 

Assumed 

74841.303 1.000 74841.303 672.431 0.000 

 Greenhouse-

Geisser 

74841.303 1.000 74841.303 672.431 0.000 

 Huynh-Feldt 74841.303 1.000 74841.303 672.431 0.000 

 Lower-bound 74841.303 1.000 74841.303 672.431 0.000 

time * SEX Sphericity 

Assumed 

1621.584 1.000 1621.584 14.570 0.000 

 Greenhouse-

Geisser 

1621.584 1.000 1621.584 14.570 0.000 

 Huynh-Feldt 1621.584 1.000 1621.584 14.570 0.000 

 Lower-bound 1621.584 1.000 1621.584 14.570 0.000 

Error(time) Sphericity 

Assumed 

10907.365 98.000 111.300   

 Greenhouse-

Geisser 

10907.365 98.000 111.300   

 Huynh-Feldt 10907.365 98.000 111.300   

 Lower-bound 10907.365 98.000 111.300   

velocity Sphericity 

Assumed 

252825.574 2.000 126412.787 974.729 0.000 

 Greenhouse-

Geisser 

252825.574 1.941 130273.150 974.729 0.000 

 Huynh-Feldt 252825.574 2.000 126442.469 974.729 0.000 

 Lower-bound 252825.574 1.000 252825.574 974.729 0.000 

velocity * SEX Sphericity 

Assumed 

1439.872 2.000 719.936 5.551 0.005 

 Greenhouse-

Geisser 

1439.872 1.941 741.921 5.551 0.005 

 Huynh-Feldt 1439.872 2.000 720.105 5.551 0.005 

 Lower-bound 1439.872 1.000 1439.872 5.551 0.020 

Error(velocity) Sphericity 

Assumed 

25419.283 196.000 129.690   

 Greenhouse-

Geisser 

25419.283 190.192 133.651   

 Huynh-Feldt 25419.283 195.954 129.721   

 Lower-bound 25419.283 98.000 259.380   

angles Sphericity 

Assumed 

188321.383 3.000 62773.794 468.466 0.000 
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 Greenhouse-

Geisser 

188321.383 2.457 76639.574 468.466 0.000 

 Huynh-Feldt 188321.383 2.551 73824.443 468.466 0.000 

 Lower-bound 188321.383 1.000 188321.383 468.466 0.000 

angles * SEX Sphericity 

Assumed 

2392.602 3.000 797.534 5.952 0.001 

 Greenhouse-

Geisser 

2392.602 2.457 973.697 5.952 0.001 

 Huynh-Feldt 2392.602 2.551 937.931 5.952 0.001 

 Lower-bound 2392.602 1.000 2392.602 5.952 0.016 

Error(angles) Sphericity 

Assumed 

39395.560 294.000 133.999   

 Greenhouse-

Geisser 

39395.560 240.809 163.597   

 Huynh-Feldt 39395.560 249.992 157.587   

 Lower-bound 39395.560 98.000 401.996   

time * velocity Sphericity 

Assumed 

3440.494 2.000 1720.247 10.260 0.000 

 Greenhouse-

Geisser 

3440.494 1.769 1944.349 10.260 0.000 

 Huynh-Feldt 3440.494 1.818 1892.447 10.260 0.000 

 Lower-bound 3440.494 1.000 3440.494 10.260 0.002 

time * velocity * SEX Sphericity 

Assumed 

3336.501 2.000 1668.251 9.950 0.000 

 Greenhouse-

Geisser 

3336.501 1.769 1885.580 9.950 0.000 

 Huynh-Feldt 3336.501 1.818 1835.246 9.950 0.000 

 Lower-bound 3336.501 1.000 3336.501 9.950 0.002 

Error(time*velocity) Sphericity 

Assumed 

32861.785 196.000 167.662   

 Greenhouse-

Geisser 

32861.785 173.409 189.504   

 Huynh-Feldt 32861.785 178.165 184.446   

 Lower-bound 32861.785 98.000 335.324   

time * angles Sphericity 

Assumed 

6081.674 3.000 2027.225 15.451 0.000 

 Greenhouse-

Geisser 

6081.674 2.637 2306.021 15.451 0.000 

 Huynh-Feldt 6081.674 2.745 2215.888 15.451 0.000 

 Lower-bound 6081.674 1.000 6081.674 15.451 0.000 

time * angles * SEX Sphericity 

Assumed 

1413.207 3.000 471.069 3.590 0.014 

 Greenhouse-

Geisser 

1413.207 2.637 535.853 3.590 0.018 

 Huynh-Feldt 1413.207 2.745 514.909 3.590 0.017 

 Lower-bound 1413.207 1.000 1413.207 3.590 0.061 

Error(time*angles) Sphericity 

Assumed 

38573.172 294.000 131.201   

 Greenhouse-

Geisser 

38573.172 258.456 149.245   

 Huynh-Feldt 38573.172 268.968 143.412   
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 Lower-bound 38573.172 98.000 393.604   

velocity * angles Sphericity 

Assumed 

6976.809 6.000 1162.801 9.988 0.000 

 Greenhouse-

Geisser 

6976.809 5.059 1379.007 9.988 0.000 

 Huynh-Feldt 6976.809 5.422 1286.745 9.988 0.000 

 Lower-bound 6976.809 1.000 6976.809 9.988 0.002 

velocity * angles * SEX Sphericity 

Assumed 

2007.057 6.000 334.509 2.873 0.009 

 Greenhouse-

Geisser 

2007.057 5.059 396.706 2.873 0.014 

 Huynh-Feldt 2007.057 5.422 370.165 2.873 0.012 

 Lower-bound 2007.057 1.000 2007.057 2.873 0.093 

Error(velocity*angles) Sphericity 

Assumed 

68453.288 588.000 116.417   

 Greenhouse-

Geisser 

68453.288 495.811 138.063   

 Huynh-Feldt 68453.288 531.362 128.826   

 Lower-bound 68453.288 98.000 698.503   

time * velocity * angles Sphericity 

Assumed 

1270.046 6.000 211.674 1.633 0.135 

 Greenhouse-

Geisser 

1270.046 4.726 268.750 1.633 0.154 

 Huynh-Feldt 1270.046 5.045 251.740 1.633 0.149 

 Lower-bound 1270.046 1.000 1270.046 1.633 0.204 

time * velocity * angles * 

SEX 

Sphericity 

Assumed 

1157.899 6.000 192.983 1.489 0.179 

 Greenhouse-

Geisser 

1157.899 4.726 245.019 1.489 0.195 

 Huynh-Feldt 1157.899 5.045 229.511 1.489 0.191 

 Lower-bound 1157.899 1.000 1157.899 1.489 0.225 

Error(time*velocity*angles) Sphericity 

Assumed 

76202.825 588.000 129.597   

 Greenhouse-

Geisser 

76202.825 463.123 164.541   

 Huynh-Feldt 76202.825 494.416 154.127   

 Lower-bound 76202.825 98.000 777.580   

 

 

 

 

 

 

 



Appendices                                                                                                          

__________________________________________________________________________________________ 

281 
 

 

 

2- Tests of Within-Subjects Effects for EMD  

Measure:MEASURE_1 

Source  Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

time Sphericity 

Assumed 

143433.680 1.000 143433.680 709.406 0.000 

 Greenhouse-

Geisser 

143433.680 1.000 143433.680 709.406 0.000 

 Huynh-Feldt 143433.680 1.000 143433.680 709.406 0.000 

 Lower-

bound 

143433.680 1.000 143433.680 709.406 0.000 

time * SEX Sphericity 

Assumed 

5810.420 1.000 5810.420 28.738 0.000 

 Greenhouse-

Geisser 

5810.420 1.000 5810.420 28.738 0.000 

 Huynh-Feldt 5810.420 1.000 5810.420 28.738 0.000 

 Lower-

bound 

5810.420 1.000 5810.420 28.738 0.000 

Error(time) Sphericity 

Assumed 

19814.456 98.000 202.188   

 Greenhouse-

Geisser 

19814.456 98.000 202.188   

 Huynh-Feldt 19814.456 98.000 202.188   

 Lower-

bound 

19814.456 98.000 202.188   

velocity Sphericity 

Assumed 

365714.364 2.000 182857.182 1028.341 0.000 

 Greenhouse-

Geisser 

365714.364 1.926 189890.551 1028.341 0.000 

 Huynh-Feldt 365714.364 1.984 184350.004 1028.341 0.000 

 Lower-

bound 

365714.364 1.000 365714.364 1028.341 0.000 

velocity * SEX Sphericity 

Assumed 

76.493 2.000 38.247 0.215 0.807 

 Greenhouse-

Geisser 

76.493 1.926 39.718 0.215 0.798 

 Huynh-Feldt 76.493 1.984 38.559 0.215 0.805 

 Lower-

bound 

76.493 1.000 76.493 0.215 0.644 

Error(velocity) Sphericity 

Assumed 

34852.253 196.000 177.818   

 Greenhouse-

Geisser 

34852.253 188.740 184.657   

 Huynh-Feldt 34852.253 194.413 179.269   

 Lower-

bound 

34852.253 98.000 355.635   

muscles Sphericity 

Assumed 

63.054 3.000 31.527 0.468 0.627 
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 Greenhouse-

Geisser 

63.054 2.994 31.622 0.468 0.626 

 Huynh-Feldt 63.054 2.000 31.527 0.468 0.627 

 Lower-

bound 

63.054 1.000 63.054 0.468 0.495 

muscles * SEX Sphericity 

Assumed 

11.290 3.000 5.645 0.084 0.920 

 Greenhouse-

Geisser 

11.290 1.994 5.662 0.084 0.919 

 Huynh-Feldt 11.290 2.000 5.645 0.084 0.920 

 Lower-

bound 

11.290 1.000 11.290 0.084 0.773 

Error(muscles) Sphericity 

Assumed 

13193.433 196.000 67.313   

 Greenhouse-

Geisser 

13193.433 195.413 67.516   

 Huynh-Feldt 13193.433 196.000 67.313   

 Lower-

bound 

13193.433 98.000 134.627   

time * velocity Sphericity 

Assumed 

10934.560 2.000 5467.280 20.459 0.000 

 Greenhouse-

Geisser 

10934.560 1.764 6200.199 20.459 0.000 

 Huynh-Feldt 10934.560 1.812 6035.293 20.459 0.000 

 Lower-

bound 

10934.560 1.000 10934.560 20.459 0.000 

time * velocity * SEX Sphericity 

Assumed 

100.253 2.000 50.127 0.188 0.829 

 Greenhouse-

Geisser 

100.253 1.764 56.846 0.188 0.802 

 Huynh-Feldt 100.253 1.812 55.334 0.188 0.808 

 Lower-

bound 

100.253 1.000 100.253 0.188 0.666 

Error(time*velocity) Sphericity 

Assumed 

52377.631 196.000 267.233   

 Greenhouse-

Geisser 

52377.631 172.831 303.057   

 Huynh-Feldt 52377.631 177.553 294.996   

 Lower-

bound 

52377.631 98.000 534.466   

time * muscles Sphericity 

Assumed 

23.243 3.000 11.622 0.259 0.772 

 Greenhouse-

Geisser 

23.243 2.961 11.854 0.259 0.767 

 Huynh-Feldt 23.243 2.000 11.622 0.259 0.772 

 Lower-

bound 

23.243 1.000 23.243 0.259 0.612 

time * muscles * SEX Sphericity 

Assumed 

26.763 3.000 13.382 0.299 0.742 

 Greenhouse-

Geisser 

26.763 2.961 13.649 0.299 0.738 

 Huynh-Feldt 26.763 2.000 13.382 0.299 0.742 

 Lower-

bound 

26.763 1.000 26.763 0.299 0.586 
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Error(time*muscles) Sphericity 

Assumed 

8781.104 196.000 44.802   

 Greenhouse-

Geisser 

8781.104 192.160 45.697   

 Huynh-Feldt 8781.104 196.000 44.802   

 Lower-

bound 

8781.104 98.000 89.603   

velocity * muscles Sphericity 

Assumed 

6.539 6.000 1.635 0.035 0.998 

 Greenhouse-

Geisser 

6.539 5.645 1.794 0.035 0.996 

 Huynh-Feldt 6.539 4.842 1.702 0.035 0.997 

 Lower-

bound 

6.539 1.000 6.539 0.035 0.853 

velocity * muscles * SEX Sphericity 

Assumed 

52.997 6.000 13.249 0.280 0.891 

 Greenhouse-

Geisser 

52.997 4.645 14.538 0.280 0.875 

 Huynh-Feldt 52.997 3.842 13.793 0.280 0.884 

 Lower-

bound 

52.997 1.000 52.997 0.280 0.598 

Error(velocity*muscles) Sphericity 

Assumed 

18530.020 392.000 47.270   

 Greenhouse-

Geisser 

18530.020 357.254 51.868   

 Huynh-Feldt 18530.020 376.552 49.210   

 Lower-

bound 

18530.020 98.000 189.082   

time * velocity * muscles Sphericity 

Assumed 

32.317 6.000 8.079 0.134 0.970 

 Greenhouse-

Geisser 

32.317 4.265 9.897 0.134 0.950 

 Huynh-Feldt 32.317 3.426 9.433 0.134 0.955 

 Lower-

bound 

32.317 1.000 32.317 0.134 0.715 

time * velocity * muscles * 

SEX 

Sphericity 

Assumed 

66.183 4.000 16.546 0.275 0.894 

 Greenhouse-

Geisser 

66.183 5.265 20.268 0.275 0.859 

 Huynh-Feldt 66.183 3.426 19.319 0.275 0.868 

 Lower-

bound 

66.183 1.000 66.183 0.275 0.601 

Error(time*velocity*muscles) Sphericity 

Assumed 

23582.389 392.000 60.159   

 Greenhouse-

Geisser 

23582.389 320.007 73.693   

 Huynh-Feldt 23582.389 335.724 70.243   

 Lower-

bound 

23582.389 98.000 240.637   

 

 

 



 




